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ABSTRACT

Large-scale scientific datasets—spanning health biobanks, cell atlases, Earth re-
analyses, and more—create opportunities for exploratory discovery unconstrained
by specific research questions. We term this process hypothesis hunting: the cu-
mulative search for insight through sustained exploration across vast and complex
hypothesis spaces. To support it, we introduce AScience, a framework model-
ing discovery as the interaction of agents, networks, and evaluation norms, and
implement it as ASCol1lab, a distributed system of LLM-based research agents
with heterogeneous behaviors. These agents self-organize into evolving networks,
continually producing and peer-reviewing findings under shared standards of eval-
uation. Experiments show that such social dynamics enable the accumulation of
expert-rated results along the diversity—quality—novelty frontier, including redis-
coveries of established biomarkers, extensions of known pathways, and proposals
of new therapeutic targets. While wet-lab validation remains indispensable, our ex-
periments on cancer cohorts demonstrate that socially structured, agentic networks
can sustain exploratory hypothesis hunting at scale.

1 INTRODUCTION

Modern science is increasingly shaped by large-scale digital snapshots of the world: biobanks
containing millions of genomes and health records (Bycroft et al., 2018), cell atlases charting tissues
at single-cell resolution (Regev et al., 2017), and global reanalysis datasets tracing Earth systems over
decades (Hersbach et al., 2020). These collections, built from sustained large-scale measurement,
contain hidden mechanisms, associations, and regularities that remain undiscovered. Systematically
probing such datasets for insight defines a new problem setting that we term hypothesis hunting:

Hypothesis Hunting

Hypothesis hunting is the continuous and diverse exploration of large-scale datasets to surface
promising findings that guide subsequent human investigation and experimental validation.

This mode of discovery holds vast potential but is
limited when pursued by human scientists alone. The
obstacles are twofold: scale, with millions of samples
and thousands of variables creating a combinatorial
explosion of possible analyses; and coordination,
since meaningful progress often requires knowledge,
tools, and perspectives scattered across disciplines
(Balietti et al., 2015). An autonomous system capable
of broad exploration, iterative refinement, and cumu-
lative knowledge building can directly address these
challenges, surfacing candidate findings for further
human inquiry and wet-lab validation.

Figure 1: Hypothesis hunting. Large-scale
datasets are explored by autonomous net-
works of research agents that collaborate,
peer-review, and refine findings to surface
promising directions for human validation.

Recent advances in autonomous science have begun to make this vision tangible. Of note, large
language model (LLM) agents, equipped with tools, domain expertise, and reasoning capabilities,
can propose hypotheses, design experiments, execute analyses, and interpret results (Lu et al., 2024;
Gottweis et al., 2025). While representing important advances, these systems are designed around
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answering predefined research questions. Hypothesis hunting, by contrast, imposes more fundamental
demands—chief among them requirements for exploration, evaluation, and accumulation. The
search space of possible questions and approaches in large-scale datasets is vast yet sparse, calling for
diverse and adaptive exploration strategies coupled with mechanisms for knowledge consolidation.
Importantly, the potential discoveries vary widely in type and scope (e.g., from biomarker associations
to therapeutic leads), making their significance heterogeneous, context dependent, and difficult to
assess without the anchor of a specific question. Finally, value derives not only from isolated results
but also from accumulation: the incremental refinement, layering, and recombination of discoveries
into evolving research programs (Lehman et al., 2008).

Our central insight is that advancing systematic discovery in this setting requires not just autonomous
agents but networks of agents, where the social dynamics are crucial to uncovering novel exploratory
directions and turning scattered findings into ongoing knowledge accumulation. In human science,
progress accelerates when communities of investigators pursue diverse approaches, critique one
another’s claims, and cross-pollinate across domains, producing layered bodies of evidence (Fortunato
et al., 2018). These cooperative and competitive dynamics are mediated by networks, flows of
attention and investigation budgets, and shared frameworks for evaluation. Our central insight is that
enhancing this social aspect of agentic systems is key to unlocking hypothesis hunting at scale.

To formalize this idea, we introduce AScience, a framework that models collective science through
four interacting components: (i) an epistemic landscape of possible approaches, (ii) heterogeneous
scientific agents, (iii) networks that route attention and collaboration, and (iv) robust evaluation
mechanisms of ‘good science’. We instantiate this framework in AScience-Collaboratory
(ASCollab), a distributed system of heterogeneous LLM-based scientific agents that generate and
refine diverse findings de novo, interact to form evolving networks, and are guided by shared scientific
standards. Through this system, discoveries emerge not from a single agent pursuing a single goal,
but from a community engaged in parallel exploration, quality control, and cumulative refinement.

Empirically, we find that these social dynamics support the continuous accumulation of expert-
credible findings along the diversity—quality—novelty frontier. Agents distributed within the network
display heterogeneous and evolving behaviors, while collaboration structures reorganize endogenously
to drive broader exploration. Applied to three cancer cohorts from The Cancer Genome Atlas
(Weinstein et al., 2013), integrating transcriptomic, proteomic, pathway, and clinical survival data,
ASCollab generates diverse and potentially interesting findings—ranging from (1) rediscoveries
of established cancer drivers to (2) extensions of ferroptosis pathways and (3) proposals of new
therapeutic targets—showcasing the promise of networked agents for hypothesis hunting at scale.

Contributions. Our core contributions are three-fold:

1. Framework. We formalize hypothesis hunting—the continuous, open-ended exploration of large-
scale datasets for promising discoveries—and introduce AScience, a framework capturing the
social dynamics of cumulative scientific progress.

2. Agentic system. We instantiate this framework as ASCol1lab, a distributed system of heteroge-
neous LLM-based research agents that generate, critique, and refine findings through endogenous
interaction and shared evaluation standards.

3. Empirical evidence. On TCGA, ASCol1lab sustains cumulative exploration and yields findings
judged novel, high-quality, and diverse, spanning validated biomarkers, pathway-level extensions,
and new therapeutic hypotheses of potential scientific or clinical significance.

2 FORMALISM

2.1 MODELING THE SOCIAL DYNAMICS OF SCIENCE

Scientific progress does not unfold as a collection of isolated researchers running analyses, but as a
collective process shaped by ideas, agents, interactions, and shared evaluative norms. To capture this,
we model science as a dynamic system in which agents navigate an epistemic landscape, exchange
information through networks, and adapt to feedback and accumulating knowledge.

Datasets. We take as provided large-scale datasets D (e.g., genomic cohorts, astronomical surveys),
providing the empirical basis from which research questions, methods, and findings are drawn.
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Epistemic landscape. A research field, defined implicitly by D, can be viewed as an epistemic
landscape: a structured space of possible approaches, each with some intrinsic scientific value
(Weisberg & Muldoon, 2009). Conceptually, approaches differ in the questions they pose, the
instruments and analytic methods they use, and the theoretical framings they adopt. Formally, let
X denote the space of approaches, with x € X indexing a specific approach, and let ) C R denote
epistemic significance. The landscape is defined by a ground-truth mapping f : X — ), and is
generally rugged: some approaches yield high significance (local peaks), others little insight (valleys),
with global maxima representing approaches closest to the set of underlying truths encoded in D.

Perceived epistemic significance. Agents do not observe f directly. Instead, they form beliefs

about a time-varying perceived landscape fi. This perception is shaped by the history of visible
outputs H; C O, the network of attention W, and shared standards of evaluation /. Conceptually,

fi=T4 ( fi 1, , Wy, Ht), aggregating the influence of prior findings, diffusion through networks,

and evaluation standards. Importantly, f+ evolves even if f is fixed: a finding of high intrinsic value
loses perceived significance once it becomes common knowledge and judged non-novel via I.

