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Abstract

There has been significant recent progress in the area of unsupervised skill discov-
ery, with various works proposing mutual information based objectives, as a source
of intrinsic motivation. Prior works predominantly focused on designing algorithms
that require online access to the environment. In contrast, we develop an offline
skill discovery algorithm. Our problem formulation considers the maximization of
a mutual information objective constrained by a KL-divergence. More precisely,
the constraints ensure that the state occupancy of each skill remains close to the
state occupancy of an expert, within the support of an offline dataset with good
state-action coverage. Our main contribution is to connect Fenchel duality, rein-
forcement learning and unsupervised skill discovery, and to give a simple offline
algorithm for learning diverse skills that are aligned with an expert.1

Figure 1: Diverse Offline Imitation (DOI) maximizes a variational lower bound on the mutual
information between skills z and states s subject to a KL-divergence constraint to limit the deviation
of the state occupancy dz(s) of each skill z from that of an expert dE(s). This requires offline
datasets DE sampled from dE(s) and DO sampled from state-action occupancy dO(s, a) of various
policies, to compute specific importance weights ηz(s, a) of learned skill and ηẼ(s, a) expert.

1Project website with videos: https://tinyurl.com/diversity-via-duality

16th European Workshop on Reinforcement Learning (EWRL 2023).

https://sites.google.com/view/diversity-via-duality/home


1 Introduction

Unsupervised skill discovery has received considerable attention in sequential decision-making. Mean-
ingful skill extraction has shown to greatly increase learning efficiency in downstream tasks [Precup,
2000, Sharma et al., 2020b] and deal with miss-specified reward functions, or imperfect expert
demonstrations [Ma et al., 2022]. On a more high level, intelligent behavior that improves upon
non-native demonstrations emerges from diversity in autonomous agents.

Consequently, many works exist dealing with unsupervised skill discovery through various mecha-
nisms, mostly in the online setting. A subset of these approaches attempt to maximize the mutual
information between a skill-conditioning variable z and the skill-conditioned trajectory [Eysenbach
et al., 2019, Gregor et al., 2017, Sharma et al., 2020a]. Multiple works have attempted to extract
skills through the means of successor-feature formalism [Barreto et al., 2016, Dayan, 1993], which
captures versatile behaviors by optimizing a family of reward functions parameterized by a skill
variable z and a state representation [Barreto et al., 2016, Hansen et al., 2020, Barreto et al., 2018].

In the age of data abundance, focus is turning towards offline learning, which leverages collected
experience from various sources. Offline reinforcement learning algorithms allow efficiency in terms
of re-use of data and not requiring online samples, this makes them inherently more scalable and
sample-efficient than the online counterpart. However, offline algorithms tend to suffer from the
off-policy evaluation problem, which has been well studied in previous work [Levine et al., 2020,
Prudencio et al., 2022]. In most approaches, the off-policy evaluation is tackled by remaining close
to the data distribution [Wang et al., 2020, Kumar et al., 2020].

As we shall see, the Lagrange dual formulation of an optimization problem with mutual information
objective and KL-divergence constraints can be reduced to solving a sequence of problems each of
which has an inner maximization problem that admits a closed form solution, leveraging the Fenchel
conjugate. In line with existing approaches [Nachum et al., 2019a,b, Kim et al., 2022, Zhang et al.,
2020, Dai et al., 2020], the Fenchel duality allows us to compute state occupancy importance weights
and in turn to train off-policy a skill discriminator, a skill-conditioned policy and an estimator of the
KL-divergence constraint.

In this work, we consider the setting in which expert demonstrations without rewards are available,
and the goal is to extract versatile near-optimal skill-conditioned policies by leveraging diverse offline
data without access to expert actions. This setting is of particular interest in cases where expert data
is expensive to obtain, an argument that makes offline learning particularly appealing [Fu et al., 2020].
However, as pointed out by others [Ma et al., 2022, Li et al., 2023], demonstration data oftentimes
does not match the policy action space or we do not have access to the actions performed, which is
mostly the case when we have demonstrations from an agent with a fundamentally different action
space, such as a human.

Building upon the duality principles in optimization and reinforcement learning [Nachum and Dai,
2020], we design an offline algorithm which maximizes a mutual information objective subject to
state occupancy KL-divergence constraints. More precisely, we exploit Fenchel duality to arrive
at a principled importance-weighted offline training procedure for diverse skill discovery, while
maintaining closeness in state occupancy to an expert. To the best of our knowledge, this is the first
algorithm for unsupervised skill discovery that maximizes mutual information in the offline setting.

2 Preliminaries

We utilize the framework of Markov decision processes (MDPs) [Puterman, 2014], where an MDP
is defined by the tuple (S,A,R,P, ρ0, γ) denoting the state space, action space, reward mapping
R : S ×A 7→ R, stochastic transition kernel P(s′|s, a), initial state distribution ρ0(s) and discount
factor γ. A policy π : S 7→ ∆(A) defines a probability distribution over the action space A
conditioned on the state, where ∆(·) stands for the probability simplex. For simplicity, we consider
infinite horizon (non-terminating) environments, which can be extended to finite horizon environments
by considering an additional terminal state that loops in on itself continuously with zero reward.

