Skill-based Model-based Reinforcement Learning

Lucy Xiaoyang Shi! Joseph J. Lim?3* Youngwoon Lee'
!'University of Southern California 2KAIST 3NAVER Al Lab

Abstract: Model-based reinforcement learning (RL) is a sample-efficient way of
learning complex behaviors by leveraging a learned single-step dynamics model to
plan actions in imagination. However, planning every action for long-horizon tasks
is not practical, akin to a human planning out every muscle movement. Instead,
humans efficiently plan with high-level skills to solve complex tasks. From this intu-
ition, we propose a Skill-based Model-based RL framework (SkiMo) that enables
planning in the skill space using a skill dynamics model, which directly predicts
the skill outcomes, rather than predicting all small details in the intermediate states,
step by step. For accurate and efficient long-term planning, we jointly learn the skill
dynamics model and a skill repertoire from prior experience. We then harness the
learned skill dynamics model to accurately simulate and plan over long horizons
in the skill space, which enables efficient downstream learning of long-horizon,
sparse reward tasks. Experimental results in navigation and manipulation domains
show that SkiMo extends the temporal horizon of model-based approaches and
improves the sample efficiency for both model-based RL and skill-based RL. Code
and videos are available at https://clvrai.com/skimo.

Keywords: Model-Based Reinforcement Learning, Skill Dynamics Model

1 Introduction

A key trait of human intelligence is the ability to plan abstractly for solving complex tasks [1]. For
instance, we perform cooking by imagining outcomes of high-level skills like washing and cutting
vegetables, instead of planning every muscle movement involved [2]. This ability to plan with
temporally-extended skills helps to scale our internal model to long-horizon tasks by reducing the
search space of behaviors. To apply this insight to artificial intelligence agents, we propose a novel
skill-based and model-based reinforcement learning (RL) method, which learns a model and a policy
in a high-level skill space, enabling accurate long-term prediction and efficient long-term planning.

Typically, model-based RL involves learning a flat single-step dynamics model, which predicts the
next state from the current state and action. This model can then be used to simulate “imaginary”
trajectories, which significantly improves sample efficiency over their model-free alternatives [3, 4].
However, such model-based RL methods have shown only limited success in long-horizon tasks due
to inaccurate long-term prediction [5] and computationally expensive search [6, 7, 8].

Skill-based RL enables agents to solve long-horizon tasks by acting with multi-action subroutines
(skills) [9, 10, 11, 12, 13, 14] instead of primitive actions. This temporal abstraction of actions
enables systematic long-range exploration and allows RL agents to plan farther into the future, while
requiring a shorter horizon for policy optimization, which makes long-horizon downstream tasks
more tractable. Yet, on complex long-horizon tasks, skill-based RL still requires a few million to
billion environment interactions to learn [13], which is impractical for real-world applications.

To combine the best of both model-based RL and skill-based RL, we propose Skill-based Model-
based RL (SkiMo), which enables effective planning in the skill space using a skill dynamics model.
Given a state and a skill to execute, the skill dynamics model directly predicts the resultant state after
skill execution, without needing to model every intermediate step and low-level action (Figure 1),
whereas the flat dynamics model predicts the immediate next state after one action execution. Thus,

* Al Advisor at NAVER Al Lab

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://clvrai.com/skimo

Open microwave Move kettle

(a) Flat dynamics model without skills -!.
(b) Flat dynamics model with skills -..
—vj
(c) Skill dynamics model with skills -

- —

Figure 1: Intelligent agents can use their internal models to imagine potential futures for planning.
Instead of planning out every primitive action (black arrows in a), they aggregate action sequences
into skills (red and blue arrows in b). Further, they can leap directly to the predicted outcomes of
executing skills in sequence (red and blue arrows in ¢), which leads to better long-term prediction
and planning compared to predicting step-by-step (blurriness of images represents the level of error
accumulation in prediction).

planning with skill dynamics requires fewer predictions than flat dynamics, resulting in more reliable
long-term future predictions and plans.

Concretely, we first jointly learn the skill dynamics model and a skill repertoire from large offline
datasets collected across diverse tasks [15, 12, 16]. This joint training shapes the skill embedding
space for easy skill dynamics prediction and skill execution. Then, to solve a complex downstream
task, we train a hierarchical task policy that acts in the learned skill space. For more efficient policy
learning and better planning, we leverage the skill dynamics model to simulate skill trajectories.

The main contribution of this work is to propose Skill-based Model-based RL (SkiMo), a novel
sample-efficient model-based hierarchical RL algorithm that leverages task-agnostic data to extract
not only a reusable skill set but also a skill dynamics model. The skill dynamics model enables
efficient and accurate long-term planning for sample-efficient RL. Our experiments show that our
method outperforms the state-of-the-art skill-based and model-based RL algorithms on long-horizon
navigation and robotic manipulation tasks with sparse rewards.

2 Related Work

Model-based RL leverages a (learned) dynamics model of the environment to plan a sequence of
actions that leads to the desired behavior. The dynamics model predicts the future state of the
environment, and optionally the associated reward, after taking a specific action for planning [8, 4] or
subsequent policy search [17, 3, 18, 4]. By simulating candidate behaviors in imagination instead of
in the physical environment, model-based RL improves the sample efficiency. The imaginary rollouts
can be used for planning, e.g., CEM [19] and MPPI [20], as well as for policy optimization [3, 4] Yet,
due to the accumulation of prediction error at each step and the increasing search space, finding an
optimal, long-horizon plan is inaccurate and computationally expensive [6, 7, 8].

To facilitate learning of long-horizon behaviors, skill-based RL lets the agent act over temporally-
extended skills (i.e. options [21] or motion primitives [22]), which can be represented as sub-policies
or a coordinated sequence of low-level actions. Temporal abstraction effectively reduces the task
horizon for the agent and enables directed exploration [23], a major challenge in RL. The reusable
skills can be manually defined [22, 24, 10, 11, 14], extracted from large offline datasets [25, 26, 15, 27,
28], discovered online in an unsupervised manner [29, 30], or acquired in the form of goal-reaching
policies [31, 32, 33, 34, 18]. However, skill-based RL is still impractical for real-world applications,
requiring a few million to billion environment interactions [13]. In this paper, we use model-based
RL to guide the planning of skills to improve the sample efficiency of skill-based approaches.

There have been attempts to plan over skills in model-based RL [29, 35, 5, 36, 37]. However, most of
these approaches [29, 5, 36] still utilize the conventional flat (single-step) dynamics model, which
struggles at handling long-horizon planning due to error accumulation. Wu et al. [35] proposes to

.

