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Abstract

This work aims to improve generalization and in-
terpretability of dynamical systems by recovering
the underlying low-dimensional latent states and
their time evolutions. Previous work on disentan-
gled representation learning within the realm of
dynamical systems focused on the latent states,
possibly with linear transition approximations. As
such, they cannot identify nonlinear transition dy-
namics, and hence fail to reliably predict complex
future behavior. Inspired by advances in nonlinear
IcA, we propose a state-space modeling frame-
work in which we can identify not just the latent
states but also the unknown transition function
that maps past states to the present. We introduce
a practical algorithm based on variational auto-
encoders and empirically demonstrate in realistic
synthetic settings that we can recover latent state
dynamics with high accuracy, and correspond-
ingly achieve high future prediction accuracy.

1. Introduction

We focus on the problem of understanding the underly-
ing states of a target dynamical system from its low-level,
high-dimensional sensory measurements. This task is preva-
lent across various fields, including reinforcement learning
(Hafner et al., 2019a) and robotics (Levine et al., 2016). As
a running example of such a system, we consider a drone
controlled by an autonomous system. Here, the observa-
tional data would be a video stream (Figure 1 (b)) instead
of the full state of the system comprised of absolute posi-
tion, velocity, and acceleration in 3D (Figure 1 (a)). This
system may have additional variables influencing the state
evolution, e.g., the strength and direction of the wind at
any time. The main objective of this work is to learn latent
representations and state transition functions that would be
useful for downstream tasks, e.g., computing control signals
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for optimal transport of the drone from point A to point B.

Due to the partially observed nature of these problems,
learning dynamics directly in the data space (e.g., pixel
space) is not feasible, and previous works often focus on
learning latent dynamical systems (Hafner et al., 2019b).
However, such latent models commonly are not guaran-
teed to recover the true underlying states and transitions
(non-identifiability), which results in entangled representa-
tions, lack of generalization across new domains, and poor
interpretability (Schmidhuber, 1992; Bengio et al., 2013).
Most existing identifiable methods (Hyvarinen & Morioka,
2016; 2017; Hyvarinen et al., 2019; Khemakhem et al.,
2020; Klindt et al., 2020) assume mutually independent
components that do not affect each other. This is unrealistic
for dynamical systems as the present state of the system
depends on the past states, i.e., the transition function propa-
gates the system state by (nonlinearly) mixing the past state
components (Morioka et al., 2021; Yao et al., 2021; 2022).

Recently, Yao et al. (2021; 2022) showed that under cer-
tain assumptions, it is possible to identify or recover the
true unobserved latent states in a dynamical system (up to
component-wise transformations). Morioka et al. (2021)
introduce a framework to estimate the process noise, which
represents the stochastic impulses fed to a dynamical pro-
cess. Yao et al. (2021) utilizes non-stationarity noise to
recover latent states from sequential data. Instead, Yao et al.
(2022) exploits temporally autocorrelated latent states, while
including factors modulating the dynamics and generative
functions. These attempts lead to provably identifiable rep-
resentations, but they only propose non-parametric or linear
approximations to the unobserved state transition function.
While their nonparametric approximations cannot be un-
rolled over time, a linear model falls short of predicting
future states of complicated systems.

Our contributions. We present the first framework that al-
lows for the identification of the unknown transition function
alongside latent states and the generative function (see Fig-
ure 1). Following previous works (Klindt et al., 2020; Yao
et al., 2021; 2022), we first establish the identifiability of la-
tent states (Figure 1: Theorem 1). Different from them, our
framework allows estimating the process noise, representing
the random impulses fed to a dynamical system. Inspired
by Morioka et al. (2021), we show that the estimation of the
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Figure 1. Sketch of our method and main theoretical contribution. (a) We assume an underlying unobserved dynamical system, e.g., a
cartpole, where the full state is composed of the cart position and velocity, and the angle and angular velocity of the pole: [z, %, 0, 0] (b)
We partially observe the system as a sequence of video frames, which are used as input to our method. (¢) We learn an inverse generative
function that maps the raw observation signals to the latent state variables, as well as a transition function that maps the past latent states
to the present latent state. Identifiability of the latent states is ensured by Theorem 1 (Yao et al., 2021). In addition to this, our main
contribution is the identifiability of the transition function ensured by Theorem 2.

correct transition function is ensured by restricting the pro-
cess noise and the transition function (Figure 1: Theorem
2). We propose an evidence lower bound that allows us to
recover true underlying factors in the limit of infinite data.
Our empirical findings show that our framework manages
to predict the future states of an unknown system.

2. Identifiable dynamical system framework

We are interested in inferring latent dynamical systems from
high-dimensional sensory observations x.7, where ¢ is the
time index and x; € R”. We assume a sequence of latent
states z1., with z; € R¥, are instantaneously mapped to
observations via a generative function g : RX — RP: x; =
g(z:). The latent states z1.7 evolve according to Markovian
dynamics: z; = f(z;_1,s;), where f : R2(X — R¥ is an
auto-regressive transition function and s, € R¥ represents
additional variables influencing the dynamics, e.g., random
forces acting on the system or control signals.

