
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Identifying latent state transition in non-linear dynamical systems

Anonymous Authors1

Abstract

This work aims to improve generalization and in-
terpretability of dynamical systems by recovering
the underlying low-dimensional latent states and
their time evolutions. Previous work on disentan-
gled representation learning within the realm of
dynamical systems focused on the latent states,
possibly with linear transition approximations. As
such, they cannot identify nonlinear transition dy-
namics, and hence fail to reliably predict complex
future behavior. Inspired by advances in nonlinear
ICA, we propose a state-space modeling frame-
work in which we can identify not just the latent
states but also the unknown transition function
that maps past states to the present. We introduce
a practical algorithm based on variational auto-
encoders and empirically demonstrate in realistic
synthetic settings that we can recover latent state
dynamics with high accuracy, and correspond-
ingly achieve high future prediction accuracy.

1. Introduction
We focus on the problem of understanding the underly-
ing states of a target dynamical system from its low-level,
high-dimensional sensory measurements. This task is preva-
lent across various fields, including reinforcement learning
(Hafner et al., 2019a) and robotics (Levine et al., 2016). As
a running example of such a system, we consider a drone
controlled by an autonomous system. Here, the observa-
tional data would be a video stream (Figure 1 (b)) instead
of the full state of the system comprised of absolute posi-
tion, velocity, and acceleration in 3D (Figure 1 (a)). This
system may have additional variables influencing the state
evolution, e.g., the strength and direction of the wind at
any time. The main objective of this work is to learn latent
representations and state transition functions that would be
useful for downstream tasks, e.g., computing control signals

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the SPIGM workshop at ICML
2024. Do not distribute.

for optimal transport of the drone from point A to point B.

Due to the partially observed nature of these problems,
learning dynamics directly in the data space (e.g., pixel
space) is not feasible, and previous works often focus on
learning latent dynamical systems (Hafner et al., 2019b).
However, such latent models commonly are not guaran-
teed to recover the true underlying states and transitions
(non-identifiability), which results in entangled representa-
tions, lack of generalization across new domains, and poor
interpretability (Schmidhuber, 1992; Bengio et al., 2013).
Most existing identifiable methods (Hyvarinen & Morioka,
2016; 2017; Hyvarinen et al., 2019; Khemakhem et al.,
2020; Klindt et al., 2020) assume mutually independent
components that do not affect each other. This is unrealistic
for dynamical systems as the present state of the system
depends on the past states, i.e., the transition function propa-
gates the system state by (nonlinearly) mixing the past state
components (Morioka et al., 2021; Yao et al., 2021; 2022).

Recently, Yao et al. (2021; 2022) showed that under cer-
tain assumptions, it is possible to identify or recover the
true unobserved latent states in a dynamical system (up to
component-wise transformations). Morioka et al. (2021)
introduce a framework to estimate the process noise, which
represents the stochastic impulses fed to a dynamical pro-
cess. Yao et al. (2021) utilizes non-stationarity noise to
recover latent states from sequential data. Instead, Yao et al.
(2022) exploits temporally autocorrelated latent states, while
including factors modulating the dynamics and generative
functions. These attempts lead to provably identifiable rep-
resentations, but they only propose non-parametric or linear
approximations to the unobserved state transition function.
While their nonparametric approximations cannot be un-
rolled over time, a linear model falls short of predicting
future states of complicated systems.

Our contributions. We present the first framework that al-
lows for the identification of the unknown transition function
alongside latent states and the generative function (see Fig-
ure 1). Following previous works (Klindt et al., 2020; Yao
et al., 2021; 2022), we first establish the identifiability of la-
tent states (Figure 1: Theorem 1). Different from them, our
framework allows estimating the process noise, representing
the random impulses fed to a dynamical system. Inspired
by Morioka et al. (2021), we show that the estimation of the

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Identifying latent dynamical systems

(b) Raw
observation

signal

(c) Our identifiable dynamical system

Nonlinear generative function: Learned inverse map:

Theorem 1

Theorem 2
(a) Unobserved physical system

Ground truth
transition function

...

Estimated
transition functionIdentified transition functions

Identified latent states

Time

...

Figure 1. Sketch of our method and main theoretical contribution. (a) We assume an underlying unobserved dynamical system, e.g., a
cartpole, where the full state is composed of the cart position and velocity, and the angle and angular velocity of the pole: [x, ẋ, θ, θ̇]. (b)
We partially observe the system as a sequence of video frames, which are used as input to our method. (c) We learn an inverse generative
function that maps the raw observation signals to the latent state variables, as well as a transition function that maps the past latent states
to the present latent state. Identifiability of the latent states is ensured by Theorem 1 (Yao et al., 2021). In addition to this, our main
contribution is the identifiability of the transition function ensured by Theorem 2.

correct transition function is ensured by restricting the pro-
cess noise and the transition function (Figure 1: Theorem
2). We propose an evidence lower bound that allows us to
recover true underlying factors in the limit of infinite data.
Our empirical findings show that our framework manages
to predict the future states of an unknown system.

2. Identifiable dynamical system framework
We are interested in inferring latent dynamical systems from
high-dimensional sensory observations x1:T , where t is the
time index and xt ∈ RD. We assume a sequence of latent
states z1:T , with zt ∈ RK , are instantaneously mapped to
observations via a generative function g : RK → RD: xt =
g(zt). The latent states z1:T evolve according to Markovian
dynamics: zt = f(zt−1, st), where f : R2K → RK is an
auto-regressive transition function and st ∈ RK represents
additional variables influencing the dynamics, e.g., random
forces acting on the system or control signals.

Augmented dynamics. We introduce the following gen-
erative process with augmented transition and generative
functions (Morioka et al., 2021):

z0 ∼ pz0
(z0), (1)

st ∼ ps|u(st|u) =
∏
k

psk|u(skt|u), (2)[
zt

zt−1

]
= faug

([
st

zt−1

])
=

[
f(zt−1, st)

zt−1

]
, (3)[

xt

xt−1

]
= gaug

([
zt

zt−1

])
=

[
g(zt)

g(zt−1)

]
, (4)

∀t ∈ 1, . . . , T . Above, u is an auxiliary variable modu-

lating the noise distribution ps|u. Inspired by Hyvarinen &
Morioka (2016; 2017), we consider the following cases: (i)
setting u to an observed regime index leads to a nonsta-
tionary process noise, as a real-world example, consider a
flying drone under different precipitation conditions, which
can be observed up to a noise level; and (ii) setting u = st−1

implies an autocorrelated noise process, as a real-world
example, consider a flying drone in a windy environment
where the wind speed or direction changes continuously.