Scientific agents. Researchers or research groups are modeled as heterogeneous agents ate A=
1,2,..., N, each with a state vector a} = (z%, 0}, €}, bi, pi):

1. xi: current approach (coordinates on the landscape);

0i: epistemic behavior (e.g., explore vs. exploit, collaborate vs. solo, risk-taking vs. conservative);
el: expertise (or specialization within the research field);

be: belief state (summarizing the agent’s internal view of the field);

pi: publicly visible history such as publications or citations (collectively termed reputation).

noR LD

Then, each agent can be viewed as following a stochastic research policy w441 ~ (- |z, O, e, by)
to produce research outputs o; € O.

Networks of agents. Social interactions (e.g., information sharing, collaboration) are modeled as
a time-varying weighted directed graph G; = (A, W;), where W; = (w};)i,j € A and each edge
wij® captures the attention agent a! allocates to signals from agent a; (in particular, p;). These
interactions shape belief states b}, which in turn guide agents’ subsequent strategies of research.

Standards of evaluation. Collective progress also depends on shared standards I that define what
counts as valuable science. Formally, I comprises: (i) an evaluation operator =; mapping each output
to a score si = Z;(o; f;) (e.g., novelty, rigor, reproducibility), and (ii) a consequence operator
o 41 Yoo, st, pt) mapping outputs and scores to updates of p! (e.g., reputational gains through
publication or citation). These standards govern visibility and guide how resources and attention flow.

Together, the perceived landscape f;, agent states ai, networks G, outputs H;, and standards 1
co-evolve. Agents adapt strategies to new information; networks reorganize as attention shifts;
evaluation influences perceived significance. Social research dynamics thus emerge from feedback
among agents, ideas, networks, and norms.

2.2 PROBLEM SETTING

The formalism above is general, but different scientific contexts emphasize different dynamics of
landscapes, networks, and evaluation. We distinguish two broad settings:

1. Goal-driven. In this setting, agents converge on approaches aimed at a narrow objective (e.g.,
identifying an antibody for a novel pathogen). Progress is measured by how quickly and reliably
the target is reached. Once the optimal solution is known, further rediscoveries add little beyond
verification or robustness. These scenarios have clear endpoints and natural stopping rules.

2. Cumulative. Here, agents explore a broad topic (e.g., cancer biology) through diverse questions,
methods, and perspectives. Individual research episodes are partly independent yet mutually
enabling: results accumulate, tools are repurposed, and findings open new lines of inquiry.
Progress has no natural endpoint but unfolds as layered evidence that reshapes the field.

The focus of hypothesis hunting is squarely on the second setting, characterized by open-ended
exploration without objectives; heterogeneous findings whose value is context- and time-dependent;
and the dynamic evolution of perceived significance, collaboration networks, and research directions.
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Figure 2: ASCol1lab. Evolving network of distributed agents hypothesis hunting.
3 EVOLVING NETWORKS OF AUTONOMOUS SCIENTIFIC AGENTS

In this section, we instantiate the AScience framework as AScience-Collaboratory
(ASCollab), a system designed to support hypothesis hunting over large-scale datasets D.
ASCollab consists of a heterogeneous population of scientific agents—differing in expertise,
epistemic behavior, and reputational status—embedded in an evolving network. Agents indepen-
dently pursue research, but also collaborate, and peer-review each other’s findings. Crucially, the
network itself is not fixed: patterns of collaboration and attention emerge endogenously from agent
capabilities and evolving histories. An overview of the system is shown in Figure

3.1 AGENT NETWORK INFRASTRUCTURE

To enable such network dynamics, ASCollab maintains two shared-memory structures that serve
as the system’s connective tissue: (i) an agent registry, which tracks the active research community,
and (ii) an internal archive, which stores the body of accumulated research outputs. Together, these
structures allow agents to locate relevant collaborators, access prior findings, and update their internal
beliefs. Conceptually, they play a role similar to academic infrastructure such as Google Scholar or
PubMed: supporting both the discovery of collaborators and the retrieval of relevant literature.

Agent registry. The registry maintains the public profiles of all agents in .4, indexed by unique
identifiers. Each entry contains: (i) a profile of the agent’s expertise e’; and (ii) reputation metadata
p', including the number of accepted papers and citations received. Specifically, agents are prompted
periodically to update e} based on their recent research. Reputation metadata is updated by the system,
reflecting findings accepted into the internal archive and accumulated citations.

Internal archive. The archive functions as the entire network’s publication record, containing all
outputs accepted into the network. Each record is indexed by a unique paper identifier and stores rich
metadata: authoring agents (including collaborators), title, abstract, full manuscript, associated code,
public reviews, bibliography, and time of acceptance. The data archive is automatically updated at
the end of each research round, as papers accepted through network peer-review are added to the
archive. The exact schema of the two structures are described in Section

Query mechanics. Both the registry and archive are interfaced with query layers, exposed to agents
as tools. Queries are resolved via vector search (Salton et al., 1975), with embeddings tailored to the
underlying content: agent expertise representations (derived from e?) for the registry, and title—abstract
embeddings for the archive. This enables natural text queries such as “expertise in pathway analysis”
or papers investigating “certain pathways in renal carcinoma.” Retrieval-augmented generation (RAG)
integrates these results directly into agent reasoning, allowing artefacts of the shared memory to
shape research trajectories, collaboration choices, and review judgments (Lewis et al., 2020).

3.2 HETEROGENEOUS SCIENTIFIC AGENTS

To encourage sustained exploration in ASCo11lab, we introduce heterogeneity across agents rather
than assigning them uniform roles. Without such diversity, agents risk converging too quickly on
similar solutions, limiting the coverage of the research landscape (Hong & Page, 2004). By varying
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epistemic behavior and expertise, the system maintains a broader range of strategies and perspectives,
which supports more balanced exploration and exploitation.

In principle, heterogeneity can be introduced through many mechanisms, including specialist training,
distinct underlying LLMs, or access to different toolkits. In ASCo11ab, we focus on two dimensions:
epistemic behavior (0%) and expertise (¢'). At system initialization, we query the underlying LLM
to generate a set of distinct behavioral profiles and areas of expertise, which are embedded in each
agent’s system prompt, akin to assigning a scientific persona (Park et al., 2023).

Epistemic behavior. Each agent is assigned a behavioral stance that governs how it approaches
research, spanning dimensions such as exploration vs. exploitation and independence vs. collaboration
(see Appendix for the full set of stances). These behavioral tendencies remain fixed throughout
the lifetime of the agent, providing epistemic diversity in the population. Expertise. Expertise
profiles are sampled with respect to the dataset D. For example, when working with TCGA cohorts,
sampled expertise includes capabilities such as differential expression analysis, gene set enrichment,
or drug—target interaction analysis. Unlike epistemic behavior, expertise is adaptive and periodically
updated by agents to reflect latest specialization (Lazer & Friedman, 2007).

Memory. In contrast to public artefacts in the shared archive, each agent maintains a private memory
of its past work, including findings not accepted into the archive (Wu et al., 2024). Agents can query
this memory to retrieve prior findings or intermediate code analyses, enabling continuity and reuse in
their research programs. Together, epistemic behavior, expertise, and memory define each agent’s
research policy 7, shaping how it selects problems, collaborates, and produces findings over time.

3.3 COLLABORATION AND RESEARCH SESSIONS

Research in ASCol1ab unfolds through distributed sessions (or rounds), in which each agent acts
as a primary investigator tasked with producing a new finding. Importantly, each agent is free to
determine its own research plan, with no pre-specified workflows or constraints.

Research environment. Agents have direct access to the datasets D and operate within identical, but
dedicated computational environment. This environment provides a suite of tools: (i) query interfaces
to the agent registry, internal archive, private memory, and external literature search; (ii) collaboration
mechanisms for identifying, inviting, and exchanging messages with other agents; and (iii) a sandbox
for executing code, preloaded with domain-specific software relevant to the dataset (e.g., differential
expression analysis, pathway enrichment, or survival modeling in the case of TCGA cohorts).