Augmented dynamics. We introduce the following gen-
erative process with augmented transition and generative
functions (Morioka et al., 2021):

Z0 ~ Pzo(20), (H
St ~ ps|u(st|u) - Hpsk\u(skt‘u)a 2
k
Zy St f(zi—1,s¢)
=f.. = , 3
LA () R R
Xt Zy g(zt)
= Bau = 3 4
|:Xt1:| Baug <|:Zt1]> [g(ztl)} ¥
Vt € 1,...,T. Above, u is an auxiliary variable modu-

lating the noise distribution pg),. Inspired by Hyvarinen &
Morioka (2016; 2017), we consider the following cases: (i)
setting u to an observed regime index leads to a nonsta-
tionary process noise, as a real-world example, consider a
flying drone under different precipitation conditions, which
can be observed up to a noise level; and (ii) setting u = s;_;
implies an autocorrelated noise process, as a real-world
example, consider a flying drone in a windy environment
where the wind speed or direction changes continuously.

2.1. Identifiability theory

Let M = (faug, 8aug, ps|u) denote the ground-truth model.

We learn a model M = (f‘aug,gaug,ﬁs‘u) by fitting the
observed sequences. We make the following assumptions:

(A0) Distribution matching (Klindt et al., 2020; Yao et al.,
2021; 2022) The learned and the ground-truth observa-
tion densities match everywhere.

(Al) Injectivity and bijectivity (Morioka et al., 2021)
The generator functions g and g are injective, which
implies that the augmented generative functions
€oug, Baug are injective. The augmented dynamics

functions £, 4, f..4 are bijective.

Contrary to Morioka et al. (2021), which use an aug-
mented transition model on observations (X;—1,X¢),
our formulation captures the functional dependence be-
tween a latent pair (z;_1,z.) and the process noise s;.

(A2) Decomposed transitions (Klindt et al., 2020; Yao
et al., 2021; 2022; Song et al., 2023) Each dimension

of the transition function {f;}X_, is influenced by
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a single process noise variable s;;. The output is a
single latent variable z:: 2kt = fi(2i—1, Ske),for k €
1,...,Kandtel,...,T.

(A3) Conditionally independent noise. Let g (sx¢, u) =
log p(skt|u) denote the conditional density of the noise
variable sg;. Let ng(zkt,u) = logp(2kt|zi—1, 1)
denote the conditional density of the state variable zy;.

Conditioned on the auxiliary variable u, we assume:

« Each noise variable s, € R¥ is independent over
its dimensions si¢,...,SK¢,VE € 1,....T:
logp(sifu) = Yl logp(silu) =
2521 dk (Skt7 u)-

* the past latent state z;_; and the present noise s;
are independent: s; 1l z;_1|u.

Since s; 1L z;_1|u and each dimension of the
transition function f(z;—1,Sk:) is a function of
only a single (conditionally) independent noise
variable si;, the conditional density of the latent
pair (z,2z;—1) also factorizes: logp(zi|z;—1,u) =
iy logp(zkelze1,u) = Y., mi(zke,w). The
same is assumed for the learned conditional density:
log p(#|2—1, 1) = Y4, log p(ake|2e—1,w).

(A4) Sufficient variability of latent state z; (Yao
et al.,, 2021). For any z;, there exist some 2K
values of u: uy,...,usg, such that the 2K vectors
v(z¢,uy), ..., v(Z, ugg) are linearly independent
for some index [ of the auxiliary variable u, where
R R
aZKtalLl

)

5‘21,587”

031 (214, 1) o
8z%t8ul

82% 8ul
(A5) Sufficient variability of process noise s;. For any s;,
there exist some 2K values of u: uy,...,usxk, such
that the 2K vectors w(s;,uy),...,w(s;, Ugx ) are
linearly independent for some index [ of the auxiliary
variable u, where

(32%(81:&711) 0*qk (skt )

W(St7u) = 951,01, D3 10Uy
83(]1 (Sltvu) . aqu(SKhu) c RQK
0s%,0uy ds3.,0u '

2.2. Main theoretical contribution

In this section, we state our main theoretical contribution,
that is, the identifiability result for the dynamical function f
(Theorem 2). For completeness, we start with a theorem on
the identifiability result for the conditionally independent la-
tent states z;|z;_1, u (Theorem 1), which Yao et al. (2021)

8377K(2Kt7u)) cR2K. 1

established for the nonstationary noise case. The proofs are
detailed in Appendices A.3 and A.4.

Theorem 1. Under assumptions (A0, Al, A2, A3, A4),
latent states z; = h(z;) are identifiable up to a function
composition h = m, o r, of a permutation 7, : [K| — [K]
and element-wise invertible transformation r, : R — RE
(Yao et al., 2021). Or equivalently, the same follows for the
generative functiongoh = g,

Theorem 2. Under assumptions (A0, Al, A2, A3, A4,
AS5), the process noise s; = k(8) is identifiable up to a
function composition k = g o rg of a permutation T, :
[K] — [K]| and an element-wise invertible transformation
rs : RE — RX. Equivalently, the dynamical function
ha_ulg ofaug 0 Kang = Aaug is identifiable up to a function
composition k., = [k, h] = 7o r of a permutation 7 =
[ms, 7] : [2K] — [2K] and an element-wise invertible
transformationr = [ry,r.] : R* — R2K where Theorem
1 already proves that h;! = [h=' h~1] is an invertible

aug
element-wise transformation.

3. Practical implementation using variational
inference

We turn our theoretical framework into a practically usable
implementation using variational inference. For space con-
siderations, we defer the details to Appendix B. We present
the below algorithm for implementation details and Figure 4
for architecture details.

Algorithm 1 Practical learning algorithm

Requires: Variational posterior networks (ICEncoder and
NoiseEncoder) and Decoder.