2.1. Identifiability theory

Let M = (faug,gaug, ps|u) denote the ground-truth model.
We learn a model M̂ = (f̂aug, ĝaug, p̂s|u) by fitting the
observed sequences. We make the following assumptions:

(A0) Distribution matching (Klindt et al., 2020; Yao et al.,
2021; 2022) The learned and the ground-truth observa-
tion densities match everywhere.

(A1) Injectivity and bijectivity (Morioka et al., 2021)
The generator functions g and ĝ are injective, which
implies that the augmented generative functions
gaug, ĝaug are injective. The augmented dynamics
functions faug, f̂aug are bijective.

Contrary to Morioka et al. (2021), which use an aug-
mented transition model on observations (xt−1,xt),
our formulation captures the functional dependence be-
tween a latent pair (zt−1, zt) and the process noise st.

(A2) Decomposed transitions (Klindt et al., 2020; Yao
et al., 2021; 2022; Song et al., 2023) Each dimension
of the transition function {fk}Kk=1 is influenced by

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Identifying latent dynamical systems

a single process noise variable skt. The output is a
single latent variable zkt: zkt = fk(zt−1, skt), for k ∈
1, . . . ,K and t ∈ 1, . . . , T .

(A3) Conditionally independent noise. Let qk(skt,u) =
log p(skt|u) denote the conditional density of the noise
variable skt. Let ηk(zkt,u) = log p(zkt|zt−1,u)
denote the conditional density of the state variable zkt.
Conditioned on the auxiliary variable u, we assume:

• Each noise variable st ∈ RK is independent over
its dimensions s1t, . . . , sKt,∀t ∈ 1, . . . , T :
log p(st|u) =

∑K
k=1 log p(skt|u) =∑K

k=1 qk(skt,u).
• the past latent state zt−1 and the present noise st

are independent: st ⊥⊥ zt−1|u.

Since st ⊥⊥ zt−1|u and each dimension of the
transition function fk(zt−1, skt) is a function of
only a single (conditionally) independent noise
variable skt, the conditional density of the latent
pair (zt, zt−1) also factorizes: log p(zt|zt−1,u) =∑K

k=1 log p(zkt|zt−1,u) =
∑K

k=1 ηk(zkt,u). The
same is assumed for the learned conditional density:
log p(ẑt|ẑt−1,u) =

∑K
k=1 log p(ẑkt|ẑt−1,u).

(A4) Sufficient variability of latent state zt (Yao
et al., 2021). For any zt, there exist some 2K
values of u: u1, . . . ,u2K , such that the 2K vectors
v(zt,u1), . . . ,v(zt,u2K) are linearly independent
for some index l of the auxiliary variable u, where

v(zt,u) =

(
∂2η1(z1t,u)

∂z1t∂ul
, · · · , ∂

2ηK(zKt,u)

∂zKt∂ul
,

∂3η1(z1t,u)

∂z21t∂ul
, · · · , ∂

3ηK(zKt,u)

∂z2Kt∂ul

)
∈ R2K .

(A5) Sufficient variability of process noise st. For any st,
there exist some 2K values of u: u1, . . . ,u2K , such
that the 2K vectors w(st,u1), . . . ,w(st,u2K) are
linearly independent for some index l of the auxiliary
variable u, where

w(st,u) = (
∂2q1(s1t,u)

∂s1t∂ul
, · · · , ∂

2qK(sKt,u)

∂sKt∂ul
,

∂3q1(s1t,u)

∂s21t∂ul
, · · · , ∂

3qK(sKt,u)

∂s2Kt∂ul
∈ R2K .

2.2. Main theoretical contribution

In this section, we state our main theoretical contribution,
that is, the identifiability result for the dynamical function f
(Theorem 2). For completeness, we start with a theorem on
the identifiability result for the conditionally independent la-
tent states zt|zt−1,u (Theorem 1), which Yao et al. (2021)

established for the nonstationary noise case. The proofs are
detailed in Appendices A.3 and A.4.

Theorem 1. Under assumptions (A0, A1, A2, A3, A4),
latent states zt = h(ẑt) are identifiable up to a function
composition h = πz ◦ rz of a permutation πz : [K] → [K]
and element-wise invertible transformation rz : RK → RK

(Yao et al., 2021). Or equivalently, the same follows for the
generative function g ◦ h = ĝ.

Theorem 2. Under assumptions (A0, A1, A2, A3, A4,
A5), the process noise st = k(ŝt) is identifiable up to a
function composition k = πs ◦ rs of a permutation πs :
[K] → [K] and an element-wise invertible transformation
rs : RK → RK . Equivalently, the dynamical function
h−1
aug ◦ faug ◦ kaug = f̂aug is identifiable up to a function

composition kaug = [k,h] = π ◦ r of a permutation π =
[πs, πz] : [2K] → [2K] and an element-wise invertible
transformation r = [rs, rz] : R2K → R2K , where Theorem
1 already proves that h−1

aug = [h−1,h−1] is an invertible
element-wise transformation.

3. Practical implementation using variational
inference

We turn our theoretical framework into a practically usable
implementation using variational inference. For space con-
siderations, we defer the details to Appendix B. We present
the below algorithm for implementation details and Figure 4
for architecture details.

Algorithm 1 Practical learning algorithm
Requires: Variational posterior networks (ICEncoder and
NoiseEncoder) and Decoder.

1. Encode initial condition parameters: µz0 , log σ
2
z0 =

ICEncoder(x1:Tic)

2. Sample initial condition: z0 ∼ N (µz0 , σ
2
z0I)

3. For t ∈ 1, . . . , T :

(a) Encode noise parameters: µst , log σ
2
st =

NoiseEncoder(x1:t, zt−1)

(b) Sample noise: st ∼ N (µst , σ
2
stI)

(c) Compute the next latent state: zt = f(st, zt−1)

(d) Decode: xt = Decoder(zt)

4. Compute ELBO: L = LR − βLKL. Samples {s1:T , z0:T }
are used to approximate LKL.

5. Update the parameters {θ, ϕ}.

4. Synthetic experiment
As common in nonlinear ICA literature (Hyvarinen et al.,
2019; Morioka et al., 2021; Yao et al., 2021; 2022), we set

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Identifying latent dynamical systems

Table 1. Synthetic experiment results (mean, std.dev. across 5 runs). For methods that cannot predict the future, we leave the MSE[x̄future[·]]
rows empty (N/A). Likewise, we compute MCC[s̄train] only for LEAP and our method as others do not maintain process noise variables.