Reasoning loop. Agents plan their research activity via the ReAct framework (Yao et al., 2023),
cycling through three steps: plan and reason — act by invoking tools or writing code — observe
resulting outcome (see Section for details). Each research session consists of up to M such
iterations, though agents determine dynamically how to allocate reasoning across exploration, analysis,
or collaboration. Collaboration model. Collaboration is organized through a principal—collaborator
framework: the initiating agent remains the lead investigator, while invited collaborators contribute
brainstorming, feedback, or critique. Collaborations are established through a dedicated tool that
specifies collaborator identifiers and provides a communication channel for message exchange. At
the conclusion of a session, each agent produces a standardized research report (see Section B.3)
summarizing findings, evidence, and references (from both external sources and the internal archive).
Any code written during the session is automatically extracted. Thus, each output o, takes the form
of a (report, code) pair, and with N agents, each round yields N such outputs.

3.4 EVALUATION VIA PEER-REVIEW

The final component is the protocol of evaluation I, which we design through a structured peer-review
process. This provides a collective input for assessing the quality of outputs and controlling which
findings enter the archive. Specifically, the evaluation mechanism consists of two stages:

Review stage. Each research output o} = (report, code) is assigned to a panel of K reviewers.
Reviewers are selected by querying the agent registry with the title and metadata of the submission to
identify agents with relevant expertise, ensuring that the authoring agent is excluded. The process is
double-blind, and an agent may serve on multiple review panels concurrently. Reviewers provide
structured assessments (see Appendix ), scoring the submission on a 1-4 scale along four
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dimensions: (i) support (empirical and logical grounding of claims), (ii) soundness (technical
rigor), (iii) significance (contribution to advancing knowledge), and (iv) originality (novelty of ideas,
methods, or results). Specifically, reviewers cannot execute code, but they have visibility of the
complete codebase as well as query tools for the archive and literature to contextualize evaluation.

Meta-review stage. Following the review stage, submissions are clustered thematically, and each
cluster is assigned to a meta-reviewing agent. Unlike research/review agents, the meta-reviewer is a
dedicated agent whose role is to execute a tournament consisting of related submissions (Goldberg
& Deb, 1991). Given L submissions and their associated reviews, the meta-reviewer produces a
relative judgment of merit: assigning each paper a score on a 0-1 scale, together with a brief written
justification. To calibrate decisions, the meta-reviewer is also shown randomly sampled reference
papers from the archive. By design, the meta-reviewer does not access external tools, relying solely
on its reasoning and the provided reviews. Acceptance. The combined review and meta-review scores
form the evaluation operator Z;, yielding a vector of scores for all outputs. The top 1/K fraction of
outputs produced by the network in each round is accepted into the internal archive, becoming part of
the network’s shared memory. Citations within accepted papers are propagated to update archival
entries and agent metadata in the registry, reflecting reputational gains. This consequence operator Ty
closes the evaluation loop by mapping outputs and scores into visible signals on individual findings
and agents and by propagating statistics through the archive and registry.

Each round of research therefore concludes with evaluation and acceptance updates, after which
agents continue their research with an updated registry and archive. Over T' rounds, this feedback
loop ensures that the network’s collective behavior is continually shaped by cumulative findings.

4 RELATED WORKS

Our work is primarily related to three lines of research (for an extended survey, please see Section A).

Data-driven discovery. Classical approaches focus on deriving hypotheses directly from empirical
data. These include symbolic regression, which recovers closed-form equations (Schmidt & Lipson,
2009; Brunton et al., 2016; Udrescu & Tegmark, 2020); logic programming and rule discovery, which
extract relational or propositional hypotheses (Quinlan, 1990; Clark & Niblett, 1989; Lin et al., 2020);
and causal discovery, which infers causal graphs from observational data using independence tests,
scoring criteria, or functional assumptions (Spirtes et al., 2000; Zheng et al., 2018; Peters et al., 2014).

LLM-augmented discovery. Recent work has explored replacing handcrafted inductive biases with
the scientific priors encoded in large language models. LLMs are deployed as search operators,
generating and modifying candidate hypotheses—often expressed in code—guided by evaluators
such as solvers, experiments, or reward signals. This paradigm has enabled advances in algorithm and
mathematical discovery (Romera-Paredes et al., 2024; Novikov et al., 2025), and has been applied
across domains including neural architecture search (Chen et al., 2023), decision trees (Liu et al.,
2025), symbolic equations (Shojaee et al., 2025), theorem proving (Trinh et al., 2024), robotics
reward design (Ma et al., 2024), and molecular design (Wang et al., 2025), underscoring the potential
for LLM-based search to broaden and accelerate discovery.

Agentic science. An emerging direction concerns agentic systems that integrates LLMs with tool-
rich, memory-augmented agents to automate aspects of the scientific process. One line emphasizes
automating experimental workflows, e.g., chemical synthesis or biomedical pipelines (M. Bran et al.,
2024; Ruan et al., 2024; Huang et al., 2025b; Qu et al., 2025). More directly relevant are systems
for hypothesis generation and refinement, such as the AT Scientist (Lu et al., 2024), which
can autonomously generate ideas, run analyses, and draft papers, and the AT Co-Scientist
(Gottweis et al., 2025), which employs multi-agent debate and evolution to refine hypotheses. Related
work on automated falsification (Huang et al., 2025a) and domain-specific instantiations (Saeedi
et al., 2025; Ghafarollahi & Buehler, 2025) further illustrate this paradigm.

5 EXPERIMENTS

We evaluate ASCol1lab on three hypothesis hunting tasks in cancer genomics.

Large-scale datasets. We use The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013), a landmark
initiative that molecularly characterized over 20, 000 tumor and matched normal samples across 33
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Figure 3: Evaluation of novelty, quality, and diversity of findings produced by research network.

cancer types, producing multi-omic datasets that have underpinned thousands of studies (Tomczak
et al., 2015). TCGA is a prime testbed for hypothesis hunting for three reasons: (i) real-world
impact, as uncovering new mechanisms, biomarkers, and therapeutic targets in cancer remains a
major scientific and clinical challenge; (ii) scale and richness, as TCGA provides comprehensive
molecular measurements across many cancers, with numerous yet-unexplored associations and
potential insights; and (iii) reproducibility, as TCGA is an open-access resource.

We focus on three cohorts: kidney renal clear cell carcinoma (KIRC) (Network, 2013), diffuse
large B-cell lymphoma (DLBC) (Weinstein et al., 2013), and pancreatic adenocarcinoma (PAAD)
(Raphael et al., 2017). For each cohort, we integrate (1) bulk RNA-sequencing, (2) protein expression
arrays, (3) clinical phenotypes, (4) survival outcomes, together with (5) pathway annotations and (6)
drug-target information from the Probes & Drugs database (Skuta et al., 2017). We do not apply any
preprocessing to these datasets. Full dataset details are provided in Section C. Beyond providing the
datasets, we do not specify concrete research question, instead instructing the agents to ‘discover
novel, strongly supported, and scientifically significant findings on the provided datasets’.

Evaluation. Evaluating autonomous scientific systems is inherently challenging, as outputs are less
predictable, open-ended, and heterogeneous (Lu et al., 2024; Gottweis et al., 2025). We assess
findings along three complementary dimensions: (1) Novelty: the extent to which a finding introduces
ideas or associations not already present in the literature; (2) Quality: the rigor, plausibility, and
evidential support of the finding; (3) Diversity: the breadth of the hypothesis space covered.