. Encode initial condition parameters: fiz,,log JZO =

ICEncoder(xi.7,)
2. Sample initial condition: zo ~ N (kiz,, o5, I)
3. Fortel,...,T:

(a) Encode noise parameters:
NoiseEncoder(Xi:t,Z¢t—1)

pis;,logos, =

(b) Sample noise: sy ~ N (us,, o2, I)
(c) Compute the next latent state: z; = f(s¢,2¢—1)
(d) Decode: x; = Decoder(z;)

4. Compute ELBO: £ = Lg — BLk. Samples {s1.7, Zo:7}
are used to approximate Lki..

5. Update the parameters {6, ¢}.

4. Synthetic experiment

As common in nonlinear ICA literature (Hyvarinen et al.,
2019; Morioka et al., 2021; Yao et al., 2021; 2022), we set
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Table 1. Synthetic experiment results (mean, std.dev. across 5 runs). For methods that cannot predict the future, we leave the MSE[}‘(mmreH]
rows empty (N/A). Likewise, we compute MCC[Sqain] only for LEAP and our method as others do not maintain process noise variables.

MODELS
METRICS B-VAE  PcL TcL iVAE  SLOWVAE KALMANVAE LEAP-LIN LEAP-NP  OURS
_ 0.60 057 039 0.58 0.41 0.64 0.68 0.89 0.95
MCC|Zirain] T 3 )

(£0.05) (£0.05) (£0.07) (£0.06) (£0.05) (£0.05) (£0.03) (£0.04) (£0.08)

MCC[Stain] T NA NA NA  NA N/A N/A 0.14 0.26 0.66
(£0.01) (£0.04) (£0.09)

i 1.27 0.22 0.06
MSE[Znuez)] L NA  NA  NA  N/A N/A o o= na o 008
MSE[Rpueia)] L NA  NA NA  NA N/A 1.32 0.18 N/A 0.09
(£0.27) (£0.03) (+0.01)

MSE[Rpueiz)] 4 NA NA - NA NA N/A 172 0-59 N/A 0.21

(+0.82) (£0.13) (£0.03)

Dimension 2 Dimension 3 Dimension 4

Dimension 1
. ..

Figure 2. Model predictions (red) in the data space (black and
blue dots represent train and future points respectively) with the
estimated uncertainties (+2 std.dev). We observe near-perfect
predictions and low uncertainty for the input data (the first Tipin =
To + Tayn = 6 time points) while the uncertainty grows as we
unroll over time (the next Ttyue = 8 time points). Further, the
uncertainty grows even more when the model predictions are off.

Therefore, almost all test points lie in the £2 std region, reflecting
the high calibration level our probabilistic model attains.

Regime 1
.

Regime 15

up a synthetic experiment to show that our model recovers
the latent dynamics, and hence achieves a higher future
prediction accuracy.

Dataset. As in Hyvarinen et al. (2019); Yao et al. (2021;
2022), we set up a synthetic data experiment containing
multivariate time-series. Same as Yao et al. (2021), we use
2-linear layer random MLPs as generative and transition
functions (see Appendix C for details). Each sequence has
length T' = To+Tayn + Thure = 2+4+8 = 14. We assume
a second-order Markov transition (lag=2), and first 7o = 2
states are spared as initial states. The next 4 observations
X1.4 are used for training the dynamical model. The last 8
observations x5.12 are used for assessing the performance of
future estimation. We choose the future prediction horizon
Thuure = 8 as the double of the training sequence length. If
the dynamics are truly identified, the model should predict
future states well, even for a longer horizon.

Metrics. We denote the latent states and the process noise
for first Tirain St€PS bY Zirain = Z0:7,;, aNd Strain = S1:7;,,;, 1€~
spectively. For latent system identification, we measure the
validation Mcc for the latent sequence Ziyin: MCC|Zain],

and the noise sequence Syyin: MCC[Syin]. For future pre-
diction performance, we measure the mean squared error
(MSE) on the future observations MSE[Xyure]. We denote
the future observations for the subsequent Ty Steps by
Xfuture = XT,+1:- When Thre takes different values,
e.g., Truure € {2,4,8}, we denote the future metrics by
MSE[ifuturep]]’ MSE[ifuture[4]] and MSE[xfulure[S]]'

Baseline methods. We compare our method with sev-
eral nonlinear ICA methods: 3-VAE (Higgins et al., 2018),
TcL (Hyvarinen & Morioka, 2016), iVAE (Khemakhem
et al., 2020), PcL (Hyvarinen & Morioka, 2017), SLOW-
VAE (Klindt et al., 2020), LEAP (Yao et al., 2021) with
its two versions having linear and nonparametric transition
functions LEAP-LIN and LEAP-NP; and a disentangled deep
state-space model KALMANVAE (Fraccaro et al., 2017).

Main results. We show MCC|Zyin], MCC[Syain] and
MSE [Xfyture] Tesults in Table 1. Our model recovers latent
states z and process noise s better than baselines, as demon-
strated by a higher correlation with the true latent states
and process noise. This leads to a higher accuracy in future
prediction, in terms of MSE[Xyyre| With prediction horizons
{2,4,8}. We remind that 8-step future prediction corre-
sponds to the double the amount of dynamics steps the mod-
els see during training. As the prediction horizon increases,
we see that the difference in the future prediction perfor-
mance between our method and baselines also increases.