Given a policy π, the associated state-action occupancy measure reads

dπ(s, a) := (1− γ)

∞∑
t=0

γtPr
[
st = s, at = a|s0 ∼ ρ0, at ∼ π(·|st), st+1 ∼ P(·|st, at)

]
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and its state occupancy dπ(s) is given by marginalizing over the action space
∑

a∈A d
π(s, a).

In the skill discovery setting, the set of skills is defined by Z, which we will treat as a finite set, and
the skill-conditioned policy is given by πz : S × Z 7→ ∆(A) with corresponding state occupancy
dz(s) := dπz (s), for each skill z ∈ Z.

Throughout this work, we consider an offline setting with an access to the following two datasets:
i) DE is sampled from an expert state occupancy dE(S); and ii) DO is sampled from a coverage
distribution dO(S,A), possibly generated by a mixture of different behaviors. In addition, our
analysis makes use of the following coverage assumption on state occupancies2.
Assumption 2.1 (Expert coverage). We assume that dE(s) > 0 implies dO(s) > 0.

2.1 Fenchel Conjugate

The Fenchel conjugate f⋆ of a function f : Ω → R is given by f⋆(y) = maxx∈Ω⟨x, y⟩ − f(x),
where ⟨·, ·⟩ denotes the inner product defined on a probability space Ω. For any proper, convex
and lower semi-continuous function f the following duality statement holds f⋆⋆ = f , that is
f(x) = maxy∈Ω⋆⟨x, y⟩ − f⋆(y), where Ω⋆ denotes the domain of f⋆.

For any probability distributions p, q ∈ ∆(S) with p(s) > 0 implies q(s) > 0, we define for convex
continuous functions f the family of f -divergences Df (p||q) = Eq[f(p(x)/q(x))]. The Fenchel
conjugate of an f divergence Df (p||q) at a function y(s) = p(s)/q(s) is, under mind conditions3,
given by D⋆,f (y) = Eq(s) [f⋆(y(s))]. Furthermore, its maximizer satisfies p⋆(s) = q(s)f ′⋆(y(s)).

In the important special case when f(x) = x log(x), we obtain the well-known KL-divergence
DKL(p||q) =

∑
s p(s) log(p(s)/q(s)). Moreover, the Fenchel conjugate D⋆,KL of the KL-divergence

at a function y(s) = p(s)/q(s) has a closed-form [Boyd and Vandenberghe, 2004, Example 3.25]
D⋆,KL(y) = logEq(s)[exp y(s)] and any maximizer p⋆ satisfies p⋆(s) = q(s)softmax(y(s)).

3 Method

In this work, given an expert and a coverage dataset as above, we seek to solve offline the following
constrained optimization problem, which optimizes over all skill-conditioned policies {πz}z∈Z , i.e.,

max
{dz(S)}z∈Z

I(S;Z) (1)

subject to DKL (dz(S)||dE(S)) ≤ ϵ ∀z, (2)

where I(S;Z) denotes the mutual information between states and skills.

We note that the preceding problem formulation and our algorithmic framework can be easily
extended to capture: i) objectives in (1) that combine conditional mutual information (c.f. DADS in
[Sharma et al., 2020b]) and information gain (c.f. DISDAIN in [Strouse et al., 2022]); and ii) general
f -divergence constraints in (2), see Nachum and Dai [2020], Ma et al. [2022]. We leave the study of
these variants for future work.

Since estimating the mutual information I(S;Z) is generally intractable, in line with previous
work [Eysenbach et al., 2019] we assume that the skills are sampled uniformly at random, i.e.,
p(z) = 1

|Z| , and as a trackable surrogate we consider instead the following variational lower bound

I (S;Z) ≥ Ep(z),dz(s) [log q(z|s)] +H (p(z)) =
∑
z

Edz(s)

[
log (|Z|q(z|s))

|Z|

]
. (3)

Here with q(z|s) we denote a discriminator tasked with distinguishing between skills.

Ma et al. [2022] proposed an offline algorithm (SMODICE) that on input an expert dataset DE ∼
dE(S) and a coverage dataset DO ∼ dO(S,A) such that DE ⊂ States[DO], trains a policy πẼ which

2Similarly to Kim et al. [2022] and Ma et al. [2022], in practice we ensure Assumption 2.1 by constructing
i) the coverage dataset DO to be the union of a mixture dataset DM (generated by diverse policies of various
expertise) and an expert dataset DE′ , where both contain states and actions; and ii) the expert dataset DE ,
containing only states, is DE′ with filtered actions.

3f needs to satisfy certain regularity conditions [Dai et al., 2017]
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optimizes the problem
min
π

DKL (dπ(S)||dE(S)) , (4)

and in addition outputs ratios ηẼ(s, a) = dπẼ
(s, a)/dO(s, a) for every state-action pair (s, a) ∈ DO.

An important observation is that the state constraints (2) can be reduced to state-action constraints,
by training independently an expert policy πẼ , using SMODICE. More precisely, for each skill z we
replace the state constraint (2) with the following state-action constraint

DKL

(
dz(S,A)||dẼ(S,A)

)
≤ ϵ, (5)

where dẼ(s, a) denotes the state-action occupancy dπẼ
(s, a) induced by the expert policy πẼ .

