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Abstract

Dataset condensation is a newborn technique that generates a small dataset that
can be used in training deep neural networks (DNNs) to lower storage and training
costs. The objective of dataset condensation is to ensure that the model trained with
the synthetic dataset can perform comparably to the model trained with full datasets.
However, existing methods predominantly concentrate on classification tasks, pos-
ing challenges in their adaptation to time series forecasting (TS-forecasting). This
challenge arises from disparities in the evaluation of synthetic data. In classifica-
tion, the synthetic data is considered well-distilled if the model trained with the full
dataset and the model trained with the synthetic dataset yield identical labels for
the same input, regardless of variations in output logits distribution. Conversely, in
TS-forecasting, the effectiveness of synthetic data distillation is determined by the
distance between predictions of the two models. The synthetic data is deemed well-
distilled only when all data points within the predictions are similar. Consequently,
TS-forecasting has a more rigorous evaluation methodology compared to classifi-
cation. To mitigate this gap, we theoretically analyze the optimization objective
of dataset condensation for TS-forecasting and propose a new one-line plugin of
dataset condensation for TS-forecasting designated as Dataset Condensation for
Time Series Forecasting (CondTSF) based on our analysis. Plugging CondTSF
into previous dataset condensation methods facilitates a reduction in the distance
between the predictions of the model trained with the full dataset and the model
trained with the synthetic dataset, thereby enhancing performance. We conduct
extensive experiments on eight commonly used time series datasets. CondTSF con-
sistently improves the performance of all previous dataset condensation methods
across all datasets, particularly at low condensing ratios.

1 Introduction

Dataset condensation is a strategy for mitigating the computational demands of training large models
on extensive datasets. It is pointed out by previous works[15, 32] that building foundation models[14,
10, 6, 35, 2, 44] on time series forecasting (TS-forecasting) have become a hot topic. However,
fine-tuning these large models using full time series datasets can entail considerable computational
overhead. Hence, the employment of dataset condensation techniques becomes imperative. In recent
years, various methods have been proposed in the field of dataset condensation, such as matching-
based methods[51, 49, 3, 20, 38, 7, 5, 41, 50, 52, 36] and kernel methods[33, 55]. To date, dataset
condensation methods have achieved success in classification tasks, including image classification[8,
11, 22], graph classification[17, 16, 23, 43, 25, 9, 27] and time series classification[26].
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Figure 1: Left: Difference between evaluation of dataset condensation for classification tasks and time series
forecasting tasks. Right: Comparison in performance of previous methods with and without CondTSF.

However, directly applying these dataset condensation methods designed for classification to the
domain of time series forecasting (TS-forecasting) results in performance degradation. The objective
of dataset condensation is to generate a synthetic dataset so that when the modelMs trained with
the synthetic dataset and the modelMf trained with the full dataset are given identical input, the
two models output similar predictions. However, the concept of similar prediction differs between
classification and TS-forecasting. In classification, as shown in Fig.1(a), predictions are considered
similar ifMs andMf assign the same class label, irrespective of differences in the distribution of
output logits. Conversely, in TS-forecasting, as illustrated in Fig.1(b), the similarity of predictions
fromMs andMf is indicated by the mean squared distance of the predictions. The predictions
are deemed similar only when all data points within the predictions are similar. This distinction in
evaluation indicates TS-forecasting imposes more stringent criteria in discerning similar predictions
compared to classification. It poses a challenge that previous dataset condensation methods based on
classification fail to provide adequate assurance for the similarity between predictions ofMs and
Mf within the realm of TS-forecasting.

To mitigate the gap, we propose a novel one-line dataset condensation plugin designed specifically
for TS-forecasting called Condensation for Time Series Forecasting (CondTSF) based on our
theoretical analysis. We first formulate the optimization objective of dataset condensation for TS-
forecasting. Then we transform the original optimization objective into minimizing the distance
between predictions ofMs andMf . Furthermore, to minimize the distance between predictions
ofMs andMf , we decompose the task into minimizing two terms, namely gradient term and
value term. We theoretically prove that plugging CondTSF into previous methods can minimize the
value term and gradient term synchronously. Therefore, CondTSF serves as an effective plugin to
boost the performance of dataset condensation for TS-forecasting. As depicted in Fig.1(c), plugging
CondTSF into previous methods yields a significant enhancement in performance.

In short, our contributions can be summarized as follows.

• To the best of our knowledge, we are the first to explore dataset condensation for TS-forecasting.
We conduct a theoretical analysis of the optimization objective of dataset condensation for
TS-forecasting, breaking it down into two optimizable terms to facilitate improved optimization.

• Leveraging insights from our theoretical analysis of TS-forecasting, we propose a simple yet
effective dataset condensation plugin CondTSF. Plugging CondTSF into existing methods
enables synchronous optimization of the two terms, leading to performance enhancement.

• We conduct extensive experiments on eight widely used time series datasets to prove the
effectiveness of CondTSF. CondTSF notably improves the performance of all previous dataset
condensation methods across all datasets, particularly under low condensing ratios.

2 Related Works

Time Series Forecasting: Time series forecasting (TS-forecating) is the task of using historical,
time-stamped data to predict future values. Previous works utilize different methods to achieve better
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performance. These models can be mainly categorized into 3 types. (1) Transformer-based Models:
Transformer[40] have shown great success in natural language processing, and models based on
transformers[53, 42, 24, 54] emerged in TS-forecasting fields. (2) MLP-based Models: Efforts to
use MLP-based models have been put into TS-forecasting in recent years[47] since DLinear[45]
triumph transformer-based models with a simple MLP structure. (3) Patch-based Models: These
models[34, 48, 28, 29] focused on learning representation cross patches instead of learning attention
at each time point. Therefore they used a patching strategy before feeding the data to transfomers.

Dataset Condensation: Dataset condensation is a task that aims at distilling a large dataset into
a smaller one so that when a model is trained on the small synthetic dataset and the full dataset
separately, the testing performances of the trained models are similar. Previous works related to
dataset condensation can be divided into 3 classes below. (1) Coreset Selecting Methods: These
methods aim at selecting data with representative features from source dataset to construct a synthetic
dataset[1, 4, 12, 37, 39]. (2) Matching-based Methods: These methods aim at minimizing a specific
metric surrogate model learned from source dataset and synthetic dataset. The defined metrics are
different, including gradient[51, 18, 46], features from the same class[41], distribution of synthetic
data[50, 52] and training trajectories[3, 5, 7, 11, 8]. (3) Kernel-based Methods: These methods aim at
obtaining a closed-form solution for the optimization problem utilizing kernel ridge-regression[20, 33].
In this way, the bi-level optimization problem of dataset condensation is reduced to a single-level
optimization problem. Based on these results, the following works have made significant progress in
different areas, including decreasing training cost and time[55], improving performance[30, 31].

3 Preliminaries

Dataset Condensation for TS-forecasting Given a time series dataset, we split the dataset into a
train set and a test set. In this paper, we denote the train set as f and the test set as x. We denote
the synthetic dataset as s. The synthetic dataset s is a small dataset distilled from the full train set f .
Train set f , test set x, and synthetic dataset s are all vectors. We employMθ as a neural network
parameterized by θ. Without losing generality, we suppose the modelMθ is using historical sequence
xt:t+m with length m to predict future sequence xt+m:t+m+n with length n. Given the test set x,
we formulate the test error ofMθ as the error between the prediction ofMθ on test input xt:t+m

and the test label xt+m:t+m+n, as shown in Eq.1.

Ltest(Mθ,x) ≜
∑
t

||Mθ(xt:t+m)− xt+m:t+m+n||2 (1)

During dataset condensation process, a distribution of initial model parameters Pθ is available for
training model parameter sampling, and the full train set f is available for condensation. Subsequently,
a synthetic dataset s is distilled from the full train set f using dataset condensation methods. During
testing process, initial testing model parameter θ0,test is sampled from Pθ. Since θ0,test is sampled
in the testing process, it’s unavailable during the previous dataset condensation process. Then model
parameters θs,test and θf,test are obtained by training initial testing parameter θ0,test on synthetic
dataset s and the full train set f respectively. The objective of dataset condensation is to ensure
modelMθs,test andMθf,test have comparable performance on test set x. Therefore the practical
optimization objective is to ensure that modelMθs,test trained with synthetic dataset s minimizes
the test error Ltest on test set x. The optimization objective is formulated as Eq.2.

min
s
Ltest(Mθs,test ,x) (2)

4 Method

Since test set x is not available during the dataset condensation process, the original optimization
objective for dataset condensation in Eq.2 is non-optimizable. To mitigate this gap, in the following
sections, we transform the non-optimizable objective into two distinct optimizable terms. Then we
develop methods to optimize the two terms, thereby indirectly optimizing the original objective.

4.1 Decomposition

In this section, we decompose the optimization objective of dataset condensation in Eq.2 into two
optimizable terms for better optimization. In the testing process, the initial testing model parameter
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Figure 2: Complete process of dataset condensation using CondTSF.

θ0,test is sampled from a distribution of initial model parameters Pθ. Then we train θ0,test on the
synthetic dataset s to get model parameter θs,test, and train θ0,test on the full train set f to get model
parameter θf,test. Given test dataset x, the optimization objective is formulated as Eq.3.

min
s
Ltest(Mθs,test ,x)

where Ltest(Mθs,test ,x) =
∑
t

||Mθs,test(xt:t+m)− xt+m:t+m+n||2
(3)

Meanwhile, there is a non-optimizable error ϵ between the prediction of modelMθf,test and the true
label from the test dataset, which is formulated in Eq.4.

xt+m:t+m+n =Mθf,test(xt:t+m) + ϵ (4)

Then we decompose the upper bound of Ltest(Mθs,test ,x) into two terms, as shown in Thm.1. We
utilize Taylor Expansion in the proof of Thm.1. For each real test data xt:t+m, we can arbitrarily
choose position t′ and get synthetic data st′:t′+m. Then we can perform Taylor Expansion with
st′:t′+m to obtain the value ofMθs,test(xt:t+m) andMθf,test(xt:t+m).
Theorem 1. Given arbitrary synthetic data st′:t′+m, the upper bound of the optimization objective
of dataset condensation Ltest(Mθs,test ,x) can be formulated as such

Ltest(Mθs,test ,x) ≤
∑
t

||ϵ||2 + ||Mθs,test(st′:t′+m)−Mθf,test(st′:t′+m)||2︸ ︷︷ ︸
Value Term

+ ||(∇Mθs,test(st′:t′+m)−∇Mθf,test(st′:t′+m))⊤(xt:t+m − st′:t′+m)||2︸ ︷︷ ︸
Gradient Term

(5)

To prove Thm.1, we use linear models for further analysis since linear models can be both effective
and efficient in TS-forecasting[45]. Given a linear model Mθ(x) = θx, its second and higher
order gradient is zero. Therefore first-order Taylor Expansion is sufficient to obtain the accurate
prediction of the model. Meanwhile, ifMθ is a non-linear model, we ignore the higher-order terms of
Taylor Expansion. We prove Thm.1 by applying the property of the first-order Taylor Expansion and
triangular inequality of norm functions. The complete proof is in App.A.1. Hence we decompose the
optimization objective of dataset condensation for TS-forecasting into two optimizable terms, namely
value term and gradient term. For value term, it ensuresMθs,test andMθf,test are similar in
prediction values. For gradient term, it ensures the predictions ofMθs,test andMθf,test are similar
in gradient. Optimizing these two terms can optimize the upper bound of the original optimization
objective, and therefore indirectly optimize the original optimization objective in Eq.3.