5. Discussion

We present the first latent dynamical system that allows
for identification of the unknown transition function, and
theoretically proved its identifiability based on standard as-
sumptions. We evaluated our approach on synthetic data and
showed that (i) the estimated latent states correlated strongly
with the ground truth, (ii) our method had the highest future
prediction accuracy with calibrated uncertainties. The main
limitation stems from identifiability assumptions adopted.
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A. Identifiability Theory

In this section, we discuss the identifiability of the latent states and the transition function, and provide the detailed proofs.

We assume a latent dynamical system which is viewed as high-dimensional sensory observations X1.7, where ¢ is the time
index and x; € RP. We assume a sequence of latent states z1.p, with z; € RE  are instantaneously mapped to observations
via a generative function g : RX — RP:

Xt = g(2¢)- S
The latent states z;.7 evolve according to Markovian dynamics:
Z; = f(Zt_l,St), (6)

where f : R?X — RX is an auto-regressive transition function and s, € R¥ corresponds to process noise.

Our aim is to jointly identify the latent states z;.7, the dynamics function f, and the process noise s;.7. We remind that
previous works (Klindt et al., 2020; Yao et al., 2021; 2022; Song et al., 2023) have concentrated on identifying the latent
states z1.7, possibly with linear transition approximations, but not a general transition function f. Yet, without a general f,
the methods can estimate the underlying states only when corresponding observations are provided or provide simplistic
approximations in their absence. Hence, they cannot predict complex future behavior reliably.

Notice that learning a provably identifiable transition function f : R2% — R is not straightforward, since the transition
function is not injective. A naive solution can be to simply use a plug-in method (Yao et al., 2021; 2022) for identifying the
latents and then fitting a transition function f on the estimated latents, however, we show empirically in our experiments that
it leads to poor prediction accuracy for the future behavior.

A.1. Nonlinear IcA

The nonlinear ICA assumes that the data is generated from independent latent variables z with a nonlinear generative
function g, following Equation (5). It is well-known to be non-identifiable for i.i.d. data (Hyvérinen & Pajunen, 1999;
Locatello et al., 2019). Recent seminal works (Hyvarinen & Morioka, 2016; 2017; Hyvarinen et al., 2019) showed that
autocorrelation and nonstationarity existent in non-i.i.d. data can be exploited to identify latent variables in an unsupervised
way. Compared to the vanilla ICA that considers independence only along latent dimensions, the idea of these works is
to introduce additional independence constraints reflecting the existent structure in the data. These additional constraints
are formulated mathematically as identifiability assumptions, which restrict the space of the generative function g and the
space of the latent prior p, (Hyvirinen et al., 2023; Xi & Bloem-Reddy, 2023). The key insight is that, after sufficiently
constraining the latent prior p, using such assumptions, identifying the latent variables z, and identifying the injective
generative function g become equivalent tasks (Xi & Bloem-Reddy, 2023).

A.2. Augmented dynamics for identifiable systems

To identify the transition function f such that z, = f(z;_1,s;), we will use the same insight: After sufficiently constraining
the noise prior ps; given an identifiable latent pair (z¢_1, z:), identifying the noise variables s; and identifying the bijective
dynamics function f should be equivalent. Hence, in addition to the identifiability assumptions restricting the space of the
generative function g and the space of the latent prior p,, we will further restrict the space of the dynamics function f, and
the space of the noise prior ps.

First, let us note that the identifiability of the process noise s; is not trivial since the dynamics function f : R?X — RX
is not an injective function and hence it does not have an inverse. Following the independent innovation analysis (I1A)
framework Morioka et al. (2021), we trivially augment the image space of the transition function and denote the bijective
augmented function by f,,, : R2X — R2K:

[thfl] = fous <{ztsf1]) = {f(zit_list)] ™

Contrary to Morioka et al. (2021), which use an augmented autoregressive model on observations (x;—1,X¢ ), our formulation
captures the functional dependence between a latent pair (z;—1,2;) and the process noise s;.

Next, we make the standard assumption in the temporal identifiability literature (Klindt et al., 2020; Yao et al., 2021; 2022;
Song et al., 2023) that each dimension of the transition function {f; } | is influenced by a single process noise variable

6
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Sk¢. The output is a single latent variable zj;:
zkt:fk(zt_l,skt), forkel,...,Kandtel,...,T. 8)

Notice that this does not impose a limitation on the generative model, it just creates a segmentation between noise variables
and latent variables. For example, if this assumption is violated and there exists a noise variable s, that affects both z;; and
zj¢ with ¢ # j, then the noise variable sy, can instead be modeled as a latent variable zj;.

We re-state the full generative model for completeness:

Zo ~ Pzy(Z0), # initial state ©)]
St ~ Psju(St/u) = Hpsk|u(skt|u), vtel,..., T, # process noise (10)
k
[ %t ] =f.uq <[ St ]) = [f(zt_l’st)} , vtel,...,T, # state transition (11)
Zt—1 Zt—1 Zi—1
[X);jl] =gy ({thil}) = {g%z(tzi)l)} , vte2,...,T. # observation mapping (12)

where u is an auxiliary variable, which modulates the noise distribution pg)y-

A.3. Proof of Theorem 1: Identifiability of the latent states z,

This result is already shown in (Yao et al., 2021, Appendix A.3.2). Here, we follow Klindt et al. (2020); Yao et al. (2021;
2022) and repeat their results in our notation as we also make use of this result in Appendix A.4.

The injective functions g, g : RX — R are bijective between the latent space R” and the observation space X C R”. We
denote the inverse functions from the restricted observation space to the latent space by g~', g~ !. This is also implicitly
assumed in (Klindt et al., 2020; Yao et al., 2021; 2022; Song et al., 2023).

