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Abstract

The presence of unobserved common causes and the presence of measurement
error are two of the most limiting challenges in the task of causal structure learn-
ing. Ignoring either of the two challenges can lead to detecting spurious causal
links among variables of interest. In this paper, we study the problem of causal
discovery in systems where these two challenges can be present simultaneously.
We consider linear models which include four types of variables: variables that are
directly observed, variables that are not directly observed but are measured with
error, the corresponding measurements, and variables that are neither observed
nor measured. We characterize the extent of identifiability of such model under
separability condition (i.e., the matrix indicating the independent exogenous noise
terms pertaining to the observed variables is identifiable) together with two versions
of faithfulness assumptions and propose a notion of observational equivalence. We
provide graphical characterization of the models that are equivalent and present a
recovery algorithm that could return models equivalent to the ground truth.

1 Introduction

Causal structure learning, also known as causal discovery, from observational data has been studied
extensively in the literature. The majority of work assume that there are no unobserved variables in
the system that can affect more than one other variable, i.e., no unobserved common causes, and that
variables are measured without error. This leads to identification of the underlying structure up to
Markov equivalence class in general [15, 3], and complete identification of the structure under further
model assumptions such as assuming a linear non-Gaussian model (LiNGAM, [12, 13]). However, in
majority of real-world settings, the researcher will not be able to observe all the relevant variables and
hence cannot rule out the presence of unobserved common causes, and further many of the variables
may have been measured with error. This necessitates approaches for causal discovery capable of
dealing with these two important challenges.

In this work, we study the problem of causal discovery from observational data in the presence of both
aforementioned challenges, i.e., in settings with both unobserved common causes and measurement
error. We consider a special type of linear structural equation model (SEM) as the underlying
data generating process which includes four types of variables: variables that are directly observed
(called observed variables), variables that are not directly observed but are measured with error
(called measured variables), the corresponding measurement variables, and variables that are neither
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Figure 1: Left: Diagram of an LV-SEM-ME (see Appendix B.2 for more details). We observe Y3

and (X1, X2), which are noisy measurements of (Z1, Z2). Right: Diagram of the corresponding
canonical model: Z2 is an mleaf variable; H is an unobserved variable; Z1, Y3 are cogent variables.

directly observed nor measured (called unobserved variables). We refer to this model as linear
latent variable SEM with measurement error (linear LV-SEM-ME). We study the identifiability of
linear LV-SEM-MEs in a setup where the independent exogenous noise terms that causally (directly
or indirectly) affect each observed variable can be distinguished from each other. That is, the
mixing matrix of the linear system that transforms exogenous noise terms to observed variables is
recoverable up to permutation and scaling of the columns. This can be satisfied, for example, if all
independent exogenous noise terms are non-Gaussian. We note that measurement error challenge is
essentially a special case of unobserved variable challenge, in which we observe a measurement of
an underlying unobserved variable of interest. Yet, the observed measurement variable usually have
special properties (such as not being affected by other variables) that can be leveraged to improve
the identification power. Hence, our point of view in this work is to allow for coexistence of the
challenges of unobserved common causes and measurement error, while leveraging the properties of
the measurement variables to improve identification.

We study the identifiability of linear LV-SEM-ME under two faithfulness assumptions. The first
assumption prevents existence of zero total causal effects of a variable on its descendants, which we
refer to as conventional faithfulness assumption as it is widely assumed in the literature. The second
assumption prevents additional parameter cancellation or proportionality among specific edges, which
we refer to as LV-SEM-ME faithfulness assumption. Both assumptions are mild in that their violations
are zero-probability events. We show that under conventional faithfulness assumption, the model can
be identified up to an equivalence class characterized by an ordered grouping of the variables which
we call ancestral ordered grouping (AOG). Further, under LV-SEM-ME faithfulness assumption, the
model can be learned up to an equivalence class characterized by a more refined ordered grouping
which we call direct ordered grouping (DOG). We provide a graphical characterization of the elements
of the equivalence class in which the induced graph on each ordered group includes a star structure
where any member (variable) of the group is a potential center of the star. Specifically, every element
in the equivalence class corresponds to distinct assignments of the centers of the star graphs, yet it
possesses the same ordered grouping of variables and the same unlabelled structure on each group
as the rest of the elements in the equivalence class. Models in the same AOG equivalence class are
consistent with the same set of causal orders among groups, and models in the same DOG equivalence
class share the same unlabeled graph structure, i.e., the causal diagrams are isomorphic. Lastly, we
provide a recovery algorithm that could return all models in the AOG and DOG equivalence classes.
Previous work presented in [19] only considered confounders and measurement error separately.
Moreover, a different definition for AOG and DOG was used.

2 Model description

We start with a formal definition of the model that we consider in this work.

Definition 1 (General linear LV-SEM-ME) A general linear LV-SEM-ME consists of two sets of
variables V and X . Variables in V can be arranged in a causal order, and each variable Vi ∈ V
is generated as a linear combination of a subset Pa(Vi) ⊂ V (called its direct parents), plus an
exogenous noise term NVi , where {NVi}Vi∈V are jointly independent. Further, V can be partitioned
into three sets Y , Z andH. Variables in Y are observed (without error). Variables in Z are measured
with error, where each variable Xi ∈ X is a noisy measurement of one corresponding variable
Zi ∈ Z plus an exogenous noise term NXi

(which we call measurement error of Zi). Variables
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in H are neither observed nor measured with error. We refer to variables in H, Y , Z , and X as
unobserved variables, observed variables, measured variables, and measurements, respectively.

We define a measured leaf variable (mleaf variable) as a measured variable in Z that has no other
children besides its noisy measurement. We define a cogent variable as a variable in Z ∪ Y that
is not an mleaf. As mentioned earlier, we study the problem of recovering the linear LV-SEM-ME
from observations of (Y,X ). We focus on recovering the subset of linear LV-SEM-ME, called
canonical LV-SEM-ME, defined as follows. We add two restrictions on the model for the sake of
model identifiability based on observational data, where both have been considered in literature
[6, 20, 19]. See Appendix B.1 for detailed discussion about the restrictions on the canonical form.

Definition 2 (Canonical linear LV-SEM-ME) A canonical LV-SEM-ME is an LV-SEM-ME where
variables inH are roots and confounders, and mleaf variables do not have exogenous noise terms.

The matrix form of the canonical LV-SEM-ME can be written as

H = NH ,ZL

ZC

Y

 = BH +

[
D
CZ

CY

] [
ZC

Y

]
+

[
0

NZC

NY

]
,

X =

[
ZL

ZC

]
+

[
NXL

NXC

]
,

(1a)

(1b)

(1c)

where H , Y , X represent the vector of unobserved variables, observed variables, measurements,
respectively. ZL represent the vector of mleaf variables, and ZC represent the vector of measured
variables that are not mleaf variables. NH , NY , NZC are the noise vectors corresponding to H , Y ,
ZC , respectively. NXL (resp. NXC ) represent the measurement error of the variables in ZL (resp.
ZC). B represent the causal connections from unobserved variables H to [ZL;ZC ;Y ], C represent
the causal connections among cogent variables, which is partitioned into [CZ ;CY ] according to
[ZC ;Y ]. D represent the causal connections from cogent variables to mleaf variables. Note that the
right hand side of Equation (1b) is not a function of ZL since variables on the left hand side do not
have mleaf variables as their parents.

We define the causal diagram of a linear LV-SEM-ME as a directed graph, where the nodes are all
variables in V ∪ X . For any two variables W1,W2 ∈ V ∪ X , there is a directed edge from W1 to W2

if and only if W1 ∈ Pa(W2). Due to the causal order of V ∪ X , the causal diagram is acyclic.

Problem description We consider a setting with known observability indicators, that is, we know
whether each variable is observed without error (i.e., belongs to Y ) or measured with error (i.e.,
belongs to X). Suppose we have n i.i.d. observations of the variables {X,Y }. The task is to recover
all linear LV-SEM-MEs which have the same observational distribution up to the noise distributions.

3 Identification analysis

In this section we study identification for our model of interest. We first consider the problem
for two special submodels in Section 3.2: 1) If H = ∅, i.e., all unobserved variables have noisy
measurements, then the model is linear SEM-ME. 2) If Z = ∅, i.e., all unobserved variables are
roots and confounders, then the model is linear LV-SEM. Identification analysis for these two special
cases have been studied in [19], yet different technique was used in that work for the linear LV-SEM.
We then study the general form in Section 3.3 where both challenges can be present in the system
simultaneously, which is our main identification result. In both subsections, we study identification
under two faithfulness assumptions where, as will be discussed shortly, the first one, referred to as
the conventional faithfulness, is a weaker assumption.

3.1 Separability and faithfulness assumptions

In the following we present two assumptions for the identifiability of SEM-ME and LV-SEM, namely
separability assumption and faithfulness assumption. Note that for the identifiability of LV-SEM-ME,
we need one extra assumption which we will present in Section 3.3.
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Separability assumption. We first deduce the mixing matrix that transforms independent exoge-
nous noise terms to the observed variables [X; Y ]. Denote V C = [ZC ;Y ] as the vector of cogent
variables. We can write variables in [ZL;V C ] as linear combinations of the exogenous noise terms:

[
ZL

V C

]
= W∗

[
NH

NV C

]
, where W∗ =

[
BL +D(I−C)−1BC D(I−C)−1

(I−C)−1BC (I−C)−1

]
. (2)

B is partitioned into [BL;BC ] according to [ZL;V C ], NV C = [NZC ;NY ], and I represents the
identity matrix. Combined with Equation (1c), the overall mixing matrix W can be written as[

X
Y

]
=

[
W∗ I

0

]
︸ ︷︷ ︸

W

 NH

NV C

NXL

NXC

 . (3)

We note that because mleaf variables have no exogenous noise, each column in W∗ either has at least
two non-zero entries, or has one non-zero entry where the non-zero entry is not in X .

Assumption 1 (Separability) The mixing matrix W in Equation (3) can be recovered from obser-
vations of [X; Y ] up to permutation and scaling of its columns.

Separability assumption states that the independent exogenous noise terms pertaining to this mixture
can be separated. An example of a setting where this assumption holds is when all exogenous noises
are non-Gaussian. Further, given the recovered matrix W, the matrix W∗ can be recovered by
removing the one-hot column vectors in W where the non-zero entry is in a row corresponding to a
variable in X . Please refer to Appendix C.1 for more details.

Faithfulness assumption. For each variable Vi, define possible parent set of Vi, PP (Vi), as the
union of An(Vi) \ H and the set of mleaf variables whose parent sets are subsets of An(Vi). We
provide two versions of faithfulness assumption that will be used in our identification results.

Assumption 2 (Conventional faithfulness) The total causal effect of any variable Vi ∈ V on its
descendant Vj ∈ V is not zero.

Assumption 3 (LV-SEM-ME faithfulness) For each variable Vi ∈ Z ∪ Y and any pair of subsets
(J,K) ⊆ (H ∪ VC) × Z ∪ Y that satisfies at least one of the conditions below, the rank of the
submatrix WK∪{Vi},J is equal to the size of the smallest set that blocks all directed paths from J to
K ∪ {Vi}:

(a) J ⊆ An(Vi), K ⊆ PP (Vi);

(b) J ⊆ An(Vi) \ {Vj}, K ⊆ PP (Vj), when Vi is a mleaf variable and Vj is a parent of Vi.