We now consider the Lagrange relaxation of Problem (1) with i) state constraints (2) replaced by
state-action constraints (5) and ii) mutual information objective substituted by the variational lower
bound in (3), namely

max
dz(s,a)
q(z|s)

min
λ≥0

∑
z

Edz(s)

[
log (|Z|q(z|s))

|Z|

]
+
∑
z

λz
[
ϵ−DKL

(
dz(S,A)||dẼ(S,A)

)]
, (6)

where with λz we denote the Lagrange multiplier corresponding to skill z.

3.1 Approximation Scheme

We use a popular heuristic, known in the literature as alternating optimization, to approximately
compute a local optimum of Problem (6). More precisely, the method alternates between optimizing
each model while holding all others fixed, and iteratively refines the solution until convergence is
reached or a stopping criterion is met. Furthermore, as we can guarantee in practice that the Lagrange
multipliers λ are always positive, we consider Problem (6) with λ > 0, that is

max
dz(s,a)
q(z|s)

min
λ>0

∑
z

λz

{
ϵ+ Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(S,A)||dO(S,A))

}
, (7)

where

Rλ
z (s, a) :=

log (|Z|q(z|s))
λz|Z|

+ log ηẼ(s, a). (8)

The reward in (8) is derived in Supplementary A and relies on the following equality (see Supple-
mentary B.4) DKL(dz(S,A)||dẼ(S,A)) = DKL(dz(S,A)||dO(S,A)) − Edz(s,a)[ log

dẼ(s,a)

dO(s,a) ] and
the definition of ηẼ(s, a) = dẼ(s, a)/dO(s, a).

Intuitively, the reward Rλ
z (s, a) balances between diversity and KL-closeness to the expert state-

action occupancy. The Lagrange multiplier λz scales down the log-likelihood of the discriminator,
effectively reducing the diversity signal, when the state-action occupancy dz(S,A) violates the KL
divergence constraint (5), and vice versa. Each term in the reward (8) involves a separate optimization
procedure, which will be described shortly.

3.2 Approximation Phases

Using the alternating optimization scheme, Algorithm 1 decomposes into the following three optimiza-
tion phases. In Phase 1, we train a value function V ⋆

z , ratios ηz(s, a) and a skill-conditioned policy
πz . In Phase 2, we train a skill discriminator q(z|s). Then in Phase 3, we compute a KL constraint
estimator ϕz and train accordingly the Lagrange multipliers λz . In addition, we perform a prepro-
cessing phase to compute expert ratios ηẼ(s, a) with respect to a fixed reward R(s, a) = log dE(s)

dO(s)

which ensures KL closeness to the expert state occupancy dE(S), i.e., optimizing Problem (4).

3.2.1 Phase 1

With fixed skill-discriminator q(z|s) and Lagrange multipliers λ, Problem (6) becomes

max
{dz(s,a)}z∈Z

∑
z

λz

{
Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(S,A)||dO(S,A))

}
, (9)
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or equivalently for every skill z:

max
dz(s,a)≥0

Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(S,A)||dO(S,A))

subject to
∑

a dz(s, a) = (1− γ)µ0(s) + γT d(s) ∀s, (10)

where we denote with T the transition operator: T d(s′) = ∑
s,a P(s′|s, a)d(s, a).

Assumption 3.1 (Strict Feasibility). We assume there exists a solution such that the constraints (10)
are satisfied and d(s, a) > 0 for all states-action pairs (s, a) ∈ S ×A.

Using Lagrange duality, Assumption 3.1 (which implies strong duality) and Fenchel conjugate,
Nachum and Dai [2020, Section 6] and Ma et al. [2022, Theorem 2] showed that Problem 10 shares
the same optimal value as the following optimization problem

V ⋆ = argmin
V (s)

(1− γ)Es∼µ0
[V (s)] + logEdO(s,a) exp

{
Rλ

z (s, a) + γT V (s, a)− V (s)
}
, (11)

where T V (s, a) := EP(s′|s,a)V (s′). Moreover, the primal optimal solution is given by

ηz(s, a) :=
d⋆z(s, a)

dO(s, a)
= softmax

(
Rλ

z (s, a) + γT V ⋆
z (s, a)− V ⋆

z (s)
)
. (12)

These ratios allow us to train a skill-conditioned policy πz by importance-weighted behavior cloning.

Lemma 3.2. Given a fixed skill-discriminator q(z|s), Lagrange multipliers λ ∈ R|Z|
>0 and (primal)

optimal ratios ηz(s, a), using weighted behavioral cloning, we can train offline an optimal skill
conditioned policy πz . In particular, we optimize by gradient descent the following optimization
problem maxπ Ep(z)EdO(s,a) [ηz(s, a) log πz(a|s)].

Given a fixed discriminator q(z|s), we obtain by Lemma 3.2 an optimal policy π⋆
z . In the next phase,

we show how to train off-policy the skill discriminator.

3.2.2 Phase 2

In the following Lemma we give an offline procedure for training an optimal discriminator q(z|s)
with respect to the learned policy π⋆

z . We present the proof in Supplementary B.3.