~— _/v \J ~— R(r|5,,2) lsl
N a
N /O ”(N | ")
q(z| ?ﬁ a) ——————— D(sy|s0,2) /i — 0 l b4 “
¥ ¥ v ¥ v o (@/‘@ S
ﬂL(a,|.s'/, 2) Pl s ~~ \o e 7 (a;|s,2) —

Figure 2: Our approach, SkiMo, combines model-based RL and skill-based RL for sample efficient
learning of long-horizon tasks. SkiMo consists of two phases: (1) learn a skill dynamics model and a
skill repertoire from offline task-agnostic data, and (2) learn a high-level policy for the downstream
task by leveraging the learned model and skills. We omit the encoded latent state h in the figure and
directly write the observation s for clarity, but most modules take the latent state h as input.

learn a temporally-extended dynamics model; however, it conditions on low-level actions rather than
skills and is only used for low-level planning. A concurrent work, Shah et al. [37], is most similar to
our work in that it learns a skill dynamics model, but with a limited set of discrete, manually-defined
skills. To fully unleash the potential of temporally abstracted skills, we devise a skill-level dynamics
model to provide accurate long-term prediction, which is essential for solving long-horizon tasks.
To the best of our knowledge, SkiMo is the first work that jointly learns skills and a skill dynamics
model from data for model-based RL.

3 Method

In this paper, we aim to improve the long-horizon learning capability of RL agents. To enable
accurate long-term prediction and efficient long-horizon planning for RL, we introduce SkiMo, a
novel skill-based and model-based RL algorithm that combines the benefits of both frameworks.
A key change to prior model-based approaches is the use of a skill dynamics model that directly
predicts the outcome of a chosen skill, which enables efficient and accurate long-term planning. Our
approach consists of two phases: (1) learning the skill dynamics model and skills from an offline
dataset (Section 3.3) and (2) downstream task learning with the skill dynamics model (Section 3.4),
as illustrated in Figure 2.

3.1 Preliminaries

RL We formulate a problem as a Markov decision process [38], which is defined by a tuple
(S, A, R, P, pg,7y) of the state space S, action space A, reward R(s,a), transition probability
P(s'|s,a), initial state distribution pp, and discounting factor v. A policy 7(als) maps from a
state s to an action a. RL aims to find the optimal policy that maximizes the expected discounted

return, Es;~pq . (s0,a0,....57,)~ Zf;gl vt R(ss,ay) |, where T; is the variable episode length.

Unlabeled Offline Data We assume access to a reward-free task-agnostic dataset [15, 12], which
is a set of IV state-action trajectories, D = {1,...,7n}. Since it is task-agnostic, this data can
be collected from training data for other tasks, unsupervised exploration, or human teleoperation.
We do not assume this dataset contains solutions for the downstream task; therefore, tackling the
downstream task requires re-composition of skills learned from diverse trajectories.

Skill-based RL. We define skills as a sequence of actions (ag, . ..,ag_1) with a fixed horizon H?
and parameterize skills as a skill latent z and skill policy, 7” (a|s, z), that maps a skill latent and state
to the corresponding action sequence. The skill latent and skill policy can be trained using variational

™t is worth noting that our method is compatible with variable-length skills [26, 39, 27] and goal-conditioned
skills [18] with minimal change; however, for simplicity, we adopt fixed-length skills of H = 10 in this paper.

auto-encoder (VAE [40]), where a skill encoder ¢(z|(s, a)o.;r—1) embeds a sequence of transitions
into a skill latent z, and the skill policy decodes it back to the original action sequence. Following
SPiRL [12], we also learn a skill prior p(z|s), which is the skill distribution in the offline data, to
guide the downstream task policy to explore promising skills over the large skill space.

3.2 SkiMo Model Components

SkiMo consists of three major model components: the skill policy (%), skill dynamics model
(Dy), and task policy (), along with auxiliary components for representation learning and value
estimation. A state encoder E, first encodes an observation s into the latent state h. Then, given a
skill z, the skill dynamics D, predicts the skill effect in the latent space. The task policy 7y, reward
function Ry, and value function ()4 predict a skill, reward, and value on the (imagined) latent state,
respectively. The following is a summary of the notations of our model components:

State encoder: h: = Ey(st) . .

Observation decoder: §; = O:)((ht)) Skill dyqamlcs: I}HH = Dy (hy,2;)

Skill prior: 2 ~ pa(se) Task policy: 2, ~ 7y (hy))
Skill encoder: 7 ~ qo((s,a)t04m-1) Rewa%d: o = Ry(hy, z;)

Skill policy: & = k(s z) Value: b1 = Qg (hy, 2¢)

For convenience, we label the trainable parameters v, 6, ¢ of each component according to which
phase they are trained on:

1. Learned from offline data and finetuned in downstream RL (¢ = {¢'g,¥p}): The state
encoder (£,) and the skill dynamics model (D) are first trained on the offline task-agnostic
data and then finetuned in downstream RL to account for unseen states and transitions.

2. Learned only from offline data (6 = {00, 6,,6,, 0, }): The observation decoder (Op), skill
encoder (qp), skill prior (pg), and skill policy (Wé’) are learned from the offline data.

3. Learned in downstream RL (¢ = {¢@, ¢r, ¢~ }): The value (Q,) and the reward (R,,) func-
tion, and the high-level task policy (74) are trained for the downstream task using environment
interactions.

3.3 Pre-Training Skill Dynamics Model and Skills from Task-agnostic Data

Our method, SkiMo, consists of pre-training and downstream RL phases. In pre-training, SkiMo
leverages offline data to extract (1) skills for temporal abstraction of actions, (2) skill dynamics for
skill-level planning on a latent state space, and (3) a skill prior [12] to guide exploration. Specifically,
we jointly learn a skill policy and skill dynamics model, instead of learning them separately [35, 5, 36],
in a self-supervised manner. The key insight is that this joint training could shape the latent skill
space Z and state embedding in that the skill dynamics model can easily predict the future.

In contrast to prior works that learn models completely online [3, 41, 4], we leverage existing offline
task-agnostic datasets to pre-train a skill dynamics model and skill policy. This offers the benefit
that the model and skills are agnostic to specific tasks so that they may be used in multiple tasks.
Afterwards in the downstream RL phase, the agent continues to finetune the skill dynamics model to
accommodate task-specific trajectories.

To learn a low-dimensional skill latent space Z that encodes action sequences, we train a conditional
VAE [40] on the offline dataset that reconstructs the action sequence through a skill embedding given
a state-action sequence as in SPiRL [12, 16]. Specifically, given H consecutive states and actions
(s,a)0.—1, a skill encoder gy predicts a skill embedding z and a skill decoder 779L (i.e. the low-level
skill policy) reconstructs the original action sequence from z:

A H-1
Lvae = E(s).y 1~D [HC > (w5 (si2) —ai)® +6 - KL(go(zl(s.a)o1) | p(2)) |, ()

=0

Behavioral cloning Embedding regularization
where z is sampled from gy and Agc, 5 are weighting factors for regularizing the skill latent z
distribution to a prior of a tanh-transformed unit Gaussian distribution, Z ~ tanh(A/(0,1)).