Assumption 2 is widely assumed in the literature, and hence we refer to it as the conventional
faithfulness. It requires that when multiple causal paths exist from any (observed or unobserved)
variable to its descendants, their combined effect (i.e., sum of products of path coefficients) is not
equal to zero. Assumption 3 provides a stronger notion of faithfulness. The intuition of Assumption 3
is as follows. The structure of the causal diagram in the data generating process implies proportionality
in the corresponding entries in the mixing matrix. For example, in the structure V1 → V2 → V3,
the mixing matrix with rows corresponding to {V2, V3} and columns corresponding to {V1, V2} is
of rank 1. However, there may exists extra proportionality among the entries in the mixing matrix
that are not enforced by the graph. This extra proportionality may result in the data distribution
corresponding to an alternative model that does not always happen. Note that both assumptions
are violated with probability zero. Please refer to Appendix C.2 for more discussion about both
faithfulness assumptions.

3.2 Identifiability of SEM-ME and LV-SEM

In this subsection, we summarize the identification results of SEM-ME and LV-SEM under faith-
fulness and separability assumptions, where the extent of identifiability can be described by two
graphical characterizations of equivalence, namely Ancestral ordered grouping (AOG) equivalence
and Direct ordered grouping (DOG) equivalence. See Appendix D for more detailed analysis.
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Figure 2: Considered models in simulation: NCO, Front-Door, IV, and Union Model.

Definition 3 (Ancestral/direct ordered grouping) The AOG/DOG of a linear SEM-ME (resp. LV-
SEM) is a partition of ZL ∪ VC (resp. H ∪ VC) into distinct sets, described as follows:

(1) Assign each cogent variable in VC to a distinct group.

(2) (i) SEM-ME: For each mleaf variable Zj ∈ ZL, assign Zj to the same ordered group as Zi

if certain graphical condition is satisfied. Otherwise, assign Zj to a separate group.

(ii) LV-SEM: For each unobserved variable Hj ∈ H, assign Hj to the same ordered group
as Vi if certain graphical condition is satisfied. Otherwise, assign Hj to a separate group.

Definition 4 (AOG/DOG equivalence class) The AOG/DOG equivalence class of a linear SEM-
ME (resp. LV-SEM) is a set of models where the elements of this set all have the same mixing matrix
(up to permutation and scaling) and same ancestral/direct ordered groups.

The definitions of AOG and DOG only differs in the graphical condition. It was shown in [19] that
all models in the AOG equivalence class are consistent with the same set of causal orders among the
groups (i.e., if a causal order on the groups is consistent with one model in the class, it is consistent
with all the models in the class), but not necessarily all the same edges across the groups.2 That is,
based on AOG, the set of causal orders among groups are identifiable but not the edges across groups.

Proposition 1 (a) Models in the same DOG equivalence class of a SEM-ME have the same unlabeled
graph structure, i.e., the causal diagrams of these models are isomorphic.

(b) Models in the same DOG equivalence class of an LV-SEM have the same graph structure.

For a SEM-ME, according to Definition 3, there is at most one cogent variable in each ancestral
ordered group. Furthermore, each observed cogent variable belongs to a separate group. Each mleaf
node Zj is assigned to the ancestral ordered group of at most one of its parents. Hence, if a group has
more than one variable, then there must be exactly one measured cogent variable, and the rest of the
nodes are mleaf nodes which are children of this node. This concludes that the induced structure on
each ancestral ordered group is a star graph. Similar property holds for LV-SEM. Define the center of
the ancestral ordered group as the cogent variable, or the mleaf variable (resp. unobserved variable)
if the group does not include a cogent variable. [19] showed that fixing the center of the ancestral
ordered groups for SEM-ME, and fixing the exogenous noise term of the center of the ancestral
ordered groups as well as the choice of scaling and permutation of the columns of B for LV-SEM,
leads to unique identification of the models. Therefore, by considering all the candidates for the
center, models in the same AOG equivalence class of a SEM-ME can be enumerated by switching
the center of each group with other nodes that are in the same group. Models in the same AOG
equivalence class of an LV-SEM can be enumerated by switching the exogenous noise of the center
of each group with the noise of other nodes in the same group.

As for DOG, we can see from graphical condition in Definition 8 that DOG is a more refined partition
compared with AOG. Therefore, similar to AOG equivalence class, models in the DOG equivalence
class are also consistent with the same set of causal orders among the groups, and the induced structure
on each direct ordered group is also a star graph. Further, models in the same DOG equivalence class
of a SEM-ME and an LV-SEM can also be enumerated by switching the center of each group, and
switching the exogenous noise of the center of each group with the noise of other nodes in the same
group, respectively. For the properties that only hold for DOG, it was shown in [19] that models in
the same DOG equivalence class have the same edges across the groups. Combined with the star
structure within each group, the following proposition provides a graphical characterization of the
DOG equivalence class for SEM-ME and LV-SEM.

2The identification results in Theorem 1 implies that AOG is the finest partitioning that satisfy this property
under Assumption 2, and DOG is the finest partitioning under Assumption 3.

5



Proposition 2 (a) Models in the same DOG equivalence class of a SEM-ME have the same unlabeled
graph structure, i.e., the causal diagrams of these models are isomorphic.

(b) Models in the same DOG equivalence class of an LV-SEM have the same graph structure.

We provide the identification results for SEM-ME and LV-SEM below. Please refer to Appendix D
for detailed discussion about these results.

Theorem 1 We have the following results regarding the identification of SEM-ME and LV-SEM:

(a) Under Assumptions 1 and 2, the linear SEM-ME (resp. LV-SEM) can be identified up to its
AOG equivalence class.

(b) Under Assumptions 1 and 3, the linear SEM-ME (resp. LV-SEM) can be identified up to its
DOG equivalence class with probability one.

3.3 Identifiability of LV-SEM-ME

In this subsection, we provide identification results for a system in which both unobserved confounders
and measurement errors can co-exist. For this case, we need an extra minimality assumption.

Assumption 4 (Minimality) We assume the linear LV-SEM-ME M is minimal, that is, there does
not exist any other linear LV-SEM-ME M ′ such that M ′ has strictly fewer unobserved variables
than M , the same observability indicators of the variables, and the same mixing matrix as M up to
permutation and scaling of the columns.

Minimality assumption asserts that the ground-truth model has fewer (or equal) unobserved variables
than any other models that has the same mixing matrix and observability indicator. This assumption
is required since we cannot infer the number of unobserved variables without prior knowledge of
the system. See Appendix C.3 for more discussion and an equivalent graphical characterization.
Equipped with minimality assumption, we are ready to present our main identification result.

Definition 5 (AOG and DOG of LV-SEM-ME) The DOG (resp. AOG) of an LV-SEM-ME consists
of a partition of the variables inH ∪ZL ∪ VC described as follows:

(1) Assign each cogent variable Vi ∈ VC to a distinct group.

(2) Assign the mleaf variables in ZL to the groups of measured cogent variables or a separate
group following the same condition for DOG (resp. AOG) in SEM-ME (i.e., (2)(i) in Def. 3).

(3) Assign the unobserved variables inH to the groups of cogent variables or a separate group
following the same condition for DOG (resp. AOG) in LV-SEM (i.e., (2)(ii) in Def. 3).

Using Definition 5, the AOG and DOG equivalence classes of an LV-SEM-ME are defined as in
Definition 4. Similar to Section 3.2, models in the same AOG and DOG equivalence classes are
consistent with the different sets of causal orders among the groups, and models in the same DOG
equivalence class have isomorphic graph structure, summarized below.

Proposition 3 Models in the same DOG equivalence class of an LV-SEM-ME have the same unla-
beled graph structure, i.e., the causal diagrams of these models are isomorphic.

However, unlike the results in Section 3.2, the induced structure on each group may not be a star
graph if there is an edge from the unobserved variables to the mleaf variables in the same group. We
extend our approach by defining the center of a group as the cogent variable in that group (if it exists),
or the only mleaf or unobserved variable in the group. In this case, all members in the equivalence
classes can be enumerated by either switching the center with any mleaf variables in the group, and/or
switching the exogenous noises of the center with the noises of any unobserved variables in the group.
For example, a group with one measured cogent variable, one mleaf variable and one unobserved
variable has three equivalents (switching the cogent with the mleaf, switching the noise of the cogent
with the noise of the unobserved confounder, and both). Below, we show that the introduced notion
of equivalnece, is indeed the extent of identification in the generalized LV-SEM-ME.

Theorem 2 We have the following results regarding the identification in LV-SEM-ME:
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Table 1: Performance of the algorithms on estimating the causal effect in four different models. Mean,
20%, 80% stand for the average, 20% and 80% percentiles of the estimation error, respectively.

DOGEC (ours) GRICA [16] lvLiNGAM[11] Cross-Moment[7]
Mean 20% 80% Mean 20% 80% Mean 20% 80% Mean 20% 80%

NCO 0.08 0.06 0.11 0.38 0.30 0.43 1.15 0.88 1.49 0.08 0.04 0.10
Front 0.02 0.01 0.02 0.46 0.35 0.57 0.84 0.60 0.93 0.23 0.03 0.23
IV 0.19 0.02 0.36 0.50 0.37 0.59 0.84 0.69 0.99 1.33 0.49 1.21
Union 0.11 0.08 0.14 0.39 0.30 0.42 0.73 0.28 0.89 0.30 0.23 0.38

(a) Under Assumptions 1, 2 and 4, the linear LV-SEM-ME can be identified up to its AOG
equivalence class.

(b) Under Assumptions 1, 3 and 4, the linear LV-SEM-ME can be identified up to its DOG
equivalence class with probability one.

4 Recovery algorithm and numerical experiments

We first describe the recovery algorithm for the introduced LV-SEM-ME model. The algorithm
includes two main parts. The first part, namely AOG recovery algorithm (Algorithm 1), returns the
ancestral ordered grouping of the underlying model given mixing matrix and observability indicator.
The second part is to return all members in the AOG and DOG equivalence class (Algorithm 2). As
described above, given the recovered AOG, members in the AOG equivalence class can be enumerated
by switching the center with any mleaf variables in the group and/or switching the exogenous noises
of the center with the noises of any unobserved variables in the group. For recovering the members
in the DOG equivalence class, we show that members in the AOG equivalence class of the ground-
truth but not DOG equivalence class has strictly more edges than the ground truth (Proposition 7).
Therefore, members in the DOG equivalence class can be recovered by finding the models in the
AOG equivalence class that has the fewest number of edges. See Appendix E for more details.

We evaluated the performance of our algorithm on synthetic data. We consider the following four
models, all with three observed variables and one unobserved variable: (1) Negative Control Outcome
(NCO) model; (2) Front-door model; (3) Instrumental Variable (IV) model; (4) A union model that
can be considered as a generalization of all three models. See Figure 2 for causal diagrams of four
models. Our theoretical results imply that all four models are uniquely identifiable, i.e., the DOG
equivalence class only includes the ground truth. The edge weights are randomly generated from
[0.5, 0.9], and the noises are sampled from uniform distribution. The task is to estimate the edge
weight from Y2 to Y3. We use Reconstruction ICA (RICA) [9] to recover the mixing matrix.

We compare our recovery algorithm with lvLiNGAM algorithm [11], Graphical RICA (GRICA)
algorithm [16] and cross-moment approach [7] on 10 randomly generated models. We note that both
GRICA and cross-moment assume that the causal graph is known. However, this is not given as input
in our algorithm. We calculate the relative error between the true value and the estmated value, and
report the average error, as well as the 20% and 80% percentile of the errors in Table 1. The results
show that our method significantly outperforms the baselines even without knowing the true causal
graph, which aligns with our theoretical results.