MODELS

METRICS β-VAE PCL TCL iVAE SLOWVAE KALMANVAE LEAP-LIN LEAP-NP OURS

MCC[z̄train] ↑
0.60 0.57 0.39 0.58 0.41 0.64 0.68 0.89 0.95

(±0.05) (±0.05) (±0.07) (±0.06) (±0.05) (±0.05) (±0.03) (±0.04) (±0.08)

MCC[s̄train] ↑ N/A N/A N/A N/A N/A N/A 0.14 0.26 0.66
(±0.01) (±0.04) (±0.09)

MSE[x̄future[2]] ↓ N/A N/A N/A N/A N/A 1.27 0.22 N/A 0.06
(±0.19) (±0.03) (±0.01)

MSE[x̄future[4]] ↓ N/A N/A N/A N/A N/A 1.32 0.18 N/A 0.09
(±0.27) (±0.03) (±0.01)

MSE[x̄future[8]] ↓ N/A N/A N/A N/A N/A 1.72 0.59 N/A 0.21
(±0.82) (±0.13) (±0.03)

Figure 2. Model predictions (red) in the data space (black and
blue dots represent train and future points respectively) with the
estimated uncertainties (±2 std.dev). We observe near-perfect
predictions and low uncertainty for the input data (the first Ttrain =
T0 + Tdyn = 6 time points) while the uncertainty grows as we
unroll over time (the next Tfuture = 8 time points). Further, the
uncertainty grows even more when the model predictions are off.
Therefore, almost all test points lie in the ±2 std region, reflecting
the high calibration level our probabilistic model attains.

up a synthetic experiment to show that our model recovers
the latent dynamics, and hence achieves a higher future
prediction accuracy.

Dataset. As in Hyvarinen et al. (2019); Yao et al. (2021;
2022), we set up a synthetic data experiment containing
multivariate time-series. Same as Yao et al. (2021), we use
2-linear layer random MLPs as generative and transition
functions (see Appendix C for details). Each sequence has
length T = T0+Tdyn+Tfuture = 2+4+8 = 14. We assume
a second-order Markov transition (lag=2), and first T0 = 2
states are spared as initial states. The next 4 observations
x1:4 are used for training the dynamical model. The last 8
observations x5:12 are used for assessing the performance of
future estimation. We choose the future prediction horizon
Tfuture = 8 as the double of the training sequence length. If
the dynamics are truly identified, the model should predict
future states well, even for a longer horizon.

Metrics. We denote the latent states and the process noise
for first Ttrain steps by z̄train = z0:Ttrain and s̄train = s1:Ttrain re-
spectively. For latent system identification, we measure the
validation MCC for the latent sequence z̄train: MCC[z̄train],

and the noise sequence s̄train: MCC[s̄train]. For future pre-
diction performance, we measure the mean squared error
(MSE) on the future observations MSE[x̄future]. We denote
the future observations for the subsequent Tfuture steps by
x̄future = xTtrain+1:. When Tfuture takes different values,
e.g., Tfuture ∈ {2, 4, 8}, we denote the future metrics by
MSE[x̄future[2]], MSE[x̄future[4]] and MSE[x̄future[8]].

Baseline methods. We compare our method with sev-
eral nonlinear ICA methods: β-VAE (Higgins et al., 2018),
TCL (Hyvarinen & Morioka, 2016), iVAE (Khemakhem
et al., 2020), PCL (Hyvarinen & Morioka, 2017), SLOW-
VAE (Klindt et al., 2020), LEAP (Yao et al., 2021) with
its two versions having linear and nonparametric transition
functions LEAP-LIN and LEAP-NP; and a disentangled deep
state-space model KALMANVAE (Fraccaro et al., 2017).

Main results. We show MCC[z̄train], MCC[s̄train] and
MSE[x̄future] results in Table 1. Our model recovers latent
states z and process noise s better than baselines, as demon-
strated by a higher correlation with the true latent states
and process noise. This leads to a higher accuracy in future
prediction, in terms of MSE[x̄future] with prediction horizons
{2, 4, 8}. We remind that 8-step future prediction corre-
sponds to the double the amount of dynamics steps the mod-
els see during training. As the prediction horizon increases,
we see that the difference in the future prediction perfor-
mance between our method and baselines also increases.

5. Discussion
We present the first latent dynamical system that allows
for identification of the unknown transition function, and
theoretically proved its identifiability based on standard as-
sumptions. We evaluated our approach on synthetic data and
showed that (i) the estimated latent states correlated strongly
with the ground truth, (ii) our method had the highest future
prediction accuracy with calibrated uncertainties. The main
limitation stems from identifiability assumptions adopted.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Identifying latent dynamical systems

References
Bengio, Y., Courville, A., and Vincent, P. Representation

learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence, 35(8):
1798–1828, 2013.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios,
G. Neural spline flows. Advances in neural information
processing systems, 32, 2019.

Fraccaro, M., Kamronn, S., Paquet, U., and Winther, O. A
disentangled recognition and nonlinear dynamics model
for unsupervised learning. Advances in neural informa-
tion processing systems, 30, 2017.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019a.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019b.

Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey,
L., Rezende, D., and Lerchner, A. Towards a defi-
nition of disentangled representations. arXiv preprint
arXiv:1812.02230, 2018.

Hyvarinen, A. and Morioka, H. Unsupervised feature ex-
traction by time-contrastive learning and nonlinear ica.
Advances in neural information processing systems, 29,
2016.

Hyvarinen, A. and Morioka, H. Nonlinear ica of temporally
dependent stationary sources. In Artificial Intelligence
and Statistics, pp. 460–469. PMLR, 2017.

Hyvärinen, A. and Pajunen, P. Nonlinear independent com-
ponent analysis: Existence and uniqueness results. Neural
networks, 12(3):429–439, 1999.

Hyvarinen, A., Sasaki, H., and Turner, R. Nonlinear ica us-
ing auxiliary variables and generalized contrastive learn-
ing. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 859–868. PMLR, 2019.