4.2 Gradient Term Optimization

We develop a method to optimize gradient term in this section. Given a linear modelMθ(x) = θx,
its gradient on input is∇Mθ(x) = θ⊤. It indicates that the gradient of a linear model on input is the
parameter of the model. We apply Cauchy-Schwarz Inequality to the gradient term and get its upper
bound. We reformulate the gradient term and get its upper bound as shown in Eq.6.

||(∇Mθs,test(st′:t′+m)−∇Mθf,test(st′:t′+m))⊤(xt:t+m − st′:t′+m)||2 (Gradient Term)

= ||(θs,test − θf,test)(xt:t+m − st′:t′+m)||2

≤ ||θs,test − θf,test||2 · ||xt:t+m − st′:t′+m||2
(6)
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Figure 3: Given the same synthetic data as input, all expert models trained on the full train set f provide similar
predictions. The initial parameters of the models are sampled from the same distribution Pθ . The visualization
of this figure utilized MDS[19] algorithm for dimension reduction.

Since test data xt:t+m is not available during the dataset condensation process, the distance between
synthetic data and test data ||xt:t+m − st′:t′+m||2 is not optimizable. Therefore we only need to
optimize the distance between parameters ||θs,test − θf,test||2. All previous dataset condensation
methods based on parameter matching can minimize this distance. Here we utilize MTT[3] as an
example to clarify the optimization process. The optimization objective of trajectory matching is

min
s

||θf,test − θs,test||2

||θf,test − θ0,test||2
(7)

However, since θs,test and θf,test are trained from testing initial parameter θ0,test ∼ Pθ, they are not
available during dataset condensation process. Therefore, in practice, we sample θ00, . . . , θ

k
0 ∼ Pθ as

initial parameters during dataset condensation process. The initial parameters are trained on synthetic
dataset s and full train set f respectively to get θ0s , . . . , θ

k
s and θ0f , . . . , θ

k
f . Then we substitute θs,test,

θf,test and θ0,test in Eq.7 with parameters sampled in dataset condensation, making the optimization
objective optimizable. The practical optimization objective is shown in Eq.8.

min
s

k∑
i=0

||θif − θis||2

||θif − θi0||2
(8)

In practice, θ00, . . . , θ
k
0 and θ0f , . . . , θ

k
f are sampled, trained, and stored in a parameter buffer before

dataset condensation process. It can be concluded that using trajectory matching methods is intuitively
minimizing the distance between θis and θif for all initial parameters θi0 ∼ Pθ. By minimizing the
upper bound of the gradient term, trajectory matching methods indirectly optimize the gradient term.

4.3 Value Term Optimization

We develop an optimization objective to optimize the value term in this section. Since θf,test is
trained from θ0,test, it’s unavailable in dataset condensation process. To mitigate this gap, we prove
that although θf,test is unavailable in dataset condensation process, its predictionMθf,test(st′:t′+m)

is still available. To prove this statement, we sample initial model parameters θ00, . . . , θ
k
0 from Pθ.

Then θ00, . . . , θ
k
0 are all trained with the same full train set f . After training, we get parameters

θ0f , . . . , θ
k
f . It is observed that modelsMθ0

f
, . . . ,Mθk

f
predict similarly given arbitrary synthetic data

st′:t′+m as input.

Since initial testing parameter θ0,test is also sampled from the same distribution Pθ and θf,test is
trained from θ0,test using the same full train set f , the prediction ofMθf ,test is similar to predictions
of an arbitrary expert modelMθi

f
. The conclusion is formulated in Eq.9.

Mθf ,test(st′:t′+m) ≈Mθ0
f
(st′:t′+m) ≈Mθ1

f
(st′:t′+m) ≈ · · · ≈ Mθk

f
(st′:t′+m) (9)
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Algorithm 1 Dataset Condensation with CondTSF (MTT[3] as backbone)

Input: Synthetic data s; Parameter buffer {(θ0, θf )}k; Synthetic learning rate α; Trajectory matching
epochs N ; Total condensation epochs E; Additive update ratio β; Gap of epochs G between
using CondTSF

Output: Optimized synthetic data s
1: Split s into training sets {(st:t+m, st+m:t+m+n)}l
2: for each condensation epoch e in range E do
3: if e mod G ̸= 0 then
4: Sample (θi0, θ

i
f ) from {(θ0, θf )}k

5: Initialize student parameter θ̂0 ← θi0
6: for each trajectory matching epoch j in range N do /*MTT[3] trajectory matching*/
7: TrainMθ̂j

with synthetic data

8: θ̂j+1 ← θ̂j − α∇L(Mθ̂j
(st:t+m), st+m:t+m+n) for all synthetic data

9: Lparam ← ||θif − θ̂N ||2/||θif − θi0||2
10: Update synthetic data s with respect to Lparam /*Optimize gradient term*/
11: else
12: for each train sample (st:t+m, st+m:t+m+n) in training sets do
13: Choose an arbitrary expert model with parameter θif from {(θ0, θf )}k
14: y ←Mθi

f
(st:t+m)

15: st+m:t+m+n ← (1− β) · st+m:t+m+n + β · y /*Optimize value term*/
16: return s

Experiments have proved Eq.9 in Fig.3. As shown in Fig.3, for each synthetic data input st′:t′+m

(orange points), the predictions of corresponding expert models (yellow and blue points) are sim-
ilar. Therefore, although θf,test is unavailable in the dataset condensation process, its prediction
Mθf,test(st′:t′+m) can be obtained using the prediction of an arbitrary expert modelMθi

f
(st′:t′+m).

Now we reformulate the value term and transform it into a practical optimization objective. Firstly,
We formulate the upper bound of the value term as shown in Thm.2.
Theorem 2. The upper bound of the value term can be formulated as such

||Mθs,test(st′:t′+m)−Mθf,test(st′:t′+m)||2 ≤ 2·
∑
t′

||Mθf,test(st′:t′+m)−st′+m:t′+m+n||2 (10)

We prove Thm.2 by utilizing the triangular inequality and the prediction optimality of θs,test on
synthetic data s. The complete proof is in App.A.2. Accodring to Thm.2, we obtain an optimizable
upper bound of the value term. Therefore the optimization objective for the value term can be
naturally defined as minimizing the upper bound of the value term, as shown in Eq.11.

min
s
Llabel where Llabel =

∑
t′

||Mθf,test(st′:t′+m)− st′+m:t′+m+n||2 (11)

According to Thm.2, label error Llabel is the upper bound of the value term. Therefore, by minimizing
the upper bound of the value term, the value term is indirectly minimized.

4.4 CondTSF

In this section, we develop a one-line plugin called CondTSF to minimize the label error Llabel

in Eq.11 so that the value term can be optimized. CondTSF is a lightweight one-line plugin, no
backpropagation or gradient is required during the update. CondTSF utilizes a simple yet effective
additive method to iteratively update the synthetic data s and minimize the label error Llabel. In
TS-forecasting, when generating training data, the data is usually sampled overlap from the dataset.
Inspired by the overlap property, we utilize an additive method in CondTSF to gradually update the
synthetic data to avoid vibrations. In the ith update iteration, CondTSF uses the prediction of expert
modelMf,test(st′:t′+m) to update synthetic label st′+m:t′+m+n. The update process is shown in
Eq.12.

s
(i+1)
t′+m:t′+m+n = (1− β) · s(i)t′+m:t′+m+n + β · Mθf,test(s

(i)
t′:t′+m) (12)
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Table 1: Distill performance of different dataset condensation methods. For each method, ✗means CondTSF
is not used, ✓means CondTSF is used, and ↓ means the decreased percentage of test error after CondTSF is
applied. Five synthetic datasets are distilled and the average and standard deviation are reported.