5 Conclusion

We studied causal discovery in the presence of unobserved variables and measurement error by
defining the linear LV-SEM-ME model. We characterized its identifiability under separability and
two faithfulness assumptions, and showed that it can be identified up to AOG and DOG equivalence
classes respectively. We provided graphical characterization of the models that are equivalent and
presented a recovery algorithm that could return models equivalent to the ground truth. A remaining
challenge in our proposed methodology is its reliance on the accuracy of the provided estimate of
the mixing matrix of the underlying model. Hence, devising accurate approaches for estimating the
mixing matrix is an important direction of future research.
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A Related work

The two aforementioned challenges have been addressed in several work in the literature. Regarding
the challenge of unobserved common causes, constraint-based algorithms such as the Fast Causal
Inference (FCI) algorithm has been widely used [15]. However, these approaches are often unable to
identify the direction of the majority of causal connections in the recovered graph. In the presence of
the unobserved common causes, methods based on linearity and non-Gausianity also in general are
not able to learn the structure uniquely. Proposed methods such as latent variable LiNGAM [6, 11]
and partially observed LiNGAM [1] provide graphical conditions for unique identifiability of the
model. These conditions are usually non-trivial, which demonstrates the difficulty of the task of
causal discovery in the presence of unobserved common causes.

There are fewer work focusing on the challenge of causal discovery in the presence of measurement
error. Majority of the work [14, 8, 17, 18] assume that each unobserved (but measured) variable has
at least two measurements. This assumption facilitates the task of discovery and usually leads to
unique identifiability of the model, yet may not hold in many settings.3 Without this assumption,
[5] consider the model where the measured variables are binary, and [10] consider the case where
the relations among measured variables are nonlinear, and the measurement errors are Gaussian. In
linear models, [20] provide conditions for unique identifiability of linear Gaussian and non-Gaussian
models. None of the aforementioned work on measurement error considered the case when the model
is not uniquely identifiable (i.e., there are other models that are observationally equivalent to the
true model). Hence, characterization of observational equivalence for measurement error models is
missing in the literature.

B Detailed description of LV-SEM-ME model

B.1 Additional restriction on canonical LV-SEM-ME model

We add the following two restrictions on the model for the sake of model identifiability based on
observational data.

• Firstly, as discussed in [20, 19], for any mleaf variable Zi, the exogenous noise term NZi
is

not distinguishable from its measurement error NXi
. Specifically, for any two models that

only differ in Zi and Xi for some mleaf variable Zi but have the same sum NZi
+NXi

, they
have the same observational distribution. This follows because Zi is not observed, and NZi

only influences its noisy measurement Xi and no other observed variables in Y . Therefore,
we consider the model where NZi

= 0 for all mleaf variables for model identifiability, i.e.,
we assume that mleaf variables are deterministically generated from its direct parents.

• Secondly, we assume that variables inH are all root variables (i.e., have no direct parents)
and confounders (i.e., have at least two children). This is because for any linear latent
variable model with a non-root latent variable, there exists an equivalent latent variable

3As seen in Section 2, we avoid positing this assumption in our work.
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model where the latent variables are all roots, such that both models have the same joint
distribution across observed variables and total causal effect between any pair of observed
variables [6].

Due to the aforementioned restrictions, we focus on recovering the subset of linear LV-SEM-ME,
called canonical LV-SEM-ME, defined as in Definition 2.

B.2 Example of a linear LV-SEM-ME

Example 1 Figure 1 shows an example of a causal diagram including unobserved variable H ,
observed variable {Y3}, measured variables {Z1, Z2} and their corresponding measurements
{X1, X2}. The generating model is as follows.

H = NH ,

Z1 = NZ1
,

Z2 = b2H + a21Z1 +NZ2
,

Y3 = b3H +NZ3
,

X1 = Z1 +NX1 ,

X2 = Z2 +NX2 .

We note that Z2 is an mleaf variable; it has no other children except for X2. {Z1, Y3} are cogent
variables. Therefore, in the canonical form, the exogenous noise of Z2 is 0, and the measurement
error of Z2 is NZ2

+ NX2
. In the matrix form of Equation (1b), we have ZL = [Z2], ZC = [Z1],

Y = [Y3], B = [b2, 0, b3]
⊤, D = [a21, 0], CZ = CY = [0, 0].

The mixing matrix W in this example can be written as

[
X2

X1

Y3

]
=

[
b2 a21 0 1 0
0 1 0 0 1
b3 0 1 0 0

]
NH

NZ1

NY3

NX2

NX1

 .

The leftmost three columns correspond to W∗, and I is of dimension 2× 2.

C Detailed discussion on the identification assumptions

C.1 Separability assumption

Separability assumption states that the independent exogenous noise terms pertaining to the mixture
in Equation (3) can be separated, i.e., the mixing matrix can be recovered up to permutation and
scaling of its columns. An example of a setting where this assumption holds is when all exogenous
noises are non-Gaussian. In this case, if the model satisfies the requirement in [4, Theorem 1], then
overcomplete Independent Component Analysis (ICA) can be used to recover the mixing matrix
up to permutation and scaling of its columns. Another example where separability assumption is
satisfied is the setup in which the noise terms are piecewise constant functionals satisfying a set
of mild conditions [2]. On the other hand, an example where this assumption is violated is when
all exogenous noise terms have Gaussian distributions. In this case, the mixing matrix can only be
recovered up to an orthogonal transformation.

We note that under separability assumption, the matrix W∗ can also be recovered up to permutation
and scaling of its columns. Suppose the recovered mixing matrix is Ŵ, and we also have the
information whether each variable is observed (i.e., belongs to Y) or measured with error (i.e.,
belongs to X ). Then the matrix W∗ can be recovered by removing the one-hot column vectors in Ŵ
where the non-zero entry is in a row corresponding to a variable in X .

The justification of the above approach is as follows: If a variable Xi is measured with error, then there
must exist one column in Ŵ that corresponds to the measurement error NXi (or NXi +NZi for mleaf
variables in the original form). This column has only one non-zero entry in the row corresponding
to the measurement Xi. The columns that we remove in the procedure above correspond to such
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measurement errors. We note that by removing these columns from Ŵ we are not losing any
information. This is due to the fact that we can simply recover a matrix (permutationally) equivalent
to Ŵ from W∗: Since we know which variables are measured with error, we can simply add the
corresponding one-hot column vectors back to the matrix. The order of adding these is irrelevant
(no information) since it is arbitrary in the original Ŵ as well (recall that W is identifiable up to
permutation and scaling of the columns).

C.2 Faithfulness assumption

For each variable Vi ∈ V , define the ancestor set, An(Vi) as the set of variables that has a direct path
to Vi (excluding Vi). Define the cogent ancestor set AnV (Vi) as An(Vi) \ H. Define the possible
parent set of Vi, PP (Vi), as the union of AnV (Vi) and the set of mleaf variables whose parent sets
are subsets of An(Vi) (excluding Vi itself if Vi is an mleaf). For two sets of variables J ⊆ H ∪ VC

and K ⊆ Z ∪ Y , define the matrix WJ
K as the submatrix of W∗ where the rows correspond to the

variables in K, and the columns correspond to the exogenous noise terms of variables in J . A set of
variables B is said to be a bottleneck from J to K if for every directed path from a variable in J to a
variable in K, at least one variable on this path (including the start and end nodes) is in B. B is said
to be a minimal bottleneck from J to K if no other bottlenecks from J to K have fewer number of
variables.

Assumption 2 is widely assumed in the literature, and hence we refer to it as the conventional
faithfulness. It requires that when multiple causal paths exist from any (observed or unobserved)
variable to its descendants, their combined effect (i.e., sum of products of path coefficients) is not
equal to zero. Note that Assumption 2 is a special case of Assumption 3(a) with K = ∅ and J being
singleton set of any ancestor of Vi. The intuition of Assumption 3 is as follows. The structure of the
causal diagram in the data generating process implies proportionality in the corresponding entries
in the mixing matrix. For example, in the structure V1 → V2 → V3, the mixing matrix with rows
corresponding to {V2, V3} and columns corresponding to {V1, V2} is of rank 1. However, there may
exists extra proportionality among the entries in the mixing matrix that are not enforced by the graph.
This extra proportionality may result in the data distribution corresponding to an alternative model
that does not always happen. Faithfulness assumption prevents such extra proportionality in the
generating model. A similar bottleneck faithfulness has been proposed in [1], where they consider
any pair of subset (J,K). Assumption 2 is strictly weaker than that assumption.

Remark 1 Both Assumptions 2 and 3 are violated with probability zero if all model coefficients
are drawn randomly and independently from continuous distributions. However, Assumption 2 is
only focused on marginal independencies and requires that an ancestor of a variable should not
be independent of it due to parameter cancellation. In practice, due to sample size limitations,
an approximate cancellation may be perceived as an actual cancellation. Therefore, although
Assumptions 2 and 3 both rule out measure-zero subsets of the model, and may be perceived equally
weak assumptions mathematically, in practice, Assumption 2 may be preferred. Due to this reason, in
the following, we provide results under Assumption 2 and Assumption 3 separately.

C.3 Minimality assumption

Minimality assumption asserts that the ground-truth model has fewer (or equal) unobserved variables
than any other models that has the same mixing matrix and observability indicator. This assumption
is required since we cannot infer the number of unobserved variables without prior knowledge of
the system. Recall from Equation (2) that the number of columns of W∗ is the sum of the number
of cogent variables and unobserved variables. However, the number of each type of variable is not
known apriori under only separability assumption.

Minimality assumption is always required when unobserved variables are present in the system.
Specifically, it is often assumed that the ground-truth model either has the fewest number of edges
[1], or the fewest number of unobserved variables [11]. Our minimality condition falls into the latter
case, and in Proposition 4 below, we show that the minimality assumption has a equivalent graphical
characterization.

Proposition 4 (Minimality) Under Assumption 2, a linear LV-SEM-ME is not minimal if and only
if there exists an unobserved variable Hi and a mleaf child Zj of Hi, such that for any other child
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Vk of Hi, An(Zj) ⊆ An(Vk)
4. This is equivalent to the following. Any (observed or unobserved)

parent of Zj is also an ancestor of Vk.

We note that there is a similarity between the condition in Proposition 4 and the condition in the
definition of AOG in Definition 6. The reason for this similarity is that both intend to characterize the
situation in which the location of an exogenous source is unknown. The former condition considers
the case where this source belongs to a unobserved variable, while the latter considers the case where
this source belongs to a measured cogent variable.

D Identifiability results of SEM-ME and LV-SEM

D.1 AOG for SEM-ME and LV-SEM

We present the formal definition of Ancestral ordered grouping (AOG) and AOG equivalence class
below.

Definition 6 (Ancestral ordered grouping (AOG)) The AOG of a SEM-ME (resp. LV-SEM) is a
partition of ZL ∪ VC (resp. H ∪ VC) into distinct sets. This partition is described as follows:

(1) Assign each cogent variable in VC to a distinct group.

(2) (i) SEM-ME: For each mleaf variable Zj ∈ ZL, if it has one measured parent Zi ∈ Z ∩VC

such that Zj has no other parents, or all other parents of Zj are also ancestors of Zi, assign
Zj to the same group as Zi. Otherwise, assign Zj to a separate group (with no cogent
variable).

(ii) LV-SEM: For each unobserved variable Hj ∈ H, if it has one cogent child Vi ∈ VC

such that all other children of Hj are also descendants of Vi, assign Hj to the same group
as Vi. Otherwise, assign Hj to a separate group (with no cogent variable).

Definition 7 (AOG equivalence class) The AOG equivalence class of a linear SEM-ME (resp. LV-
SEM) is a set of models where the elements of this set all have the same mixing matrix (up to
permutation and scaling) and same ancestral ordered groups.

D.2 Identification Under LV-SEM-ME Faithfulness

We first present a graphical condition that is used to characterize DOG equivalence class, and then
formally show that this notion of equivalence is the extent of identifiability as in Theorem 1(b). Lastly,
we add some discussion about the difference between the different extents of identifiable, and provide
an example to show the difference.