‘We have

X = &(2) = (<gog—1>og)<zt> . g—goh — 2 —h(a). (13)

The function h : z; — z, maps the learned latents to the ground-truth latents. To show it is bijective, we need to show
it is both injective and surjective. Following Klindt et al. (2020), it is injective since it is a composition of injective
functions. Assume it is not surjective, then there exists a neighborhood Uy, for which g(U,) ¢ g(RX). This implies that the
neighborhood of images generated by g(U,) has zero density under the learned observation density p; ; (g(Uyp)) =

faug:Ps|u
0, while having non-zero density under the ground-truth observation density pg £, (X): Pg, .. f.0.psa (8(Uz)) > 0. This
contradicts the assumption that the observation densities match everywhere. Then, h is surjective.

We perform change of variables on the conditional latent density:

log p(2¢|2¢—1,u) = log p(2¢|z¢—1, 1) + log [H|, (14)
K K
Zlogp(ékﬂit,l, u) = Zlogp(zkﬂzt,h u) + log |H,| (15)
k=1 Nk (Zre,0) =1 N (Zkt,1)
K K
D iw(Eresw) = > mn(zhe, w) + log [Hy| (16)
k=1 k=1

where H; = Jy,(2;) is the Jacobian matrix of h evaluated at ;. First, we take derivatives of both sides with respect to Z;;:

K
log |H
7 (2, 1) = Z Oy (2kt, 1) Ozge 4 Jlog |Hy|

aZkt 5‘2“5 02”

a7
k=1



Identifying latent dynamical systems

Second, take derivatives with respect to £;;:

0 EK: (3277k(2kt, u) Ozit 021t + (2, ) 027, ) + Olog |Hy| (18)

2 A A A A A A
= 0z, 0% 0% Ozie 0231025t 0%i10%5¢

Lastly, take derivatives with respect to u;:

0= i (3377k(zkt,u) Ozt Ot N 0 (zge,u) 023, ) , (19)

2 A A ~ A~
P 0z;,0u; 0%y 0z 0z 0up  02:0%54

[H i [Hil s +

= . (83nk('zktau)
k=1

?ni(2ke,u) 023,
20
8z,§t8ul ) ’ ( )

8Zkt(9uz 82it6'2jt

since the Jacobian H; does not depend on u. Using the sufficient variability assumption (A4) for the latent states z;, we
can plug in 2K values of uy, ..., usx for which the partial derivatives of the log conditional density 7 (z:, u) form
linearly independent vectors v(z;, u). We see that the coefficients of these linearly independent vectors have to be zero:
[H¢]:[H¢]x; = 0. This implies that the Jacobian matrix H; of the transformation z; = h(2;) has at most 1 nonzero element
in its rows. Therefore, the learned latents z; are equivalent to the ground-truth latents z; up to permutations and invertible,
element-wise nonlinear transformations.

A .4. Proof of Theorem 2: Identifiability of the latent transition f

Here, we prove our main theoretical contribution, Theorem 2. We start by writing the generative process for the observation

pair (x;—1, Xt):
2] = et ([,2)]) = @ Do s0) o

= (gaug o faug) © (gaug o faug)il o (gaug © f.aug) (|: St :|> (22)

Zi—1
kaug

The function k., : R*?* — R?K maps the learned pair (8;,%;_1) to the ground-truth pair (s;,z;_1):

] = (b)) = B @

Similar to the function h being bijective, it follows that k.4 is also bijective.

Now, we want to show that the augmented function k.5 decomposes into invertible block-wise functions ki, ks : RE —
R% such that (i) k; only depends on 8y, i.e., s; = ki (8;) and (ii) ko only depends on z; 1, i.e., z;_1 = ko(2;_1). It is easy
to show (ii), since ko = id, o g‘1 o g oidz = h and we have already shown in Appendix A.3 that the function h : z; — z;

is equal to h = g~! o g and bijective.
St St ki(8¢,2¢-1)
—kou (| — b . 24
o] = () - [ @
To show (i), we start by performing change of variables for the transformation kg : (8¢,2¢—1) — (S¢, Ze—1):

log p(8¢,2i—1|u) = log p(Kaug (8¢, 2¢—1)|u) + log [Ji_, (8¢, 2¢—1)], (25)
= log p([k1 (8¢, Z¢—1), h(2:—1)][u) + log [Jx,,, (8¢, Z¢—1)], (26)

where Jy_,_(8¢,2¢_1) is the Jacobian matrix for the augmented function k., evaluated at (8;,2;_1). As the process noise
is temporally independent given u, §; Ll Z;_;|uand s; 1l z;_1|u, we factorize the densities in Equation (26):

log p(8¢u) + log p(2;—1|u) = log p(k1 (8¢, 2¢—1)u) + log p(h(2;—1)|u) + log |Ix_., (8¢, 2¢—1)|- (27)
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Os¢

is upper block-diagonal since z; 1 does not depend on §;: Jy ., = {Bgt * } and its log determinant

The Jacobian Jy H
t

aug

factorizes log [Jy, . (8¢,2¢—1)| = log |H;| + log | asf|

. . . R Os
log p(8¢Ju) + log p(2;—1|u) = log p(kq (8¢, Z¢—1)|u) + log p(h(z¢—1)|u) + log [H¢| + log 8f : (28)
t

In addition, the noise is conditionally independent over its dimensions given u. Therefore, we can further factorize the
densities p(8¢[u) =[], p(8x¢|u) and p(ki (8¢, 2¢—1)|u) = p(s¢|u) = [, p(skeu) with s, = kq (8¢, 2¢—1):

R N . Os
> logp(8ke[u) +log p(z—1u) = > log p(ske|u) +log p(h(2;—1)[u) + log [Hy| + log Iaffh (29)
i S
Gk (3kt,u qr (Ske,u

We take the derivative of both sides with respect to 5;;:

Osy

0Gi (3¢, u) _ Z Oqr (skt, 1) Ospe i 810g|3%t| (30)
035t % O0sgt 03t 035t .