Hyvärinen, A., Khemakhem, I., and Morioka, H. Nonlinear
independent component analysis for principled disentan-
glement in unsupervised deep learning. Patterns, 4(10),
2023.

Khemakhem, I., Kingma, D., Monti, R., and Hyvarinen, A.
Variational autoencoders and nonlinear ica: A unifying
framework. In International Conference on Artificial
Intelligence and Statistics, pp. 2207–2217. PMLR, 2020.

Klindt, D., Schott, L., Sharma, Y., Ustyuzhaninov, I., Bren-
del, W., Bethge, M., and Paiton, D. Towards nonlinear
disentanglement in natural data with temporal sparse cod-
ing. arXiv preprint arXiv:2007.10930, 2020.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end
training of deep visuomotor policies. Journal of Machine
Learning Research, 17(39):1–40, 2016.

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S.,
Schölkopf, B., and Bachem, O. Challenging common
assumptions in the unsupervised learning of disentangled
representations. In international conference on machine
learning, pp. 4114–4124. PMLR, 2019.

Morioka, H., Hälvä, H., and Hyvarinen, A. Independent
innovation analysis for nonlinear vector autoregressive
process. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1549–1557. PMLR, 2021.

Schmidhuber, J. Learning factorial codes by predictability
minimization. Neural computation, 4(6):863–879, 1992.

Song, X., Yao, W., Fan, Y., Dong, X., Chen, G., Niebles,
J. C., Xing, E., and Zhang, K. Temporally disentangled
representation learning under unknown nonstationarity.
arXiv preprint arXiv:2310.18615, 2023.

Stimper, V., Liu, D., Campbell, A., Berenz, V., Ryll, L.,
Schölkopf, B., and Hernández-Lobato, J. M. normflows:
A pytorch package for normalizing flows. arXiv preprint
arXiv:2302.12014, 2023.

Xi, Q. and Bloem-Reddy, B. Indeterminacy in generative
models: Characterization and strong identifiability. In
International Conference on Artificial Intelligence and
Statistics, pp. 6912–6939. PMLR, 2023.

Yao, W., Sun, Y., Ho, A., Sun, C., and Zhang, K. Learning
temporally causal latent processes from general temporal
data. arXiv preprint arXiv:2110.05428, 2021.

Yao, W., Chen, G., and Zhang, K. Temporally disentangled
representation learning. Advances in Neural Information
Processing Systems, 35:26492–26503, 2022.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Identifying latent dynamical systems

A. Identifiability Theory
In this section, we discuss the identifiability of the latent states and the transition function, and provide the detailed proofs.

We assume a latent dynamical system which is viewed as high-dimensional sensory observations x1:T , where t is the time
index and xt ∈ RD. We assume a sequence of latent states z1:T , with zt ∈ RK , are instantaneously mapped to observations
via a generative function g : RK → RD:

xt = g(zt). (5)

The latent states z1:T evolve according to Markovian dynamics:

zt = f(zt−1, st), (6)

where f : R2K → RK is an auto-regressive transition function and st ∈ RK corresponds to process noise.

Our aim is to jointly identify the latent states z1:T , the dynamics function f , and the process noise s1:T . We remind that
previous works (Klindt et al., 2020; Yao et al., 2021; 2022; Song et al., 2023) have concentrated on identifying the latent
states z1:T , possibly with linear transition approximations, but not a general transition function f . Yet, without a general f ,
the methods can estimate the underlying states only when corresponding observations are provided or provide simplistic
approximations in their absence. Hence, they cannot predict complex future behavior reliably.

Notice that learning a provably identifiable transition function f : R2K → RK is not straightforward, since the transition
function is not injective. A naive solution can be to simply use a plug-in method (Yao et al., 2021; 2022) for identifying the
latents and then fitting a transition function f on the estimated latents, however, we show empirically in our experiments that
it leads to poor prediction accuracy for the future behavior.

A.1. Nonlinear ICA

The nonlinear ICA assumes that the data is generated from independent latent variables z with a nonlinear generative
function g, following Equation (5). It is well-known to be non-identifiable for i.i.d. data (Hyvärinen & Pajunen, 1999;
Locatello et al., 2019). Recent seminal works (Hyvarinen & Morioka, 2016; 2017; Hyvarinen et al., 2019) showed that
autocorrelation and nonstationarity existent in non-i.i.d. data can be exploited to identify latent variables in an unsupervised
way. Compared to the vanilla ICA that considers independence only along latent dimensions, the idea of these works is
to introduce additional independence constraints reflecting the existent structure in the data. These additional constraints
are formulated mathematically as identifiability assumptions, which restrict the space of the generative function g and the
space of the latent prior pz (Hyvärinen et al., 2023; Xi & Bloem-Reddy, 2023). The key insight is that, after sufficiently
constraining the latent prior pz using such assumptions, identifying the latent variables zt and identifying the injective
generative function g become equivalent tasks (Xi & Bloem-Reddy, 2023).

A.2. Augmented dynamics for identifiable systems

To identify the transition function f such that zt = f(zt−1, st), we will use the same insight: After sufficiently constraining
the noise prior ps; given an identifiable latent pair (zt−1, zt), identifying the noise variables st and identifying the bijective
dynamics function f should be equivalent. Hence, in addition to the identifiability assumptions restricting the space of the
generative function g and the space of the latent prior pz, we will further restrict the space of the dynamics function f , and
the space of the noise prior ps.

First, let us note that the identifiability of the process noise st is not trivial since the dynamics function f : R2K → RK

is not an injective function and hence it does not have an inverse. Following the independent innovation analysis (IIA)
framework Morioka et al. (2021), we trivially augment the image space of the transition function and denote the bijective
augmented function by faug : R2K → R2K :[

zt
zt−1

]
= faug

([
st

zt−1

])
=

[
f(zt−1, st)

zt−1

]
(7)

Contrary to Morioka et al. (2021), which use an augmented autoregressive model on observations (xt−1,xt), our formulation
captures the functional dependence between a latent pair (zt−1, zt) and the process noise st.

Next, we make the standard assumption in the temporal identifiability literature (Klindt et al., 2020; Yao et al., 2021; 2022;
Song et al., 2023) that each dimension of the transition function {fk}Kk=1 is influenced by a single process noise variable

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Identifying latent dynamical systems

skt. The output is a single latent variable zkt:

zkt = fk(zt−1, skt), for k ∈ 1, . . . ,K and t ∈ 1, . . . , T. (8)

Notice that this does not impose a limitation on the generative model, it just creates a segmentation between noise variables
and latent variables. For example, if this assumption is violated and there exists a noise variable skt that affects both zit and
zjt with i ̸= j, then the noise variable skt can instead be modeled as a latent variable zkt.