To ensure the latent skill space is suited for long-term prediction, we jointly train a skill dynamics
model with the VAE above. The skill dynamics model learns to predict h; f7, the latent state H-steps

ahead conditioned on a skill z, for IV sequential skill transitions using the latent state consistency
loss [4]. To prevent a trivial solution and encode rich information from observations, we additionally
train an observation decoder Oy using the observation reconstruction loss. Altogether, the skill
dynamics Dy, state encoder Ey;,, and observation decoder Oy are trained on the following objective:

N—-1

Lrec = E(s a)0.n D { > [/\oHSz‘H = Og(By(sim) |13 + M| Dy (i, zimr) — Ew(s(i+l)H)||§H)
1=0

Observation reconstruction Latent state consistency

))) (3)
where Ao, AL are weighting factors and hg = Ey(so) and h(;y1yg = Dy(him,z:m) such that
gradients are back-propagated through time. For stable training, we use a target network whose
parameter ¢~ is slowly soft-copied from).

Furthermore, to guide the exploration for downstream RL, we also extract a skill prior [12] from
offline data that predicts the skill distribution for any state. The skill prior is trained by minimizing
the KL divergence between output distributions of the skill encoder gy and the skill prior py:

Lsp = E(s,a)0,_1~D [)\sp KL (Sg(QG(Z|SO:H713 ag.r-1)) || Pe(Z|So))] ; 4

where Agp is a weighting factor and sg denotes the stop gradient operator. Combining the objectives
above, we jointly train the policy, model, and prior, which leads to a well-shaped skill latent space
that is optimized for both skill reconstruction and long-term prediction:

L = Lyag + Lrec + Lsp (5)

3.4 Downstream Task Learning with Learned Skill Dynamics Model

To accelerate downstream RL with the learned skill repertoire, SkiMo learns a high-level task policy
7r¢(zt |h;) that outputs a latent skill embedding z;, which is then translated into a sequence of H

actions using the pre-trained skill policy 7r9L to act in the environment [12, 16].

To further improve the sample efficiency, we propose to use model-based RL in the skill space
by leveraging the skill dynamics model. The skill dynamics model and task policy can generate
imaginary rollouts in the skill space by repeating (1) sampling a skill, z; ~ 74 (h;), and (2) predicting
H-step future after executing the skill, hyy i = Dy (hy,z;). Our skill dynamics model requires
only 1/H dynamics predictions and action selections of the flat model-based RL approaches [3, 4],
resulting in more efficient and accurate long-horizon imaginary rollouts (see Appendix, Figure 10).

Following TD-MPC [4], we leverage these imaginary rollouts both for planning (Algorithm 2) and
policy optimization (Equation (7)), significantly reducing the number of necessary environment
interactions. During rollout, we perform Model Predictive Control (MPC), which re-plans every step
using CEM and executes the first skill of the skill plan (see Appendix, Section C for more details).

To evaluate imaginary rollouts, we train a reward function R (hy, z,) that predicts the sum of H-step
rewards®, r;, and a Q-value function Q4 (¢, z,). We also finetune the skill dynamics model D,;, and
state encoder £, on the downstream task to improve the model prediction:

wee = Es,ausiim i | ALIDy (B, 2e) — By (sem)|13 + A |[re — Ry (hy, z4)13

Latent state consistency Reward prediction

(6)
+ AvIre + 7Qu- (hegrr, o (hesrr)) — Qu(hy, 213 |

Value prediction

Finally, we train a high-level task policy 74 to maximize the estimated ()-value while regularizing it
to the pre-trained skill prior pg [12], which helps the policy output plausible skills:

Lrr =Eg,op | — Qplhy, my(sg(hy))) + a - KL(my(zelsg(hy)) || po(zlst))]. (7

For both Equation (6) and Equation (7), consecutive skill-level transitions can be sampled together,
so that the models can be trained using backpropagation through time, similar to Equation (3).

3For clarity, we use r; to denote the sum of H-step rewards ZZBI Titi

(a) Maze (b) Kitchen (c) Mis-aligned Kitchen (d) CALVIN

Figure 3: We evaluate our method on four long-horizon, sparse reward tasks. (a) The green point
mass navigates the maze to reach the goal (red). (b, ¢) The robot arm in the kitchen must complete
four tasks in the correct order (Microwave - Kettle - Bottom Burner - Light and Microwave - Light -
Slide Cabinet - Hinge Cabinet). (d) The robot arm needs to complete four tasks in the correct order
(Open Drawer - Turn on Lightbulb - Move Slider Left - Turn on LED).

4 Experiments

In this paper, we propose a model-based RL approach that can efficiently and accurately plan long-
horizon trajectories over the skill space by leveraging the skills and skill dynamics model learned
from a task-agnostic dataset. In our experiments, we aim to answer the following questions: (1) Can
the skill dynamics model improve the efficiency of RL for long-horizon tasks? and (2) Is the joint
training of skills and the skill dynamics model essential for efficient model-based RL?

We compare SkiMo with prior model-based RL and skill-based RL methods (summarized in Table 1)
on four long-horizon tasks with sparse rewards: 2D maze navigation, two kitchen manipulation, and
tabletop manipulation tasks, as illustrated in Figure 3 (see Appendix, Section C for more details).

4.1 Tasks

Maze We use the maze navigation task from Pertsch et al. [16], where a point mass agent is
randomly initialized near the green region and needs to reach the fixed goal region in red (Figure 3a).
The agent observes its 2D position and 2D velocity, and controls its (x, y)-velocity. The agent
receives a sparse reward of 100 only when it reaches the goal. The task-agnostic offline dataset from
Pertsch et al. [16] consists of 3,046 trajectories between randomly sampled initial and goal positions.

Kitchen We use the FrankaKitchen environment and 603 teleoperation trajectories from D4RL [42].
The 7-DoF Franka Emika Panda arm needs to perform four sequential sub-tasks (Microwave - Kettle -
Bottom Burner - Light). In Mis-aligned Kitchen, we also test another task sequence (Microwave -
Light - Slide Cabinet - Hinge Cabinet), which has a low sub-task transition probability in the offline
data distribution [16]. The agent observes 11D robot state and 19D object state, and uses 9D joint
velocity control. The agent receives a reward of 1 for every sub-task completion in order.

CALVIN We adapt the CALVIN benchmark [43] to have the target task Open Drawer - Turn on
Lightbulb - Move Slider Left - Turn on LED and 21D robot and object states. It uses the Franka Panda
arm with 7D end-effector pose control. The offline data is from 1,239 trajectories of play data [43].
The agent receives a reward of 1 for every sub-task completion in the correct order.

4.2 Baselines and Ablated Methods

* Dreamer [3] and TD-MPC [4] learn a flat (single-step) dynamics and train a policy using latent
imagination to achieve a high sample efficiency.

DADS [29] discovers skills and learns a dynamics model through unsupervised learning.

LSP [36] plans in the skill space, but using a single-step dynamics model from Dreamer.

SPiRL [12] learns skills and a skill prior, and guides a high-level policy using the learned prior.

== Dreamer --*+ SPIRL ==+ SPiRL+Dreamer == TD-MPC ==+ SPIiRL+TDMPC DADS LSP = SkiMo (Ours)

1.0

4

IS
IS

w
w
w

Average Success
AverageNSubtasks
AverageNSu btasks
AverageNSubtasks

e

,,,,,,

[== = =
10 15 20 0.00 025 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.0 05 10 15 2.0
Environment steps (1M) Environment steps (1M) Environment steps (1M) Environment steps (1M)

(a) Maze (b) Kitchen (c) Mis-aligned Kitchen (d) CALVIN

Figure 4: Learning curves of our method and baselines. All averaged over 5 random seeds.

e SPiRL + Dreamer and SPiRL + TD-MPC pre-train the skills using SPiRL and learn a pol-
icy and model in the skill space (instead of the action space) using Dreamer and TD-MPC,
respectively. In contrast to SkiMo, these baselines do not jointly train the model and skills.