Next, we take the derivative with respect to u; with [ being an arbitrary dimension:

0%Gi (341, 1) 02 qi,(skt, 1) Ospe
1
letaul Z 080wy 084’ (D

since \2—2” does not depend on u. Lastly, take the derivative of both sides with respect to 2; ; _1:

0= Z (33?55%11) 5<ikt (?Skt n 9% qr(spe, 1) Aa25Akt > . (32)

- 53, 0w 08y 02541 O0spt0u;  08+025 11

Inspecting the Equation (32), to ensure the sufficient variability assumption (A5) for the process noise s;, the term

%’x% = 0. Following a similar reasoning with Morioka et al. (2021), this implies that any dimension of s; does

not depénd on §; and Z;_; at the same time. Since s; 1l z; 1|u and z;—1 = h(2;_1), s; has to depend solely on §;:
= ki (2—1,8:) = k(8;). We conclude that the augmented function k.4 decomposes into invertible block-wise functions

k and h: k, .y = [k, h]

Now, let’s get back to Equation (31). Denote the Jacobian matrix of function k by Jy and its evaluation at §; by Ji (§;) = K.
Take the derivative of both sides with respect to §,,; for some index m:

qr(skt, 1) O%qi(see,u) 0% spy
= ——F— K 23 K m ~ ~ .
’ ; < asitaul [ t]k [ t]k + aSktaUl asitasmt> (33)

Inspecting the Equation (33), we see that to ensure the sufficient variability assumption (A5), the product [K|x; [K¢]rm = 0.
This implies that each dimension s of the true latent state depends only on a single dimension of the learned process noise
S:. Hence, the function k is equal to a composition of permutation and element-wise, invertible nonlinear transformation:
k=7moT.

Following Equation (22), we can write the relationship between the augmented functions as:

8aug © faug o kaug = gaug o faug7 (34)
ga_ulg © Baug faug okaug = f'aug7 (35)
———
hog
ha_ug faug o kaug = f'auga (36)
(37
where haulg [h=! h~!]. We have shown that both h and k are compositions of permutations and element-wise invertible

transformations. Hence, the augmented transition function f’aug is equal to the true augmented transition function f,,4 up to
compositions of permutations and element-wise transformations.

9
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A.5. Alternative Versions of Sufficient Variability Assumption

If the variable u is an observed categorical variable (e.g., domain indicator), the assumptions (A4, AS5) can be written in
an alternative form without partial derivatives with respect to u;, similar to Hyvarinen et al. (2019); Yao et al. (2021). For
example, for the latent states z;, the alternative version of the (A4) takes the form:

 Sufficient variability of latent states for a categorical u (Yao et al., 2021). For any z,, there exist some 2K + 1
values for u: uy, ..., usxk, such that the 2K vectors v(z¢, uj41) — v(z¢, u;) with j = 0,1,...,2K, are linearly
independent where

v(ze,u) = (am(zltv“) L O Crenw) 9P, w) 82"K(ZK““)> € R2K, (38)

Oz Ozir 023, 77 2%,

A similar categorical version is provided in (Hyvarinen et al., 2019, Assumption 3), while the continuous version is provided
in the same work (Hyvarinen et al., 2019, Appendix D).

B. Variational inference
Similar to previous works (Yao et al., 2021; 2022), we want to maximize the marginal log-likelihood log p(x;.7|u) that is

obtained by marginalizing over the latent states z;.7 and process noise s1.7:

logpg(xl;ﬂu) = 10g/ pe(XlzT,ZO:T, S1:T|ll) dzg.r ds;.7, (39)

s

where we decompose the joint distribution as follows:

T
Po(X1.1, Zo:T, S1:7|0) = po(20o H (st|u) po(z¢|ze—1,8¢) Po(xt|2Ze). (40)

0(ze—f(st,2¢—1))

Note that the state transitions pg(z¢|z:—1,s;) are assumed to be deterministic. The above integral is intractable due to
non-linear dynamics f and observation g functions. As typically done with the deep latent variable models, we approximate
the log marginal likelihood by a variational lower bound, i.e., we introduce an amortized approximate posterior distribution
44(Zo:1, S1:7|X1.7, 1) that decomposes as follows:

T
46(20.7, S1:7 X117, 1) = ¢ (20|X1.7, 1 H (St|Zo:t—1,S1:0—1, X175 1) 4 (2¢|Z0:0—1, S1:¢, 1) 41)
=t Qo (st|ze—1,X1:¢) q¢(zt|ze—1,5¢)
We simplify the variational posterior g(s¢|-) as ¢¢(St|Zo:t—1,S1:4—1,X1.:7,0) = gg(S¢|Z¢—1,X1:¢), corresponding to a

filtering distribution. As in the generative model, we choose g4 (z¢|z:—1,8:) = po(2z¢|2t—1,5¢) = 0 (z¢ — £(S¢,2¢-1)):