Lemma 3.3. Given a fixed skill-conditioned policy π⋆
z , Lagrange dual variable λ ∈ R|Z|

>0 and
(primal) optimal ratios ηz(s, a), using weighted behavioral cloning, we can train offline an optimal
skill-discriminator q(z|s). In particular, we optimize by gradient descent the following optimization
problem maxq(z|s) Ep(z)EdO(s,a) [ηz(s, a) log (q(z|s))].

The key insight in Lemma 3.3 is that once we have a skill-conditioned policy πz , we can train
off-policy an optimal discriminator q(z|s) with respect to state-action occupancy d⋆z(s, a), while
sampling from the offline distribution dO(s, a) and reweighting accordingly by the ratios (12).

In the next phase, we show how to compute offline an estimator of the state-action KL constraint (5).

3.2.3 Phase 3

Here, we fix the discriminator q(z|s) and the skill-conditioned policy π⋆
z(s). Then, Problem (6)

reduces to
min
λ≥0

∑
z

λz
[
ϵ−DKL

(
d⋆z(S,A)||dẼ(S,A)

)]
(13)

In the offline setting, it is important to note that direct computation of expectations with respect to
the occupancy d⋆z(S,A) is not feasible. Nevertheless, we show next that combining the expert (4)
and (primal) optimal (12) ratios are sufficient to design an off-policy estimator of the KL state-action
constraint. More specifically, we give the following self-normalizing importance sampling procedure.
Lemma 3.4. Given the (primal) optimal ratios ηz(s, a) and the classifier c⋆, optimizing over
the Lagrange multipliers reduces Problem (13) to minλ>0

∑
z λz(ϵ − ϕz), where ϕz :=

EdO(s,a)

[
ηz(s, a) log

ηz(s,a)
ηẼ(s,a)

]
.
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We give the proof of Lemma 3.4 in Supplementary B.4. Using Lemma 3.2, Lemma 3.3, and
Lemma 3.4, we design our multi-phase algorithm and present it in Section 4. In practice, we do
not solve the previous three optimization problems to optimality, but rather compute a few gradient
descent steps per pass of the offline dataset DO.

4 Algorithm

The proposed optimization method consists of three phases, each of which optimizes a specific model
and fixes the remaining ones. An important difference in comparison to SMODICE, is that our
problem formulation considers an optimization problem with constraints. In particular, our reward
function is non-stationary, as it depends on the Lagrange dual variables (constraint violation) and
the intrinsic motivation signal (log likelihood of the discriminator). This has serious optimization
repercussions, as it involves solving a sequence of standard RL problems, each of which can be
solved offline by SMODICE.

In order to smooth the transition of the reward signal between successive iterations, we enforce a
slow change of the Lagrange multipliers. More precisely, we use the technique of bounded Lagrange
multipliers [Stooke et al., 2020, Zahavy et al., 2022], which applies a Sigmoid transformation
λ = σ(µ) componentwise to unbounded variables µ ∈ R|Z|, so that the effective reward is a convex
combination of diversity and constraint violation term. In practice, this transformation ensures that
λ > 0. Hence, the reward for each skill z becomes

Rµ
z (s, a) := (1− σ(µz))

log (q(z|s)|Z|)
|Z| + σ(µz) log ηẼ(s, a). (14)

We present the resulting multi-phase optimization procedure in Algorithm 1. For a practical im-
plementation, we leverage the power of neural networks and deep learning techniques for accurate
function approximation. More specifically, we train an expert policy πẼ , a skill-conditioned policy
{πz}z∈Z and a Value function {Vz}z∈Z . While practically convenient, this means that each phase of
Algorithm 1 is only approximately solved.

Observation projection. Imitation learning is of particular interest when the agent’s and the target
expert policy’s state spaces do not necessarily match, but overlap in certain parts. If we consider S ′ to
be the state space of the expert and S the state space of the agent, we assume that there exists a simple
projection mapping Π : S ′ 7→ O, where O := {o : o ⊂ s, s ∈ S} is the power set of observations,
allowing us to potentially imitate beyond expert policies with the same state space as the agent. Note
that agent still observes its full state s, however the projected state Π(s) is observed by the expert
classifier and skill discriminator. The projection Π can be selected to specify which parts of the state
we want to diversify, depending on the task at hand.

5 Related Work

In the context of skill discovery, Achiam et al. [2018], Campos et al. [2020] showed that methods
like DIAYN can struggle to learn large numbers of skills and have a poor coverage of the state space.
Strouse et al. [2022] observed that when a novel state is visited, the discriminator lacks sufficient
training data to accurately classify skills, which results in a low intrinsic reward for exploration. They
address this by introducing an information gain objective (involving an ensemble of discriminators)
as a bonus term. Kim et al. [2021] gave a skill discovery approach based on an information bottleneck
that leads to disentangled and interpretable skill representations. Park et al. [2022, 2023] proposed a
Lipschitz-constrained skill discovery method based on a distance-maximizing and controllability-
aware distance function to overcome the bias toward static skills and to allow the agent to learn
complex and far-reaching behaviors. Sharma et al. [2020b] developed a method that simultaneously
discovers predictable skills and learns their dynamics. In a follow-up work, Park and Levine [2023]
addresses the problem of errors in predictive models by learning a transformed MDP, whose action
space contains only easy to model and predictable actions. Hansen et al. [2020] combine behavioral
mutual information maximization with successor features, and show that BMI can effectively learn
the features needed for constructing reward functions in the successor feature framework. Zahavy
et al. [2022] cast the task of learning diverse skills, achieving near-optimal performance w.r.t. on an
extrinsic linear reward, into a constrained MDP setting with physics-inspired concave intrinsic reward.
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Algorithm 1 Diverse Offline Imitation (DOI)
Pre-compute a discriminator c⋆ : S → (0, 1) via optimizing the following objective with the gradient penalty
in [Gulrajani et al., 2017]

min
c

EdE(s)[log c(s)] + EdO(s)[log(1− c(s))]