Implementation details. We deploy a population of N = 16 agents for 7" = 40 rounds. Each
research session is capped at M = 40 ReAct loops, with K = 2 reviewers assigned per paper and
meta-review tournaments of size L = 4. All agents use gpt—-40-2024-08-06 (Hurst et al., 2024)
as the underlying LLM (knowledge cut-off: October 2023), with text —embedding-3-small
for retrieval-augmented queries. Multi-agent orchestration is implemented via LangGraph, and
agent sandboxes run in isolated environments on a 32—-core AMD Epyc Milan 7713 CPU.
Additional implementation details are provided in Section

5.1 EVALUATION OF PRODUCED FINDINGS

To assess the effectiveness of ASCollab, we compare it against an ablated baseline where agents
operate independently. These agents retain the same hyperparameters and computational budget as
the network but lack access to global data stores (agent registry and internal archive). Consequently,
each can rely only on its own past outputs, with no possibility of collaboration or cross-pollination.

Evaluation protocol. From both settings, we select the top 25 outputs as ranked by meta-review
scores. These outputs are then evaluated by a domain expert (using a rubric described in Section B.5):
Novelty (1-5): from 1 = essentially already published in the same form (including analyses), to 5 =
substantial novel contribution with no prior precedent. Quality (1-5): from 1 = conflicting with strong
established evidence, to 5 = highly plausible, well-supported by related literature, or generalizable
across datasets or cancer types. For diversity, we analyze the distribution of implicated gene targets
and compute embedding-based visualization of abstracts.
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Results. Results of the expert evaluation are shown in Figure 3. Expert evaluation indicates that
findings produced by ASCol1lab are both more novel and of higher quality than those from inde-
pendent agents. In the baseline, many findings were near-duplicates, with almost half overlapping
substantially. Consequently, a filtering step was required to ensure 25 unique findings. In contrast,
ASCollab outputs were more heterogeneous, with no duplication in the top 25 findings.

Embedding visualizations of research findings via t-SNE (Maaten & Hinton, 2008) reveal that
independent agents tend to converge (over time) on a narrow set of areas, whereas ASCollab
agents explore outward into a broader space of hypotheses. Gene-level histograms corroborate this
pattern: independent agents concentrate heavily on a small subset of targets, while ASCollab
produces findings implicating a wider range of genes. Finally, novelty—quality frontiers show that the
highest-scoring outputs from ASCo1l1lab also received the strongest expert ratings. Taken together,
ASCollab, by leveraging social dynamics and shared memory, sustains cumulative exploration that
yields discoveries which are not only more diverse, but also consistently of higher quality and novelty.

5.2 DETAILED CASE STUDIES

Beyond aggregate evaluation, two domain experts examined a subset of findings in depth. Here we
highlight three representative findings, with full reports, analyses, and reproducible code in Section
For balance, we also include negative cases where the peer-review pipeline recommended rejection,
illustrating how the system filters overlap with prior literature or unsupported claims.

Multi-gene Ferroptosis axis in KIRC (Section D.1) ~

Agents identified a ferroptosis module involving ACSL4, GPX4, and FTH1 in kidney cancer, a part
of which was later independently discovered and published in Zheng et al. (2025) (after knowledge
cut-off of LLM, and manual examination of research trace revealed this work was not retrieved by
agent). This finding, supported by DepMap essentiality data and prior mixed evidence (Guo et al.,
2015; Huang et al., 2019; Zou et al., 2019), was enabled by the primary agent extending earlier
findings by another agent (on SLC7A11/ALOX5) into a broader mechanistic hypothesis. )

’ SLC5A2 and ABCCS in PAAD (Section D.2) ~

Agents proposed SLC5A2 (SGLT2) and ABCCS8 as therapeutic targets in pancreatic adenocarci-
noma, anticipating a July 2025 publication that independently confirmed the SLC5A2-PAAD link
(Xie et al., 2025). This finding, contextualized against prior work emphasizing SGLT1 (Du et al.,
2022) and largely non-oncologic studies of SGLT2 (Jurczak et al., 2011), illustrates how agent
collaboration surfaced a novel target class while situating results within the transporter 1iterature.)

’ BIRCS validation and PRKD1 extension in KIRC (Section 1).3) ~N

Agents independently reproduced the established role of BIRC5 (Survivin) as a diagnostic and
prognostic marker in KIRC (Wang et al., 2021), strengthening confidence by re-deriving results
from scratch on TCGA data. Building on this, collaboration extended the analysis to implicate
\P RKD1 as a putative tumor-suppressive regulator, proposing complementary therapeutic leads.

5.3 AGENT BEHAVIORS AND NETWORK EVOLUTION

To investigate how heterogeneity and social dynamics emerge in ASCol1lab, we examine (i) diversity
in epistemic behavior across agents and (ii) the temporal evolution of collaboration networks.

Heterogeneous epistemic behaviors. In Figure 4, we visualize distributions of session lengths and
normalized tool usage aggregated across research sessions. Agents display marked differences in
research style: some (e.g., agent_002, agent_015) conduct very lean research, while others pur-
sue considerably longer investigations. Tool usage also varies: certain agents collaborate frequently,
while others never do; some spend more iterations on literature search, while others allocate more
time to coding analysis. Notably, outputs produced through collaboration receive systematically
higher meta-review scores than those produced in isolation, despite the double-blind evaluation
process, underscoring the epistemic value of collaborations.
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Figure 4: Heterogeneous agent behaviors and endogenous network evolution.

Dynamic collaboration networks. Collaboration patterns also evolve endogenously over time. Early
in the process, tightly knit research clusters emerge, often with repeated collaborations between
the same pairs of agents (e.g., agent_016 and agent_005). As the system progresses, these
structures reorganize, with strong collaborations increasingly centered around other agents (e.g.,
agent_013), indicating reorganization as the network adapts to emerging areas of inquiry.
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Figure 5: Exploration trajectory of heterogeneous agents.

Distinct exploratory trajectories. To further probe individual behavior, we visualize the research
trajectories of the six most productive agents in Figure 5. Clear research tendencies emerge: some
agents prefer local refinement and exploitation, repeatedly developing variations of an idea, while
others adopt a more exploratory stance, testing hypotheses across multiple modalities and directions,
underscoring diverse strategies that enable breadth and depth in hypothesis hunting.

6 DISCUSSION

In closing, this work investigates hypothesis hunting as a new problem setting for autonomous
discovery and instantiated it in ASCollab, a network of heterogeneous scientific agents whose
social dynamics enable cumulative exploration. Across three cancer cohorts in TCGA, we found that
ASCollab produces findings that are diverse, and rated as higher in novelty and quality than com-
parable system of independent agents, underscoring the importance of endogenous communication
between distributed agents, evolving under social dynamics. Future works. At the same time, our
claims should be interpreted with care: results are demonstrated within genomics, and generalization
to other domains remains to be established; expert-based evaluation of novelty and quality, while
structured, is inevitably subjective; and current experiments operate with modest agent populations
and a single LLM backbone. Most importantly, findings represent candidate hypotheses rather
than validated biomedical discoveries, and experimental validation is required before translational
impact can be claimed. These direction highlight the promise of networked autonomous agents as a
catalyst to accelerate and broaden the frontier of scientific inquiry, surfacing diverse, high-quality
hypotheses as a preface to human investigations.
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A EXTENDED RELATED WORKS

Our work integrates over several prior directions, which we detail below.

Data-driven discovery. Early research focused on deriving discoveries expressed as equations, rules,
or structures directly from empirical data. Fields such as symbolic regression recover closed-form
mathematical equations from measurements (Schmidt & Lipson, 2009; Brunton et al., 2016; Udrescu
& Tegmark, 2020), while logic programming and rule discovery uncover hypotheses expressed as
relational or propositional rules in discrete domains (Quinlan, 1990; Clark & Niblett, 1989; Lin
et al., 2020). A related thread is causal discovery, which seeks to infer underlying causal graphs
from observational data using independence constraints, scoring criteria, or functional assumptions
(Spirtes et al., 2000; Zheng et al., 2018; Peters et al., 2014).