T
44(Zo:7, S1:7|%1:7, U) = q4(Zo|x1:7) H (St|Zi—1,X1:0)P0 (2Z¢|Z1—1,5¢), 42)

where the functional forms of the densities g4 (zo|-) and g4(s¢|-) are chosen as diagonal Gaussian distributions whose
parameters are computed by recurrent neural networks. The variational lower bound takes the following form:

pe(Zo:T751:T\u)
L(0 =K It . . I 43
(0.9) 4o (0.7 S1r) [nga(XLT'ZLT) o Q¢(ZO:T,51;T|X1:T,U)] )
ZT po(zo:1; S1:7[0)
— E 1 E 1 0\40:T,°1:T . 44
£ %(m)[ og po(x¢t|z)] + 4o (Zo:r,51:7) | 108 P CP— — (44)

Reconstruction term, £ g KL term, Lk 1,

10
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The reconstruction term can easily be computed in a variational auto-encoder framework. Below, we provide the derivation
of of the KL term:

pe(zo) pG(leTa Sl:T|u) }
Lrxr =E;, (z0.s: log——————— + 1o 45)
KL 9o (zoT 51:7) & Q¢(ZO|X1:T7U) s Q¢(Z1:T7S1:T\X1:T7 ll)
pe(leT,S1:T|u)
=-D . E;. (zo.m.s:. I 46
k144 (Zo[x1:7, w)||pa(20)) + ¢ (Zo:1,51:T) [Og Q¢(z1:T751:T|X1:T7U):| (40
ZT po(s:[Wpo (2421, 51)
- D _ E | 0 (St 0(Z¢|Z¢—1, St 47
k1(4s(20[x1:7, W)[|po(20)) + B, (z0.7.51.7) L—1 o o(st|Ze—1, X1.7, W) Gy (Z¢|Z¢—1, 5¢) @7
- po(si[u)
—_D . § : (@ 1 AN 48
KL(%(ZO‘XIIT’ wlips ao)) t=1 o) [Og Q¢(St|zt17X1:T,u):| (*9)
ZT po(si|u)
0 (St
=-D : (st,z Z St_1,X1.7,U0 1 49
2 {go(@ar, wlpo(ao)) =1 vl s [og q¢(stzt—17X1:T7u):| )

—Eg (2 11zs_9.5, 1) [PrL(g(st|Ze—1,%0:7,0)[[po(s:[0))]

Initial encoding. We map each observation x; to an initial embedding r; via an MLP or CNN depending on the input
modality. Using the first 7i. = 4 initial embeddings r;.7,, an initial condition encoder (MLP) outputs the parameters of the
variational posterior ¢(zg|x1.7, ) for the initial condition zy. Our ablations showed that the model is rather insensitive to Ti.

Sequence prediction. We start by sampling from the initial value distribution zg ~ ¢(zo|x1.7:, ). Next, a forward sequential
layer (RNN + MLP) takes the initial embeddings ry.; up to time ¢ and the (sampled) previous latent state z;_; as input
[r1.¢,2:—1], and outputs the parameters of the variational posterior ¢(s;|x1.¢,2¢—1) for the noise variables s;.7. For example,
for the first noise variable s;, the variational posterior is of the form ¢(s;|x1,2). Subsequently, given a sample from
the noise variable s; ~ ¢(s1|zg,x1) and the sampled initial state zy, we predict the next state z; = f(zg, s1), or more
specifically: zx1 = fr (2o, sk1) fork € 1,..., K. We model each output k of the transition function f}, as a separate MLP,
to encourage the conditional independence of the latent states. We recursively compute the trajectory zs.7 of future latent
states and noise posteriors g(sa.7).

Priors and ELBO computation. We assume a standard Gaussian prior for the initial condition p(zg) = A (0, I). The
prior p(s¢|u) = [ [, p(sk¢|u) over the noise variables are 1D trainable conditional flows. To allow for multi-modal prior
distributions for 1D noise variables sj;, we choose neural spline flows as the flow architecture (Durkan et al., 2019; Stimper
et al., 2023). For the computation of the KL divergence, the terms containing a conditional flow do not have closed form
solutions. We compute them by a Monte Carlo approximation using the sequence samples {zq.r, 1.7 }. Finally, the decoder
d outputs the mean of our Gaussian observation model with fixed variance: p(x;|z;) = N (x¢;d(z¢), I).

C. Synthetic Data Generation

Similar to Yao et al. (2021; 2022), we set up a synthetic data experiment containing multivariate time-series. We set the
dimension of s, z and x to K = 8. Same as Yao et al. (2021; 2022), we use a 2-linear layer random MLP as the generative
function g, 2-linear layer random MLP as the transition function f and we choose z;.7 to be a second-order Markov process,
i.e., z; = f(z,—_2,2;_1,s;). The number of environments is R = 20. For each environment, we generate 7500/750/750
sequences as train/validation/test data following our generative model. The distribution of the process noise s; is conditioned
on the environment index u. Each sequence has length T' = Tt + T4y, + Ttuwe = 2+4+8 = 14. As we have a second-order
Markov process, first Ty = 2 states are spared as initial states. The next 4 observations x1.4 are used for training the
dynamical model. The last 8 observations x5.12 are used for assessing the performance of future estimation. We choose the
future prediction horizon Tgye = 8 as the double of the training sequence length. If the dynamics are truly identified, the
model should predict future states well, even for a longer horizon.