We re-state the full generative model for completeness:

z0 ∼ pz0
(z0), # initial state (9)

st ∼ ps|u(st|u) =
∏
k

psk|u(skt|u), ∀t ∈ 1, . . . , T, # process noise (10)[
zt

zt−1

]
= faug

([
st

zt−1

])
=

[
f(zt−1, st)

zt−1

]
, ∀t ∈ 1, . . . , T, # state transition (11)[

xt

xt−1

]
= gaug

([
zt

zt−1

])
=

[
g(zt)

g(zt−1)

]
, ∀t ∈ 2, . . . , T. # observation mapping (12)

where u is an auxiliary variable, which modulates the noise distribution ps|u.

A.3. Proof of Theorem 1: Identifiability of the latent states zt

This result is already shown in (Yao et al., 2021, Appendix A.3.2). Here, we follow Klindt et al. (2020); Yao et al. (2021;
2022) and repeat their results in our notation as we also make use of this result in Appendix A.4.

The injective functions g, ĝ : RK → RD are bijective between the latent space RK and the observation space X ⊂ RD. We
denote the inverse functions from the restricted observation space to the latent space by g−1, ĝ−1. This is also implicitly
assumed in (Klindt et al., 2020; Yao et al., 2021; 2022; Song et al., 2023).

We have

xt = ĝ(ẑt) =

(
(g ◦ g−1) ◦ ĝ︸ ︷︷ ︸

h

)
(ẑt) =⇒ ĝ = g ◦ h =⇒ zt = h(ẑt). (13)

The function h : ẑt 7→ zt maps the learned latents to the ground-truth latents. To show it is bijective, we need to show
it is both injective and surjective. Following Klindt et al. (2020), it is injective since it is a composition of injective
functions. Assume it is not surjective, then there exists a neighborhood Uz for which g(Uz) /∈ ĝ(RK). This implies that the
neighborhood of images generated by g(Uz) has zero density under the learned observation density pĝaug,f̂aug,p̂s|u

(g(Uz)) =

0, while having non-zero density under the ground-truth observation density pg,faug(x): pgaug,faug,ps|u(g(Uz)) > 0. This
contradicts the assumption that the observation densities match everywhere. Then, h is surjective.

We perform change of variables on the conditional latent density:

log p(ẑt|ẑt−1,u) = log p(zt|zt−1,u) + log |Ht|, (14)
K∑

k=1

log p(ẑkt|ẑt−1,u)︸ ︷︷ ︸
η̂k(ẑkt,u)

=

K∑
k=1

log p(zkt|zt−1,u)︸ ︷︷ ︸
ηk(zkt,u)

+ log |Ht| (15)

K∑
k=1

η̂k(ẑkt,u) =

K∑
k=1

ηk(zkt,u) + log |Ht| (16)

where Ht = Jh(ẑt) is the Jacobian matrix of h evaluated at ẑt. First, we take derivatives of both sides with respect to ẑit:

η̂i(ẑit,u) =

K∑
k=1

∂ηk(zkt,u)

∂zkt

∂zkt
∂ẑit

+
∂ log |Ht|

∂ẑit
(17)

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Identifying latent dynamical systems

Second, take derivatives with respect to ẑjt:

0 =

K∑
k=1

(
∂2ηk(zkt,u)

∂z2kt

∂zkt
∂ẑit

∂zkt
∂ẑjt

+
∂ηk(zkt,u)

∂zkt

∂z2kt
∂ẑit∂ẑjt

)
+

∂ log |Ht|
∂ẑit∂ẑjt

(18)

Lastly, take derivatives with respect to ul:

0 =

K∑
k=1

(
∂3ηk(zkt,u)

∂z2kt∂ul

∂zkt
∂ẑit

∂zkt
∂ẑjt

+
∂2ηk(zkt,u)

∂zkt∂ul

∂z2kt
∂ẑit∂ẑjt

)
, (19)

=

K∑
k=1

(
∂3ηk(zkt,u)

∂z2kt∂ul
[Ht]ki[Ht]kj +

∂2ηk(zkt,u)

∂zkt∂ul

∂z2kt
∂ẑit∂ẑjt

)
, (20)

since the Jacobian Ht does not depend on u. Using the sufficient variability assumption (A4) for the latent states zt, we
can plug in 2K values of u1, . . . ,u2K for which the partial derivatives of the log conditional density ηk(zkt,u) form
linearly independent vectors v(zt,u). We see that the coefficients of these linearly independent vectors have to be zero:
[Ht]ki[Ht]kj = 0. This implies that the Jacobian matrix Ht of the transformation zt = h(ẑt) has at most 1 nonzero element
in its rows. Therefore, the learned latents ẑt are equivalent to the ground-truth latents zt up to permutations and invertible,
element-wise nonlinear transformations.

A.4. Proof of Theorem 2: Identifiability of the latent transition f

Here, we prove our main theoretical contribution, Theorem 2. We start by writing the generative process for the observation
pair (xt−1,xt): [

xt

xt−1

]
= (ĝaug ◦ f̂aug)

([
ŝt

ẑt−1

])
=

[
(ĝ ◦ f̂)(ẑt−1, ŝt)

ĝ(ẑt−1)

]
(21)

= (gaug ◦ faug) ◦ (gaug ◦ faug)−1 ◦ (ĝaug ◦ f̂aug)︸ ︷︷ ︸
kaug

([
ŝt

ẑt−1

])
(22)

The function kaug : R2K → R2K maps the learned pair (ŝt, ẑt−1) to the ground-truth pair (st, zt−1):[
st

zt−1

]
= kaug

([
ŝt

ẑt−1

])
=

[
k1(ŝt, ẑt−1)
k2(ŝt, ẑt−1)

]
. (23)

Similar to the function h being bijective, it follows that kaug is also bijective.