LLM-augmented discovery. Recent work have investigated replacing ad-hoc inductive biases with
the scientific priors encoded in LLMs. Here, LLMs are employed in specialized roles, as search
operators to generate and modify hypotheses (commonly expressed in code), guided by formal
evaluators (e.g., solvers, experiments, or reward signals) providing feedback. This framework has
enabled the discovery of new algorithms and mathematical constructs (Romera-Paredes et al., 2024;
Novikov et al., 2025), and has been applied across domains including neural architecture search (Chen
et al., 2023), interpretable decision trees (Liu et al., 2025), symbolic equations (Shojaee et al., 2025),
formal theorems (Trinh et al., 2024), robotics reward functions (Ma et al., 2024), and molecular
design (Wang et al., 2025). These studies suggest that LLM-based generative operators can guide
discovery of more expressive hypotheses more efficiently than purely algorithmic search.

Agentic science. An emerging theme considers agentic Al systems that combine LLMs with ex-
ternal tools and memory to automate different aspects of the scientific process. One line of work
emphasizes automation of experimental workflows, focusing on the orchestration and execution of
experiments—f{rom planning chemical synthesis or biomedical analyses to coordinating CRISPR-
based pipelines (M. Bran et al., 2024; Ruan et al., 2024; Huang et al., 2025b; Qu et al., 2025).
Distinct from this, and more directly relevant to our work, is research on hypothesis generation
and refinement, where LLM-based agents autonomously propose, critique, and evolve scientific
ideas. Seminal examples include the AT Scientist (Luetal., 2024), which is able to generate
research ideas, write code, run experiments, analyze results, and draft complete research papers;
and the AT Co-Scientist (Gottweis et al., 2025), a multi-agent system that employs a “gener-
ate—debate—evolve” cycle to formulate and refine hypotheses, particularly in biomedical domains.
Also related is work on hypothesis falsification, where agents conduct sequential hypothesis testing
under rigorous statistical control (Huang et al., 2025a), though this line of research focuses exclusively
on falsification. Similar projects (e.g.Saeedi et al. (2025); Ghafarollahi & Buehler (2025)) illustrate
domain-tailored instantiations of this paradigm.

Distributed systems. Another thread relevant to our work comes from research on distributed and
collective problem solving. Classical swarm intelligence algorithms, such as Ant Colony Optimization
(Dorigo & Gambardella, 1997), Particle Swarm Optimization (Kennedy & Eberhart, 1995), and Bee
Colony models (Seeley, 1989), demonstrate how simple interacting agents can collectively explore
large search spaces more effectively than any single agent. Recent work extends these principles
to large language models, treating LLMs themselves as heterogeneous agents embedded in larger
systems. Generative Agents (Park et al., 2023) simulate human-like social interactions with
memory and reflection, while recent works have extended this to large-scale agent-based simulations
with LLM agents (Zhuge et al., 2023; Gao et al., 2024). These approaches echo longstanding ideas
such as Minsky’s Society of Mind (Minsky, 1986), where cognition arises from the interaction of
specialized but simple agents, and motivate the design of agentic scientific systems that integrate
memory, specialization, and collective or emergent behavior.
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B ADDITIONAL TECHNICAL DETAILS

B.1 REGISTRY AND ARCHIVE SCHEMA

To support persistent storage and retrieval of information in ASCollab, we define schemas for
both the agent registry and the internal archive. The registry maintains structured profiles of each
agent in the system, while the archive stores metadata about submitted manuscripts, including review
information and bibliographic links. Together, these schemas enable reproducibility, traceability, and
analysis of the evolving research ecosystem.

Listing | shows the PaperMetadata dataclass, which records all key information about a
manuscript submitted to the archive. This includes authorship (the primary agent and collabo-
rators), bibliographic attributes (title, abstract, manuscript text), impact measures (citation counts),
temporal information (publication time), and optional artifacts such as executable code. The
cited_paper_1ids field enables linking between papers in the archive, while the metareview
field stores evaluation results when available.

Listing 1: Schema for paper metadata entries in the internal archive.

@dataclass

class PaperMetadata:
paper_id: str
primary_agent_id: str
collab_agent_ids: List[str]
title: str
abstract: str
manuscript: str
citation_count: int
publication_t: int
cited_paper_ids: List[Dict[str, str]]
code_script: Optional[str] = None
metareview: Optional [PaperMetaReview] = None
status: str

Reviews are represented using the PaperMetaReview dataclass (Listing 2). Each metareview
corresponds to one paper and captures textual justification, a numeric score, ranking, and the final
decision outcome. This allows the archive to track not only papers but also the evaluation criteria
applied to them.

Listing 2: Schema for metareview entries associated with submitted papers.

@dataclass

class PaperMetaReview:
paper_id: str
meta_review_text: str
overall_score: float
rank: str
justification: str
decision: str

Finally, the agent registry maintains structured information about each research agent through the
AgentProfile dataclass (Listing 3). These profiles capture identifiers, epistemic behavior, and
domain expertise, along with performance metrics such as citation counts and the number of accepted
papers. This registry is essential for analyzing heterogeneity and longitudinal contributions of agents
in the system.

Listing 3: Schema for agent profile entries in the registry.

@dataclass
class AgentProfile:
agent_id: str
behavior: str
expertise: str
expertise_topics: List([str]
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citation_count: int
num_accepted_papers: int

B.2 SCIENTIFIC PERSONAS

To introduce structured heterogeneity into the agent population, we prompt the underlying LLM to
generate distinct scientific personas. Each persona reflects a unique epistemic stance and domain
expertise, ensuring diversity in how agents approach idea generation, collaboration, scope, evaluation,
literature use, and resource allocation. We define two schema templates that guide the generation of
these personas: one for epistemic behavior and one for technical expertise.

Listing 4 shows the schema used to elicit epistemic researcher profiles. In addition to epistemic
orientation, each agent is assigned a domain expertise profile, defined with respect to specific
datasets and methodological skills. The schema in Listing 5 ensures that expertise is expressed as
concrete, methodological capabilities (e.g., statistical models, validation strategies, pitfalls).

Listing 4: Schema for epistemic researcher personas generated at system initialization.

You are to generate a single epistemic researcher profile.

The profile should:

- Be written in second person (e.g., ‘‘You are’’).

— Be returned in bullet point form (one bullet per stance).
— Contain exactly one distinct persona per completion.

Each persona must capture how the researcher behaves and thinks across
six stances:

1. Ideas Refining and extending existing ideas generating brand
new ones.

2. Collaboration Independence collaboration.

3. Scope Broad exploration deep exploitation of a problem.

4. Evaluation Critical scrutiny constructive engagement.

5. Literature Reliance on existing literature intuition with
minimal reference to prior work.

6. Resources Maximal use of resources and depth lean, minimalist
approaches.

Requirements:

- Generate exactly one persona per completion.

— Provide exactly six bullet points, one for each stance.

— Each bullet point must begin with "When it comes to [stance]:" followed
by the persona’s orientation.

— Keep each bullet concise, vivid, and natural-sounding.

— The persona should reflect an expert researcher with a unique epistemic
orientation and personality.

— Return only the bullet point profile, with no labels, numbers, or extra
commentary.

Listing 5: Schema for domain expertise profiles describing technical methods and approaches.

You are to generate a domain expertise description for a researcher with
the following specific technical expertise areas: {topics_str}.

{dataset_context}

The expertise should describe what domain knowledge and technical skills
this researcher possesses in these areas, specifically focused on how
they would generate novel research findings using the available
datasets. Focus on concrete methods, approaches, and practical
knowledge for conducting innovative research rather than generic
descriptions.
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IMPORTANT: The expertise should be pan-cancer and generalized - describe
technical methods and computational approaches that can be applied
broadly across different cancer types and biological contexts, rather

than being specific to any particular cancer type (e.g., kidney
cancer, breast cancer, etc.). Focus on the methodological and
technical aspects that would lead to novel discoveries when working
with these specific datasets to generate breakthrough research
findings.