Use Phase 1 from below to precompute the following optimal ratios w.r.t. reward R(s, a) = log c⋆(s)
1−c⋆(s)

ηẼ(s, a) :=
dẼ(s, a)

dO(s, a)
∀s, a ∈ DO ∀z ∈ Z

Repeat until convergence:
Phase 1. (Fixed Lagrange multipliers σ(µ) and discriminator values q⋆(z|s))
For each skill z: compute a value function V ⋆

z optimizing Equation (11) and ratios

ηz(s, a) :=
d⋆z(s, a)

dO(s, a)
= softmax (Rµ

z (s, a) + γT V ⋆
z (s, a)− V ⋆

z (s)) ∀s, a ∈ D

Phase 2. (Fixed ratios ηz(s, a) and Lagrange multipliers σ(µ)) Train a discriminator

max
q(z|s)

Ep(z)EdO(s,a) [ηz(s, a) log q(z|s)] ∀z ∈ Z

Train a skill-conditioned policy (used in evaluation)

π⋆
z = argmax

πz

EdO(s,a) [ηz(s, a) log πz(a|s)] ∀z ∈ Z

Phase 3. (Fixed ratios ηẼ(s, a) and ηz(s, a)) Compute for each skill z an estimator

ϕz := EdO(s,a)

[
ηz(s, a) log

ηz(s, a)

ηẼ(s, a)

]
Optimize the loss

min
µ

∑
z

σ(µz)(ϵ− ϕz)

The diversity is measured using the successor feature ℓ2 distance between the state occupancies of
different skills.

6 Experiments

We evaluate the proposed method for diverse offline imitation on a 12 degree-of-freedom quadruped
robot, SOLO12 [Grimminger et al., 2020], on a simple locomotion task in both simulation and the real
system. For this we had collected random and expert data from simulation in the IsaacGym [Makoviy-
chuk et al., 2021]. The datasets are collected using the saved checkpoints obtained by training the
robot to track certain velocity of the base using an on-policy version of DOMINO [Zahavy et al.,
2022]. We fix the forward velocity to 1 m/s and the turning velocity to zero for collecting both offline
dataset and expert dataset. We defer the training procedure of the policies used for data collection to
the Supplementary C.

The expert dataset was collected using the deterministic policy from the final checkpoint of the
trained procedure with only the best skill of tracking the forward velocity. The offline dataset was
collected using the stochastic policies collected from different checkpoints during training the expert
with multiple skill latents. Also, enabling domain randomization helps to collect various data for both
datasets and for better sim-to-real results. It is worth noting that that more than half of the offline
dataset was collected using the first checkpoint, which represents a policy with random Gaussian
actions only. To satisfy the expert coverage part in Assumption 2.1, a fraction of 1/160 of the offline
dataset is expert data. The expert dataset is used to learn a state classifier, in order to compute the
ratios ηẼ(s, a).

We trained the policy for 350 steps, where each training step involves multiple stages as described
in Section 4. In each stage, we execute 200 epochs of batched training over the data. For the
computation of the ratios ηz(s, a), we choose a projection Π of the expert state, see Section 4, that
yields 3-dimensional planar and angular velocities of the robot’s base in the base frame.
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We have further found that fitting the discriminator q(z|s) is prone to collapse to the uniform
distribution. To alleviate this issue, in addition to the variational lower bound objective (3), we
add the DISDAIN information gain term, proposed in [Strouse et al., 2022]. This bonus term is an
entropy-based disagreement penalty that estimates the epistemic uncertainty of the discriminator,
and is implemented in practice by an ensemble of randomly initialized discriminators. Due to the
high initial disagreement on unvisited states, this intrinsic reward provides a strong exploration signal
and leads to more diverse skill discovery. Intuitively, for states with small epistemic uncertainty, the
discriminator (averaged over the ensemble members) should reliably discriminate between skills, and
thus making the intrinsic reward of the discriminator’s log-likelihood more accurate. We defer further
experimental details to Supplementary D.

Skills

(a)

DOI4 DOI2 DOI1
SMODICE†
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η z
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(b)

Figure 2: Data and importance weight ηz separation given different levels of ε. (a) Distribution
of importance weights ηz(s, a) over dataset for different skills with DOI4 (ϵ = 4) (upper) and
skill-conditioned SMODICE (lower). (b) Average ℓ1 distance of ηz’s belonging to different skills
depending on ε. Higher levels of ϵ cause larger differences in attributed importance.