Now, we want to show that the augmented function kaug decomposes into invertible block-wise functions k1,k2 : RK →
RK such that (i) k1 only depends on ŝt, i.e., st = k1(ŝt) and (ii) k2 only depends on ẑt−1, i.e., zt−1 = k2(ẑt−1). It is easy
to show (ii), since k2 = idz ◦ g−1 ◦ ĝ ◦ idẑ = h and we have already shown in Appendix A.3 that the function h : ẑt 7→ zt
is equal to h = g−1 ◦ ĝ and bijective.[

st
zt−1

]
= kaug

([
ŝt

ẑt−1

])
=

[
k1(ŝt, ẑt−1)
h(ẑt−1)

]
. (24)

To show (i), we start by performing change of variables for the transformation kaug : (ŝt, ẑt−1) 7→ (st, zt−1):

log p(ŝt, ẑt−1|u) = log p(kaug(ŝt, ẑt−1)|u) + log |Jkaug(ŝt, ẑt−1)|, (25)
= log p([k1(ŝt, ẑt−1),h(ẑt−1)]|u) + log |Jkaug(ŝt, ẑt−1)|, (26)

where Jkaug(ŝt, ẑt−1) is the Jacobian matrix for the augmented function kaug evaluated at (ŝt, ẑt−1). As the process noise
is temporally independent given u, ŝt ⊥⊥ ẑt−1|u and st ⊥⊥ zt−1|u, we factorize the densities in Equation (26):

log p(ŝt|u) + log p(ẑt−1|u) = log p(k1(ŝt, ẑt−1)|u) + log p(h(ẑt−1)|u) + log |Jkaug(ŝt, ẑt−1)|. (27)

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Identifying latent dynamical systems

The Jacobian Jkaug is upper block-diagonal since zt−1 does not depend on ŝt: Jkaug =

[
∂st
∂ŝt

∗
0 Ht

]
and its log determinant

factorizes log |Jkaug(ŝt, ẑt−1)| = log |Ht|+ log |∂st∂ŝt
|:

log p(ŝt|u) + log p(ẑt−1|u) = log p(k1(ŝt, ẑt−1)|u) + log p(h(ẑt−1)|u) + log |Ht|+ log |∂st
∂ŝt

|. (28)

In addition, the noise is conditionally independent over its dimensions given u. Therefore, we can further factorize the
densities p(ŝt|u) =

∏
k p(ŝkt|u) and p(k1(ŝt, ẑt−1)|u) = p(st|u) =

∏
k p(skt|u) with st = k1(ŝt, ẑt−1):∑

k

log p(ŝkt|u)︸ ︷︷ ︸
q̂k(ŝkt,u)

+ log p(ẑt−1|u) =
∑
k

log p(skt|u)︸ ︷︷ ︸
qk(skt,u)

+ log p(h(ẑt−1)|u) + log |Ht|+ log |∂st
∂ŝt

|, (29)

We take the derivative of both sides with respect to ŝit:

∂q̂i(ŝit,u)

∂ŝit
=

∑
k

∂qk(skt,u)

∂skt

∂skt
∂ŝit

+
∂ log |∂st∂ŝt

|
∂ŝit

. (30)

Next, we take the derivative with respect to ul with l being an arbitrary dimension:

∂2q̂i(ŝit,u)

∂ŝit∂ul
=

∑
k

∂2qk(skt,u)

∂skt∂ul

∂skt
∂ŝit

, (31)

since |∂st∂ŝt
| does not depend on u. Lastly, take the derivative of both sides with respect to ẑj,t−1:

0 =
∑
k

(
∂3qk(skt,u)

∂s2kt∂ul

∂skt
∂ŝit

∂skt
∂ẑj,t−1

+
∂2qk(skt,u)

∂skt∂ul

∂2skt
∂ŝit∂ẑj,t−1

)
. (32)

Inspecting the Equation (32), to ensure the sufficient variability assumption (A5) for the process noise st, the term
∂skt

∂ŝit
∂skt

∂ẑj,t−1
= 0. Following a similar reasoning with Morioka et al. (2021), this implies that any dimension of st does

not depend on ŝt and ẑt−1 at the same time. Since st ⊥⊥ zt−1|u and zt−1 = h(ẑt−1), st has to depend solely on ŝt:
st = k1(ẑt−1, ŝt) = k(ŝt). We conclude that the augmented function kaug decomposes into invertible block-wise functions
k and h: kaug = [k,h]

Now, let’s get back to Equation (31). Denote the Jacobian matrix of function k by Jk and its evaluation at ŝt by Jk(ŝt) = Kt.
Take the derivative of both sides with respect to ŝmt for some index m:

0 =
∑
k

(
∂3qk(skt,u)

∂s2kt∂ul
[Kt]ki[Kt]km +

∂2qk(skt,u)

∂skt∂ul

∂2skt
∂ŝit∂ŝmt

)
. (33)

Inspecting the Equation (33), we see that to ensure the sufficient variability assumption (A5), the product [Kt]ki[Kt]km = 0.
This implies that each dimension skt of the true latent state depends only on a single dimension of the learned process noise
ŝt. Hence, the function k is equal to a composition of permutation and element-wise, invertible nonlinear transformation:
k = π ◦ T .

Following Equation (22), we can write the relationship between the augmented functions as:

gaug ◦ faug ◦ kaug = ĝaug ◦ f̂aug, (34)

ĝ−1
aug ◦ gaug︸ ︷︷ ︸

h−1
aug

◦faug ◦ kaug = f̂aug, (35)

h−1
aug ◦ faug ◦ kaug = f̂aug, (36)

(37)

where h−1
aug = [h−1,h−1]. We have shown that both h and k are compositions of permutations and element-wise invertible

transformations. Hence, the augmented transition function f̂aug is equal to the true augmented transition function faug up to
compositions of permutations and element-wise transformations.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Identifying latent dynamical systems

A.5. Alternative Versions of Sufficient Variability Assumption

If the variable u is an observed categorical variable (e.g., domain indicator), the assumptions (A4, A5) can be written in
an alternative form without partial derivatives with respect to ul, similar to Hyvarinen et al. (2019); Yao et al. (2021). For
example, for the latent states zt, the alternative version of the (A4) takes the form:

• Sufficient variability of latent states for a categorical u (Yao et al., 2021). For any zt, there exist some 2K + 1
values for u: u1, . . . ,u2K , such that the 2K vectors v(zt,uj+1) − v(zt,uj) with j = 0, 1, . . . , 2K, are linearly
independent where

v(zt,u) =

(
∂η1(z1t,u)

∂z1t
, · · · , ∂ηK(zKt,u)

∂zKt
,
∂2η1(z1t,u)

∂z21t
, · · · , ∂

2ηK(zKt,u)

∂z2Kt

)
∈ R2K . (38)

A similar categorical version is provided in (Hyvarinen et al., 2019, Assumption 3), while the continuous version is provided
in the same work (Hyvarinen et al., 2019, Appendix D).