CondTSF ExchangeRate Weather Electricity Traffic
MAE MSE MAE MSE MAE MSE MAE MSE

Random - 0.783±0.090 1.070±0.246 0.530±0.084 0.647±0.159 0.840±0.017 1.102±0.031 0.854±0.018 1.350±0.043

DC
✗ 0.716±0.090 0.875±0.217 0.483±0.053 0.530±0.087 0.808±0.017 1.017±0.046 0.823±0.007 1.296±0.021
✓ 0.602±0.115 0.632±0.215 0.449±0.055 0.467±0.084 0.794±0.014 0.987±0.035 0.818±0.012 1.265±0.032
↓ 15.8% 27.8% 6.9% 11.7% 1.7% 2.9% 0.7% 2.4%

MTT
✗ 0.778±0.084 0.964±0.136 0.509±0.065 0.538±0.085 0.747±0.012 0.840±0.019 0.742±0.010 1.052±0.024
✓ 0.195±0.007 0.061±0.004 0.326±0.009 0.284±0.007 0.391±0.003 0.284±0.004 0.494±0.022 0.579±0.037
↓ 75.0% 93.7% 36.0% 47.2% 47.6% 66.1% 33.4% 45.0%

PP
✗ 0.683±0.128 0.806±0.248 0.474±0.049 0.492±0.067 0.733±0.011 0.820±0.018 0.741±0.013 1.037±0.035
✓ 0.191±0.006 0.058±0.003 0.324±0.006 0.283±0.005 0.390±0.006 0.285±0.006 0.490±0.013 0.570±0.020
↓ 72.0% 92.8% 31.7% 42.5% 46.8% 65.3% 33.8% 45.1%

TESLA
✗ 0.730±0.124 0.801±0.211 0.522±0.011 0.557±0.020 0.719±0.029 0.790±0.052 0.741±0.020 1.063±0.051
✓ 0.188±0.014 0.059±0.008 0.295±0.010 0.276±0.013 0.389±0.005 0.293±0.006 0.576±0.016 0.730±0.025
↓ 74.3% 92.7% 43.6% 50.3% 46.0% 62.9% 22.2% 31.3%

FTD
✗ 0.690±0.153 0.818±0.278 0.511±0.037 0.535±0.048 0.748±0.012 0.844±0.019 0.745±0.007 1.054±0.014
✓ 0.184±0.005 0.055±0.003 0.320±0.005 0.280±0.004 0.396±0.003 0.290±0.002 0.501±0.021 0.587±0.032
↓ 73.3% 93.3% 37.3% 47.6% 47.1% 65.6% 32.7% 44.3%

DATM
✗ 0.646±0.137 0.702±0.243 0.515±0.035 0.554±0.038 0.752±0.016 0.850±0.027 0.740±0.013 1.043±0.026
✓ 0.190±0.010 0.058±0.006 0.320±0.015 0.290±0.014 0.381±0.005 0.276±0.005 0.496±0.016 0.582±0.025
↓ 70.6% 91.8% 37.9% 47.6% 49.4% 67.6% 33.0% 44.2%

Full - 0.110±0.001 0.023±0.000 0.197±0.001 0.131±0.001 0.312±0.002 0.223±0.002 0.406±0.003 0.492±0.004

CondTSF ETTm1 ETTm2 ETTh1 ETTh2
MAE MSE MAE MSE MAE MSE MAE MSE

Random - 0.728±0.033 0.993±0.082 0.695±0.011 0.889±0.030 0.756±0.035 1.059±0.083 0.749±0.037 1.013±0.089

DC
✗ 0.672±0.020 0.859±0.038 0.631±0.023 0.708±0.063 0.704±0.053 0.933±0.118 0.627±0.081 0.694±0.158
✓ 0.661±0.012 0.833±0.018 0.591±0.026 0.603±0.044 0.678±0.034 0.873±0.070 0.601±0.027 0.631±0.060
↓ 1.8% 3.1% 6.4% 14.9% 3.6% 6.4% 4.1% 9.1%

MTT
✗ 0.653±0.019 0.771±0.040 0.685±0.022 0.754±0.051 0.693±0.009 0.845±0.023 0.719±0.006 0.827±0.016
✓ 0.491±0.004 0.502±0.008 0.347±0.028 0.202±0.028 0.532±0.014 0.580±0.029 0.329±0.003 0.205±0.002
↓ 24.8% 34.9% 49.3% 73.3% 23.3% 31.3% 54.2% 75.2%

PP
✗ 0.660±0.014 0.788±0.032 0.615±0.093 0.620±0.168 0.694±0.008 0.851±0.018 0.673±0.052 0.757±0.086
✓ 0.489±0.005 0.491±0.013 0.336±0.024 0.190±0.023 0.527±0.011 0.574±0.029 0.336±0.004 0.211±0.005
↓ 26.0% 37.7% 45.4% 69.4% 24.1% 32.6% 50.1% 72.1%

TESLA
✗ 0.641±0.009 0.751±0.018 0.577±0.142 0.570±0.210 0.674±0.013 0.813±0.030 0.616±0.095 0.630±0.154
✓ 0.542±0.037 0.622±0.058 0.292±0.001 0.155±0.001 0.533±0.020 0.588±0.048 0.332±0.007 0.208±0.006
↓ 15.4% 17.2% 49.4% 72.8% 21.0% 27.7% 46.2% 67.0%

FTD
✗ 0.663±0.009 0.790±0.020 0.563±0.147 0.571±0.221 0.693±0.016 0.857±0.044 0.625±0.148 0.686±0.240
✓ 0.494±0.007 0.502±0.010 0.347±0.012 0.200±0.012 0.529±0.014 0.570±0.030 0.335±0.009 0.210±0.008
↓ 25.5% 36.5% 38.4% 65.0% 23.7% 33.4% 46.5% 69.4%

DATM
✗ 0.642±0.031 0.768±0.050 0.644±0.047 0.679±0.090 0.689±0.036 0.870±0.057 0.611±0.150 0.650±0.245
✓ 0.531±0.032 0.569±0.045 0.305±0.006 0.167±0.005 0.532±0.028 0.582±0.068 0.330±0.004 0.209±0.003
↓ 17.2% 25.9% 52.6% 75.4% 22.7% 33.1% 45.9% 67.8%

Full - 0.432±0.001 0.473±0.001 0.230±0.001 0.113±0.001 0.389±0.003 0.339±0.004 0.276±0.002 0.166±0.002

where 0 < β < 1 is the update ratio of this additive update method. This additive update process
lowers the label error Llabel of s in each iteration exponentially, which can be formulated as

L(i+1)
label =

∑
t′

||s(i+1)
t′+m:t′+m+n −Mθf,test(s

(i+1)
t′:t′+m)||2

= (1− β)2
∑
t′

||s(i)t′+m:t′+m+n −Mθf,test(s
(i)
t′:t′+m)||2 = (1− β)2L(i)

label

(13)

Since the update ratio has a value of 0 < β < 1, CondTSF lowers the label error Llabel exponentially
in each update iteration and solves the optimization problem for the value term. As a plugin module,
CondTSF is used to update once for every G iteration of parameter matching methods. In this way,
the gradient term and the value term can be optimized synchronously. The algorithm is shown in
Alg.1. We also formulate the complete condensation process using CondTSF, as shown in Fig.2.

5 Experiment

5.1 Experiment Settings

Dataset Settings: The efficacy of dataset condensation methods is assessed across eight time series
datasets. For all datasets, the model is set to be using 24 steps of data to forecast 24 steps of data. We
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Table 2: Information and condensation settings of time series datasets.
ETTm1&ETTm2 ETTh1&ETTh2 ExchangeRate Weather Electricity Traffic

Dataset length 57600 14400 7588 52696 26304 17544
Distill ratio 0.83‰ 3.33‰ 6.33‰ 0.91‰ 1.82‰ 2.74‰

Distilled length 48 48 48 48 48 48

Table 3: Generalization ability of different dataset condensation methods. For each dataset and each method,
MLP, LSTM, CNN are trained with the synthetic data distilled from DLinear expert models. For each architecture,
five test models are trained, the average and standard deviation of MAE, MSE are summarized. The result of
CondTSF is using MTT as the backbone.

ExchangeRate Weather
MLP LSTM CNN MLP LSTM CNN

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Random 0.931±0.024 1.246±0.057 0.840±0.047 1.035±0.102 0.910±0.038 1.217±0.106 0.554±0.010 0.632±0.016 0.531±0.020 0.598±0.033 0.570±0.006 0.655±0.017

DC 0.713±0.059 0.740±0.114 0.511±0.034 0.390±0.048 0.588±0.049 0.519±0.072 0.503±0.014 0.540±0.022 0.446±0.011 0.430±0.017 0.517±0.016 0.533±0.028
KIP 0.483±0.012 0.397±0.013 0.512±0.024 0.422±0.026 0.494±0.022 0.414±0.027 0.293±0.008 0.276±0.011 0.262±0.004 0.253±0.004 0.331±0.005 0.292±0.003

FRePo 0.564±0.033 0.537±0.041 0.583±0.048 0.569±0.077 0.599±0.025 0.578±0.044 0.393±0.013 0.401±0.011 0.419±0.044 0.424±0.043 0.434±0.011 0.428±0.016
MTT 0.421±0.007 0.301±0.009 0.431±0.010 0.313±0.009 0.419±0.007 0.300±0.010 0.286±0.006 0.256±0.004 0.279±0.007 0.249±0.004 0.328±0.018 0.276±0.014
PP 0.383±0.009 0.249±0.008 0.388±0.013 0.252±0.011 0.465±0.021 0.343±0.024 0.279±0.019 0.253±0.010 0.309±0.009 0.271±0.008 0.344±0.023 0.315±0.031

TESLA 0.316±0.008 0.172±0.007 0.323±0.010 0.175±0.007 0.439±0.034 0.302±0.044 0.298±0.012 0.266±0.007 0.292±0.012 0.253±0.010 0.331±0.004 0.283±0.006
FTD 0.425±0.007 0.306±0.005 0.433±0.012 0.310±0.011 0.445±0.025 0.329±0.031 0.286±0.010 0.251±0.005 0.303±0.028 0.264±0.017 0.347±0.015 0.305±0.014

DATM 0.452±0.013 0.349±0.016 0.229±0.045 0.095±0.032 0.351±0.053 0.209±0.049 0.270±0.004 0.258±0.004 0.275±0.012 0.253±0.010 0.323±0.022 0.282±0.021

CondTSF 0.135±0.005 0.032±0.002 0.135±0.004 0.032±0.002 0.248±0.031 0.101±0.022 0.242±0.009 0.229±0.006 0.248±0.004 0.231±0.004 0.283±0.007 0.256±0.004

Electricity Traffic
MLP LSTM CNN MLP LSTM CNN

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Random 0.790±0.016 0.931±0.039 0.758±0.007 0.866±0.016 0.782±0.012 0.919±0.034 0.743±0.015 1.102±0.042 0.742±0.007 1.088±0.015 0.753±0.016 1.100±0.031

DC 0.778±0.007 0.912±0.016 0.770±0.004 0.884±0.009 0.769±0.010 0.897±0.022 0.730±0.011 1.035±0.031 0.709±0.012 0.989±0.030 0.747±0.009 1.068±0.020
KIP 0.769±0.014 0.881±0.029 0.700±0.018 0.741±0.036 0.761±0.016 0.864±0.035 0.738±0.018 1.056±0.045 0.714±0.017 1.008±0.023 0.753±0.018 1.074±0.023