Condition 1 (SEM-ME edge identifiability) For a given edge from a measured cogent variable Zi

to an mleaf variable Zl, at least one of the following two conditions is satisfied: (a) Pa(Zl) \ {Zi}
is not a subset of Pa(Zi). That is, there exists another parent Vj of Zl, which is not a parent of Zi.
(b) Pa(Zl) is not a subset of ∩Vk∈Ch(Zi)\{Zl}Pa(Vk). That is, there exists a child Vk of Zi and a
parent Vj of Zl such that Vj is not a parent of Vk.

Condition 2 (LV-SEM edge identifiability) For a given edge from an unobserved variable Hl to a
cogent variable Vi, there exists another cogent child Vj of Hl, such that at least one of the following
two conditions is satisfied: (a) Vi is not a direct parent of Vj . (b) Pa(Vi) is not a subset of Pa(Vj).
That is, there exists an observed (or unobserved) parent Vk (or Hk) of Vi that is not a parent of Vj .

Definition 8 (Direct ordered grouping (DOG)) The DOG of a linear SEM-ME (resp. LV-SEM) is
a partition of ZL ∪ VC (resp. H ∪ VC) into distinct sets. This partition is described as follows:

(1) Assign each cogent variable in VC to a distinct group.

(2) (i) SEM-ME: For each mleaf variable Zj ∈ ZL, if it has one measured parent Zi ∈ Z ∩VC

such that the edge from Zi to Zj violates Condition 1, assign Zj to the same ordered group
as Zi. Otherwise, assign Zj to a separate ordered group (with no cogent variable).

4Note that we do not include Z itself in An(Z).
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Figure 3: Left: Diagram of the SEM-ME and the corresponding AOG considered in Example 2.
Right: DOG of the SEM-ME.

(ii) LV-SEM: For each unobserved variable Hj ∈ H, if it has one cogent child Vi ∈ VC

such that the edge from Hj to Vi violates Condition 2, assign Hj to the same ordered group
as Vi. Otherwise, assign Hj to a separate ordered group (with no cogent variable).

Definition 9 (DOG equivalence class) The DOG equivalence class of a linear SEM-ME (resp. LV-
SEM) is a set of models where the elements of this set all have the same mixing matrix (up to
permutation and scaling) and same direct ordered groups.

Theorem 3 Under Assumptions 1 and 3, the linear SEM-ME (resp. LV-SEM) can be identified up to
its DOG equivalence class with probability one.

DOG equivalence class provides a much more distinctive characterization of the causal relations
among the variables compared to the characterization given for AOG equivalence class. This is the
benefit achieved by extending the faithfulness assumption from Assumption 2 to Assumption 3. We
re-emphasize that, as explained in Remark 1, both these two assumptions are violated with probability
zero, but Assumption 2 may be easier to be incorporated in practice. Therefore, in light of Theorem
1(b), we see the trade-off between the Assumptions 2 and 3.

Lastly, as shown in Theorem 1(b), for an LV-SEM, the only undetermined part in the DOG equivalence
class pertains to the assignment of the exogenous noises and coefficients, but the structure is the same.
Consequently, if only the identification of the structure without weights is of interest, Assumptions 1
and 3 are sufficient.

Remark 2 The definition for AOG and DOG of a SEM-ME in this work is different from previous
work [19]. In that work, mleaf variables are either assigned to the groups of their (observed or
measured) parents or a separate group. In contrast, in this work, mleaf variables cannot be assigned
to the groups of their observed parents. This change is based on using the information about which
cogent variables are measured and which ones are directly observed. Specifically, models in the same
equivalence class defined in [19] may have different labeling of Y and Z among variables, while in
this work, models in the same equivalence class have the same mixing matrix, AOG/DOG and the
same labeling of Y and Z . Therefore, this change leads to smaller equivalence classes and hence
more identification power.

Example 2 Figure 3 shows an example of a causal diagram of an LVSEM-ME with 10 measured
variables. (Z1, Z3, Z7) are cogent variables, and the remaining are mleaf variables.

The AOG of the model is shown on the left, and the DOG of the model is shown on the right. We note
that Z10 belongs to the same ancestral ordered group as Z7 since all other parents of Z10 are also
parents of Z7. However, Z10 does not belong to the same direct ordered group as Z7. This is because
Z8 is a child of Z7, Z1 is a parent of Z10, but Z1 is not a parent of Z8. Therefore the edge Z7 → Z10

violates the Condition 1(b).
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E Detailed description of the algorithm

In this section, we present recovery algorithms for the introduced LV-SEM-ME model. We first
present AOG recovery algorithm (Algorithm 1) in Section E.1. The algorithm returns the AOG of the
underlying model, and it is used in both AOG equivalence class and DOG equivalence class recovery
algorithms. We then show how to recover all models in the AOG and DOG equivalence classes in
Section E.2 based on the recovered AOG (Algorithm 2).

Both Algorithm 1 and 2 are based on the mixing matrix W∗ defined in Equation (2). Therefore, W∗

will be the input to both algorithms. We note that W∗ can be recovered from the observational data
by first recovering the overall mixing matrix W (cf. (3)) using methods such as overcomplete ICA
[4] when the exogenous noises are assumed to be non-Gaussian. Then, W∗ can be deduced from W
by removing certain columns as described in Section 3.1.

E.1 AOG Recovery

The following property can be implied from the definition of AOG, which shows that under conven-
tional faithfulness assumption, we can identify the AOG of the model only based on the support of
the mixing matrix W∗.

Proposition 5 Under Assumptions 2 and 4,

(a) One mleaf variable and one measured cogent variable belong to the same ancestral ordered
group if and only if the two rows in W∗ corresponding to these variables have the same
support. Further, for any cogent variable Vi and its descendant Vj , the row support of Vi

must be a subset of the row support of Vj .

(b) One unobserved variable and one cogent variable belong to the same ancestral ordered
group if and only if the two columns in W∗ corresponding to the exogenous noise terms of
these variables have the same support. Further, for any cogent variable Vi and its ancestor
Vj , the column support of NVi

must be a subset of the column support of NVj
.

The proof of Proposition 5 directly follow from the definition of AOG, and hence are omitted.

Equipped with Proposition 5, we propose an iterative algorithm for recovering the AOG in Definition
5 from W∗. The pseudo-code of the proposed method is presented in Algorithm 1. In the first
iteration, the Algorithm randomly chooses a row in W∗ with the fewest number of non-zero entries
and finds all other rows with the same support. Denote the selected rows as ZJ , and columns
corresponding to these non-zero entries as NI . Each of the selected row may either correspond to
a cogent variable or an mleaf variable, and each of the column in NI may either correspond to the
exogenous noise of an cogent variable or an unobserved confounder. The task is to decide whether
there exists a cogent variable (and its associated exogenous noise). We first select the columns in
NI with the fewest number of non-zero entries in W∗. Denote this subset as NJ . Then noises in
NI \NJ must correspond to unobserved variables and are assigned to separate groups in Cunobserved.

We check whether any of the rows in ZJ can be a cogent variable. If there is one observed variable
in ZJ then it must correspond to the cogent variable. If all variables are unobserved, then we look
at the submatrix W0 of W∗ with the rows corresponding to the (column) support of any variable
in NJ , and columns corresponding to the (row) support of ZJ . If ZJ includes a cogent variable,
then its corresponding exogenous noise must be in NJ , and the remaining noises are unobserved
confounders. Since all noises in NJ have the same number of non-zero entries, they must have the
same support. Further, any row that includes this exogenous noise must be a descendant of the cogent
variable, and must include all the non-zero columns of the cogent variable under Assumption 2. This
implies that W0 does not include any non zero entry. Therefore, if W0 includes any zero entry, then
none of the rows in ZJ would correspond to a cogent variable. The rows in ZJ and the columns in
NJ all belong to separate groups in Cmleaf and Cunobserved as they correspond to mleaf variables
and unobserved variables. If W0 does not include any zero entry, then under minimality assumption,
one of the rows in ZJ correspond to a cogent variable. Therefore all noises in NJ and all rows in
ZJ belong to a single ancestral ordered group in Ccogent. The algorithm then removes the rows in
NJ and columns in NI . Denote the remaining matrix as W̃.
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In the second iteration, the Algorithm again chooses the rows w with the fewest number of non-zero
entry in W̃. However, we note that the row with the fewest number of non-zero entry in W∗ is not a
cogent variable if some non-zero entries are removed in the first iteration. Therefore, among these
columns, we select one column with the fewest number of non-zero entries in the large matrix W∗.
Then, it selects all other rows in W̃ with the same support as w. Denote the selected rows as ZI .
Rows in ZI that has more non-zero entries than w in the large matrix W∗ must be mleaf variables
(otherwise Assumption 2) is violated) and are assigned to separate groups in Cmleaf . Rows that has
the same number of non-zero entries as w may either correspond to a cogent variable or an mleaf
variable, and we can use the same procedure as in the first iteration to distinguish between them.
Finally, this procedure is repeated until all variables and noises are assigned to ordered groups.

The explanation above implies the identifiability result of Algorithm 1, summarized as follows.

Proposition 6 Under Assumptions 2 and 4, the concatenation of the outputs
(Cunobserved, Ccogent, Cmleaf ) of Algorithm 1 is the AOG of the LV-SEM-ME corresponding
to the input W∗ in a causal order consistent with the AOG equivalence class of the LV-SEM-ME.

Computational complexity Algorithm 1 includes pc steps of iteration, where pc is the number of
cogent variables. Each iteration requires O(mn) calculation and needs O(mn) space, where m, n are
the dimensions of the mixing matrix W∗. Recall that m = pc + pml, and n = pc + pH , where pml

and pH stand for the number of mleaf and unobserved variables. Therefore, the total time complexity
of the algorithm is O(pcmn), and the space complexity is O(mn).

E.2 Model Recovery in the AOG and DOG Equivalence Class

In this section, we present our algorithm for recovering the models in the equivalence class using
W∗. The psuedo-code of the algorithm is presented in Algorithm 2.

AOG Equivalence class. Recall from Section 3.3 that all members in the AOG equivalence class
can be enumerated by switching the center with any mleaf variables in the group and/or switching the
exogenous noises of the center with the noises of any unobserved variables in the group. Therefore,
given the mixing matrix W∗, Algorithm 2 first recovers the AOG of the true model using Algorithm
1. Then, it enumerates all possible choices of centers and the noises for each group. Note that groups
with only mleaf variables or noises of unonserbed variables (i.e., in Cmleaf or Cunobserved) only
have one choice. Therefore, we only need to consider all the groups that include cogent variables
(i.e., in Ccogent). Denote each single selection of the centers in these groups as row, and the noises
as col. The next step is to recover the model parameters B, C, D based on W∗ and the selected
row and col following Equation (2). Denote the variables not in row as rowC , and the noises
not in col as colC . The selected centers in row correspond to V C , and the selected noises in col
correspond to NV C in (2). Similarly, variables in rowC and noises in colC correspond to ZL and
NH , respectively. Therefore C, BC , D, BL can be calculated following lines 6-9 in Algorithm 2.
Finding model parameters B, C, D for all possible choices of row and col gives us all models in the
AOG equivalence class.

DOG Equivalence class. Proposition 7 can be leveraged to recover models in the DOG equivalence
class of the ground-truth given AOG, which states that the ground-truth model has strictly fewer
edges than any model in the AOG equivalence class but does not belong to the DOG equivalence
class.

Proposition 7 Suppose an LV-SEM-ME satisfies Assumptions 1 and 3. Any model that belongs to
the same AOG equivalence class but does not belong to the same DOG equivalence class has strictly
more edges than any member in the DOG equivalence class.

Recall from Section 3.3 that models in the same DOG equivalence class all have the same unlabeled
graph structure, hence the same number of edges. Therefore, using Proposition 7 given the members
of the AOG equivalence class of the true model, members in the DOG equivalence class can be found
by finding all models in the AOG equivalence class that have the fewest number of edges in the
recovery output.