11
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Zg ~ Qéz(zu|xl:nc)
i S1 So S3 S4

8t ~ g¢(8¢|Zt—1,X1:1) 8¢ ~ o (8¢|Ze—1,X1:¢)

pé,of pe,af

GRU? GRU? u u
ro ri ra
Xo X1 X2
Training on xX;.71 Future prediction of xX741.

Figure 4. Diagram of the model architecture: In training, the observation x is passed through the encoder e4 to get the representation r.
We learn the distribution over the initial latent state zo conditional on the representations of the first 7T;. observations (in the diagram, we
show T;. = 1; in our experiments, we use 7ic = 2). The latent state is decoded by the decoder dg to produce the predicted observation X
(which is trained to match the corresponding actual observation). The next value of the latent state is computed by the transition function
fo, which depends both on the previous state and on the process noise s. In training, the process noise s is sampled from the variational
posterior that depends on the previous state as well as on the representation created by a recurrent neural network (GRU) that has received
up to the current observation. In future prediction, the process noise s is sampled from the prior, which is a learned normalizing flow.
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D. Architecture and optimization details

We optimize our model with Adam optimizer. We chose all hyperparameters for our method, two versions of LEAP and
KalmanVAE with cross-validation. In particular, we performed random search as well as Bayesian optimization over
learning rate, weight regularization, the number of layers in all MLPs, and latent dimensionality.

D.1. Synthetic data experiments
* Encoder: Below, the output of encoder_base_layer goes into encoder_rnn_layer and s_encoder.

— (encoder_base_layer (MLP)):

Linear (in_features=8, out_features=64, bias=True)
LeakyRelLU (negative_slope=0.2)

Linear (in_features=64, out_features=64, bias=True)
LeakyRelLU (negative_slope=0.2)

Linear (in_features=64, out_features=64, bias=True)
LeakyRelLU (negative_slope=0.2)

Linear (in_features=64, out_features=64, bias=True)

¥ X ¥ X X ¥ ¥

— (encoder_rnn_layer): GRU (in=64, hidden._dim=64, output_size=64)
— (ic_encoder):

¥ Linear (in_features=256, out_features=64, bias=True)
LeakyRelLU (negative_slope=0.2)
Linear (in_features=64, out_features=64, bias=True)
LeakyRelLU (negative_slope=0.2)
Linear (in_features=64, out_features=16, bias=True)
— (s_encoder (MLP)):

Linear (in_features=80, out_features=64, bias=True)

o R

LeakyRelU (negative_slope=0.2),
Linear (in_features=64, out_features=64, bias=True)
LeakyRelLU (negative_slope=0.2),
Linear (in_features=64, out_features=16, bias=True)

* % ¥ ¥ ¥

¢ Decoder (MLP)

— Linear (in_features=8, out_features=64, bias=True)

LeakyRelLU (negative_slope=0.2),

Linear (in_features=64, out_features=64, bias=True)

LeakyRelLU (negative_slope=0.2)

Linear (in_features=64, out_features=8, bias=True))

 Transition function: Here, we consider 8 different MLPs, each of which has the following architecture:

— Linear (in_features=17, out_features=64, bias=True)

LeakyRelLU (negative_slope=0.2),

Linear (in_features=64, out_features=64, bias=True)

LeakyRelLU (negative_slope=0.2)

Linear (in_features=64, out_features=1, bias=True))

D.2. Cartpole experiments
* Encoder
— Conv2d(in_channels=3, num_filter=32, kernel=3, stride=2, pad=1l)

— GeLU()
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— Conv2d (in_channels=32, num_filter=32, kernel=3, stride=2, pad=l)
- GeLU ()

— Conv2d (in_channels=32, num_filter=64, kernel=3, stride=2, pad=1l)
- GeLU ()

— Conv2d (in_channels=64, num_filter=64, kernel=3, stride=2, pad=l)
- GelU ()

- Flatten()

— Linear (1024, 8)

¢ Decoder

— Linear(8,1024)

— UnFlatten (4x4x64)

— ConvTranspose2d(in_.channels=64, num_filter=64, kernel=3, stride=2, pad=1l,
output_padding=1)

- GeLU ()

— ConvTranspose2d(in_channels=64, num_-filter=32, kernel=3, stride=2, pad=l,
output_padding=1)

- GeLU ()

— ConvTranspose2d(in_channels=32, num_-filter=32, kernel=3, stride=2, pad=l,
output_padding=1)

- GeLU ()

— ConvTranspose2d(in_channels=32, num_filter=1, kernel=3, stride=2, pad=1,
output_padding=1)

— sigmoid()
 Transition function: Here, we consider 8 different MLPs, each of which has the following architecture:

— Linear (in_features=17, out_features=64, bias=True)

LeakyReLU (negative_slope=0.2)

Linear (in_features=64, out_features=64, bias=True)

LeakyRelLU (negative_slope=0.2)

Linear (in_features=64, out_features=1, bias=True))

* Normalizing Flow: As the nonstationary prior for the noise variables, we use 1D conditional normalizing flows, which
are 1-layer neural spline flows conditioned on the auxiliary variable u. Before taken as, the auxiliary variable u is
embedded. This is done by a single linear layer with 32 dimensions in the synthetic experiments, and an MLP with the
following architecture in the cartpole experiment:

— Linear (in_features=7, out_features=64, bias=True)
— LeakyReLU (negative_slope=0.2)
— Linear (in_features=64, out_features=32, bias=True)

15