4.3 Results

Maze Maze navigation poses a hard exploration problem due to the sparsity of the reward: the agent
only receives reward after taking 1,000+ steps to reach the goal. Figure 4a shows that only SkiMo is
able to consistently reach the goal, whereas baselines struggle to learn a policy or an accurate model
due to the challenges in sparse feedback and long-term planning.

To better understand the result, we qualitatively analyze the behavior of each agent in Appendix,
Figure 9. Dreamer and TD-MPC have a small coverage of the maze since it is challenging to
coherently explore for 1,000+ steps to reach the goal from taking primitive actions. SPiRL is
able to explore a large fraction of the maze, but it does not learn to consistently find the goal due
to difficult policy optimization in long-horizon tasks. On the other hand, SPiRL + Dreamer and
SPiRL + TD-MPC fail to learn an accurate model and often collide with walls.

Kitchen Figure 4b demonstrates that SkiMo reaches the same performance (above 3 sub-tasks)
with 5x less environment interactions than SPiRL. In contrast, Dreamer and TD-MPC rarely succeed
on the first sub-task due to the sparse reward. SPiRL + Dreamer and SPiRL + TD-MPC perform better
than flat model-based RL by leveraging skills, yet the independently trained model and policy are not
accurate enough to consistently achieve more than two sub-tasks.

Mis-aligned Kitchen The mis-aligned target task makes the downstream learning harder, because
the skill prior, which reflects offline data distribution, offers less meaningful regularization to the
policy. However, Figure 4c shows that SkiMo still performs well. This demonstrates that the skill
dynamics model is able to adapt to the new distribution of behaviors, which might greatly deviate
from the distribution in the offline dataset.

CALVIN One of the major challenges in CALVIN is that the offline data is much more task-
agnostic. Any particular sub-task transition has probability lower than 0.1% on average, resulting in a
large number of plausible sub-tasks from any state. Figure 4d demonstrates that SkiMo can learn
faster than the model-free baseline, SPiRL, which supports the benefit of using our skill dynamics
model. Meanwhile, Dreamer performs better in CALVIN than in Kitchen because objects in CALVIN
are more compactly located and easier to manipulate; thus, it becomes viable to accomplish initial
sub-tasks through random exploration. Yet, it falls short in composing coherent action sequences to
achieve a longer task sequence due to the lack of temporally-extended reasoning.

In summary, we show the synergistic benefit of temporal abstraction in both the policy and dynamics
model. SkiMo is the only method that consistently solves the long-horizon tasks. Our results also
demonstrate the importance of algorithmic design choices (e.g. skill-level planning, joint training of
a model and skills) as naive combinations (SPiRL + Dreamer, SPiRL + TD-MPC) fail to learn.

4.4 Ablation Studies

Model-based vs. Model-free In Figure 5, SkiMo achieves better asymptotic performance and
higher sample efficiency across all tasks than SkiMo + SAC, which uses model-free RL (SAC [44])

= SkiMo (Ours) SkiMo+SAC —— SkiMo w/o joint training = SkiMo w/o CEM

1.0 4 4 4

i AT é

0.0 0.5 1.0 15 2.0 0 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 ! 1.0 5
Environment steps (1M) Environment steps (1M) Environment steps (1M) Environment steps (1M)

w
w

Average Success
A!erageNSubtasks
A!erageNSubtasks
A!erageNSubtasks

°
°
°

°
°
°

2.0

(a) Maze (b) Kitchen (c) Mis-aligned Kitchen (d) CALVIN

Figure 5: Learning curves of our method and ablated models. All averaged over 5 random seeds.

to train the high-level policy to select skills. Since the only difference is in the use of the skill
dynamics model for planning, this suggests that the task policy can make more informative decisions
by leveraging accurate long-term predictions of the skill dynamics model.

Joint training of skills and skill dynamics model “SkiMo w/o joint training” learns the latent
skill space using only the VAE loss in Equation (2). Figure 5 shows that the joint training is crucial
for Maze and CALVIN while the difference is marginal in the Kitchen tasks. This suggests that the
joint training is essential especially in more challenging scenarios, where the agent needs to generate
accurate long-term plans (for Maze) or the skills are very diverse (in CALVIN).

CEM planning As shown in Figure 5, SkiMo learns significantly better and faster in Kitchen, Mis-
aligned Kitchen, and CALVIN than SkiMo w/o CEM, indicating that CEM planning can effectively
find a better plan. On the other hand, in Maze, SkiMo w/o CEM learns twice as fast. We find that
action noise for exploration in CEM leads the agent to get stuck at walls and corners. We believe that
with a careful tuning of action noise, SkiMo can solve Maze much more efficiently.

For further ablations and discussion on skill horizon and planning horizon, see Appendix, Section A.

4.5 Long-horizon Prediction with Skill Dynamics Model

To assess the accuracy of long-term prediction of our proposed skill dynamics over flat dynamics, we
visualize imagined trajectories in Appendix, Figure 10a, where the ground truth initial state and a
sequence of 500 actions (50 skills for SkiMo) are given. Dreamer struggles to make accurate long-
horizon predictions due to error accumulation. In contrast, SkiMo is able to reproduce the ground
truth trajectory with little prediction error even when traversing through hallways and doorways.
This is mainly because SkiMo allows temporal abstraction in the dynamics model, thereby enabling
temporally-extended prediction and reducing step-by-step prediction error.

5 Conclusion

We propose SkiMo, an intuitive instantiation of saltatory model-based hierarchical RL [2] that
combines skill-based and model-based RL approaches. Our experiments demonstrate that (1) a skill
dynamics model reduces the long-term prediction error, improving the performance of prior model-
based RL and skill-based RL; (2) it leads to temporal abstraction in both the policy and dynamics
model, so the downstream RL can do efficient, temporally-extended reasoning without needing to
model step-by-step planning; and (3) joint training of the skill dynamics and skill representations
further improves the sample efficiency by learning skills useful to predict their consequences. We
believe that the ability to learn and utilize a skill-level model holds the key to unlocking the sample
efficiency and widespread use of RL agents, and our method takes a step toward this direction.

Limitations and future work While our method extracts fixed-length skills from offline data,
the lengths of semantic skills may vary based on the contexts and goals. Future work can learn
variable-length semantic skills to improve long-term prediction and planning. Further, although we
only experimented on state-based inputs, SkiMo is a general framework that can be extended to RGB,
depth, and tactile observations. Thus, we would like to apply this sample-efficient approach to real
robots where the sample efficiency is crucial.