Output Requirements:
— Generate exactly one bullet point for each of the {len(selected_topics)
} topics provided, in the same order.

— Each bullet point must be written in second person ("You...") and
describe specific technical skills/knowledge for generating novel
findings.

— Keep each bullet to 1-2 sentences.

— Be specific about methods, models, metrics, pitfalls, validation
strategies, or practical considerations for research discovery.

- Focus on how the researcher would use these skills to generate new
insights from the available datasets.

- Avoid generic phrases like "data science" or "machine learning" without

specific qualifiers.

- Avoid references to specific cancer types - keep descriptions general
and broadly applicable.

- No labels, numbers, or extra commentary outside the bullets.

Format your response as:
<expertise>

- You

- You

- You

</expertise>

B.3 FINAL REPORT, REVIEW, AND METAREVIEW INSTRUCTIONS

Each agent is given explicit output instructions to ensure that generated reports, reviews, and meta-
reviews follow a consistent structure. These schemas serve both as constraints and as templates for
evaluation, making it possible to systematically compare and archive agent contributions. We define
three main instruction sets: (i) Final Report Requirements, (ii) Evaluation Criteria for Reviews, and
(iii) Meta-Review Structure.

Listing 6 specifies the structure of the Final Report, which every research agent must prepare before
exhausting its budget. The schema enforces a set of mandatory sections (e.g., title, hypothesis,
evidence, limitations, references), and emphasizes the use of properly retrieved citations.

Listing 6: Schema for agent Final Report output, including mandatory sections and formatting
requirements.

When you feel ready, prepare a concise, clear, and well-structured Final
Report (you must do so before running out of budget) with the
following sections:

Final Report structure (mandatory sections):
# Title

(A concise, representative title of your findings.)

# Research Question
(A single, clear question your hypothesis addresses.)

# Hypothesis and Key Findings
(A concise statement of your hypothesis and the main findings that

support it.)

# Rationale/Mechanism
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(Brief explanation of why this finding makes sense.)

# Empirical Evidence

(Bullet list of dataset findings supporting the finding. Include metrics,
statistical tests, graphs, or model outputs, synthesized and not
just raw dumps. Include relevant details on analysis methods.)

# Literature Evidence
(Bullet list of citations to relevant literature supporting the finding.
Include brief summaries of key findings from each paper and how they
relate to the hypothesis. Your finding should be novel and not just a
repeat of prior work, but prior work can provide supporting context

-)

# Assumptions
(Explicitly list assumptions that underlie the hypothesis.)

# Limitations
(Explicitly list possible caveats or alternative explanations)

# References

List of cited papers with full citations in a consistent format. If you
are referencing sources from the open internet, use the following
format:

— Author(s). (Year). Title of the article. Title of the Journal, Volume (
Issue), page range (if applicable).

If you are referencing sources from the internal paper archive, please
use the following format:

— [Internal Archive] {’paper_id’: <paper_id>, ’'agent_id’: <agent_id>, '
title’: <title>}

Instructions:
— Use only retrieved references; do not fabricate citations.
— List all references in a References section using the formats below:
Internal paper archive:
— [Internal Archive] {’paper_id’: <paper_id>, ’agent_id’: <agent_id>,
"title’ : <title>}
External sources:
— Author(s). (Year). Title of the article. Title of the Journal,
Volume (Issue), page range.

To evaluate submitted reports, reviewer agents are prompted with the schema in Listing 7, which
covers both qualitative criteria (summary, motivation, claims, methodology, novelty, significance)
and quantitative ratings (support, soundness, significance, originality, overall recommendation). This
ensures that each review is structured, comparable, and comprehensive.

Listing 7: Schema for reviewer evaluation criteria and quantitative rating scales.

Evaluation Criteria:

1. Summary:

Briefly summarize the report (including the main findings, main results,
etc. that the report claims to contribute). This summary should be
objective, and not be used to critique the report. A well-written
summary should not be disputed by the authors of the report or other
readers.

2. Motivation:

— What 1is the specific question and/or problem tackled by the report?

— Is the problem well motivated and clearly situated in the broader
literature?

3. Claims and Evidence:

— Are the main claims of the report clearly stated? Are these claims
supported by sufficient reasoning, data, or theoretical analysis?

— If evidence is lacking, which claims are problematic and why?
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4. Soundness of Methodology:

— Are the methods and/or analyses and/or evaluation metrics appropriate
for the problem?

— Are the designs, assumptions, and evaluation criteria scientifically
valid?

- NOTE: you do not have to reproduce the results (i.e., run the code, etc
), but you should evaluate whether the methodology is sound and
appropriate.

5. Relation to Prior Knowledge:

- How are the key contributions of the report related to the broader
scientific literature? Be specific in terms of prior related findings
/results/ideas/etc.

— Do the main findings either extend, challenge, or refine prior work in
the field? If so, how?

6. Novelty and Significance:

— What is the significance of the work? Does it contribute new knowledge
and sufficient value to the community?

Are the contributions genuinely new, incremental extensions of prior work
, or simply restatements of existing knowledge?

— What is the potential impact or value to the field (empirical,
theoretical, practical)?

7. Other Comments
— If you have any other comments or suggestions, please write them here.

# Quantitative Ratings
Use these to summarize your written evaluations. Respond with an integer
for each category.

— Support: How well are the claims supported by empirical evidence,
reasoning, and/or logical consistency with prior knowledge?
4 = Excellent | 3 = Good | 2 = Fair | 1 = Poor

— Soundness: How technically sound and scientifically rigorous is the
work?
4 = Excellent | 3 = Good | 2 = Fair | 1 = Poor

— Significance: How much does the work advance knowledge or practice in
the field?
4 = Excellent | 3 = Good | 2 = Fair | 1 = Poor

Originality: How novel are the ideas, methods, or results?
= Excellent | 3 = Good | 2 = Fair | 1 = Poor

S

- Overall Recommendation:

Strong accept

Accept

Weak accept (i.e., leaning towards accept, but could also be rejected)
Weak reject (i.e., leaning towards reject, but could also be accepted)
Reject

RN WD O

Finally, the schema in Listing & guides meta-review agents, which synthesize individual reviews
and provide a comparative assessment across multiple reports. The template enforces a three-part
structure: a brief summary, a comparative analysis, and a final decision including a score, rank, and
justification.

Listing 8: Schema for meta-review output structure, including summary, comparative analysis, and
decision.

For each report, provide a meta-review following this exact structure:

Paper ID: <id of the report>
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1. Brief Summary

Al 2 sentence bullet-point summary of its main contributions.

A 1-2 sentence bullet-point summary of its strengths and weaknesses,
based on the your own judgement and the reviews.

2. Comparative Analysis

2 3 bullet points assessing the submission against the criteria.

- Where possible, contrast with other reports (e.g., "significantly more/
less novel than report X").

3. Decision

— score: <float between 0 and 1> (assign each report a score on a 0 1
scale, where 1 = best overall quality)

- rank: <integer rank, 1 is best> (assign each submission a rank from 1
to N, where 1 = best. No ties allowed)

- justification: <brief justification> (1 2 sentences for each
reports relative position. This should be self-contained and
complete without references to other reports)

B.4 AGENTIC REASONING AND TOOL-USE

Agents in ASCollab reason and act using the ReAct paradigm (Yao et al., 2023), which interleaves
natural language reasoning with tool invocations. This allows agents to plan, reflect, and take actions
in a single loop, enabling both exploratory reasoning and structured data analysis. An agent generates
a reasoning trace (“Thought”), selects a tool (“Action”), and integrates the result into its ongoing
chain of reasoning. Listing 9 shows a simplified illustration of this reasoning—acting loop.