B. Variational inference
Similar to previous works (Yao et al., 2021; 2022), we want to maximize the marginal log-likelihood log p(x1:T |u) that is
obtained by marginalizing over the latent states z1:T and process noise s1:T :

log pθ(x1:T |u) = log

∫
z,s

pθ(x1:T , z0:T , s1:T |u) dz0:T ds1:T , (39)

where we decompose the joint distribution as follows:

pθ(x1:T , z0:T , s1:T |u) = pθ(z0)

T∏
t=1

pθ(st|u) pθ(zt|zt−1, st)︸ ︷︷ ︸
δ(zt−f(st,zt−1))

pθ(xt|zt). (40)

Note that the state transitions pθ(zt|zt−1, st) are assumed to be deterministic. The above integral is intractable due to
non-linear dynamics f and observation g functions. As typically done with the deep latent variable models, we approximate
the log marginal likelihood by a variational lower bound, i.e., we introduce an amortized approximate posterior distribution
qϕ(z0:T , s1:T |x1:T ,u) that decomposes as follows:

qϕ(z0:T , s1:T |x1:T ,u) = qϕ(z0|x1:T ,u)

T∏
t=1

qϕ(st|z0:t−1, s1:t−1,x1:T ,u)︸ ︷︷ ︸
qϕ(st|zt−1,x1:t)

qϕ(zt|z0:t−1, s1:t,u)︸ ︷︷ ︸
qϕ(zt|zt−1,st)

(41)

We simplify the variational posterior q(st|·) as qϕ(st|z0:t−1, s1:t−1,x1:T ,u) = qϕ(st|zt−1,x1:t), corresponding to a
filtering distribution. As in the generative model, we choose qϕ(zt|zt−1, st) = pθ(zt|zt−1, st) = δ (zt − f(st, zt−1)):

qϕ(z0:T , s1:T |x1:T ,u) = qϕ(z0|x1:T)

T∏
t=1

qϕ(st|zt−1,x1:t)pθ(zt|zt−1, st), (42)

where the functional forms of the densities qϕ(z0|·) and qϕ(st|·) are chosen as diagonal Gaussian distributions whose
parameters are computed by recurrent neural networks. The variational lower bound takes the following form:

L(θ, ϕ) = Eqϕ(z0:T ,s1:T)

[
log pθ(x1:T |z1:T) + log

pθ(z0:T , s1:T |u)
qϕ(z0:T , s1:T |x1:T ,u)

]
(43)

=

T∑
t=1

Eqϕ(zt)[log pθ(xt|zt)]︸ ︷︷ ︸
Reconstruction term, LR

+Eqϕ(z0:T ,s1:T)

[
log

pθ(z0:T , s1:T |u)
qϕ(z0:T , s1:T |x1:T ,u)

]
︸ ︷︷ ︸

KL term, LKL

. (44)

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Identifying latent dynamical systems

The reconstruction term can easily be computed in a variational auto-encoder framework. Below, we provide the derivation
of of the KL term:

LKL = Eqϕ(z0:T ,s1:T)

[
log

pθ(z0)

qϕ(z0|x1:T ,u)
+ log

pθ(z1:T , s1:T |u)
qϕ(z1:T , s1:T |x1:T ,u)

]
(45)

= −DKL(qϕ(z0|x1:T ,u)||pθ(z0)) + Eqϕ(z0:T ,s1:T)

[
log

pθ(z1:T , s1:T |u)
qϕ(z1:T , s1:T |x1:T ,u)

]
(46)

= −DKL(qϕ(z0|x1:T ,u)||pθ(z0)) + Eqϕ(z0:T ,s1:T)

[
T∑

t=1

log
pθ(st|u)pθ(zt|zt−1, st)

qϕ(st|zt−1,x1:T ,u)qϕ(zt|zt−1, st)

]
(47)

= −DKL(qϕ(z0|x1:T ,u)||pθ(z0)) +
T∑

t=1

Eqϕ(z0:T ,s1:T)

[
log

pθ(st|u)
qϕ(st|zt−1,x1:T ,u)

]
(48)

= −DKL(qϕ(z0|x1:T ,u)||pθ(z0)) +
T∑

t=1

Eqϕ(st,zt−1|zt−2,st−1,x1:T ,u)

[
log

pθ(st|u)
qϕ(st|zt−1,x1:T ,u)

]
︸ ︷︷ ︸

−Eqϕ(zt−1|zt−2,st−1)[DKL(qϕ(st|zt−1,x1:T ,u)||pθ(st|u))]

(49)

Initial encoding. We map each observation xt to an initial embedding rt via an MLP or CNN depending on the input
modality. Using the first Tic = 4 initial embeddings r1:Tic , an initial condition encoder (MLP) outputs the parameters of the
variational posterior q(z0|x1:Tic) for the initial condition z0. Our ablations showed that the model is rather insensitive to Tic.

Sequence prediction. We start by sampling from the initial value distribution z0 ∼ q(z0|x1:Tic). Next, a forward sequential
layer (RNN + MLP) takes the initial embeddings r1:t up to time t and the (sampled) previous latent state zt−1 as input
[r1:t, zt−1], and outputs the parameters of the variational posterior q(st|x1:t, zt−1) for the noise variables s1:T . For example,
for the first noise variable s1, the variational posterior is of the form q(s1|x1, z0). Subsequently, given a sample from
the noise variable s1 ∼ q(s1|z0,x1) and the sampled initial state z0, we predict the next state z1 ≡ f(z0, s1), or more
specifically: zk1 ≡ fk(z0, sk1) for k ∈ 1, . . . ,K. We model each output k of the transition function fk as a separate MLP,
to encourage the conditional independence of the latent states. We recursively compute the trajectory z2:T of future latent
states and noise posteriors q(s2:T).