Acknowledgments

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant (No.2019-0-00075, Artificial Intelligence Graduate School Program, KAIST)
and National Research Foundation of Korea (NRF) grant (NRF-2021H1D3A2A03103683), funded
by the Korea government (MSIT). This work was also partly supported by the Annenberg Fellowship
from USC. We would like to thank Ayush Jain and Grace Zhang for help on writing, Karl Pertsch for
assistance in setting up SPiRL and CALVIN, Kevin Xie for providing code of LSP, and all members
of the USC CLVR lab for constructive feedback.

References

[1] S.Legg and M. Hutter. Universal intelligence: A definition of machine intelligence. Minds and
machines, 17(4):391-444, 2007.

[2] M. Botvinick and A. Weinstein. Model-based hierarchical reinforcement learning and human
action control. Philosophical Transactions of the Royal Society B: Biological Sciences, 369
(1655), 2014.

[3] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. In International Conference on Learning Representations, 2019.

[4] N. Hansen, X. Wang, and H. Su. Temporal difference learning for model predictive control. In
International Conference on Machine Learning, 2022.

[5] K. Lu, A. Grover, P. Abbeel, and I. Mordatch. Reset-free lifelong learning with skill-space
planning. In International Conference on Learning Representations, 2021.

[6] K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch. Plan online, learn offline:
Efficient learning and exploration via model-based control. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=Byey7n05FQ.

[7] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy
optimization. In Neural Information Processing Systems, 2019.

[8] A. Argenson and G. Dulac-Arnold. Model-based offline planning. In International Con-
ference on Learning Representations, 2021. URL https://openreview.net/forum?id=
OMNB1Gb5xzd4.

[9] R.S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211, 1999.

[10] Y. Lee, S.-H. Sun, S. Somasundaram, E. S. Hu, and J. J. Lim. Composing complex skills by
learning transition policies. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=rygrBhC5tQ.

[11] Y. Lee, J. Yang, and J. J. Lim. Learning to coordinate manipulation skills via skill behavior
diversification. In International Conference on Learning Representations, 2020.

[12] K. Pertsch, Y. Lee, and J. J. Lim. Accelerating reinforcement learning with learned skill priors.
In Conference on Robot Learning, 2020.

[13] Y. Lee,J. J. Lim, A. Anandkumar, and Y. Zhu. Adversarial skill chaining for long-horizon robot
manipulation via terminal state regularization. In Conference on Robot Learning, 2021.

[14] M. Dalal, D. Pathak, and R. Salakhutdinov. Accelerating robotic reinforcement learning via
parameterized action primitives. In Neural Information Processing Systems, 2021.

[15] C.Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. In Conference on Robot Learning, pages 1113-1132. PMLR, 2020.

[16] K. Pertsch, Y. Lee, Y. Wu, and J. J. Lim. Demonstration-guided reinforcement learning with
learned skills. In Conference on Robot Learning, 2021.

https://openreview.net/forum?id=Byey7n05FQ
https://openreview.net/forum?id=OMNB1G5xzd4
https://openreview.net/forum?id=OMNB1G5xzd4
https://openreview.net/forum?id=rygrBhC5tQ

[17] D. Ha and J. Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[18] R. Mendonca, O. Rybkin, K. Daniilidis, D. Hafner, and D. Pathak. Discovering and achieving
goals via world models. In Neural Information Processing Systems, 2021.

[19] R. Y. Rubinstein. Optimization of computer simulation models with rare events. European
Journal of Operational Research, 99(1):89-112, 1997.

[20] G. Williams, A. Aldrich, and E. Theodorou. Model predictive path integral control using
covariance variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

[21] R.S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211, 1999.

[22] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization of motor skills by
learning from demonstration. In IEEFE International Conference on Robotics and Automation,
pages 763-768, 2009.

[23] O. Nachum, H. Tang, X. Lu, S. Gu, H. Lee, and S. Levine. Why does hierarchy (sometimes)
work so well in reinforcement learning? arXiv preprint arXiv:1909.10618, 2019.

[24] K. Miilling, J. Kober, O. Kroemer, and J. Peters. Learning to select and generalize striking
movements in robot table tennis. The International Journal of Robotics Research, 32(3):
263-279, 2013.

[25] K. Shiarlis, M. Wulfmeier, S. Salter, S. Whiteson, and I. Posner. Taco: Learning task decompo-
sition via temporal alignment for control. In International Conference on Machine Learning,
pages 4654-4663. PMLR, 2018.

[26] T. Kipf, Y. Li, H. Dai, V. Zambaldi, A. Sanchez-Gonzalez, E. Grefenstette, P. Kohli, and
P. Battaglia. Compile: Compositional imitation learning and execution. In International
Conference on Machine Learning, 2019.

[27] T. Shankar and A. Gupta. Learning robot skills with temporal variational inference. In
International Conference on Machine Learning, 2020.

[28] Y. Lu, Y. Shen, S. Zhou, A. Courville, J. B. Tenenbaum, and C. Gan. Learning task de-
composition with ordered memory policy network. In International Conference on Learning
Representations, 2021.

[29] A. Sharma, S. Gu, S. Levine, V. Kumar, and K. Hausman. Dynamics-aware unsupervised
discovery of skills. In International Conference on Learning Representations, 2020.

[30] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills
without a reward function. In International Conference on Learning Representations, 2018.

[31] O. Nachum, S. S. Gu, H. Lee, and S. Levine. Data-efficient hierarchical reinforcement learning.
In Advances in Neural Information Processing Systems, pages 3303-3313, 2018.

[32] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning. Conference on Robot Learning,
2019.

[33] A.Mandlekar, D. Xu, R. Martin-Martin, S. Savarese, and L. Fei-Fei. Gti: Learning to generalize
across long-horizon tasks from human demonstrations. In Robotics: Science and Systems, 2020.

[34] A.Mandlekar, F. Ramos, B. Boots, L. Fei-Fei, A. Garg, and D. Fox. Iris: Implicit reinforcement
without interaction at scale for learning control from offline robot manipulation data. In /JEEE
International Conference on Robotics and Automation, 2020.

[35] B. Wu, S. Nair, L. Fei-Fei, and C. Finn. Example-driven model-based reinforcement learning
for solving long-horizon visuomotor tasks. In Conference on Robot Learning, 2021.

[36] K. Xie, H. Bharadhwaj, D. Hafner, A. Garg, and F. Shkurti. Latent skill planning for exploration
and transfer. In International Conference on Learning Representations, 2020.

10

[37] D. Shah, A. T. Toshev, S. Levine, and brian ichter. Value function spaces: Skill-centric state ab-
stractions for long-horizon reasoning. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=vgqS1vkkCbE.

[38] R. S. Sutton. Temporal credit assignment in reinforcement learning. PhD thesis, University of
Massachusetts Amherst, 1984.

[39] T. Shankar, S. Tulsiani, L. Pinto, and A. Gupta. Discovering motor programs by recomposing
demonstrations. In International Conference on Learning Representations, 2020.

[40] D.P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

[41] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. Planning to explore
via self-supervised world models. In International Conference on Machine Learning, 2020.

[42] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[43] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics and
Automation Letters, 2022.

[44] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, pages 1856—1865, 2018.

[45] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop,
2017.

[46] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, T. P. Lillicrap, and M. A. Riedmiller. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

[47] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. In International
Conference on Learning Representations, 2016.