As a baseline, we consider a skill-conditioned SMODICE variant denoted as SMODICE† that does
not have access to the discriminator. This is equivalent to setting ϵ = 0 for DOI. In Figure 2 we
measure how different are the data attributions with respect to the constraint levels ϵ. As expected,
higher ϵ allow more flexibility, and therefore different data points obtain different importances for
different skills. To identify this, we compute E∥ηzi − ηzj∥1 as a proxy metric for diversity and report
it in Figure 2. We note that the looser the constraint (lighter color), the easier it is to ‘diversify’ in
the sense of ηz . In Figure 2a we observe diversification across the dataset assignment to skills in
case of using DOI, in contrast, simply training an ensemble of experts on the data corresponding
to σ(µz) = 1 collapses to nearly the same importance per skill per data point. Figure 2b shows the
average ℓ1 distance between skill importance vectors ηz over the data for ϵ ∈ {0.0, 1.0, 2.0, 4.0}
(lighter color indicates higher ϵ). In all the figures, we denote with DOIϵ the different constraint
levels. As expected, for a more conservative constraint, the data importances are more similar across
skills.

We have further evaluated diversity on the Monte Carlo estimates of the expected successor represen-
tation of the initial state, ψz . As a diversity metric, we take ∥ψz1 − ψz2∥2. The results can be seen in
Figure 3, and they nicely align with the proxy diversity metric, meaning that separation of data that
is indicated by ηz also indicates higher distance amongst successor representations ψz . In terms of
performance, DOI is able to achieve forward velocity comparable to the expert (see Figure 3a) while
diversifying the behavior in terms of base height h (Figure 3b).

In Figure 4 we observe the behavior of the Lagrange multipliers for different levels of ϵ for a specific
skill z. In case of ϵ ∈ {1.0, 2.0}, the multipliers fluctuate around a specific level that strikes the
balance between diversity and expert imitation. This can also be validated when observing the
violation level in Figure 4b of the constraint given estimator ϕz , which is for ϵ ∈ {1.0, 2.0} around
0. On the other hand, if we introduce a strong constraint on the KL divergence (ϵ = 0.0), which
is constantly violated, hence σ(λz) = 1. Similarly, if the constraint is too weak, only diversity is
optimized, in which case there is a significant degradation in performance (see figure Figure 3).
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Figure 3: Average ℓ2 distance between Monte Carlo estimated successor representations ψz of
different skills (a), return r as % of expert return and standard deviation of base height stdz(h) (b),
depending on ϵ.
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Figure 4: Behavior of Lagrange multipliers. (a) Evolution of σ(λz) for one skill (z = 1 chosen
arbitrarily), (b) violation of the constraint for different ϵ. Negative ϕz − ϵ indicates no violation.
Means and standard deviation across restarts.

7 Real Robot Experiments

We successfully deployed policies that exhibit diverse skills extracted from an offline dataset, while
being able to track a certain velocity similar to an expert on real hardware. Our skill-conditioned
policy exhibits different walking behaviors, each with a distinct base height. We provide below
snapshots of these diverse behaviors.

More precisely, we evaluate the proposed method for diverse offline imitation on a 12 degree-of-
freedom quadruped robot, SOLO12 [Grimminger et al., 2020], on a simple locomotion task in both
simulation and the real system. For this we had collected random and expert data from simulation in
the IsaacGym [Makoviychuk et al., 2021]. The datasets are collected using the saved checkpoints
obtained by training the robot to track certain velocity of the base using an on-policy version of
DOMINO [Zahavy et al., 2022]. We fix the forward velocity to 1 m/s and the turning velocity to zero
for collecting both offline dataset and expert dataset. The training procedure of the policies used for
data collection is given in Supplementary C.

Result. We successfully deployed policies exhibiting diverse skills extracted from the offline
dataset while being able to track a certain velocity similar to the expert on real hardware. Our
skill-conditioned policy exhibits different walking behaviors with diverse base heights. Snapshots of
these diverse behaviors are presented in Figure 5.
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(a) Trot locomotion with wave trunk motion and low base height.

(b) Trot locomotion with middle base height.

(c) Trot locomotion with high base height.

Figure 5: Snapshots of the trained policy exhibiting different skills on hardware. From above to
bottom, the policy has low, middle and high base positions while moving forward.

8 Conclusion

We propose an offline optimization method for maximizing a diversity objective, formulated in
terms of mutual information, which is constrained to have small KL-divergence with respect to
a fixed target state distribution. Using the Fenchel duality, we derive a principled and practical
reinforcement learning algorithm for offline unsupervised skill discovery, which we also validate
through experiments in both simulation and on real hardware. We considered an ℓ2 distance of
expected successor representations across skills as our diversity metric. The experimental results
confirm the expected behavior, i.e., a stronger constraint causes the policy to be closer to the to the
expert and less diverse. Further, to validate the diversity, we show that the skill-conditioned policy
clusters the state-action pairs in the offline dataset (using the skill-specific importance weights), in
the case of non-zero Lagrange multipliers.
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Supplementary for Diverse Offline Imitation via
Fenchel Duality

A Lagrange Relaxation

The Lagrange relaxation is given by

max
dz(s,a),q(z|s)

min
λ>0

∑
z

Edz(s)

[
log (|Z|q(z|s))

|Z|

]
+
∑
z

λz
[
ϵ−DKL

(
dz(S,A)||dẼ(S,A)

)]
.