To conclude, the identifiability of Algorithm 2 can be summarized by the following proposition.
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Algorithm 1: AOG Recovery algorithm for linear LV-SEM-ME.
Input: Recovered mixing matrix W∗, observability indicators of the variables (whether each

variable is observed or measured).
1 Define n as the vector with the i-th entry as the number of non-zero entries in row i of W∗.
2 Define m as the vector with the j-th entry as the number of non-zero entries in column j of W∗.
3 Initialize W̃←W∗, Ccogent ← [ ], Cmleaf ← [ ], Cunobserved ← [ ].
4 while W̃ is not empty do
5 Find the rows in W̃ that contain the fewest number of non-zero entries. Among them, choose

one with the lowest corresponding value in n (break ties at random). Denote the selected
row by w, the variable corresponding to this row by Zw, and its corresponding value in n
by n0.

6 Consider the rows in W̃ with the same support (non-zero entries) as w, including w itself.
Denote the set of variables that correspond to these rows as ZI , and the the noise terms
corresponding to the support of w as NI .

7 Denote the set of variables in ZI with corresponding value n0 in n as ZJ , and the set of
noise terms in NI with the smallest corresponding value in m as NJ .

8 Assign each variable in ZI \ ZJ to a separate group in Cmleaf . Assign each exogenous noise
term in NI \ NJ to a separate group in Cunobserved.

9 Randomly select one noise term Nm in NJ . Consider the submatrix W0 of W∗ where the
rows correspond to the (column) support of Nm, and the columns correspond to the (row)
support of Zw.

10 if W0 includes any zero entry then
11 Assign each variable in ZJ to a separate group in Cmleaf . Assign each exogenous noise

term in NJ to a separate group in Cunobserved.
12 else if ZJ includes any observed variable then
13 Assign the observed variable in ZJ and all exogenous noise terms in NJ to a single

group in Ccogent. Assign each remaining variable in ZJ to a separate group in Cmleaf .
14 else
15 Assign all variables in ZJ and all exogenous noise terms in NJ to a single group in

Ccogent.
16 Remove from W̃ the rows corresponding to the variables in ZI , and the columns

corresponding to the noise terms in NI . Remove the corresponding entries in m and n.
Output: Cunobserved, Ccogent, Cmleaf .

Proposition 8 (a) Under Assumptions 2 and 4, Algorithm 2 outputsMAOG which is the AOG
equivalence class of the LV-SEM-ME corresponding to the input W∗.

(b) Under Assumptions 3 and 4, Algorithm 2 outputs bothMAOG andMDOG, whereMDOG

is the DOG equivalence class of the LV-SEM-ME corresponding to the input W∗.

Computational complexity Recovering AOG of the model requires O(pcmn) time complexity
and O(mn) space complexity as discussed above. Recovering the underlying model given each
choice of row and col requires O(pcmn) calculation and O(mn) space. Calculating the number of
edges in each single model requires O(mn) calculation and O(1) space. Denote the total number
of choices of the centers and noises (i.e., size of Row and Col) by MRow and MCol. Note that
MRow and MCol are bounded by |D|pc , where |D| is the maximum group size. Therefore, total time
complexity for recoveringMAOG andMDOG is O(MRowMColpcmn), and the space complexity
is O(mn).

F Proofs

F.1 Proof of Proposition 4

The proof includes two parts. We first show the sufficiency: For an unobserved variable Hi in the
ground truth model M , if it has an mleaf child that satisfies the condition described in Proposition
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Algorithm 2: Recovering all models in the AOG / DOG Equivalence Class
Input: Recovered mixing matrix W∗, observability indicators of the variables.

1 Obtain the AOG of the true model using Algorithm 1.
2 Denote row as a selection of centers in the groups in Ccogent. Define Row as the set of all rows.
3 Denote col as a selection of noises in the groups in Ccogent. Define Col as the set of all cols.
4 InitializeMAOG = ∅.
5 for all row ∈ Row and col ∈ Col do
6 C = I− (W∗[row, col])

−1.
7 BC = (I−C)W∗[row, colC ].
8 D = W∗[rowC , col](I−C).
9 BL = W∗[rowC , colC ]−D(I−C)−1BC .

10 M = {B = [BL;BC ],C,D}. Add M toMAOG.
11 DefineMDOG as the set of models inMAOG that have the fewest total number of non-zero

entries in B, C, D.
Output:MAOG,MDOG.

4, then M is not minimal, i.e., there exists an alternative model M ′ without Hi that has the same
mixing matrix and satisfies Assumption 1. Next, we show the necessity: If M is not minimal, then
there must exist an unobserved variable Hi and one of its mleaf child Zj such that the described
condition is satisfied.

F.1.1 Proof of sufficiency

Suppose there exists latent variable Hi and a mleaf child Zj of Hi in M such that the condition
described in Proposition 4 holds. In the following we construct the alternative model M ′ that includes
all variables in M except for Hi. The idea is to consider NHi as the exogenous noise term of Zj .
Further, for any other child Vk of Hi, replace the edge Hi → Vk in M by edges from Zj (and parents
of Zj) to Vk in M ′.

The structural equation of Zj in M can be written as

Zj =
∑

l:Vl∈PaM (Zj)∩VC

ajlVl +
∑

lj :Hlj
∈PaM (Zj)∩H

bjljHlj . (4)

Consider NHi as the exogenous noise term of Zj in M ′. The structural equation of Zj in M ′ is

Zj =
∑

l:Zl∈PaM (Zj)∩VC

ajlZl +
∑

lj :Hlj
∈PaM (Zj)∩H\{Hi}

bjljHlj + bjiNHi . (5)

For any other children Vk of Hi in M , the structural equation of Vk in M can be written as

Vk =
∑

l:Zl∈PaM (Vk)∩VC

aklZl +
∑

lk:Hlk
∈PaM (Vk)∩H

bklkHlk +NVk
. (6)

By considering NHi in Equation (6) to be the exogenous noise of Zj , the structural equation of Zm

in M ′ can be written as

Vk =
∑

l:Zl∈PaM (Vk)∩VC

aklZl +
∑

lk:Hlk
∈PaM (Vk)∩H\{Hi}

bklkHlk +NZm
+

bkib
−1
ji

Zj −
∑

l:Zl∈PaM (Zj)∩VC

ajlZl −
∑

lj :Hlj
∈PaM (Zj)∩H\{Hi}

bjljHlj

 .

(7)

Since Hi and Zj satisfy the condition in Proposition 4, Vk cannot be an ancestor of Zj or variables
in PaM (Zj) in M , otherwise we have Vk ∈ ∪Z∈Pa(Zj)AnM (Z = AnM (Zj) ⊆ AnM (Vk). This
implies that M ′ is still acyclic. Further, since AnM (Zj) ⊆ AnM (Vk), there are no additional
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ancestors introduced to Vk in M ′ compared with M . Lastly, we note that there might be edge
cancellations in (4). In particular, the coefficient of the direct edge from a variable in Z ∈ PaM (Vk)∩
VC to Vk may change in M ′ if Z ∈ PaM (Zj) and hence may be cancelled out. However, Z is still
an ancestor of Vk in M ′, as there is the path Z → Zj → Vk. As M and M ′ has the same mixing
matrix, the conventional faithfulness is still satisfied.

In conclusion, if such Hi and Zj exists inM, then there exists an alternative modelM′ such that we
cannot distinguishM′ fromM under Assumption 1 while having one less latent variable. Hence the
sufficiency is proved.

F.1.2 Proof of necessity

Suppose M is not minimal. Then there exists an alternative model M ′ that has the same mixing
matrix as M and also satisfies conventional faithfulness assumption, while having fewer unobserved
variables. Without loss of generality, suppose M ′ is minimal. Note that since both models correspond
to the same mixing matrix, this implies that the number of measured cogent variables in M is strictly
less than M ′, which equals to the number of columns of in the mixing matrix subtract the number of
unobserved variables.

Now, we partition the cogent and mleaf variables in M and M ′ as follows, where we put measured
variables with the same row support in the mixing matrix in the same group. We note that in M ′, this
is the same partition as the ancestral ordered grouping among these variables.

Consider the set of measured cogent variables in M . According to the definition, they must have
different row support hence each of them must belong to a separate group. Therefore, since M has
fewer measured cogent variables than M ′, there exists at least one group G, where variables G are all
mleaf variables in M and one of the variables in G is a measured cogent variable in M ′. Denote this
measured cogent variable in M ′ as Zj . Consider the column corresponding to the exogenous noise
term of G in the mixing matrix.

We first show that this column corresponds to a latent confounder in M by contradiction. Suppose this
column corresponds to the exogenous noise of a measured cogent variable Zi in M . Therefore Zi must
be an ancestor of Zj in M , and the entry with row corresponding to Zi and column corresponding
to this noise is not zero. Denote Supp(Zi), Supp(Zj) as the support of the row corresponding to
Zi and Zj , respectively. Since M satisfies conventional faithfulness, the total causal effects from all
ancestors of Zi on Zj in M is not zero. Hence Supp(Zi) ⊆ Supp(Zj). Similarly, consider Zi in
M ′. Since Zj is the a measured cogent variable, Zj is an ancestor of Zi, and Supp(Zj) ⊆ Supp(Zi).
Therefore we have Supp(Zj) = Supp(Zi), and hence both belong to the same group G. However,
no variables in G are cogent variables in M , which leads to a contradiction. Therefore, this column
must correspond to a latent confounder in M denote this latent confounder as Hi in M .

Next, we consider any other child Vk of Hi in M . Vk must be an descendant of Zj , hence Supp(Zj) ⊆
Supp(Vk). As M satisfies conventional faithfulness, this implies that An(Zj) ⊆ An(Vk). Therefore
the condition in the proposition is satisfied on M .

F.2 Enumerating all models in the AOG and DOG equivalence classes by different choice of
centers

We first show that an LV-SEM-ME can be uniquely deduced given the mixing matrix W∗ of the
LV-SEM-ME, and a choice of the centers (and their corresponding exogenous noises) in each group.
This has been described in Algorithm 2, where the matrices B, C, D can be found through matrix
calculation.

In this following, given the ground-truth model M , we will show how to deduce the structural
equations of the variables in the alternative model M ′, where M and M ′ has the same mixing matrix
and the same (ancestral ordered or directed ordered) grouping of the variables. Specifically, we
consider the case when the centers of the groups are the same between M and M ′ except for one
group. We denote the center of this only group in M as Vi with exogenous noise NVi , while the
center and the corresponding exogenous noise in M ′ are Zj and NHl

, where Zj and Hk belong to
the same group as Vi in M . We will show the structural equations of all variables that are affected by
this difference. This will be used in the proof of AOG and DOG results in F.3 and F.4, respectively.
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The structural equation of Vi in M can be written as:

Vi =
∑

mi:Hmi
∈PaH(Vi)

bimi
Hmi

+
∑

ni:Vni
∈PaVC (Vi)

aini
Vni

+NVi
(8)

Note that Hl ∈ PaH(Vi). For Zj , since it is an mleaf child of Vi, we have:

Zj = ajiVi +
∑

mj :Hmj
∈PaH(Zj)

bjmj
Hmj

+
∑

nj :Vnj
∈PaVC (Zj)\{Vi}

ajnj
Vnj

. (9)

We can also write down the equations of any other children Vki
of Vi, and any other children Vkl

of
Hl:

Vki
= akiiVi +

∑
mki

:Hmki
∈PaH(Vki

)

bkimki
Hmki

+
∑

nki
:Vnki

∈PaVC (Vki
)\{Vi}

akinki
Vnki

+NVki
,

Vkl
= bkllHl +

∑
mkl

:Hmkl
∈PaH(Vkl

)\{Hl}

bklmkl
Hmkl

+
∑

nkl
:Vnkl

∈PaVC (Vkl
)

aklnkl
Vnkl

+NVkl
.