[48] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine, and
C. Finn. Robonet: Large-scale multi-robot learning. In Conference on Robot Learning, 2019.

[49] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,
E. Orbay, S. Savarese, and L. Fei-Fei. Roboturk: A crowdsourcing platform for robotic skill
learning through imitation. In Conference on Robot Learning, pages 879-893, 2018.

11

https://openreview.net/forum?id=vgqS1vkkCbE

A Further Ablations

We include additional ablations on the Maze and Kitchen tasks to further investigate the influence of
skill horizon H and planning horizon N, which is important for skill learning and planning.

A.1 Skill Horizon H=10 —— H=15 —— H=20

In both Maze and Kitchen, we find o8
that a too short skill horizon (H =
1, 5) unable to yield sufficient tempo-
ral abstraction. A longer skill hori-
zon (H = 15, 20) has little influence
in Kitchen, but it makes the down-
stream performance much worse in “o0 Eronment steps ()
Maze. This is because with too long-

horizon skills, a skill dynamics predic- (a) Maze

tion becomes too difficult and stochas-
tic; and composing multiple skills can
be not as flexible as short-horizon skills. The inaccurate skill dynamics makes long-term planning
harder, which is already a major challenge in maze navigation.

w

Average Success
Average Subtasks
~

0.25 0.50 0.75
Environment steps (1M)

(b) Kitchen

1.00

Figure 6: Ablation analysis on skill horizon H.

A.2 Planning Horizon

1.0 4

In Figure 7b, we see that short plan-
ning horizon makes learning slower
in the beginning, because it does not
effectively leverage the skill dynam-
ics model to plan further ahead. Con-
versely, if the planning horizon is too
long, the performance becomes worse N B
due to the difficulty in modeling every

step accurately. Indeed, the planning
horizon 20 corresponds to 200 low-
level steps, while the episode length
in Kitchen is 280, demanding the agent to make plan for nearly the entire episode. The performance is
not sensitive to intermediate planning horizons. On the other hand, the effect of the planning horizon
differs in Maze due to distinct environment characteristics. We find that very long planning horizon
(eg. 20) and very short planning horizon (eg. 1) perform similarly in Maze (Figure 7a). This could
attribute to the former creates useful long-horizon plans, while the latter avoids error accumulation
altogether.

Average Success

Average Subtasks
- ~

-

]
0.00 0.25 0.50 0.75

Environment steps (1M)

(b) Kitchen

1.00

(a) Maze

Figure 7: Ablation analysis on planning horizon N.

A.3 Fine-Tuning Model SkiMo (Ours)

1.0 4

—— SkiMo w/ frozen dynamics

We freeze the skill dynamics model
together with the state encoder to
gauge the effect of fine-tuning after

w

pre-training. Figure 8 show that with-
out fine-tuning the model, the agent
performs worse due to the discrepancy
between distributions of the offline
data and the downstream task. We
hypothesize that fine-tuning is neces-
sary when the agent needs to adapt to
a different task and state distribution
after pre-training.

Average Success

0.0

—

Average Subtasks
~

0.0 0.5 1.0 15 2.0
Environment steps (1M)

(a) Maze

0.25 0.50 0.75
Environment steps (1M)

(b) Kitchen

1.00

Figure 8: Ablation analysis on fine-tuning the model.

12

B Qualitative Analysis on Maze

B.1 Exploration and Exploitation

To gauge the agent’s ability of exploration and exploitation, we visualize the replay buffer for each
method in Figure 9. In this visualization, we represent early trajectories in the replay buffer with light
blue dots and recent trajectories with dark blue dots. In Figure 9a, the replay buffer of SkiMo (ours)
contains early explorations that span to most corners in the maze. After it finds the goal, it exploits
this knowledge and commits to paths that are between the start location and the goal (in dark blue).
This explains why our method can quickly learn and consistently accomplish the task. Dreamer and
TD-MPC only explore a small fraction of the maze, because they are prone to get stuck at corners or
walls without guided exploration from skills and skill priors. SPiRL + Dreamer, SPiRL + TD-MPC
and SkiMo w/o joint training explore better than Dreamer and TD-MPC, but all fail to find the goal.
This is because without the joint training of the model and policy, the skill space is only optimized
for action reconstruction, not for planning, which makes long-horizon exploration and exploitation
harder.

On the other hand, SkiMo + SAC and SPiRL are able to explore the most portion of the maze, but
comparatively the coverage is too wide to enable efficient learning. That is, even after the agent
finds the goal through exploration, it continues to explore and does not exploit this experience to
accomplish the task consistently (darker blue). This could attribute to the difficult long-horizon credit
assignment problem which makes policy learning slow, and the reliance on skill prior which encour-
ages exploration. On the contrary, our skill dynamics model effectively absorbs prior experience to
generate goal-achieving imaginary rollouts for the actor and critic to learn from, which makes task
learning more efficient. In essence, we find the skill dynamics model useful in guiding the agent
explore coherently and exploit efficiently.

g

(a) SkiMo (Ours) (b) Dreamer (c) TD-MPC (d) SPiRL + Dreamer

L

(e) SPiRL + TD-MPC (f) SkiMo w/o Joint Train- (g) SkiMo + SAC (h) SPiRL
ing
Figure 9: Exploration and exploitation behaviors of our method and baseline approaches. We visualize
trajectories in the replay buffer at 1.5M training steps in blue (light blue for early trajectories and

dark blue for recent trajectories). Our method shows wide coverage of the maze at the early stage of
training, and fast convergence to the solution.

B.2 Long-horizon Prediction
To compare the long-term prediction ability of the skill dynamics and flat dynamics, we visualize

imagined trajectories by sampling trajectory clips of 500 timesteps from the agent’s replay buffer (the
maximum episode length in Maze is 2,000), and predicting the latent state 500 steps ahead (which

13

will be decoded using the observation decoder) given the initial state and 500 ground-truth actions
(50 skills for SkiMo). The similarity between the imagined trajectory and the ground truth trajectory
can indicate whether the model can make accurate predictions far into the future, producing useful
imaginary rollouts for policy learning and planning.

SkiMo is able to reproduce the ground truth trajectory with little prediction error even when traversing
through hallways and doorways while Dreamer struggles to make accurate long-horizon predictions
due to error accumulation. This is mainly because SkiMo allows temporal abstraction in the dynamics
model, thereby enabling temporally-extended prediction and reducing step-by-step prediction error.

Ground truth Predicted Both Ground truth Predicted Both
500 50
400 400 400 40
00 00 00 El
200 200 200 20
100 100 100 0
& o A o L o 0
500 50
400 400 400 40
300 300 300 E
r I' r
200 200 200 20
100 ' 4 100 rd 100 10
0 o 0
500 50
400 400 400 40
300 300 L 300 d 0 d
200 200 200 20

~
N

0
500 50

00 a0 00 0

00 300 00 20

200 200 l 200 r 2 r

100 -4 100 9 100 10

0 < 0 ‘ 0 0

(a) Dreamer (b) SkiMo (Ours)

Figure 10: Prediction results of 500 timesteps using a flat single-step model (a) and skill dynamics
model (b), starting from the ground truth initial state and 500 actions (50 skills for SkiMo). The
predicted states from the flat model deviate from the ground truth trajectory quickly while the
prediction of our skill dynamics model has little error.