By combining Lemma B.4 and the definition of ηẼ(s, a) =
dẼ(s,a)

dO(s,a) , we have

DKL

(
dz(S,A)||dẼ(S,A)

)
= DKL (dz(S,A)||dO(S,A))− Edz(s,a)

[
log ηẼ(s, a)

]
and thus

max
dz(s,a),q(z|s)

min
λ>0

∑
z

λz
[
ϵ+ Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(S,A)||dO(S,A))

]
, (S1)

where the reward is given by

Rλ
z (s, a) :=

log (|Z|q(z|s))
λz|Z|

+ log ηẼ(s, a).

B Algorithmic Phases

B.1 Value Function Training

With fixed skill-discriminator q(z|s) and Lagrange multipliers λ > 0, the Problem S1 becomes:

max
{dz(s,a)}z∈Z

∑
z

λz
{
Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(s, a)||dO(s, a))

}
or equivalently for every skill z:

max
dz(s,a)≥0

Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(S,A)||dO(S,A))

s.t.
∑

a dz(s, a) = (1− γ)µ0(s) + γT d(s) ∀s.
(S2)

We note that the preceding problem formulation involves state-action occupancy.

The strict feasibility in Assumption 3.1 implies strong duality, and thus Problem (S2) shares the same
optimal value as the following dual minimization problem (for details see [Nachum and Dai, 2020,
Section 6] and [Ma et al., 2022, Theorem 2]):

V ⋆ = argminV (s)(1− γ)Es∼µ0 [V (s)]

+ logEdπO (s,a) exp
{
Rλ

z (s, a) + γT V (s, a)− V (s)
}
,

(S3)

where
T V (s, a) = EP(s′|s,a)V (s′).

Moreover, the optimal primal solution reads
d⋆z(s, a)

dO(s, a)
= softmax

(
Rλ

z (s, a) + γT V ⋆
z (s, a)− V ⋆

z (s)
)
. (S4)

B.2 Weighted Behavioral Cloning

The proof of Lemma 3.2 follows the approach in Ma et al. [2022, SMODICE], which is briefly
summarized below for completeness. We pretrain a state discriminator c⋆(s), by optimizing an
objective and a gradient penalty as in Goodfellow et al. [2014] and Gulrajani et al. [2017], that
distinguishes between expert and offline states. The Bayes optimal classifier c⋆ satisfies c⋆(s)

1−c⋆(s) =
dE(s,a)
dO(s,a) , and thus log c⋆(s)

1−c⋆(s) = log dE(s)
dO(s) . Solving Problem (10) with fixed rewards Rλ

z (s, a), yields
dual optimal value function V ⋆. Using Fenchel duality, see (12), we compute (primal) optimal ratios
ηz(s, a) which we further use for training off-policy, via importance-weighted behavior cloning, the
skill-conditioned policy πz .
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B.3 Skill Discriminator Training

With fixed skill-conditioned policy π⋆
z and Lagrange multipliers λ > 0, the Problem S1 becomes

max
q(z|s)

∑
z

{
Edz(s,a)

[
Rλ

z (s, a)
]
−DKL (dz(S,A)||dO(S,A))

}
and reduces to

max
q(z|s)

Ep(z)Edz(s,a) log q(z|s).

Lemma B.1. Given a fixed skill-conditioned policy π⋆
z , Lagrange dual variable λ > 0 and ratios

ηz(s, a), using weighted behavioral cloning, we can train offline an optimal skill-discriminator q(z|s).
In particular, we optimize by gradient descent the following optimization problem

max
q(z|s)

Ep(z)EdO(s,a) [ηz(s, a) log q(z|s)] .

Proof. The statement follows by combining Lemma B.2 and Lemma B.3.

Lemma B.2 (Discriminator Gradient). It holds that

∇ϕEp(s) [DKL (p(Z|s)||qϕ(Z|s))] = −Ep(z)Ep(s|z) [∇ϕ log qϕ(z|s)] .

Proof. Observe that

∇ϕDKL (p(Z|s)||q(Z|s)) = ∇ϕEp(z|s) log
p(z|s)
qϕ(z|s)

= −Ep(z|s)∇ϕ log qϕ(z|s),
where the second equality follows by

∇ϕ log
p(z|s)
qϕ(z|s)

= −qϕ(z|s)
p(z|s) p(z|s)

∇ϕqϕ(z|s)
[qϕ(z|s)]2

= −∇ϕqϕ(z|s)
qϕ(z|s)

= −∇ϕ log qϕ(z|s).

Lemma B.3 (Importance Sampling). Given ratios ηz(s, a), it holds for any function f(s) that

Ed⋆
z(s)

[f(s)] = EdO(s) [ηz(s, a)f(s)] .

Proof. Observe that

Ed⋆
z(s)

[f(s)] = Ed⋆
z(s)π

⋆
z (a|s) [f(s)] = Ed⋆

z(s,a)
[f(s)]

= EdO(s,a) [ηz(s, a)f(s)] .