Listing 9: Example of an agent using ReAct-style reasoning to query PubMed and refine a hypothesis.

Thought: I want to check whether mutations in KRAS are frequently
associated with pancreatic cancer.

Action: PubMed ("KRAS pancreatic cancer mutations frequency")

Observation: The retrieved abstracts indicate KRAS mutations occur in
>90% of pancreatic ductal adenocarcinomas.

Thought: This supports my hypothesis that KRAS status should be included
as a covariate in survival analysis.

Beyond reasoning, agents have access to a set of scientific software libraries and programmatic tools.
These resources enable them to execute analyses spanning differential expression, pathway enrich-
ment, survival modeling, and network inference. The available Python packages are summarized in
Listing 10, which defines a schema mapping each package to its primary function in transcriptomic,
proteomic, or clinical workflows.

Listing 10: Schema of Python packages available to agents for omics, pathway, and survival analysis.

{

"pydeseqg2": "Differential expression analysis for bulk RNA-seq (Python
reimplementation of DESeqg2).",

"rpy2": "Bridge to R lets you use DESeqg2, edgeR, limma, survival, and

other Bioconductor packages from Python.",

"statsmodels": "Statistical modeling (linear/GLM/mixed models; also
duration/survival models) for DE and covariate analysis.",

"scanpy": "Gene-expression toolkit (QC, normalization, clustering,
visualization); can handle bulk matrices via AnnData.",

"anndata": "Annotated matrix container for expression data with sample/
gene metadatabackbone for many omics workflows.",

"gseapy": "Gene set enrichment (GSEA/Preranked/Enrichr/MSigDB) for
pathways from RNA/proteomics gene lists.",

"gprofiler-official": "g:Profiler client for GO/KEGG/Reactome
enrichment and ID conversion.",

"mygene": "Fast gene ID mapping and annotation (symbols Ensembl/

Entrez) for building bulk/proteomics panels.",
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"biomart": "Access Ensembl BioMart to retrieve gene/transcript/protein
annotations and mappings.",

"bioservices": "Programmatic access to bio databases (e.g., UniProt,
KEGG, Reactome, ChEMBL) for protein/drug/pathway metadata.",

"biopython": "General bioinformatics utilitiessequence I/0, Entrez/
UniProt accessuseful for proteomics ID work.",

"igraph": "Graph algorithms for pathway/network analysis (centrality,
community detection) on geneprotein networks.",

"networkx": "Network analysis and visualization for pathways/PPIs/
drugtarget graphs.",

"leidenalg": "Leiden community detectionuseful for clustering genes/
proteins in co-expression or PPI networks.",

"lifelines": "Survival analysis (KaplanMeier, Cox PH, AFT, competing
risks) for clinical/time-to-event data.",

"scikit-learn": "Machine learning (feature selection, classification/
regression, clustering) for expression/proteomics models.",

"scikit-bio": "Bioinformatics stats and distances (diversity,
ordination); can support multi-omics workflows.",

"PubChemPy": "Client for PubChem to fetch compound properties, synonyms
, assayshandy for drug annotation.",

"pandas": "Tabular data wranglingjoins/reshapes/IO for expression
matrices, proteomics tables, and survival covariates.",

"numpy": "Numerical arrays and linear algebra underpinning most
computations in RNA/proteomics analyses.",

"openpyxl": "Read/write Excel filesuseful for proteomics exports (e.
g., MaxQuant/PD) and metadata sheets."

In addition to Python packages, agents can call higher-level tools that enable them to search literature,
discover collaborators, and communicate within the agent network. These tools are listed below:

1. PubMed: Wrapper around PubMed for querying biomedical abstracts and literature.

2. SemanticScholar: Search Semantic Scholar with free-text queries and return summaries.

3. InternalArchive: Search internally published research papers by topic, methodology, or research
area.

4. SearchRegistry: Retrieve researcher profiles (expertise, citations, papers) from the registry.

EstablishCollaboration: Create a collaboration connection with another researcher by agent ID.

6. Communicate: Send messages or data payloads to a collaborator, addressing them directly in
first person.

e

B.5 HUMAN EXPERT EVALUATION

For the KIRC dataset, we engaged an domain expert (computational drug discovery with prior
KIRC research experience) to score each paper’s central hypothesis. Because evaluation criteria
vary and no single standard exists, we adopted two broadly accepted dimensions: Novelty (“has this
been done before?”) and Quality (“does it make sense given prior literature, and is there external
corroboration?”).

Each hypothesis was scored on a 1-5 scale for both dimensions using the rubric in Table |. To reduce
subjectivity and bias, the evaluator followed predefined anchors, and applied the same procedure
across all items. The evaluator had full access to all run artifacts produced in our experiments as well
as to publicly available online resources.
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Table 1: Human evaluation rubric for novelty (N) and quality (Q).

Dim. Score
Novelty (N)
N1 Already published in essentially the same form
N2 Very similar result published via different methodology
N3 Significant overlap with prior themes/pathways
N4 Minor overlap; clearly new angle or combination
N5 Substantive novel contribution
Quality (Q)
Q1 Conflicts with strong prior evidence; likely invalid
Q2 Weak/ambiguous support
Q3 Corroborated on the same dataset
Q4 Corroborated on different dataset/domain
Q5 Strong external validation or literature evidence leading to plausibility
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C DATASET DETAILS

We analyze three TCGA cohorts—PAAD (Pancreatic Adenocarcinoma) (Raphael et al., 2017),
KIRC (Kidney Renal Clear Cell Carcinoma) (Network, 2013), and DLBC (Diffuse Large B-Cell
Lymphoma) (Weinstein et al., 2013)—using matched multi-omics resources where available. Unless
stated otherwise, bulk RNA-seq matrices are Illumina HiSeq (polyA +) with gene-level log, (z+1)
RSEM-normalized counts mapped via UCSC Xena HUGO probeMap; RPPA is the TCGA reverse-
phase protein array panel (normalized intensities); PARADIGM IPL provides integrated pathway
levels derived from RNA-seq and copy-number within a curated interaction graph; and survival files
contain overall- and disease-specific survival endpoints. TCGA barcodes follow the standard suffix
convention (“—01” tumour, “—11” solid-tissue normal). For cross-modal analyses we restrict to the
intersection of barcodes shared by the relevant matrices.

Summary of sample counts. Table 2 lists the number of samples per cohort and modality used in
this study.

Cohort Bulk RNA-seq (samples) RPPA (samples) PARADIGM IPL (samples) Survival (rows)

PAAD 183 123 176 196
KIRC 606 478 507 944
DLBC 48 33 48 48

Table 2: Sample counts per modality for TCGA PAAD, KIRC, and DLBC.

PER-MODALITY DESCRIPTIONS (SHARED ACROSS COHORTS)

Bulk RNA-seq (polyA + Illumina HiSeq). Gene-level expression matrices are provided as
log,(x+1) RSEM-normalized counts with UCSC Xena HUGO gene identifiers (rows = genes,
columns = samples). We use tumour/normal splits via barcode suffixes (“01” vs. “11”) and, when
combining with survival, subset to overlapping barcodes. No re-normalization or batch correction is
applied unless explicitly noted in the experiment section.

RPPA (Reverse-Phase Protein Array). RPPA assays quantify total and modified protein features
using antibody-based arrays (rows = protein features, columns = samples). We use TCGA-normalized
values as distributed. RPPA is employed for orthogonal validation of pathway activity and for
protein-level summaries where available (some cohorts have limited coverage).

PARADIGM Integrated Pathway Levels IPL). PARADIGM infers pathway activity by inte-
grating RNA-seq and copy-number data on a large, curated SuperPathway graph (genes, complexes,
families, RNAs, abstract processes). The resulting matrix (rows = pathway features; columns =
samples) provides pathway-level readouts complementary to gene-level expression. We use the
distributed IPL values without additional scaling.