FRePo 0.620±0.009 0.626±0.016 0.633±0.016 0.625±0.029 0.642±0.011 0.665±0.022 0.645±0.007 0.802±0.014 0.650±0.005 0.811±0.012 0.656±0.003 0.817±0.006
MTT 0.465±0.009 0.374±0.010 0.467±0.013 0.378±0.015 0.491±0.008 0.405±0.010 0.635±0.004 0.797±0.009 0.634±0.008 0.788±0.011 0.655±0.007 0.817±0.007
PP 0.483±0.008 0.388±0.009 0.481±0.008 0.388±0.009 0.521±0.015 0.444±0.021 0.617±0.006 0.751±0.006 0.610±0.008 0.740±0.010 0.593±0.004 0.745±0.010

TESLA 0.515±0.006 0.441±0.007 0.515±0.012 0.439±0.011 0.530±0.006 0.462±0.009 0.623±0.009 0.800±0.014 0.603±0.004 0.778±0.011 0.631±0.003 0.809±0.009
FTD 0.505±0.009 0.418±0.010 0.500±0.015 0.414±0.016 0.539±0.006 0.470±0.008 0.635±0.013 0.787±0.018 0.644±0.016 0.796±0.024 0.632±0.005 0.783±0.011

DATM 0.501±0.011 0.416±0.012 0.509±0.018 0.428±0.023 0.511±0.005 0.431±0.007 0.583±0.008 0.707±0.015 0.592±0.004 0.709±0.009 0.598±0.005 0.726±0.012

CondTSF 0.326±0.002 0.231±0.002 0.324±0.012 0.230±0.007 0.373±0.008 0.272±0.008 0.423±0.004 0.498±0.003 0.419±0.006 0.488±0.007 0.454±0.005 0.522±0.006

ETTm1 ETTm2
MLP LSTM CNN MLP LSTM CNN

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Random 0.697±0.009 0.859±0.020 0.677±0.017 0.801±0.033 0.713±0.015 0.891±0.027 0.732±0.017 0.880±0.041 0.754±0.020 0.927±0.054 0.760±0.021 0.934±0.056

DC 0.662±0.006 0.786±0.003 0.636±0.007 0.741±0.011 0.676±0.013 0.808±0.028 0.623±0.036 0.629±0.069 0.532±0.028 0.459±0.048 0.682±0.023 0.745±0.051
KIP 0.566±0.005 0.697±0.019 0.555±0.008 0.690±0.018 0.571±0.007 0.694±0.015 0.285±0.012 0.144±0.009 0.290±0.021 0.149±0.015 0.347±0.031 0.201±0.028

FRePo 0.599±0.007 0.718±0.013 0.611±0.028 0.738±0.048 0.630±0.031 0.749±0.086 0.476±0.032 0.412±0.043 0.472±0.057 0.395±0.089 0.579±0.075 0.574±0.142
MTT 0.484±0.003 0.484±0.005 0.515±0.033 0.530±0.048 0.563±0.006 0.608±0.019 0.258±0.007 0.129±0.005 0.246±0.005 0.124±0.004 0.340±0.016 0.193±0.017
PP 0.486±0.007 0.474±0.008 0.527±0.031 0.539±0.040 0.581±0.019 0.644±0.036 0.272±0.004 0.136±0.003 0.269±0.002 0.135±0.002 0.308±0.013 0.167±0.010

TESLA 0.519±0.003 0.523±0.003 0.513±0.007 0.516±0.007 0.579±0.013 0.620±0.020 0.272±0.004 0.135±0.003 0.272±0.007 0.135±0.006 0.365±0.041 0.221±0.043
FTD 0.528±0.015 0.579±0.032 0.631±0.015 0.790±0.037 0.576±0.024 0.626±0.041 0.279±0.005 0.142±0.004 0.290±0.011 0.147±0.010 0.403±0.025 0.254±0.024

DATM 0.499±0.007 0.516±0.006 0.513±0.015 0.524±0.016 0.577±0.030 0.616±0.046 0.293±0.004 0.153±0.004 0.290±0.009 0.149±0.007 0.377±0.030 0.232±0.029

CondTSF 0.452±0.004 0.455±0.001 0.459±0.013 0.461±0.011 0.520±0.018 0.543±0.025 0.231±0.002 0.107±0.001 0.240±0.009 0.111±0.005 0.273±0.021 0.133±0.014

ETTh1 ETTh2
MLP LSTM CNN MLP LSTM CNN

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Random 0.670±0.011 0.796±0.023 0.658±0.012 0.773±0.022 0.703±0.014 0.874±0.039 0.732±0.012 0.874±0.031 0.702±0.014 0.799±0.031 0.755±0.027 0.908±0.062

DC 0.643±0.019 0.745±0.038 0.626±0.014 0.718±0.013 0.672±0.023 0.802±0.041 0.619±0.019 0.650±0.043 0.534±0.019 0.481±0.036 0.680±0.028 0.746±0.053
KIP 0.636±0.017 0.732±0.029 0.608±0.016 0.696±0.027 0.650±0.016 0.758±0.021 0.494±0.009 0.419±0.011 0.431±0.012 0.329±0.016 0.551±0.032 0.492±0.051

FRePo 0.653±0.004 0.770±0.007 0.640±0.009 0.754±0.019 0.659±0.010 0.783±0.025 0.570±0.033 0.552±0.060 0.485±0.036 0.405±0.054 0.672±0.023 0.728±0.054
MTT 0.606±0.003 0.673±0.009 0.613±0.005 0.680±0.010 0.612±0.007 0.692±0.011 0.307±0.005 0.182±0.004 0.305±0.014 0.180±0.010 0.374±0.033 0.246±0.036
PP 0.633±0.006 0.719±0.006 0.630±0.006 0.710±0.009 0.635±0.007 0.730±0.007 0.354±0.019 0.229±0.020 0.292±0.012 0.173±0.007 0.450±0.060 0.346±0.085

TESLA 0.602±0.005 0.671±0.010 0.590±0.005 0.651±0.013 0.612±0.005 0.691±0.015 0.308±0.007 0.181±0.006 0.292±0.004 0.170±0.003 0.390±0.016 0.257±0.014
FTD 0.616±0.008 0.710±0.014 0.618±0.008 0.716±0.011 0.626±0.008 0.725±0.014 0.329±0.003 0.197±0.004 0.312±0.007 0.187±0.012 0.386±0.014 0.249±0.023

DATM 0.617±0.004 0.681±0.010 0.612±0.007 0.672±0.015 0.637±0.004 0.723±0.010 0.337±0.005 0.208±0.006 0.329±0.006 0.200±0.006 0.398±0.015 0.268±0.013

CondTSF 0.434±0.001 0.397±0.001 0.429±0.002 0.388±0.005 0.473±0.006 0.456±0.008 0.290±0.005 0.168±0.004 0.287±0.006 0.166±0.004 0.342±0.008 0.211±0.006

set the length of the synthetic dataset as 48, as shown in Table.2. Each synthetic dataset can only
generate one training pair. We conduct experiments with two larger distill ratios as shown in App.B.

Model Settings: We plug CondTSF into existing dataset condensation models based on parameter
matching, including DC[51], MTT[3], PP[21], TESLA[5], FTD[7] and DATM[11] to prove the
effectiveness of CondTSF. We also conduct experiments on non-parameter-matching based methods,
including DM[50], IDM[52], KIP[33], FRePo[55] to prove that optimizing value term only also helps
boost the performance. The experiment setting and results are shown in App.E. We use DLinear[45]
as the expert model to perform dataset condensation since DLinear is a linear model.

Metric Settings: The source dataset is first divided into a train set and a test set. All synthetic data is
initialized by randomly sampling data from the train set. After a synthetic dataset is finished distilling,
it is used to train another five models. After the five models are trained, they are tested on the test
set. Their average mean absolute error (MAE) and mean square error (MSE) are recorded. We
repeat the process above five times and report the average and standard deviation. While testing the
generalization ability of the dataset condensation methods, DLinear[45] is used as the expert model
to perform dataset condensation. Meanwhile, MLP, LSTM[13], and CNN are used as test models
when testing the generalization ability of the dataset condensation methods.
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Figure 4: Changing trajectory of Left: parameter error which refer to gradient term, Middle: label error which
refer to value term and Right: test error during dataset condensation process.

Implementation Details: As a plugin module, we test CondTSF with all previous methods. Each
synthetic dataset is optimized using a standard training process according to the chosen backbone
model. CondTSF is set to update every 3 epochs and the additive update ratio β is set to be 0.01. All
the experiments are carried out on an NVIDIA RTX 3080Ti.

5.2 Results

Single Architecture Performance: The results are summarized in Table.1. For each backbone
method, the first line shows the performance of the backbone model, the second line shows the
performance of a backbone model with CondTSF, and the third line shows the percentage of reduction
in MAE and MSE after CondTSF is applied. There’s a considerable reduction in error for all backbone
models. The results suggest that CondTSF is effective in optimizing the value term and enhancing
the performance in dataset condensation for TS-forecasting. However, using CondTSF on DC[51] is
not as effective as other methods. The reason is that instead of directly matching parameters, DC
matches the gradient of parameters on loss in each iteration. Indirectly matching gradient leads to
accumulating errors in parameters, making DC unable to lower parameter error as effectively as
directly matching parameters. Therefore CondTSF is not effective enough when applied to DC[51].

Cross Architecture Performance: We also conduct experiments to evaluate the cross-architecture
performance of dataset condensation methods. The results are summarized in Table.3. We test all
models on all datasets with MLP, LSTM[13], and CNN as test models. All synthetic data is distilled
using DLinear[45] model as experts. We use MTT[3] as the backbone for CondTSF. We observe that
CondTSF based on MTT outperformed all other previous models.

5.3 Discussion

Test Performance and Errors: We conduct experiments on ExchangeRate dataset with MTT[3]
and MTT+CondTSF. As shown in Fig.4, trajectory of parameter error ||θf−θs||2

||θf−θ0||2 , label error Llabel

and test error Ltest through the distillation process are presented. Regarding the parameter error
corresponding to the gradient term, both MTT and MTT+CondTSF converge quickly, suggesting
that the incorporation of CondTSF doesn’t impact parameter alignment. As for the label error
corresponding to the value term, since the initial synthetic data s is randomly sampled from the train
set f and the expert model is trained by the train set f , the label error of s is small at the beginning.
However, the utilization of MTT results in an elevation of label error, whereas employing CondTSF
effectively mitigates this increase in label error. During the test, MTT+CondTSF notably outperforms
MTT by concurrently optimizing both the value term and the gradient term.