B.4 Estimating State KL Constraint Violation

Lemma B.4 (Structural). We have

DKL

(
dz(S,A)||dẼ(S,A)

)
= DKL (dz(S,A)||dO(S,A))− Edz(s,a)

[
log

dẼ(s, a)

dO(s, a)

]
.

Proof. We have

DKL

(
dz(S,A)||dẼ(S,A)

)
= Edz(s,a)

[
log

(
dz(s, a)

dO(s, a)
· dO(s, a)
dẼ(s, a)

)]
= DKL (dz(S,A)||dO(S,A))− EdZ(s,a)

[
log

dẼ(s, a)

dO(s, a)

]
.
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Lemma B.5 (State-Action KL Estimator). Suppose we are given offline datasets DO(S,A) ∼ dO,
DE(S) ∼ dE and optimal ratios ηπ(s, a) = dπ(s,a)

dO(s,a) and ηẼ(s, a) =
dẼ(s,a)

dO(s,a) for all (s, a) ∈ DO,
where the state-action occupancy dẼ is induced by a policy πẼ agreeing on the state occupancy of
an expert πE , i.e.

πẼ ∈ argmin
π

DKL (dπ(S)||dE(S)) .
Then, we can compute offline an estimator of

ϕz = EdO(s,a)

[
ηz(s, a) log

ηz(s, a)

ηẼ(s, a)

]
.

Proof. By Claim 1, we have

DKL

(
dπ(S,A)||dẼ(S,A)

)
= DKL (dπ(S,A)||dO(S,A))− Edπ(s,a)

[
log

dẼ(s, a)

dO(s, a)

]
.

For the first term, we have

DKL (dπ(S,A)||dO(S,A)) = Edπ(s,a) log
dπ(s, a)

dO(s, a)

= EdO(s,a) [ηπ(s, a) log ηπ(s, a)] .

The second term reduces to

Edπ(s,a)

[
log

dẼ(s, a)

dO(s, a)

]
= EdO(s,a)

[
ηπ(s, a) log ηẼ(s, a)

]
.

C Dataset Collection

Both expert dataset and offline dataset are collected using locomotion policies trained to track certain
velocity in IsaacGym [Makoviychuk et al., 2021]. The policies are trained using an on-policy version
of DOMINO [Zahavy et al., 2022] to exhibit diverse behaviors while maintaining a certain level of
tracking. Even trained with randomly sampled velocity, the policies are fed with forward velocity of
1 m/s when collecting both datasets. Both datasets contain 4000 trajectories with an episode length of
250 steps, or 1 million transitions each.

We summarize the main ideas of the training procedure, for details see [Zahavy et al., 2022]. Using
DOMINO, we train policies that are conditioned on discrete skill latents and present different
behaviors across different skills. Each skill-conditioned policy has a designated skill which is trained
with only extrinsic reward and is maintained as the target in the constraint formulation in [Zahavy
et al., 2022]. We use this target skill from the last training checkpoint (iteration 2000) as the expert
of our method. For each skill-conditioned policy, all skills except the target, are trained to balance
between extrinsic and intrinsic reward, so as to generate diverse behaviours while being aligned to
some degree to the target skill, i.e., maintaining a certain level of tracking velocity. The intrinsic
reward is designed to maximize the ℓ2 distance of the successor features [Barreto et al., 2016] between
different skills, where in our setting the feature space includes: the base height velocity, base roll and
pitch velocities, and feet height velocities.

We collected the offline dataset using these skill-conditioned policy from different checkpoints during
training. The offline dataset is composed of 1/2 data from checkpoint 0, 1/4 data from checkpoint 50,
1/8 data from checkpoint 100, 1/16 data from checkpoint 500, 1/32 data from checkpoint 1500 and
1/32 data from checkpoint 2000. For each policy checkpoint, we collect data from the 5 corresponding
skills, including the target skill. It is worth noting that more than half of the data from the offline
dataset comes from the nearly random policies from the start of the training (checkpoint 0 and 50).

Furthermore, in the data collection process, we use a deterministic policy for the expert dataset, while
for the offline dataset we use a stochastic policy. Randomizing the action selection in the latter case,
results in more diverse interactions with the environment. In addition, we use domain randomization
during training and data collection, in order to tackle the sim-to-real transfer and to simulate more
diverse environment interaction. Specifically, we randomize the friction coefficient between [0.5, 1.5]
and additional base mass between [−0.5, 0.5] kg, as well as simulate the observation noise and an
actuator lag of 15 ms.
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D Additional Experiments

Instead of learning the Lagrangian multipliers µz via KL estimators ϕz , we can also fix µz at a certain
level, making it a hyperparameter. In our setting, this also works well, and we demonstrate a tradeoff
between diversity and task reward optimization, see Figures S1 and S2.
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Figure S1: (a) Average ℓ2 distance between Monte Carlo estimated successor representations ψz

of different skills, (b) return r as % of expert return and standard deviation of base height stdz(h),
depending on a fixed σ(µz) (see legend).
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Figure S2: Divergence estimate and ηz distance for the case of fixed σ(µz). (a) Value of divergence
estimator ϕz for a specific skill over the course of training (z = 1 chosen arbitrarily), (b) average ℓ1
distance of ηz’s of skills. Means and standard deviation across restarts.
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