C Implementation Details

C.1 Computing Resources

Our approach and all baselines are implemented in PyTorch [45]. All experiments are conducted on
a workstation with an Intel Xeon E5-2640 v4 CPU and a NVIDIA Titan Xp GPU. Pre-training of
the skill policy and skill dynamics model takes around 10 hours. Downstream RL for 2M timesteps
takes around 18 hours. The policy and model update frequency is the same over all algorithms but
Dreamer [3]. Since only Dreamer trains on primitive actions, it has 10 times more frequent model
and policy updates than skill-based algorithms, which leads to slower training (about 52 hours).

C.2 Algorithm Implementation Details

For the baseline implementations, we use the official code for SPiRL and re-implemented Dreamer
and TD-MPC in PyTorch, which are verified on DM control tasks [46]. The table below (Table 1)
compares key components of SkiMo with model-based and skill-based baselines and ablated methods.

Dreamer [3] We use the same hyperparameters with the official implementation.

14

Table 1: Comparison to prior work and ablated methods.

Method Skill-based Model-based Joint training

Dreamer [3] and TD-MPC [4]
SPiRL [12]
SPiRL + Dreamer and SPiRL + TD-MPC

SkiMo w/o joint training
SkiMo + SAC
SkiMo (Ours) and SkiMo w/o CEM

RN RN
N ENENEN
NNX[X% X

TD-MPC [4] We use the same hyperparameters with the official implementation, except that
we do not use the prioritized experience replay [47]. The same implementation is used for the
SPiRL + TD-MPC baseline and our method with only minor modification.

SPiRL [12] We use the official implementation of the original paper and use the hyperparameters
suggested in the official implementation.

SPiRL + Dreamer [12] We use our implementation of Dreamer and simply replace the action
space with the latent skill space of SPIRL. We use the same pre-trained SPiRL skill policy and skill
prior networks with the SPiRL baseline. Initializing the high-level downstream task policy with the
skill prior, which is critical for downstream learning performance [12], is not possible due to the
policy network architecture mismatch between Dreamer and SPiRL. Thus, we only use the prior
divergence to regularize the high-level policy instead. Directly pre-train the high-level policy did not
lead to better performance, but it might have worked better with more tuning.

SPiRL + TD-MPC [4] Similar to SPiRL + Dreamer, we use our implementation of TD-MPC and
replace the action space with the latent skill space of SPiRL. The initialization of the task policy is
also not available due to the different architecture used for TD-MPC.

SkiMo (Ours) The skill-based RL part of our method is inspired by Pertsch et al. [12] and the
model-based component is inspired by Hansen et al. [4] and Hafner et al. [3]. We elaborate our skill
and skill dynamics learning in Algorithm 1, planning algorithm in Algorithm 2, and model-based RL
in Algorithm 3. Table 2 lists the all hyperparameters that we used.

Algorithm 1 SkiMo RL (skill and skill dynamics learning)

Require: D: offline task-agnostic data
1: Randomly initialize 6, ¢
2: YT Y > initialize target network

3: for each iteration do

4: Sample mini-batch B = (s, a).nm) ~ D

5: [ea w] — [97 1/)] - A[a,q/;]v[a,q/;]ﬁ(B) > L from Equation (5)
6: YT+ (1—7) + 19 > update target network
7: end for

8: return 0,1, 1~

15

Algorithm 2 SkiMo RL (CEM planning)

Require: 6,1, ¢ : learned parameters, s;: current state
1 pul 0% 0,1 > initialize sampling distribution
: fori = 17 ~-~7NCEM do
Sample Nsample trajectories of length N from N(ui_l, (Ui_1)2) > sample skill sequences from
normal distribution
Sample N trajectories of length N using g, Dy, &> sample skill sequences via imaginary rollouts
Estimate IN-step returns of Ngample + N trajectories using Ry, Q¢
Compute ui, o’ with top-k return trajectories > update parameters for next iteration
end for
: Sample a skill z ~ N (p Ve (gNemn)2)
return z

W N

R A

Algorithm 3 SkiMo RL (downstream task learning)

Require: 6,1,1~ : pre-trained parameters

1: B+ > initialize replay buffer
2: Randomly initialize ¢
307 «— ¢ > initialize target network
4: Ty < po > initialize task policy with skill prior
5: for not converged do
6: t<+ 0,5 ~ po > initialize episode
7. for episode not done do
8: z; ~ CEM(s;) > MPC with CEM planning in Algorithm 2
9: S, Tt <S¢, 0
10: for H steps do
11: s, < ENV(s, 71'9L (Ey(s),zt)) > rollout low-level skill policy
12: re =1 +T
13: end for
14: B+ BU (St, Zy¢, Tt) > collect H-step environment interaction
15: t—t+H
16: St ¢ S
17: Sample mini-batch B = (s, z,7)0:n) ~ B
18: [0, Y] < [9, 9] — /\[¢7¢]V[¢)w]E§EC(B) > Ligc from Equation (6)
19: Gr < Or — AoV, LrL(B) > Lrr from Equation (7). Update only policy parameters
20: YT~ (1 =7 + 719 > update target network
21: ¢+~ (1—-71)0" + 710 > update target network
22: end for
23: end for

24: return i, ¢

C.3 Environments and Data

Maze [42, 16] Since our goal is to leverage offline data collected from diverse tasks in the same
environment, we use a variant of the maze environment [42], suggested in Pertsch et al. [16]. The
maze is of size 40 x 40; an initial state is randomly sampled near a pre-defined region (the green circle
in Figure 3a); and the goal position is fixed shown as the red circle in Figure 3a. The observation
consists of the agent’s 2D position and velocity. The agent moves around the maze by controlling
the continuous value of its (x, y) velocity. The maximum episode length is 2,000 but an episode is
also terminated when the agent reaches the circle around the goal with radius 2. The reward of 100
is given at task completion. We use the offline data of 3,046 trajectories, collected from randomly
sampled start and goal state pairs from Pertsch et al. [16]. Thus, the offline data and downstream task
share the same environment, but have different start and goal states (i.e. different tasks). This data
can be used to extract short-horizon skills like navigating hallways or passing through narrow doors.

16

Kitchen [32, 42] The 7-DoF Franka Panda robot arm needs to perform four sequential tasks
(open microwave, move kettle, turn on bottom burner, and flip light switch). The agent has a 30D
observation space (11D robot proprioceptive state and 19D object states), which removes a constant
30D goal state in the original environment, and 9D action space (7D joint velocity and 2D gripper
velocity). The agent receives a reward of 1 for every sub-task completion. The episode length is
280 and an episode also ends once all four sub-tasks are completed. The initial state is set with a
small noise in every state dimension. We use 603 trajectories collected by teleoperation from Gupta
et al. [32] as the offline task-agnostic data. The data involves interaction with all seven manipulatable
objects in the environment, but during downstream learning the agent needs to execute an unseen
sequence of four subtasks. That is, the agent can transfer a rich set of manipulation skills, but needs
to recombine them in new ways to solve the task.