6 Limitations

The limitation of this work is that we use linear models in our analysis so that the gradient of a model
on input is the parameter of the model. Therefore, only linear models like DLinear[45] are solid
enough to be an expert model for dataset condensation. The analysis no longer holds when it comes
to more complicated models. However, experiments in App.D and App.E show that CondTSF is
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also effective with non-parameter-matching methods and non-linear models, which merits further
exploration.

7 Conclusion

In this study, we provide abundant proof that previous dataset condensation methods based on
classification are not suitable for dataset condensation for TS-forecasting. We elucidate that these
earlier methods, predominantly focused on classification tasks, only address a portion of the opti-
mization objective pertinent to TS-forecasting. To address this issue, we propose a plugin module
called CondTSF that can collaborate with parameter matching based dataset condensation methods.
CondTSF optimizes the optimization objective that previous methods have neglected and boosts the
performance of dataset condensation methods on TS-forecasting. We conduct experiments on eight
widely used time series datasets and prove the effectiveness of our proof and method. CondTSF
consistently enhances the performance of all previous techniques across all datasets, substantiating
its effectiveness in improving dataset condensation outcomes for TS-forecasting applications.
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A Complete Proof

A.1 Complete Proof for Theorem 1

Theorem 1. Given arbitrary synthetic data st′:t′+m, the upper bound of the optimization objective
of dataset condensation Ltest(Mθs,test ,x) can be formulated as such

Ltest(Mθs,test ,x) ≤
∑
t

||ϵ||2 + ||Mθs,test(st′:t′+m)−Mθf,test(st′:t′+m)||2︸ ︷︷ ︸
Value Term

+ ||(∇Mθs,test(st′:t′+m)−∇Mθf,test(st′:t′+m))⊤(xt:t+m − st′:t′+m)||2︸ ︷︷ ︸
Gradient Term

(14)

Proof. Replacing the true label xt+m:t+m+n in Ltest(Mθs,test ,x) with Eq.4, the optimization
objective of dataset condensation for TS-forecasting is reformulated as the distance between the
predictions ofMθs,test andMθf,test given the same test input. Then the triangular inequality of
norm functions is used and the original optimization objective can be transformed to its upper bound,
as shown in Eq.15.

Ltest(Mθs,test ,x) =
∑
t

||Mθs,test(xt:t+m)− xt+m:t+m+n||2

=
∑
t

||Mθs,test(xt:t+m)−Mθf,test(xt:t+m)− ϵ||2

≤
∑
t

||Mθs,test(xt:t+m)−Mθf,test(xt:t+m)||2 + ||ϵ||2

(15)

In Eq.15, we prove that minimizing the distance betweenMθs,test(xt:t+m) andMθf,test(xt:t+m) is
equivalent to minimizing the upper bound of the original optimization objective. Then we decompose
the distance between predictions of Mθs,test and Mθf,test into two optimizable terms for better
optimization. We use linear models for further analysis since linear models can be both effective and
efficient in TS-forecasting tasks[45]. Given a linear modelMθ(x) = θx, its second and higher order
gradient is zero, i.e. ∇kMθ(x) = 0,∀k ≥ 2. Therefore, first-order Taylor Expansion can be utilized
to get the prediction of the modelMθ on test data xt:t+m using the prediction and gradient of the
modelMθ on arbitrary synthetic data st′:t′+m. The process is formulated in Eq.16. Meanwhile, it is
worth mentioning that ifMθ is a non-linear model, then the second and higher-order terms of the
Taylor Expansion are ignored in Eq.16.

Mθ(xt:t+m) =Mθ(st′:t′+m) +∇Mθ(st′:t′+m)⊤(xt:t+m − st′:t′+m) (16)
Then we expand Eq.15 with Taylor expansion. After that, the triangular inequality of norm functions
is used to get its upper bound. In the meantime, by applying the triangular inequality, the optimization
objective can be decomposed into two optimizable terms.

Ltest(Mθs,test ,x) ≤
∑
t

||Mθs,test(xt:t+m)−Mθf,test(xt:t+m)||2 + ||ϵ||2

=
∑
t

||ϵ||2 + ||Mθs,test(st′:t′+m) +∇Mθs,test(st′:t′+m)⊤(xt:t+m − st′:t′+m)

−Mθf,test(st′:t′+m)−∇Mθf,test(st′:t′+m)⊤(xt:t+m − st′:t′+m)||2

=
∑
t

||ϵ||2 + ||Mθs,test(st′:t′+m)−Mθf,test(st′:t′+m)

+ (∇Mθs,test(st′:t′+m)−∇Mθf,test(st′:t′+m))⊤(xt:t+m − st′:t′+m)||2

≤
∑
t

||ϵ||2 + ||Mθs,test(st′:t′+m)−Mθf,test(st′:t′+m)||2︸ ︷︷ ︸
Value Term

+ ||(∇Mθs,test(st′:t′+m)−∇Mθf,test(st′:t′+m))⊤(xt:t+m − st′:t′+m)||2︸ ︷︷ ︸
Gradient Term

(17)
Therefore Thm.1 is proved.
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A.2 Complete Proof for Theorem 2

Theorem 2. The upper bound of the value term can be formulated as such

||Mθs,test(st′:t′+m)−Mθf,test(st′:t′+m)||2 ≤ 2·
∑
t′

||Mθf,test(st′:t′+m)−st′+m:t′+m+n||2 (18)

Proof. We first use triangular inequality and the non-negativity of norm functions to get the upper
bound of the value term. The process is shown in Eq.19.

||Mθs,test(st′:t′+m)−Mθf,test(st′:t′+m)||2 (Value Term)

= ||Mθs,test(st′:t′+m)− st′+m:t′+m+n + st′+m:t′+m+n −Mθf,test(st′:t′+m)||2

≤ ||Mθs,test(st′:t′+m)− st′+m:t′+m+n||2 + ||st′+m:t′+m+n −Mθf,test(st′:t′+m)||2

≤
∑
t′

||Mθs,test(st′:t′+m)− st′+m:t′+m+n||2 +
∑
t′

||st′+m:t′+m+n −Mθf,test(st′:t′+m)||2

(19)
For further analysis, we need to step back and formulate the training process of θs to derive an
inequality. By doing dataset condensation, a synthetic dataset s is obtained. Then we formulate the
training process of θs,test on synthetic data s as minimizing the prediction error on s. The training
process is formulated in Eq.20.

θs,test = argmin
θ

∑
t′

||Mθ(st′:t′+m)− st′+m:t′+m+n||2 (20)

Now we can derive an inequality. We denote s as the synthetic dataset obtained by dataset con-
densation. We denote Mθs,test as the model that is trained on s as shown Eq.20. According to
Eq.20,Mθs,test has the lowest prediction error on synthetic data s under the given model architecture.
SinceMθs,test andMθf,test share the same model architecture, the prediction error ofMθs,test on
synthetic data s is no larger than the prediction error ofMf,test on synthetic data s. This inequality
can be formulated as such∑

t′

||Mθs,test(st′:t′+m)− st′+m:t′+m+n||2 ≤
∑
t′

||st′+m:t′+m+n −Mθf,test(st′:t′+m)||2 (21)

By applying Eq.21 to Eq.19, we obtain the upper bound of the value term, as shown in Eq.22.

||Mθs,test(st′:t′+m)−Mθf,test(st′:t′+m)||2 (Value Term)

≤
∑
t′

||Mθs,test(st′:t′+m)− st′+m:t′+m+n||2 +
∑
t′

||st′+m:t′+m+n −Mθf,test(st′:t′+m)||2

≤ 2 ·
∑
t′

||Mθf,test(st′:t′+m)− st′+m:t′+m+n||2

(22)
Therefore Thm.2 is proved.
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B Performance with Different Distill Ratio

We further explore the performance of CondTSF with different distill ratios and compare the results
with previous matching-based methods.

B.1 Standard Ratio Condensation

We distill the dataset into a synthetic dataset with a flexible length for each dataset. The information
on condensation in Table.4. The performance is shown in Table.5.

Table 4: Information and condensation settings of time series datasets.
ETTm1&ETTm2 ETTh1&ETTh2 ExchangeRate Weather Electricity Traffic

Dataset length 57600 14400 7588 52696 26304 17544
Distill ratio 0.2% 0.4% 1% 0.2% 0.3% 0.4%

Distilled length 115 57 75 105 78 70

Table 5: Distill performance of different dataset condensation methods. For each method, ✗means CondTSF
is not used, ✓means CondTSF is used, and ↓ means the decreased percentage of test error after CondTSF is
applied. Five synthetic datasets are distilled and the average and standard deviation are reported.

CondTSF ExchangeRate Weather Electricity Traffic
MAE MSE MAE MSE MAE MSE MAE MSE

Random - 0.730±0.168 0.957±0.397 0.566±0.056 0.708±0.135 0.832±0.024 1.080±0.058 0.845±0.007 1.343±0.017

DC
✗ 0.657±0.025 0.729±0.062 0.488±0.006 0.523±0.007 0.797±0.014 0.973±0.031 0.816±0.007 1.257±0.023
✓ 0.645±0.014 0.710±0.039 0.450±0.041 0.469±0.069 0.769±0.041 0.920±0.104 0.810±0.017 1.250±0.039
↓ 1.9% 2.6% 7.7% 10.4% 3.6% 5.5% 0.7% 0.5%

MTT
✗ 0.467±0.018 0.361±0.024 0.330±0.020 0.291±0.020 0.473±0.014 0.379±0.017 0.575±0.022 0.726±0.016
✓ 0.180±0.008 0.053±0.004 0.285±0.010 0.253±0.005 0.335±0.002 0.238±0.001 0.429±0.006 0.500±0.007
↓ 61.6% 85.3% 13.4% 13.1% 29.1% 37.4% 25.5% 31.2%

PP
✗ 0.463±0.032 0.352±0.042 0.340±0.022 0.301±0.022 0.471±0.008 0.375±0.009 0.582±0.012 0.714±0.014
✓ 0.179±0.006 0.053±0.004 0.279±0.005 0.248±0.005 0.336±0.003 0.240±0.001 0.423±0.005 0.490±0.007
↓ 61.2% 84.9% 17.7% 17.6% 28.5% 35.9% 27.4% 31.3%