(10)

(11)

Now, consider M ′. We can first write down the equation for Vi, which is now a mleaf:

Vi = a−1
ji

Zj −
∑

mj :Hmj
∈PaH(Zj)

bjmjHmj −
∑

nj :Vnj
∈PaVC (Zj)\{Vi}

ajnjVnj

 . (12)

For Zj , by plugging in Vi from (8) to (9), we have:

Zj = aji

bilHl +
∑

mi:Hmi
∈PaH(Vi)\{Hl}

bimi
Hmi

+
∑

ni:Vni
∈PaVC (Vi)

ainiVni +NVi


+

∑
mj :Hmj

∈PaH(Zj)

bjmj
Hmj

+
∑

nj :Vnj
∈PaVC (Zj)\{Vi}

ajnj
Vnj

.

Next, since NHl
is the exogenous noise term of Zj , and NVi

is the exogenous noise of Hl, we can
rewrite it as

Zj = aji

Hl +
∑

mi:Hmi
∈PaH(Vi)\{Hl}

bimi
Hmi

+
∑

ni:Vni
∈PaVC (Vi)

aini
Vni


+

∑
mj :Hmj

∈PaH(Zj)

bjmj
Hmj

+
∑

nj :Vnj
∈PaVC (Zj)\{Vi}

ajnj
Vnj

+ ajibilNHl
.

(13)

For Vki
, by plugging in Vi from (12) to (10), we have

Vki =
akii

aji

Zj −
∑

mj :Hmj
∈PaH(Zj)

bjmj
Hmj

−
∑

nj :Vnj
∈PaVC (Zj)\{Vi}

ajnjVnj


+

∑
mki

:Hmki
∈PaH(Vki

)

bkimki
Hmki

+
∑

nki
:Vnki

∈PaVC (Vki
)\{Vi}

akinki
Vnki

+NVki
.

(14)
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Lastly, for Vkl
, we substitute Hl in (11) by NHl

in (13) and have

Vkl
=

bkll

ajibil
Zj −

bkll

bil

Hl +
∑

mi:Hmi
∈PaH(Vi)\{Hl}

bimi
Hmi

+
∑

ni:Vni
∈PaVC (Vi)

aini
Vni


− bkll

ajibil

 ∑
mj :Hmj

∈PaH(Zj)

bjmjHmj +
∑

nj :Vnj
∈PaVC (Zj)\{Vi}

ajnjVnj


+

∑
mkl

:Hmkl
∈PaH(Vkl

)\{Hl}

bklmkl
Hmkl

+
∑

nkl
:Vnkl

∈PaVC (Vkl
)

aklnkl
Vnkl

+NVkl
.

(15)

We note that if Vi ∈ Pa(Vkl
), then we have to replace akliVi by the right hand side of Equation (12).

To summarize, compared with M , the changes in the parent-child relationships among variables in
M ′ can be summarized as follows:

(i) For Vi, since it is an mleaf node in M ′, its parents in M ′ are the parents of Zj in M
(excluding Vi itself), plus Zj .

(ii) For Zj , since it is the new center, its parents in M ′ are the parents of Zj itself in M
(excluding Vi), plus the parents of Vi in M .

(iii) For any child Vki of Vi in M (other than Zj), compared with its parent set in M , the new
parent set in M replaces Vi by Zj , and includes additional variables that are the parents of
Zj in M .

(iv) For any child Vkl
of Hl in M (other than Vi), compared with its parent set in M , the new

parent set in M ′ additionally includes the new center Zj and all parents of Zj in M ′ (i.e.,
parents of Vi and Zj in M ).

Note that there may be changes of model coefficients if the “additional variables” are already in the
parent set of Vki and Vkl

. In particular, this change may lead to removal of variables from the parent
set if the coefficients cancel out each other.

F.3 Proof of the identification result under conventional faithfulness

In this subsection, we provide the proof of the result regarding the AOG equivalence class in LV-SEM-
ME, i.e., Theorem 2(a). Note that the proof of the result for SEM-ME and LV-SEM, i.e., Theorem
1(a), can be deduced from it.

To show that the extent of identifiablity of an LV-SEM-ME under conventional faithfulness is the
AOG equivalence class, we need to show that, for the ground-truth model M , any other model M ′ in
the AOG equivalence class of M , and any model M ′′ that has the same mixing matrix but does not
belong to the AOG equivalence class of M :

(1.a) M ′ satisfies conventional faithfulness.

(1.b) M ′ is consistent with any causal order among the ancestral ordered groups that is consistent
with M .

(1.c) M ′′ violates conventional faithfulness.

Recall that for each cogent variable Vi, the ancestral ordered group of Vi includes its mleaf child Zj

if Vi is measured and all other parents of Zj are also ancestors of Vi, and unobserved parent Hl if all
other children of Hl are also descendants of Vi.

Proof of (1.a). We note that it suffices to show (a) when the choices of centers (and/or the corre-
sponding exogenous noise) of M ′ only differs from the choices of M in one group. This is because if
there are p differences in the choices of centers, then we can always find a finite sequence of models
M0 → M1 → · · · → Mp, where M0 = M , Mp = M ′, and for each Mkp , kp ∈ [p], the choices of
centers only differs from the choices of centers of Mkp−1 in one group. If (a) hold for models with
one difference of the choices, then following the sequence of the models, (a) must also hold for Mp.

20



We prove by contradiction. Suppose V is an ancestor of V ′ in M ′ and the total causal effect from V
to V ′ is zero. Note that the total causal effect from V to V ′ is equal to the sum of path products from
the exogenous noise of V to V ′. Suppose the exogenous noise of V in M ′ is the exogenous noise of
V0 in M . Since M satisfies Assumption 2, V0 is not an ancestor of V ′ in M . This means that the
added edges in M ′ introduces additional ancestors to V ′.

Note that if V ′ = Zj , then we compare the addition of ancestors to Zj in M ′ with the ancestors of Vj

in M as both are the center variable in the corresponding model. Similarly, we compare the addition
of ancestors to Vj in M ′ with the ancestors of Vi in M .

However, as we described in Appendix F.2, all added edges in M ′ can be categorized as follows:

• If V ′ = Zj . According to (ii), all added edges in M ′ are from parents of Zj in M to Zj .
However, parents of Zj are all ancestors of Vi in M . Therefore no additional ancestors are
introduced.

• If V ′ = Vki . According to (iii), all added edges in M ′ are also from parents of Zj in M to
Zj . Since there is Vi is a parent of Vki in M , parents of Zj are all ancestors of Vki in M .

• If V ′ = Vkl
. According to (iv), all added edges in M ′ are also from parents of Vi or Zj in

M to Zj . Since Vi is an ancestor of Vkl
in M , parents of Vi or Zj are all ancestors of Vkl

.

In conclusion, the added edges in M ′ does not introduce any additional ancestors to V ′, which leads
to a contradiction. Therefore M ′ satisfies Assumption 2.

Proof of (1.b). Since M and M ′ both satisfies conventional faithfulness, then Proposition 5 holds.
Further, for any group g, define Supp(g) as the row support of variables in g in W∗ if g includes any
observed or measured variables, and if g = {Hi} ⊆ H, define Supp(g) as {NHi}. Similarly, define
Supp(Ng) as the column support of the exogenous noises of the variables in g in W∗ if g includes
any cogent or unobserved variables, and if g = {ZL} ⊆ ZL, define Supp(g) as {ZL}. We have the
following property.

Proposition 9 For two different ancestral ordered groups gi and gj , the following three conditions
are equivalent:

(i) There exists a causal path from one variable in the group of gi to one variable in the group
of gj .

(ii) Supp(gi) ⊂ Supp(gj).

(iii) Supp(Ngj ) ⊂ Supp(Ngi).

Therefore, given M , a causal order among the groups is consistent with the causal order among the
variables if and only if the set relations in the mixing matrix hold. Since M and M ′ hae the same
mixing matrix and satisfy Assumption 2, they are consistent with the same set of causal order among
the groups.

Proof of (1.c). Suppose M ′′ does not belong to the AOG equivalence class of M . First, consider
the number of cogent variables in M ′′, which is equal to the number of columns of W∗ minus the
number of unobserved variables. Given that M is minimal, M ′′ cannot have more cogent variables
than M . Similarly, if M ′′ has fewer cogent variables than M , then M ′′ is not minimal. Therefore,
M and M ′′ must have equal number of cogent variables.

Next, consider the cogent variables in M ′′, and their position in the AOG of M . Denote these cogent
variables as P . Firstly, note that no two variables in P belongs to the same ancestral ordered group of
M . This is because the mixing matrix corresponding to P must be lower-triangular following the
causal order, which is impossible when two variables in P have the same row support. Therefore, P
includes at most one variable in each group. Similarly, the exogenous noises of variables in P in M ′′,
denoted by NP , includes the exogenous noise of at most one variable in each group. Suppose g is the
a group with cogent variables where either (I) g does not include any variable in P , or (II) g does not
include any variable whose corresponding exogenous noise is in NP . Note that such a group must
exist, otherwise M ′′ belongs to the same AOG equivalence class. Denote this cogent variable in M
as Vi, and its exogenous noise NVi

.
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(I): Suppose g does not include any variable in P . Then Vi is an mleaf in M ′′. Consider NVi in
M ′′. If there exists one parent of Vi in M ′′ that also includes NVi (i.e., is affected by NVi directly or
indirectly), denote this variable as Vj , which must be in P and not in g. Since Vj includes NVi , it
must be a descendant of Vi in M . However, since M satisfies conventional faithfulness and Vj ̸∈ g,
the row support of Vj must be a superset of Vi. This implies that conventional faithfulness is violated
on M ′′.

Therefore, none of the parents of Vi in M ′′ is affected by NVi
, and there must be a directed edge from

NVi to Vi. Since Vi is an mleaf, NVi corresponds to a latent confounder in M ′′. Further, for any other
children V of NVi in M ′′, it must be a descendant of Vi in M , and hence Supp(Vi) ⊆ Supp(V ).
According to Proposition 4, this implies that M ′′ is not minimal.

(II): Suppose g does not include any variable whose exogenous noise is in NP . Then NVi
corresponds

to an unobserved confounder in M ′′. Similarly, consider Vi in M ′′. If there is one cogent variable in
M ′′ that is a child of NVi

and affects Vi (or Vi is this cogent variable), denote the exogenous noise
of this cogent variable as NV , which is in NP . Since NV is an ancestor of Vi in M , Supp(NVi

) ⊆
Supp(NV ). Further, as NV is not the exogenous noise of any (observed or latent) variable in
g, Supp(NVi) must be a strict subset of Supp(NV ). As any descendants of NV must also be a
descendant of NVi in M ′′, this implies that conventional faithfulness is violated on M ′′.

Therefore, none of the parents of Vi in M ′′ is affected by NVi
, and Vi cannot be a cogent variable.

Hence Vi is an mleaf variable in M ′′ and is directly affected by NVi
. Similarly, for any other children

V of NVi
in M ′′, it must be a descendant of Vi in M , and hence Supp(Vi) ⊆ Supp(V ). According

to Proposition 4, this implies that M ′′ is not minimal.

F.4 Proof of the identification result under LV-SEM-ME faithfulness

In this subsection, we provide the proofs of all results regarding the DOG equivalence class in LV-
SEM-ME, i.e., Proposition 3, and 7, and Theorem 2(b). These proof of the results for for SEM-ME
and LV-SEM, i.e., Proposition 2 and Theorem 1(b) can be deduced from it.

To show that the extent of identifiablity of an LV-SEM-ME under LV-SEM-ME faithfulness is the
DOG equivalence class, the proof includes two parts.

First, we show that, for the ground-truth model M , any other model M ′ in the DOG equivalence
class:

(2.a) M ′ does not add extra edge compared with M .
(2.b) M ′ does not remove any edge compared with M .
(2.c) M ′ satisfies LV-SEM-ME faithfulness.