Mis-aligned Kitchen [16] The environment and task-agnostic data are the same with Kitchen but
we use the different downstream task (open microwave, flip light switch, slide cabinet door, and
open hinge cabinet, as illustrated in Figure 3c). This task ordering is not aligned with the sub-task
transition probabilities of the task-agnostic data, which leads to challenging exploration following the
prior from data. This is because the transition probabilities in the Kitchen human-teleoperated dataset
are not uniformly distributed; instead certain transitions are more likely than others. For example, the
first transition in our target task — from opening the microwave to flipping the light switch — is very
unlikely to be observed in the training data. This simulates the real-world scenario where the large
offline dataset may not be meticulously curated for the target task.

CALVIN [43] We adapt the CALVIN environment [43] for long-horizon learning with the state
observation. The CALVIN environment uses a Franka Emika Panda robot arm with 7D end-effector
pose control (relative 3D position, 3D orientation, 1D gripper action). The 21D observation space
consists of the 15D proprioceptive robot state and 6D object state. We use the teleoperated play data
(Task D—Task D) of 1,239 trajectories from Mees et al. [43] as our task-agnostic data. The agent
receives a sparse reward of 1 for every sub-task completion in the correct order. The episode length is
360 and an episode also ends once all four sub-tasks are completed. In data, there exist 34 available
target sub-tasks, and each sub-task can transition to any other sub-task, which makes any transition
probability lower than 0.1% on average. Most of the subtask transitions in our downstream task
occupy less than 0.08% of all transitions in the CALVIN task-agnostic dataset.

D Application to Real Robot Systems

Our algorithm is designed to be applied on real robot systems by improving sample efficiency of RL
using a temporally-abstracted dynamics model. Throughout the extensive experiments in simulated
robotic manipulation environments, we show that our approach achieves superior sample efficiency
over prior skill-based and model-based RL, which gives us strong evidence for the application to real
robot systems. Especially in Kitchen and CALVIN, our approach improves the sample efficiency
of learning long-horizon manipulation tasks with a 7-DoF Franka Emika Panda robot arm. Our
approach consists of three phases: (1) task-agnostic data collection, (2) skills and skill dynamics
model learning, and (3) downstream task learning. In each of these phases, our approach can be
applied to physical robots:

Task-agnostic data collection Our approach is designed to fully leverage task-agnostic data with-
out any reward or task annotation. In addition to extracting skills and skill priors, we further learn a
skill dynamics model from this task-agnostic data. Maximizing the utility of task-agnostic data is
critical for real robot systems as data collection with physical robots itself is very expensive. Our
method does not require any manual labelling of data and simply extracts skills, skill priors, and skill
dynamics model from raw states and actions, which makes our method scalable.

Pre-training of skills and skill dynamics model Our approach trains the skill policy, skill dynam-
ics model, and skill prior from the offline task-agnostic dataset, without requiring any additional

real-world robot interactions.

Downstream task learning The goal of our work is to leverage skills and skill dynamics model
to allow for more efficient downstream learning, i.e., requires less interactions of the agent with

17

@ Pre-Training on Task-agnostic Data

state skill state
encoder encoder encoder
hy ———— 2 hy,
: A
skill latent
policy consistency
* skill

A dynamics = hA
4o:H-1 &

(a) In pretraining, SkiMo leverages offline task-agnostic data to extract skill dynamics and a skill repertoire.
Unlike prior works that keep the model and skill policy training separate, we propose to jointly train them to
extract a skill space that is conducive to plan upon.

@ Downstream Task Learning in Imagination @ Planning in Skill Space

ox| f

value value B
t
l l | |
skill ~ skill ~
hy dynamics —> Ny dynamics—> Fypy =9+ o]
1 1 1 policy
task task task
policy policy policy lO H times
* ¢ ¢ AprH-1
% 4)

Environment

(b) In downstream RL, we learn a high-level task policy in the skill space (skill-based RL) and leverage the skill
dynamics model to generate imaginary rollouts for policy optimization and planning (model-based RL).

Figure 11: Illustration of our algorithm.

the environment for training the policy. This is especially important on real robot systems where a
robot-environment interaction is slow, dangerous, and costly. Our approach directly addresses this
concern by learning a policy from imaginary rollouts rather than actual environment interactions.
Also, all sort of collected data can help improve the skill dynamics model, which leads to more
accurate imagination and policy learning.

In summary, we believe that our approach can be applied to real-world robot systems with only minor
modifications.

18

Table 2: SkiMo hyperparameters.

Hyperparameter

Value

Maze

FrankaKitchen CALVIN

Model architecture

#Layers 0f09’p9’W§7E¢7D¢7W¢’R¢’Q¢ 5
Activation funtion elu
Hidden dimension 128 128 256
State embedding dimension 128 256 256
Skill encoder (gg) 5-layer MLP LSTM LSTM
Skill encoder hidden dimension 128
Pre-training
Pre-training batch size 512
Training mini-batches per update 5
Model-Actor joint learning rate (Ajg,y)) 0.001
Encoder KL regularization (53) 0.0001
Reconstruction loss coefficient (Ag) 1
Consistency loss coefficient (\p) 2
Low-level actor loss coefficient (Agc) 2
Planning discount (p) 0.5
Skill prior loss coefficient (Agp) 1
Downstream RL
Model learning rate 0.001
Actor learning rate 0.001
Skill dimension 10
Skill horizon (H) 10
Planning horizon (V) 10 3 1
Batch size 128 256 256
Training mini-batches per update 10
State normalization True False False
Prior divergence coefficient () 1 0.5 0.1
Alpha learning rate 0.0003 0 0
Target divergence 3 N/A N/A
Warm up step 50,000 5,000 5,000
Environment step per update 500
Replay buffer size 1,000,000
Target update frequency 2
Target update tau (1) 0.01
Discount factor () 0.99
Reward loss coefficient (Ar) 0.5
Value loss coefficient (Aq) 0.1
CEM
CEM iteration (Ncgm) 6
Sampled trajectories (Nsampled) 512
Policy trajectories (V) 25
Elites (k) 64
CEM momentum 0.1
CEM temperature 0.5
Maximum std 0.5
Minimum std 0.01
Std decay step 100,000 25,000 25,000
Horizon decay step 100,000 25,000 25,000

19

	Introduction
	Related Work
	Method
	Preliminaries
	SkiMo Model Components
	Pre-Training Skill Dynamics Model and Skills from Task-agnostic Data
	Downstream Task Learning with Learned Skill Dynamics Model

	Experiments
	Tasks
	Baselines and Ablated Methods
	Results
	Ablation Studies
	Long-horizon Prediction with Skill Dynamics Model

	Conclusion
	Further Ablations
	Skill Horizon
	Planning Horizon
	Fine-Tuning Model

	Qualitative Analysis on Maze
	Exploration and Exploitation
	Long-horizon Prediction

	Implementation Details
	Computing Resources
	Algorithm Implementation Details
	Environments and Data

	Application to Real Robot Systems