TESLA
✗ 0.406±0.026 0.275±0.038 0.334±0.009 0.292±0.008 0.530±0.007 0.463±0.008 0.650±0.018 0.855±0.044
✓ 0.185±0.014 0.056±0.008 0.292±0.009 0.262±0.005 0.369±0.002 0.273±0.002 0.511±0.012 0.614±0.020
↓ 54.5% 79.6% 12.4% 10.2% 30.5% 41.1% 21.4% 28.2%

FTD
✗ 0.445±0.038 0.332±0.050 0.324±0.010 0.284±0.014 0.470±0.003 0.374±0.004 0.557±0.016 0.680±0.008
✓ 0.173±0.003 0.049±0.002 0.274±0.006 0.246±0.004 0.329±0.004 0.232±0.003 0.410±0.005 0.476±0.004
↓ 61.2% 85.1% 15.3% 13.4% 30.0% 38.1% 26.4% 30.0%

DATM
✗ 0.454±0.030 0.345±0.047 0.315±0.002 0.279±0.001 0.495±0.005 0.410±0.006 0.583±0.017 0.722±0.033
✓ 0.182±0.003 0.054±0.002 0.296±0.011 0.264±0.007 0.325±0.003 0.228±0.002 0.410±0.006 0.473±0.005
↓ 59.9% 84.4% 5.8% 5.5% 34.3% 44.3% 29.7% 34.5%

Full - 0.110±0.001 0.023±0.000 0.197±0.001 0.131±0.001 0.312±0.002 0.223±0.002 0.406±0.003 0.492±0.004

CondTSF ETTm1 ETTm2 ETTh1 ETTh2
MAE MSE MAE MSE MAE MSE MAE MSE

Random - 0.697±0.054 0.934±0.105 0.629±0.129 0.747±0.285 0.725±0.067 0.995±0.152 0.645±0.118 0.763±0.251

DC
✗ 0.665±0.012 0.837±0.024 0.575±0.015 0.574±0.030 0.713±0.024 0.933±0.049 0.591±0.069 0.619±0.132
✓ 0.659±0.010 0.828±0.021 0.542±0.078 0.516±0.138 0.695±0.019 0.901±0.039 0.488±0.092 0.429±0.148
↓ 0.8% 1.1% 5.7% 10.0% 2.5% 3.5% 17.5% 30.8%

MTT
✗ 0.486±0.016 0.478±0.021 0.326±0.013 0.183±0.013 0.639±0.020 0.748±0.040 0.564±0.116 0.551±0.172
✓ 0.470±0.003 0.470±0.005 0.273±0.010 0.133±0.007 0.453±0.009 0.422±0.016 0.324±0.003 0.197±0.003
↓ 3.4% 1.6% 16.3% 27.2% 29.1% 43.6% 42.6% 64.2%

PP
✗ 0.492±0.014 0.485±0.023 0.327±0.017 0.185±0.016 0.654±0.011 0.765±0.024 0.543±0.123 0.517±0.193
✓ 0.466±0.003 0.470±0.005 0.263±0.006 0.127±0.004 0.454±0.003 0.421±0.006 0.335±0.002 0.209±0.003
↓ 5.3% 3.1% 19.5% 31.0% 30.5% 45.0% 38.4% 59.5%

TESLA
✗ 0.530±0.007 0.555±0.002 0.315±0.005 0.172±0.004 0.641±0.009 0.748±0.020 0.548±0.106 0.519±0.158
✓ 0.514±0.010 0.554±0.021 0.289±0.005 0.152±0.003 0.507±0.008 0.524±0.019 0.334±0.009 0.209±0.010
↓ 3.1% 0.3% 8.4% 11.8% 20.9% 30.0% 39.1% 59.7%

FTD
✗ 0.490±0.006 0.476±0.010 0.330±0.017 0.186±0.017 0.633±0.011 0.730±0.021 0.611±0.038 0.622±0.064
✓ 0.463±0.005 0.466±0.003 0.264±0.007 0.128±0.005 0.427±0.003 0.379±0.006 0.313±0.004 0.186±0.003
↓ 5.4% 2.1% 19.9% 31.3% 32.6% 48.0% 48.8% 70.1%

DATM
✗ 0.514±0.012 0.520±0.015 0.323±0.005 0.179±0.004 0.623±0.029 0.722±0.054 0.537±0.111 0.501±0.175
✓ 0.498±0.007 0.497±0.009 0.281±0.007 0.141±0.006 0.423±0.004 0.372±0.005 0.303±0.003 0.175±0.003
↓ 3.2% 4.4% 13.0% 21.5% 32.0% 48.4% 43.6% 65.2%

Full - 0.432±0.001 0.473±0.001 0.230±0.001 0.113±0.001 0.389±0.003 0.339±0.004 0.276±0.002 0.166±0.002
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B.2 3-times Standard Ratio Condensation

We distill the dataset into a synthetic dataset with a flexible length for each dataset. Each synthetic
dataset is 3 times larger than the synthetic data in Table.4. The information on condensation is shown
in Table.6. The performance is shown in Table.7.

Table 6: Information and condensation settings of time series datasets.
ETTm1&ETTm2 ETTh1&ETTh2 ExchangeRate Weather Electricity Traffic

Dataset length 57600 14400 7588 52696 26304 17544
Distill ratio 0.6% 1.2% 3% 0.6% 0.9% 1.2%

Distilled length 345 172 227 316 236 210

Table 7: Distill performance of different dataset condensation methods. For each method, ✗means CondTSF
is not used, ✓means CondTSF is used, and ↓ means the decreased percentage of test error after CondTSF is
applied. Five synthetic datasets are distilled and the average and standard deviation are reported.

CondTSF ExchangeRate Weather Electricity Traffic
MAE MSE MAE MSE MAE MSE MAE MSE

Random - 0.852±0.081 1.253±0.223 0.447±0.067 0.471±0.105 0.832±0.016 1.079±0.041 0.840±0.021 1.320±0.052

DC
✗ 0.711±0.028 0.864±0.063 0.439±0.027 0.444±0.035 0.827±0.008 1.068±0.018 0.833±0.006 1.304±0.037
✓ 0.614±0.117 0.658±0.224 0.396±0.013 0.372±0.019 0.804±0.003 1.012±0.009 0.816±0.005 1.271±0.003
↓ 13.6% 23.8% 9.8% 16.3% 2.8% 5.2% 2.0% 2.6%

MTT
✗ 0.201±0.012 0.066±0.008 0.324±0.023 0.293±0.027 0.332±0.004 0.242±0.003 0.432±0.007 0.520±0.008
✓ 0.175±0.006 0.050±0.002 0.274±0.013 0.255±0.007 0.331±0.003 0.241±0.003 0.422±0.006 0.505±0.003
↓ 12.8% 23.7% 15.6% 12.7% 0.3% 0.1% 2.3% 2.9%

PP
✗ 0.198±0.008 0.064±0.005 0.308±0.015 0.277±0.015 0.333±0.004 0.242±0.003 0.435±0.005 0.522±0.008
✓ 0.176±0.003 0.051±0.002 0.274±0.006 0.259±0.002 0.330±0.001 0.239±0.002 0.429±0.004 0.512±0.005
↓ 11.0% 19.9% 11.0% 6.5% 1.0% 1.2% 1.4% 1.8%

TESLA
✗ 0.209±0.016 0.071±0.011 0.297±0.005 0.265±0.003 0.446±0.011 0.371±0.014 0.593±0.011 0.734±0.023
✓ 0.176±0.009 0.051±0.005 0.287±0.005 0.262±0.004 0.413±0.007 0.336±0.009 0.551±0.018 0.664±0.044
↓ 15.6% 27.9% 3.6% 1.1% 7.3% 9.3% 7.1% 9.5%

FTD
✗ 0.198±0.008 0.064±0.005 0.328±0.015 0.298±0.017 0.333±0.006 0.243±0.004 0.435±0.003 0.523±0.005
✓ 0.172±0.004 0.049±0.002 0.281±0.007 0.258±0.004 0.331±0.005 0.243±0.004 0.421±0.003 0.501±0.005
↓ 13.3% 23.0% 14.3% 13.4% 0.7% 0.0% 3.3% 4.3%

DATM
✗ 0.196±0.010 0.062±0.005 0.284±0.009 0.264±0.008 0.335±0.006 0.244±0.005 0.437±0.005 0.523±0.007
✓ 0.173±0.007 0.049±0.003 0.275±0.005 0.251±0.001 0.326±0.003 0.238±0.003 0.416±0.005 0.497±0.003
↓ 12.0% 21.3% 3.0% 4.8% 2.8% 2.2% 4.6% 5.0%

Full - 0.110±0.001 0.023±0.000 0.197±0.001 0.131±0.001 0.312±0.002 0.223±0.002 0.406±0.003 0.492±0.004

CondTSF ETTm1 ETTm2 ETTh1 ETTh2
MAE MSE MAE MSE MAE MSE MAE MSE

Random - 0.693±0.041 0.913±0.095 0.629±0.065 0.724±0.155 0.742±0.055 1.027±0.129 0.691±0.140 0.887±0.294

DC
✗ 0.603±0.045 0.730±0.075 0.490±0.018 0.410±0.032 0.724±0.007 0.977±0.022 0.634±0.054 0.711±0.115
✓ 0.590±0.009 0.713±0.025 0.417±0.093 0.312±0.116 0.704±0.002 0.915±0.006 0.566±0.008 0.562±0.018
↓ 2.2% 2.4% 14.8% 24.0% 2.8% 6.3% 10.7% 21.0%

MTT
✗ 0.520±0.022 0.522±0.035 0.285±0.010 0.143±0.008 0.480±0.009 0.467±0.017 0.329±0.009 0.199±0.008
✓ 0.462±0.006 0.476±0.012 0.265±0.009 0.130±0.007 0.428±0.009 0.383±0.012 0.303±0.007 0.177±0.008
↓ 11.1% 8.8% 6.9% 9.1% 10.9% 18.0% 7.8% 11.0%

PP
✗ 0.538±0.041 0.558±0.062 0.285±0.008 0.144±0.007 0.477±0.006 0.462±0.012 0.330±0.004 0.201±0.004
✓ 0.466±0.006 0.485±0.022 0.271±0.009 0.135±0.008 0.442±0.016 0.405±0.029 0.323±0.004 0.198±0.005
↓ 13.3% 13.2% 5.2% 5.7% 7.3% 12.3% 2.4% 1.1%