Priors and ELBO computation. We assume a standard Gaussian prior for the initial condition p(z0) = N (0, I). The
prior p(st|u) =

∏
k p(skt|u) over the noise variables are 1D trainable conditional flows. To allow for multi-modal prior

distributions for 1D noise variables skt, we choose neural spline flows as the flow architecture (Durkan et al., 2019; Stimper
et al., 2023). For the computation of the KL divergence, the terms containing a conditional flow do not have closed form
solutions. We compute them by a Monte Carlo approximation using the sequence samples {z0:T , s1:T }. Finally, the decoder
d outputs the mean of our Gaussian observation model with fixed variance: p(xt|zt) = N (xt;d(zt), I).

C. Synthetic Data Generation
Similar to Yao et al. (2021; 2022), we set up a synthetic data experiment containing multivariate time-series. We set the
dimension of s, z and x to K = 8. Same as Yao et al. (2021; 2022), we use a 2-linear layer random MLP as the generative
function g, 2-linear layer random MLP as the transition function f and we choose z1:T to be a second-order Markov process,
i.e., zt = f(zt−2, zt−1, st). The number of environments is R = 20. For each environment, we generate 7500/750/750
sequences as train/validation/test data following our generative model. The distribution of the process noise st is conditioned
on the environment index u. Each sequence has length T = T0+Tdyn+Tfuture = 2+4+8 = 14. As we have a second-order
Markov process, first T0 = 2 states are spared as initial states. The next 4 observations x1:4 are used for training the
dynamical model. The last 8 observations x5:12 are used for assessing the performance of future estimation. We choose the
future prediction horizon Tfuture = 8 as the double of the training sequence length. If the dynamics are truly identified, the
model should predict future states well, even for a longer horizon.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Identifying latent dynamical systems

Figure 3. Extended version of Figure 2

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Identifying latent dynamical systems

Figure 4. Diagram of the model architecture: In training, the observation x is passed through the encoder eϕ to get the representation r.
We learn the distribution over the initial latent state z0 conditional on the representations of the first Tic observations (in the diagram, we
show Tic = 1; in our experiments, we use Tic = 2). The latent state is decoded by the decoder dθ to produce the predicted observation x̂
(which is trained to match the corresponding actual observation). The next value of the latent state is computed by the transition function
fθ , which depends both on the previous state and on the process noise s. In training, the process noise s is sampled from the variational
posterior that depends on the previous state as well as on the representation created by a recurrent neural network (GRU) that has received
up to the current observation. In future prediction, the process noise s is sampled from the prior, which is a learned normalizing flow.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Identifying latent dynamical systems

D. Architecture and optimization details
We optimize our model with Adam optimizer. We chose all hyperparameters for our method, two versions of LEAP and
KalmanVAE with cross-validation. In particular, we performed random search as well as Bayesian optimization over
learning rate, weight regularization, the number of layers in all MLPs, and latent dimensionality.

D.1. Synthetic data experiments

• Encoder: Below, the output of encoder base layer goes into encoder rnn layer and s encoder.

– (encoder base layer (MLP)):

* Linear(in features=8, out features=64, bias=True)

* LeakyReLU(negative slope=0.2)

* Linear(in features=64, out features=64, bias=True)

* LeakyReLU(negative slope=0.2)

* Linear(in features=64, out features=64, bias=True)

* LeakyReLU(negative slope=0.2)

* Linear(in features=64, out features=64, bias=True)

– (encoder rnn layer): GRU(in=64, hidden dim=64, output size=64)

– (ic encoder):

* Linear(in features=256, out features=64, bias=True)

* LeakyReLU(negative slope=0.2)

* Linear(in features=64, out features=64, bias=True)

* LeakyReLU(negative slope=0.2)

* Linear(in features=64, out features=16, bias=True)

– (s encoder (MLP)):

* Linear(in features=80, out features=64, bias=True)

* LeakyReLU(negative slope=0.2),

* Linear(in features=64, out features=64, bias=True)

* LeakyReLU(negative slope=0.2),

* Linear(in features=64, out features=16, bias=True)

• Decoder (MLP)

– Linear(in features=8, out features=64, bias=True)

– LeakyReLU(negative slope=0.2),
– Linear(in features=64, out features=64, bias=True)

– LeakyReLU(negative slope=0.2)

– Linear(in features=64, out features=8, bias=True))

• Transition function: Here, we consider 8 different MLPs, each of which has the following architecture:

– Linear(in features=17, out features=64, bias=True)

– LeakyReLU(negative slope=0.2),
– Linear(in features=64, out features=64, bias=True)

– LeakyReLU(negative slope=0.2)

– Linear(in features=64, out features=1, bias=True))

D.2. Cartpole experiments

• Encoder

– Conv2d(in channels=3, num filter=32, kernel=3, stride=2, pad=1)

– GeLU()

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Identifying latent dynamical systems

– Conv2d(in channels=32, num filter=32, kernel=3, stride=2, pad=1)

– GeLU()

– Conv2d(in channels=32, num filter=64, kernel=3, stride=2, pad=1)

– GeLU()

– Conv2d(in channels=64, num filter=64, kernel=3, stride=2, pad=1)

– GeLU()

– Flatten()

– Linear(1024,8)

• Decoder

– Linear(8,1024)

– UnFlatten(4x4x64)

– ConvTranspose2d(in channels=64, num filter=64, kernel=3, stride=2, pad=1,
output padding=1)

– GeLU()

– ConvTranspose2d(in channels=64, num filter=32, kernel=3, stride=2, pad=1,
output padding=1)

– GeLU()

– ConvTranspose2d(in channels=32, num filter=32, kernel=3, stride=2, pad=1,
output padding=1)

– GeLU()

– ConvTranspose2d(in channels=32, num filter=1, kernel=3, stride=2, pad=1,
output padding=1)

– sigmoid()

• Transition function: Here, we consider 8 different MLPs, each of which has the following architecture:

– Linear(in features=17, out features=64, bias=True)

– LeakyReLU(negative slope=0.2)

– Linear(in features=64, out features=64, bias=True)

– LeakyReLU(negative slope=0.2)

– Linear(in features=64, out features=1, bias=True))

• Normalizing Flow: As the nonstationary prior for the noise variables, we use 1D conditional normalizing flows, which
are 1-layer neural spline flows conditioned on the auxiliary variable u. Before taken as, the auxiliary variable u is
embedded. This is done by a single linear layer with 32 dimensions in the synthetic experiments, and an MLP with the
following architecture in the cartpole experiment:

– Linear(in features=7, out features=64, bias=True)

– LeakyReLU(negative slope=0.2)

– Linear(in features=64, out features=32, bias=True)

15