Therefore we cannot distinguish M ′ from M . Next, any other model M ′′ that is in the AOG
equivalence class of M but not the DOG equivalence class:

(2.d) M ′′ adds at least one extra edge compared with M .
(2.e) M ′′ does not remove any edge compared with M , and there is at least one added edge that

is not removed.
(2.f) M ′′ violates LV-SEM-ME faithfulness.

Therefore we can distinghuish M ′ from M .

F.4.1 Model within the same DOG equivalence class

Similar to (1.a) in the AOG proof, we only need to show the result if M ′ only differs from M in the
choices of centers (and/or the corresponding exogenous noise) in one group. If there are p differences
in the choices of centers between M and M ′, then we can always find a finite sequence of models
M0 → M1 → · · · → Mp, where M0 = M , Mp = M ′, and for each Mkp

, kp ∈ [p], the choices of
centers only differs from the choices of centers of Mkp−1 in one group.

In the following, we show (2.a) - (2.c) together for the one difference in the choices of centers.
Specifically, for (2.b), we show that if one edge is cancelled out, then M violates LV-SEM-ME
faithfulness. Further, for (2.c), we show that a single change still preserves LV-SEM-ME faithfulness.
Following the sequence of the models, all three properties hold for M ′.
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Proof of (2.a). Following the description in Appendix F.2, after replacing the center Vi in M with
Zj , and replacing the exogenous noise NVi in M with NHl

, where Zj and Hl belong to the same
direct ordered group as Vi in M , all added edges in M ′ can be categorized as follows:

• For Vi: No edges are added.
• For Zj : According to (ii), all added edges in M ′ are from parents of Zj (excluding Vi) in M

to Zj . However, according to Condition 1(a), since Zj belongs to the same direct ordered
group as Vi, Pa(Zj) \ {Vi} is a subset of Pa(Vi). Therefore no edges are added.

• For Vki : According to (iii), all added edges in M ′ are from parents of Zj in M (excluding
Vi) to Vki . Still, according to Condition 1(b), since Zj belongs to the same direct ordered
group as Vi, Pa(Zj) is a subset of Pa(Vki). Therefore no edges are added.

• For Vkl
: According to (iv), the added edges are from Zj and parents of Vi and Vj in M to Vkl

.
Since Hl belongs to the same direct ordered group as Vi in M , {Vi} ∩ Pa(Vi) ⊆ Pa(Vkl

)
in M . Since the center is replaced by Zj and Pa(Zj) \ {Vi} is a subset of Pa(Vi), no edges
are added.

Therefore no edges are added to M ′ compared with M .

Proof of (2.b). We show that if any edge is cancelled out in M ′ described in Appendix F.2, then M
violates LV-SEM-ME faithfulness. Similarly, all removed edges in M ′ can be categorized as follows:

• For Vi: No edges are removed.
• For Zj : According to (ii), the edge from V to Vi in M may be cancelled out in M ′ if V is

also a parent of Zj . Suppose the edge from V to Vi is cancelled out in M ′ because of this.
We show that if this happens, then M violates LV-SEM-ME faithfulness. Note that V can
be either cogent or unobserved.
If V is cogent: Consider variable Zj , the set of cogent ancestors J = AnM ′(Zj)∩VC in M ′,
and the set of cogent parents K = PaM ′(Zj) ∩ VC in M ′. We have AnM ′(Zj) ∩ VC =
AnV (Vj) \ {Vi} and K ⊂ PaV (Vi), because V ̸∈ K. Next, following the structural
equation of Zj in M ′, we have: Rank(WJ

K∪{Zj}) = |K|. However, the minimal bottleneck
from J to K ∪ {Zj} in M is at least |K|+ 1, because K ⊂ J , and there is one extra path
in M (V → Vi → Zj) that is not blocked by K. Therefore, Zj violates Assumption 3(b).
If V is unobserved: Consider the set of cogent ancestors J = AnM ′(Zj)∩VC plus {V } in
M ′, and the set of cogent parents K = PaM ′(Zj) ∩ VC in M ′. In this case, K may equal
to PaV (Vi). However, we can still show that Rank(WJ

K∪{Zj}) = |K| (since there is no
direct connection from V to Zj in M ′), but the minimal bottleneck from J to K ∪ {Zj} in
M is at least |K| + 1, because the path V → Vi → Zj is not blocked. Therefore Zj still
violates Assumption 3(b).

• For Vki
: According to (iii), the edge from V to Vki

in M may be cancelled out in M ′ if V
is also a parent of Zj . Suppose the edge from V to Vki

is cancelled out in M ′ because of
this. Similarly, V can be either cogent or observed.
If V is cogent: Consider variable Vki , J = AnV (Vki) \ {Vi} ∪ {Hl}, and the set of
cogent parents K = PaM ′(Vki) ∩ VC in M ′. We have K ⊂ PP (Vki) (note that Zj

is an mleaf in M ), and |K| < PaV (Vki
). Further, J includes all variables with the

exogenous noise corresponding to the cogent ancestors of Zj in M ′. Therefore, we have
Rank(WJ

K∪{Vki
}) = |K|. However, the minimal bottleneck from J to K ∪ {Vki

} in M is
at least |K|+ 1. Firstly, K \ {Zj} is a subset of J so they are included in any bottleneck.
Additionally, there are two distinct paths from J to K ∪ {Vki

} that cannot be blocked by
K \ {Zj}: V → Vki

and Hl → Vi → Zj . Therefore Vki
violates Assumption 3(a).

If V is unobserved: Similarly, consider J = AnV (Vki
) \ {Vi} ∪ {V,Hl} and K =

PaM ′(Vki
) ∩ VC . Note that V ̸= Hl as V is a parent of Vki

in M . The results above still
hold, as Rank(WJ

K∪{Vki
}) = |K|, and the same two paths, V → Vki

and Hl → Vi → Zj ,
cannot be blocked by K \ {Zj}. Therefore Vki

violates Assumption 3(a).
• For Vkl

: According to (iv), the edge from V to Vkl
in M may be cancelled out in M ′ if

V = Zj , or V ∈ PaM ′(Zj) ∩ V C . Suppose the edge from V to Vkl
is cancelled out in M ′

because of this.
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If V is cogent and V ∈ PaV (Vi): Consider variable Vkl
, the set of cogent ancestors J =

AnV (Vkl
) \ {Vi}∪ {Hl} in M , and the set of cogent parents K = PaM ′(Vkl

)∩VC in M ′.
Similarly, we have K ⊂ PP (Vkl

), and |K| < PaV (Vkl
). We have Rank(WJ

K∪{Vkl
}) =

|K|. Further, the minimal bottleneck from J to K ∪ {Vkl
} in M is at least |K|+ 1. Firstly,

K \ {Zj} is a subset of J so they are included in any bottleneck. Additionally, there are
two distinct paths from J to K ∪ {Vkl

} that cannot be blocked by K \ {Zj}: V → Vkl
and

Hl → Vi → Zj . Therefore Vkl
violates Assumption 3(a).

If V = Zj : Consider the same J and K as above. The main difference here is that Zj ̸∈ K
and hence K ⊂ J . Therefore, Rank(WJ

K∪{Vkl
}) = |K|, and the minimal bottleneck at

least includes all variables in K, and one extra variable on the edge Hl → Vkl
. Therefore

Vkl
violates Assumption 3(a).

If V is unobserved: Consider J = AnV (Vkl
) \ {Vi} ∪ {Hl, V } in M , and K =

PaM ′(Vkl
) ∩ VC in M ′. We have Rank(WJ

K∪{Vkl
}) = |K|, and the minimal bottle-

neck includes all variables in K \ {Zj}, as well as two variables on the paths V → Vkl
and

Hl → Vi → Zj . Therefore Vkl
violates Assumption 3(a).

In conclusion, if an edge is cancelled in M ′, then M violates Assumption 3.

Proof of (2.c). From (2.a) and (2.b), we show that M ′ has the same unlabeled graph structure as M .
We can construct a mapping σM on variables in Z ∪ Y , where

σ(Vi) = Zj ; σ(Zj) = Vi; σ(V ) = V, V ̸= Vi, Zj .

Similarly, define a mapping σN on variables in VC ∪H, where

σN (Vi) = Hl; σ(Hl) = Vi; σ(V ) = V, V ̸= Vi, Hl.

We note that for all variable V except Vi and Zj , PPM (V ) = PPM ′(V ), AnM ′(V ) = AnM (V ).
This is because PP (V ) either includes both Vi and Zj , or include neither of them, as all parents of
Zj in M are ancestors of Vi. Similarly, AnM (V ) either includes both Hl and Vi, or neither of them,
because Hl is a parent of Vi, and all other children of Hl are descendants of Vi.

In the following, we show that if M satisfies Assumption 3, then M ′ also satisfies Assumption 3 with
probability one. In particular, following the rewriting procedure described in Appendix F.2, we can
construct an invertible mapping between the model parameters in M and in M ′. Since Assumption 3
is violated with probability zero on the model parameters in M , the same results hold on the model
parameters in M ′.

We note that the differences in the model parameters that are different between M and M ′ can be
summarized as follows:

(i) The edge weight from Zj to Vi is the inverse of the edge weight from Vi to Zj , aji;
(ii) The edge weight from other parents of Vi to Vi in M ′ can be written as the edge weight

from other parents of Zj to Zj in M multiplied by −a−1
ji ;

(iii) The edge weight from Pa(Zj) to Zj in M ′ can be written as a function of aji, the edge
weight from Pa(Vi) to Vi in M and the edge weight from Pa(Zj) to Zj ;

(iv) The edge weight from Zj to Vki is edge weight from Vi to Vki , akii divided by aji;
(v) The edge weight from other parents of Vki to Vki in M ′ can be written as a function of akii,

aji the edge weight from Pa(Vki) to Vki and the edge weight from Pa(Zj) to Zj in M ;
(vi) The edge weight from Hl to Vkl

is edge weight from Hl to Vkl
, bkll, divided by bil (note

that bil is included in (iii));
(vii) The edge weight from Zj to Vkl

is a function of the edge weight from Vi to Vkl
(akli), aji,

bil, bkll;
(viii) The edge weight from Pa(Vkl

) to Vkl
in M ′ can be written as a function of the edge weight

from Pa(Vkl
) to Vkl

, and the edge weight from Pa(Zj) to Zj , and Pa(Vi) to Vi in M .

Therefore, if we arrange the model parameters in M and in M ′ following (i)-(viii) above, we can
clearly see that the mapping that translates model parameters in M to model parameters in M ′ is
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invertible. This is consistent with the fact that since M and M ′ belong to the same DOG, we can
equivalently write the model parameters in M using model parameters in M ′. Therefore, since the
model parameters in M satisfy Assumption 3 with probability one, the model parameters in M ′ also
satisfy Assumption 3 with probability one.

Lastly, we note that, since the number of models in the DOG equivalence class is finite, if the
ground-truth model satisfies Assumption 3, then the probability that models in the DOG equivalence
class all satisfy Assumption 3 is also one.

F.4.2 Model outside the DOG equivalence class

Without loss of generality, we only need to show the result if all the differences in the choices of
centers in M ′′ are outside the corresponding direct ordered group of the cogent variable in M , but in
the same ancestral ordered group. That is, we consider M to be the model that is closest to M ′′ in
terms of the differences of the centers. We have shown above that this closest model also satisfies
LV-SEM-ME faithfulness and share the same unlabeled graph structure.