TESLA
✗ 0.519±0.014 0.558±0.050 0.295±0.005 0.155±0.004 0.542±0.015 0.603±0.037 0.339±0.006 0.213±0.005
✓ 0.480±0.023 0.507±0.061 0.288±0.004 0.152±0.004 0.480±0.010 0.471±0.020 0.327±0.005 0.205±0.004
↓ 7.5% 8.2% 2.5% 1.7% 11.5% 21.9% 3.3% 3.8%

FTD
✗ 0.531±0.023 0.539±0.036 0.293±0.016 0.150±0.014 0.480±0.009 0.464±0.018 0.327±0.010 0.197±0.009
✓ 0.469±0.005 0.493±0.018 0.264±0.003 0.130±0.002 0.440±0.006 0.400±0.012 0.308±0.008 0.181±0.009
↓ 11.7% 8.5% 9.7% 13.3% 8.3% 13.7% 5.8% 7.8%

DATM
✗ 0.497±0.013 0.513±0.011 0.285±0.006 0.144±0.005 0.480±0.012 0.464±0.026 0.327±0.005 0.196±0.005
✓ 0.493±0.006 0.495±0.009 0.268±0.008 0.131±0.007 0.429±0.033 0.385±0.053 0.299±0.007 0.172±0.007
↓ 0.9% 3.4% 5.7% 8.6% 10.6% 17.1% 8.7% 12.1%

Full - 0.432±0.001 0.473±0.001 0.230±0.001 0.113±0.001 0.389±0.003 0.339±0.004 0.276±0.002 0.166±0.002

We observe that CondTSF consistently improves the performance of backbone models with all
condensing ratios, suggesting the effectiveness of CondTSF with different condensing ratios.
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C Performance of CondTSF with Non-parameter-matching Based Methods

We distill the dataset using the standard condensing ratio. The information on condensation is shown
in Table.4. We conduct experiments on CondTSF with non-parameter-matching based methods. We
use DM[50], IDM[52], KIP[33], FRePo[55] as backbone methods. The performance is shown in
Table.8.

Results show that using CondTSF to optimize only one of the two optimizable terms can also boost
the performance.

Table 8: Distill performance of different dataset condensation methods. For each method, ✗means CondTSF
is not used, ✓means CondTSF is used, and ↓ means the decreased percentage of test error after CondTSF is
applied. Five synthetic datasets are distilled and the average and standard deviation are reported.

CondTSF ExchangeRate Weather Electricity Traffic
MAE MSE MAE MSE MAE MSE MAE MSE

Random - 0.730±0.168 0.957±0.397 0.566±0.056 0.708±0.135 0.832±0.024 1.080±0.058 0.845±0.007 1.343±0.017

DM
✗ 0.772±0.016 0.990±0.061 0.483±0.063 0.540±0.128 0.818±0.011 1.048±0.034 0.830±0.016 1.299±0.048
✓ 0.697±0.030 0.832±0.072 0.477±0.047 0.513±0.082 0.817±0.011 1.043±0.030 0.812±0.013 1.253±0.035
↓ 9.6% 16.0% 1.2% 5.0% 0.1% 0.4% 2.3% 3.5%

IDM
✗ 0.708±0.107 0.871±0.257 0.517±0.052 0.594±0.105 0.836±0.012 1.087±0.032 0.823±0.022 1.287±0.055
✓ 0.683±0.120 0.805±0.247 0.504±0.055 0.570±0.116 0.819±0.023 1.050±0.055 0.804±0.020 1.231±0.055
↓ 3.5% 7.5% 2.4% 4.0% 2.0% 3.4% 2.4% 4.4%

KIP
✗ 0.538±0.026 0.467±0.032 0.316±0.016 0.297±0.008 0.817±0.010 1.040±0.032 0.834±0.006 1.314±0.027
✓ 0.217±0.009 0.079±0.007 0.313±0.007 0.297±0.003 0.812±0.021 1.037±0.044 0.830±0.011 1.278±0.034
↓ 59.6% 83.2% 1.0% 0.0% 0.6% 0.3% 0.4% 2.8%

FRePo
✗ 0.518±0.030 0.471±0.045 0.424±0.023 0.403±0.033 0.590±0.023 0.554±0.037 0.615±0.015 0.789±0.037
✓ 0.270±0.021 0.122±0.021 0.330±0.031 0.288±0.031 0.464±0.011 0.373±0.010 0.518±0.011 0.601±0.021
↓ 47.8% 74.1% 22.1% 28.4% 21.2% 32.6% 15.8% 23.8%

Full - 0.110±0.001 0.023±0.000 0.197±0.001 0.131±0.001 0.312±0.002 0.223±0.002 0.406±0.003 0.492±0.004

CondTSF ETTm1 ETTm2 ETTh1 ETTh2
MAE MSE MAE MSE MAE MSE MAE MSE

Random - 0.697±0.054 0.934±0.105 0.629±0.129 0.747±0.285 0.725±0.067 0.995±0.152 0.645±0.118 0.763±0.251

DM
✗ 0.684±0.063 0.903±0.129 0.641±0.129 0.782±0.254 0.722±0.040 0.977±0.094 0.703±0.079 0.895±0.189
✓ 0.651±0.041 0.826±0.089 0.614±0.130 0.706±0.322 0.713±0.035 0.950±0.077 0.615±0.133 0.706±0.267
↓ 4.8% 8.5% 4.3% 9.7% 1.2% 2.8% 12.5% 21.1%

IDM
✗ 0.657±0.047 0.841±0.094 0.648±0.155 0.811±0.297 0.713±0.055 0.956±0.124 0.667±0.121 0.823±0.252
✓ 0.648±0.025 0.816±0.040 0.610±0.131 0.698±0.255 0.694±0.039 0.912±0.080 0.573±0.161 0.632±0.314
↓ 1.4% 3.0% 5.8% 13.9% 2.6% 4.7% 14.1% 23.2%

KIP
✗ 0.581±0.002 0.736±0.012 0.316±0.002 0.171±0.002 0.685±0.021 0.861±0.028 0.576±0.114 0.575±0.198
✓ 0.581±0.001 0.723±0.014 0.290±0.002 0.151±0.002 0.602±0.036 0.709±0.082 0.400±0.054 0.282±0.061
↓ 0.0% 1.8% 8.0% 11.7% 12.1% 17.6% 30.6% 51.0%

FRePo
✗ 0.596±0.015 0.670±0.040 0.572±0.023 0.556±0.053 0.640±0.014 0.759±0.024 0.549±0.077 0.528±0.131
✓ 0.551±0.011 0.581±0.016 0.424±0.024 0.303±0.039 0.566±0.005 0.617±0.008 0.430±0.064 0.325±0.079
↓ 7.6% 13.2% 25.8% 45.5% 11.6% 18.7% 21.6% 38.4%

Full - 0.432±0.001 0.473±0.001 0.230±0.001 0.113±0.001 0.389±0.003 0.339±0.004 0.276±0.002 0.166±0.002
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D Performance of CondTSF with Non-Linear Expert Models

We distill the dataset using the standard condensing ratio. The information on condensation is shown
in Table.4. We conduct experiments on distilling dataset with non-linear expert models. We use
MTT[3], TESLA[5], and DATM[11] as backbone methods. The performance of using a CNN as the
expert model is shown in Table.9, and the performance of using a 3-layer-MLP as the expert model
is shown in Table.10.

Results show that CondTSF is also effective with non-linear expert models.

Table 9: Distill performance of different dataset condensation methods with CNN as the expert model. For each
method, ✗means CondTSF is not used, ✓means CondTSF is used, and ↓ means the decreased percentage of test
error after CondTSF is applied. Five synthetic datasets are distilled and the average and standard deviation are
reported.

CondTSF ExchangeRate Weather Electricity Traffic
MAE MSE MAE MSE MAE MSE MAE MSE

Random - 0.830±0.059 1.002±0.127 0.504±0.018 0.526±0.030 0.762±0.016 0.882±0.034 0.732±0.023 1.041±0.053

MTT
✗ 0.372±0.028 0.237±0.031 0.314±0.013 0.278±0.007 0.482±0.009 0.393±0.012 0.662±0.011 0.906±0.026
✓ 0.140±0.011 0.063±0.003 0.246±0.008 0.120±0.004 0.357±0.005 0.267±0.005 0.451±0.013 0.519±0.009
↓ 62.4% 73.4% 21.7% 56.8% 25.9% 32.1% 31.9% 42.7%

TESLA
✗ 0.378±0.007 0.242±0.007 0.310±0.015 0.292±0.012 0.516±0.005 0.430±0.009 0.655±0.020 0.900±0.045
✓ 0.134±0.012 0.058±0.002 0.253±0.007 0.137±0.002 0.374±0.008 0.267±0.007 0.528±0.011 0.632±0.020
↓ 64.6% 76.0% 18.4% 53.1% 27.5% 37.9% 19.4% 29.8%

DATM
✗ 0.331±0.011 0.179±0.013 0.335±0.009 0.294±0.008 0.504±0.008 0.432±0.009 0.587±0.009 0.742±0.014
✓ 0.137±0.017 0.059±0.004 0.291±0.005 0.261±0.004 0.355±0.006 0.252±0.006 0.452±0.009 0.526±0.011
↓ 58.6% 67.0% 13.1% 11.2% 29.6% 41.7% 23.0% 29.1%

CondTSF ETTm1 ETTm2 ETTh1 ETTh2
MAE MSE MAE MSE MAE MSE MAE MSE

Random - 0.691±0.012 0.856±0.030 0.723±0.027 0.846±0.052 0.727±0.015 0.931±0.030 0.722±0.015 0.847±0.033

MTT
✗ 0.550±0.006 0.585±0.011 0.347±0.008 0.205±0.009 0.644±0.013 0.788±0.036 0.371±0.016 0.245±0.020
✓ 0.482±0.007 0.507±0.007 0.236±0.009 0.111±0.005 0.460±0.008 0.437±0.014 0.297±0.011 0.173±0.009
↓ 12.4% 13.3% 32.0% 45.9% 28.6% 44.5% 19.9% 29.4%

TESLA
✗ 0.544±0.003 0.583±0.007 0.359±0.013 0.222±0.016 0.634±0.010 0.757±0.037 0.365±0.008 0.240±0.009
✓ 0.499±0.003 0.492±0.007 0.251±0.009 0.119±0.005 0.473±0.009 0.458±0.018 0.293±0.004 0.170±0.002
↓ 8.3% 15.6% 30.1% 46.4% 25.4% 39.5% 19.7% 29.2%

DATM
✗ 0.566±0.008 0.598±0.011 0.318±0.013 0.174±0.014 0.633±0.009 0.773±0.025 0.349±0.012 0.221±0.012
✓ 0.518±0.007 0.521±0.012 0.231±0.002 0.107±0.001 0.451±0.005 0.418±0.007 0.290±0.007 0.165±0.005
↓ 8.5% 12.9% 27.4% 38.5% 28.8% 45.9% 16.9% 25.3%

Table 10: Distill performance of different dataset condensation methods with 3-layer-MLP as the expert
model. For each method, ✗means CondTSF is not used, ✓means CondTSF is used, and ↓ means the decreased
percentage of test error after CondTSF is applied. Five synthetic datasets are distilled and the average and
standard deviation are reported.

CondTSF ExchangeRate Weather Electricity Traffic
MAE MSE MAE MSE MAE MSE MAE MSE

Random - 0.932±0.058 1.243±0.144 0.562±0.013 0.642±0.030 0.796±0.013 0.955±0.036 0.751±0.012 1.112±0.025

MTT
✗ 0.364±0.027 0.211±0.030 0.311±0.007 0.297±0.009 0.475±0.011 0.380±0.016 0.633±0.011 0.841±0.021
✓ 0.139±0.004 0.034±0.002 0.248±0.015 0.135±0.006 0.375±0.007 0.268±0.008 0.501±0.008 0.589±0.016
↓ 61.8% 83.9% 20.3% 54.5% 21.1% 29.5% 20.9% 30.0%

TESLA
✗ 0.352±0.012 0.209±0.010 0.297±0.001 0.272±0.003 0.525±0.004 0.462±0.008 0.594±0.009 0.751±0.022
✓ 0.128±0.017 0.027±0.007 0.252±0.006 0.135±0.001 0.397±0.012 0.297±0.014 0.488±0.006 0.577±0.009
↓ 63.6% 87.1% 15.2% 50.4% 24.4% 35.7% 17.8% 23.2%

DATM
✗ 0.326±0.016 0.177±0.016 0.349±0.002 0.301±0.001 0.517±0.008 0.441±0.011 0.622±0.007 0.785±0.005
✓ 0.141±0.005 0.042±0.001 0.254±0.010 0.126±0.004 0.385±0.009 0.280±0.008 0.496±0.006 0.582±0.011
↓ 56.7% 76.3% 27.2% 58.1% 25.5% 36.5% 20.3% 25.9%

CondTSF ETTm1 ETTm2 ETTh1 ETTh2
MAE MSE MAE MSE MAE MSE MAE MSE

Random - 0.692±0.013 0.855±0.027 0.762±0.012 0.955±0.037 0.687±0.010 0.838±0.022 0.763±0.019 0.945±0.050

MTT
✗ 0.564±0.012 0.655±0.022 0.362±0.011 0.219±0.012 0.615±0.002 0.732±0.015 0.354±0.011 0.228±0.012
✓ 0.493±0.007 0.511±0.007 0.245±0.022 0.098±0.015 0.423±0.006 0.369±0.008 0.285±0.009 0.145±0.005
↓ 12.6% 22.0% 32.3% 55.3% 31.2% 49.6% 19.5% 36.4%

TESLA
✗ 0.541±0.002 0.570±0.004 0.341±0.014 0.197±0.013 0.606±0.007 0.745±0.022 0.337±0.008 0.210±0.006
✓ 0.487±0.003 0.493±0.004 0.250±0.009 0.119±0.005 0.438±0.011 0.398±0.013 0.283±0.007 0.145±0.006
↓ 10.0% 13.5% 26.7% 39.6% 27.7% 46.6% 16.0% 31.0%

DATM
✗ 0.558±0.009 0.611±0.021 0.329±0.006 0.186±0.005 0.593±0.022 0.741±0.063 0.350±0.009 0.222±0.008
✓ 0.498±0.006 0.482±0.006 0.234±0.005 0.107±0.001 0.437±0.006 0.397±0.005 0.286±0.005 0.167±0.004
↓ 10.8% 21.1% 28.9% 42.5% 26.3% 46.4% 18.3% 24.8%
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E Performance Comparison of CondTSF and Smoothing

We distill the dataset using the one-shot condensing ratio. The information on condensation is
shown in Table.2. We conduct experiments on distilling dataset with CondTSF and a low pass filter
respectively. We use DLinear[45] as the expert model. The result is shown in Table.11.

Results indicate that using CondTSF is significantly more effective than using a low pass filter to
smooth the distilled data.

Table 11: Distill performance of different dataset condensation methods. Five synthetic datasets are distilled and
the average and standard deviation are reported.

ExchangeRate Weather Electricity Traffic
MAE MSE MAE MSE MAE MSE MAE MSE

Random 0.783±0.090 1.070±0.246 0.530±0.084 0.647±0.159 0.840±0.017 1.102±0.031 0.854±0.018 1.350±0.043

MTT 0.778±0.084 0.964±0.136 0.509±0.065 0.538±0.085 0.747±0.012 0.840±0.019 0.742±0.010 1.052±0.024
Smooth 0.867±0.106 1.358±0.321 0.602±0.018 0.772±0.032 0.831±0.042 1.068±0.109 0.786±0.037 1.208±0.101

MTT+Smooth 0.620±0.024 0.636±0.062 0.501±0.012 0.527±0.028 0.788±0.027 0.963±0.061 0.836±0.022 1.291±0.057
MTT+CondTSF 0.195±0.007 0.061±0.004 0.326±0.009 0.284±0.007 0.391±0.003 0.284±0.004 0.494±0.022 0.579±0.037

ETTm1 ETTm2 ETTh1 ETTh2
MAE MSE MAE MSE MAE MSE MAE MSE

Random 0.728±0.033 0.993±0.082 0.695±0.011 0.889±0.030 0.756±0.035 1.059±0.083 0.749±0.037 1.013±0.089

MTT 0.653±0.019 0.771±0.040 0.685±0.022 0.754±0.051 0.693±0.009 0.845±0.023 0.719±0.006 0.827±0.016
Smooth 0.728±0.013 0.991±0.038 0.706±0.053 0.910±0.136 0.701±0.007 0.879±0.026 0.744±0.067 1.023±0.145

MTT+Smooth 0.656±0.014 0.919±0.040 0.619±0.029 0.684±0.062 0.680±0.012 0.874±0.044 0.704±0.053 0.910±0.136
MTT+CondTSF 0.491±0.004 0.502±0.008 0.347±0.028 0.202±0.028 0.532±0.014 0.580±0.029 0.329±0.003 0.205±0.002
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F Ablation Study of CondTSF

We compare the changing trajectories of test error during the dataset condensation process. Since
MTT has been proven to be a suitable backbone for CondTSF, we conduct experiments on different
methods of plugging CondTSF into MTT. We utilize the standard condensing ratio as shown in
Table.4.

Test error is calculated as such. After the synthetic data has been distilled, it is used to train 5
randomly initialized testing models. After training with the synthetic dataset, the models are tested
on the test set sampled from the source dataset. MAE error is reported in the figures below.

F.1 Performance of CondTSF with Different Gap
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Figure 5: Yellow: Use MTT to distill for 200 epochs. Orange: Use MTT to distill for 200 epochs and use
CondTSF to update in every epoch.
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Figure 6: Yellow: Use MTT to distill for 200 epochs. Orange: Use MTT to distill for 200 epochs and use
CondTSF to update every 3 epochs.
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Figure 7: Yellow: Use MTT to distill for 200 epochs. Orange: Use MTT to distill for 200 epochs and use
CondTSF to update every 5 epochs.

We observe that CondTSF consistently reduces the testing error with different utilization gaps.

F.2 Relationship of Performance and Label Error

We also conduct experiments on label error and test error. We visualize the trajectory of label error
Llabel and test error through the distillation process. The results are shown in Fig.8.

• Model 1: Use MTT to distill for 200 epochs.
• Model 2: Use MTT to distill for 160 epochs and then use CondTSF to update for 40 epochs.

As shown in Fig.8, it can be observed that using MTT[3] leads to an increase in label error Llabel.
While applying CondTSF effectively lowers the label error in the last 40 epochs, and therefore
enhancing the performance.
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Figure 8: Visulization of the training curve of label error and test error during the distillation process.
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G Parameter Sensitivity of CondTSF

We test CondTSF with different update gaps G and additive update ratios β. We utilize the standard
distill ratio as shown in Table.4. Our observations indicate that CondTSF displays a notable degree of
robustness concerning these parameters. Specifically, the effectiveness of CondTSF persists when the
update gap G is moderately sized and additive update ratio β is not excessively small.
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Figure 9: Performance of CondTSF with different update gaps and update ratios.

24



H Visualization of Synthetic Data

We provide some visualization of synthetic data distilled by MTT[3] and MTT+CondTSF on all
datasets. It is observed that the synthetic dataset distilled with CondTSF is smoother than the ones
without CondTSF. Smoother data indicates more generalized features and therefore helps boost the
performance.
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Figure 10: Visualization of synthetic data.
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Figure 11: Visualization of synthetic data.
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Figure 12: Visualization of synthetic data.
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Figure 13: Visualization of synthetic data.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As shown in Sec.1, we explicitly claim the contributions of this work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: As shown in Sec.6, we discuss the limitations of this work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We propose two theorems in Sec.4. We provide complete proof of the two
theorems in App.A.1 and App.A.2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the detailed algorithm in Sec.4. We provide detailed parameter
settings to reproduce the results in Sec.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We attach the code needed to reproduce the results with the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed hyperparameter settings in Sec.5 that are necessary to
reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We repeat each experiment five times and the average and standard deviation
of errors are reported in Sec.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: As shown in Sec.5, we provide the model of the GPU we used for experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This work does not involve human subjects. As shown in Sec.5, the datasets
used in this work are all widely used open-source datasets.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work does not involve human subjects. As shown in Sec.5, the datasets
used in this work are widely used and open-source. There’s no harm to humans or leak of
privacy in this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As shown in Sec.5, the datasets used in this work are all widely used and
open-source. There’s no risk of releasing unsafe data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: As shown in Sec.5, we cite the papers that produced the code. The datasets
used in this work are all widely used and open-source.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide documents with the code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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