Proof of (2.d). We first show that if M ′′ differs from M only in one choice of the centers, then there
will be at least one edge added to M ′′. The proof also follows the procedure described in Appendix
F.2. That is, if Zj belong to the same ancestral ordered group but not the same direct ordered group
as Vi, then Condition 1 is satisfied. In this case, there will be one additional edge either from parents
of Zj in M to Zj , or to Vki . Similarly, if Hl belong to the same ancestral ordered group but not
the same direct ordered group as Vi, then Condition 2 is satisfied. In this case, there will be one
additional edge from Zj , or the parents of Zj or Vi to Vkl

. In conclusion, there will be at least one
added edge in M ′′ compared with M .

We note that if there are multiple differences in the centers between M ′′ and M , then we may not able
to use the above analysis. In particular, since one added edge may change the parent-child relation
among variable, it might be the case that no edges are added to M2 compared with M1. Nevertheless,
we can still show that M2 has at least one more edge compared with M0. Repeating this procedure
following the chain M0 →M1 → · · · →Mp completes the proof.

Proof of (2.e). We note that we can use the same method as in (2.b) to show that if any edge is
removed in M , then M violates Assumption 3. Specifically, in (2.b), we only used the fact that Zj is
a child of Vi, and Hl is a parent of Vi. Both still hold true for AOG. In the following, we will only
show the latter part, that is, there is at least one added edge that is not removed.

We prove by contradiction. Suppose all added edges are removed in M ′′, and suppose the edge from
V0 to V is added but finally removed. We further assume that among all the added edges V1 → V2,
V0 has the smallest index (following the causal order in M ), and for any V ′ ∈ De(V0) ∩An(V ), no
edges from V0 to V ′ is added. That is, for any causal path from V0 to V , no edges are added from V0

to any other variable V ′ on this path. Note that V0 and V refers to their position (center or non-center)
in M , i.e., they may represent different variables in M ′′ and Mq .

Suppose Ms is the first model following the sequence where this edge is added, and Mq−1 is the last
model following the sequence where this edge is present. Denote the center of the ancestral ordered
group that changes between Ms−1 and Ms as Vis , and between Mq−1 and Mq as Viq . Since the edge
from V0 to V is added in Ms, it must belong to one of the following three cases: There is a causal
path V0 → Vis → V , or there exists a latent confounder with V0 → Vis ← Hls → V (note that V0

may be Vis) or V0 → Zjs ← Vis ← Hls → V in Mq−1. Note that in the latter two cases, since
Zjs , Vis , Hls all belong to the same ancestral ordered group, V0 is an ancestor of Vis , and Vis is an
ancestor of V .

We consider the following cases:

• V = Zjq . This step does not include edge removals.
• V = Viq . Since the edge is removed in Mq, V0 ∈ PaMq−1

(Zjq ) in Mq−1, where V0 is not
a parent of Viq in M , and is not a parent of Zjq in M ′′. We note that the edge from V0 to
Zjq cannot be an added edge. Because this edge is not removed in Mq, and will never be
removed for all Mq+1, · · · , Mp = M ′′. Therefore this edge is in M .
Consider Zjq , and consider J as the set of (unobserved or cogent) variable V ′ in M where
NV ′ corresponds to the exogenous noise of a variable in {V0}∪(AnM ′′(Zjq )∩VC). In other
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words, J = AnM ′′(Zjq )∩VC if V0 is a cogent variable, and J additionally includes V0 if it
is unobserved. Further, consider K = PaM ′′(Zjq ) ∩ VC . It follows that K ⊆ PPM (Viq ),
and J ⊆ AnM (Zjq ) \ {Viq}.
We have Rank(WJ

K∪{Zjq}
) = |K|. However, note that we can find K distinct paths from

variables in J to variables in K. Specifically, for each variable V ′ in K, define f(V ′) as
the variable in J whose exogenous noise in M is the exogenous noise of V ′ in M ′′. Note
that f(V ′) = V ′ if there is no change on V ′ and NV ′ on both models. Further, f(V ′)
and V ′ must belong to the same ancestral ordered group and hence there is a causal path
f(V ′) ⇝ V ′ in M . Therefore, a minimal bottleneck from J to K ∪ {Zjq} must at least
include K variables. However, there is still one path V0 → Zjq that is not blocked, as V0 is
not a parent of Zjq in M ′′ (meaning V0 ̸∈ K). Hence M violates Assumption 3.

• V = Vki
for some Vki

. Note that this variable Vki
may have different positions (center or

non-center) in Mq and M ′′. For simplicity of notation, denote this variable as Vkq
. Then

there exist paths V0 → Viq → Vkq
, V0 → Vkq

, and V0 → Zjq in Mq−1. Note that the edge
Viq → Vkq

and V0 → Zjq are in M .
If Vkq does not change the position. Consider J as the set of (unobserved or cogent)
variable V ′ in M where NV ′ corresponds to the exogenous noise of a variable in {V0} ∪
(AnM ′′(Vkq

) ∩ VC), and K = PaM ′′(Vkq
) ∩ VC . It follows that K ⊆ PPM (Vkq

), and
J ⊆ AnM (Vkq

). Further, Rank(WJ
K∪{Vkq}

) = |K|. However, a minimal bottleneck
from J to K ∪ {Vkq

} must at least include: One variable between V ′ and f(V ′) for each
V ′ ∈ K, except for Zjq ; One variable on the edge Viq → Vkq

; One variable on the edge
V0 → Zjq . Therefore the size of the minimal bottleneck is at least |K| + 1. Hence M
violates Assumption 3.
If Vkq

changes the position from non-center to center. That is, it can be denoted by Zjr

for some q < r ≤ p. Note that the reason we consider M ′′ in the above analysis is because
there may still be edge additions or removals on Vkq after Mq. However, if V = Zjr ,
then we know that there will be no edge additions/removals on V after Mr. Therefore,
consider J as the set of variable V ′ in Mr where NV ′ corresponds to the exogenous noise
of a variable in {V0} ∪ (AnMr (Zjr ) ∩ VC), and K = PaMr (Zjr ) ∩ VC . This implies that
J ⊆ An(Zjr ) \ {Vir}, and K ⊆ PP (Vir ). We have Rank(WJ

K∪{Zjr}
) = |K|. However,

a minimal bottleneck from J to K ∪ {Vkq
} must at least include: One variable between

V ′ and f(V ′) for each V ′ ∈ K, except for Zjq ; One variable on the edge Viq → Vkq
; One

variable on the edge V0 → Zjq . Therefore the size of the minimal bottleneck is at least
|K|+ 1. Hence M violates Assumption 3.
If Vkq

changes the position from center to non-center. That is, it can be denoted by Vir for
some q < r ≤ p. Similarly, there are no edge additions or removals involving Vir after Mr.
In this case, we consider the variable Vir in Mr−1, i.e., J as the set of variable V ′ in Mr

where NV ′ corresponds to the exogenous noise of a variable in {V0}∪(AnMr−1
(Vir )∩VC),

and K = PaMr−1
(Vir ) ∩ VC . The following is the same as when Vkq

does not change the
position, and we can conclude that M violates Assumption 3.

• V = Vkl
for some Vkl

. Similarly, for notation simplicity, denote this variable as Vlq . Note
that this is different from Hlq , which refers to the unobserved variable that is in the same
group as Viq . Then there exist paths V0 → Viq ← Hlq → Vlq or V0 → Zjq ← Viq ←
Hlq → Vlq in Mq−1.
If Vlq does not change the position. Consider J as the set of variable V ′ in M where
NV ′ corresponds to the exogenous noise of a variable in {V0} ∪ (AnM ′′(Vlq ) ∩ VC),
and K = PaM ′′(Vlq ) ∩ VC . It follows that K ⊆ PPM (Vlq ), and J ⊆ AnM (Vlq ), and
Rank(WJ

K∪{Vlq}
) = |K|.

– If Viq (Zjq if the center is replaced) is not a parent of Vlq in M ′′. Note that this includes
the case when V0 = Viq . Similar to the above analysis for Vki , for each variable V ′ in
K, define f(V ′) as the variable in J whose exogenous noise in M is the exogenous
noise of V ′ in M ′′. Then any bottleneck from J to K must include at least one variable
between V ′ and f(V ′) for each V ′ ∈ K. Further, it must also include one variable
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on the edge Hlq → Vlq . Therefore the size of the minimal bottleneck must be at least
|K|+ 1.

– If Viq (Zjq if the center is replaced) is a parent of Vlq in M . Then any bottleneck from
J to K must include at least one variable between V ′ and f(V ′) for each V ′ ∈ K
except for Viq . Further, it must also include one variable on the edge Hlq → Vlq , and
one variable on the edge V0 → Viq (or V0 → Zjq if Zj is the center node in M ′′).
Therefore the size of the minimal bottleneck must also be at least |K|+ 1.

Therefore, in both cases, M violates Assumption 3.
If Vlq changes its position. Similar to the analysis described in Vki , Vlq can be denoted by
Zjr or Vir for some q < r ≤ p. Since there are no edge additions or removals involving Vir
after Mr, we can consider the sets J and K defined on Mr−1 if V = Vir , and the sets J
and K defined on Mr if V = Zjr . Following the same analysis as above, we can conclude
that M violates Assumption 3.

In conclusion, we show that if all added edges in M1, · · · ,Mp are removed, then M violates
Assumption 3. Therefore at least one of the added edge to M ′′ is not removed.

Proof of (2.f). Lastly, we show that because of this added edge, M ′′ violates Assumption 3. Suppose
the edge from V0 to V is added in M ′′. Note that this edge does not introduce any additional ancestral
relations as M ′′ and M belong to the same AOG equivalence class. Therefore for each center or
non-center variable V , the ancestor set and possible parent set of V remain the same. The proof of
this claim is actually the same as (2.b), but in a reversed manner.

• V = Zj . Then V is a center node in M ′′, and V0 ∈ PaM (Zj) \ PaM (Vi). Consider Vi in
M ′′, which is an mleaf. Consider J as the set of (unobserved or cogent) variable V ′ in M ′′

where NV ′ corresponds to the exogenous noise of a variable in {V0} ∪ (AnM (Vi) ∩ VC),
and consider K = PaM (Xi)∩VC . We have J ⊆ AnM ′′(Vi \{Zj}), and K ⊆ PPM ′′(Vj).
Further, according to the structural equation of Vi in M , Rank(WJ

K∪{Vi}) = |K|.
For each variable V ′ in K, define f(V ′) as the variable in J whose exogenous noise in
M ′′ is the exogenous noise of V ′ in M . Then the minimal bottleneck must include at
least one variable between V ′ and f(V ′) for each V ′ ∈ K, and one variable on the path
V0 → Zj → Vi on M ′′. Therefore the size of the minimal bottleneck must be at least
|K|+ 1.

• V = Vki
. Then V0 ∈ PaM (Zj) \ PaM (Vki

). Without loss of generality, suppose Vki

does not change its position between M and M ′′. If it changes then we can use the same
procedure as described in (2.e).
Consider J as the set of variable V ′ in M ′′ where NV ′ corresponds to the exogenous noise
of a variable in {V0} ∪ (AnM (Vki

) ∩ VC), and consider K = PaM (Vki
) ∩ VC . We have

Rank(WJ
K∪{Vki

}) = |K|. However, any bottleneck from J to K includes one variable
between V ′ and f(V ′), for all V ′ ∈ K. Additionally, it needs to cover the edge V0 → V .
Therefore the size of the minimal bottleneck must be at least |K|+ 1.

• V = Vkl
. Similarly, we assume that Vki does not change its position between M and M ′′.

Consider J as the set of variable V ′ in M ′′ where NV ′ corresponds to the exogenous noise
of a variable in {V0} ∪ (AnM (Vkl

) ∩ VC), and consider K = PaM (Vkl
) ∩ VC . We have

Rank(WJ
K∪{Vkl

}) = |K|. However, any bottleneck from J to K includes one variable
between V ′ and f(V ′), for all V ′ ∈ K. Additionally, it needs to cover the edge V0 → V .
Therefore the size of the minimal bottleneck must be at least |K|+ 1.
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