Clinical survival. The survival table contains overall survival (OS, event indicator) and times
in days (OS.time, DSS.time where available). Row indices are TCGA barcodes. Agents can
combine molecular and survival data for more comprehensive analysis.
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D AGENTIC CASE STUDIES: REDISCOVERY, EXTENSION, AND NOVEL
PROPOSALS

We illustrate the capabilities of our agentic system through concise case studies and links to prior
work—an approach that is more informative than aggregate metrics given the inherent difficulty of
hypothesis evaluation. To keep the setting realistic, all case studies are drawn from the top 50 highest-
rated accepted papers. In three representative examples, the agents (i) independently rediscover key
analyses, (ii) extend prior findings with additional evidence, and (iii) propose mechanistic hypotheses
that we validate using DepMap (Tsherniak et al., 2017). The reports have been typeset for clarity; all
content remains unchanged.

Negative cases (rejections). Beyond positive results, we include counterexamples where our
review pipeline recommends rejection. These illustrate how the system identifies overlap with
established literature, flags inadequate support or implausible mechanisms, and aligns its decisions
with documented prior evidence. Together, the positive and negative cases clarify both the strengths
and the boundaries of the agentic approach.

D.1 CASE STUDY 1: ROLE OF ACSL4, GPX4, AND FTH1 IN KIRC

This report (Expanding Ferroptosis-Targeting Strategies in Kidney Renal Clear Cell Carcinoma
(KIRC): Therapeutic Potential of ACSL4, GPX4, and FTHI) builds directly on prior agent work
(Targeting Ferroptosis Pathways via SLC7A11 and ALOXS Inhibitors for Therapeutic Intervention
in KIRC) while extending the ferroptosis axis beyond SLC7A11/ALOXS to ACSL4, GPX4, and
FTHI. Prior literature had noted gaps and mixed evidence: the expression and prognostic value of
ACSLA in ccRCC remained incompletely understood (Guo et al., 2015); FTHI had been reported as
differentially expressed in isolation (Huang et al., 2019); and GPX4 had likewise been highlighted
independently (Zou et al., 2019). External functional data from DepMap further support target
plausibility, showing significantly reduced proliferation upon gene knockout (CHRONOS scores:
FTHI —0.7432, A mechanistic link between ubiquitin signaling and ferroptosis in RCC via ACSL4
is suggested by the study titled “COP]I drives renal cell carcinoma progression by targeting ACSL4
for ubiquitin-mediated degradation and inhibiting ferroptosis” published in May 2025 (Zheng et al.,
2025)—after the GPT-40 knowledge cutoff—and, importantly, neither agent surfaced or queried
that paper during generation. A separate November 2024 work proposes a different role for ACSL4
(post-cutoff for our baseline system). We additionally note that our model posits a slightly different
role for ACSLA4 within the ferroptosis pathway relative to earlier agent analyses. To verify novelty and
positioning, we systematically searched PubMed and Google for these genes in relation to kidney
cancer; to the best of our knowledge and as reported by the authors, this is the first report integrating
ACSL4, GPX4, and FTH] together in the KIRC ferroptosis context while cross-referencing DepMap
essentiality and co-targeting considerations.

EXPANDING FERROPTOSIS-TARGETING STRATEGIES IN KIRC: ACSL4, GPX4, AND FTH1

Research Question. Can ACSL4, GPX4, and FTH1 serve as therapeutic targets in KIRC, and can
their inhibitors enhance ferroptosis pathways for improved patient outcomes?

Hypothesis and Key Findings. ACSL4, GPX4, and FTH1—key regulators of ferroptosis—are
significantly dysregulated in KIRC and associated with survival outcomes. Therapeutic modulation
using inhibitors such as troglitazone (ACSL4), RSL3 (GPX4), and PD194953 (FTH1) offers promising
strategies to enhance ferroptosis and suppress tumor growth.

Rationale / Mechanism. Ferroptosis is an iron-dependent form of regulated cell death driven by
lipid peroxidation. Dysregulation of ferroptosis-related genes enables tumor cells to evade cell death
and promotes progression. Targeting ACSL4 (long-chain fatty acid metabolism), GPX4 (antioxidant
defense), and FTHI1 (iron storage) can disrupt tumor survival mechanisms and induce ferroptosis.

Empirical Evidence.

* Differential expression: See Table 3.
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Table 3: Differential expression of ferroptosis genes in KIRC. Negative log2 fold change (LFC)
indicates downregulation in tumors.

Gene Direction in Tumor Log2 FC p-value

ACSL4 Downregulated —1.51 3.48 x 10737
GPX4 Upregulated 0.47 1.99 x 107°
FTHI Upregulated 0.89 7.98 x 10723

Table 4: Candidate inhibitors targeting ferroptosis regulators.

Target  Inhibitor Note

ACSL4  Troglitazone = Modulates lipid acylation
GPX4 RSL3 Covalent GPX4 inhibitor; induces ferroptosis
FTHI PD194953 Iron storage modulation

* Survival correlations: ACSL4, GPX4, and FTH1 exhibit significant correlations with survival
outcomes (p < 0.05).

+ Pathway enrichment: Enrichment in Ferroptosis (p = 2.94 x 10~'2) and Regulation of ferroptosis
(p = 4.96 x 1079).

Assumptions.

* Dysregulation of ACSL4, GPX4, and FTHI1 contributes to KIRC progression via ferroptosis
inhibition.
* The listed inhibitors specifically and effectively modulate the intended targets in KIRC.

Limitations.

* Protein-level validation of ACSL4, GPX4, and FTH1 in KIRC is currently unavailable.
» KIRC-specific experimental validation of inhibitor efficacy remains to be performed.

Literature and Prior Evidence.

* Internal Archive: Title: Targeting Ferroptosis Pathways via SLC7A11 and ALOX5 Inhibitors for
Therapeutic Intervention in Kidney Renal Clear Cell Carcinoma (KIRC)

* Internal Archive: Title: Targeting Ferroptosis Pathways in Kidney Renal Clear Cell Carcinoma:
Therapeutic Implications of SLC7A11 and NCOA4

* PubMed: Chrysin enhances sunitinib sensitivity in renal cell carcinoma by inducing ferroptosis via
targeting PI3K/Akt/GPX4 pathway. Elsevier, 2025.

* PubMed: tRNA-derived small RNAs: emerging regulators of ferroptosis in human diseases. (2025).

Meta-Review (for context). Decision: accept; Overall score: 0.75; Rank: 1/4. Justification:
robust evidence, actionable insights, and significant therapeutic potential.

Listing 11: Differential expression, survival, enrichment, and drug-target mining for KIRC ferroptosis
genes.

import pandas as pd

# Load the RNA-seq dataset for KIRC

data_path = ’data/TCGA.KIRC.sampleMap_HiSeqV2.gz’

kirc_rna_seq = pd.read_csv(data_path, sep=’\t’, compression=’'gzip’,
index_col=’'sample’)

# Load the survival dataset

survival_path = ’data/survival$2FKIRC_survival.txt’
kirc_survival = pd.read_csv(survival_path, sep=’\t’, index_col='sample’)
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10

Il # Define a list of ferroptosis-related genes based on prior knowledge

12 ferroptosis_genes = [’SLC7Al1l1’, ’'GPX4’, 'ACSL4’, ’'ALOX5’, ’'NCOA4’, '"FTH1l’
, 'TFRC’]

14 # Filter the RNA-seq dataset for ferroptosis-related genes

15 ferroptosis_expression = kirc_rna_seq.loclkirc_rna_seq.index.intersection
(ferroptosis_genes) ]

16

17 # Subset survival data to match RNA-seq samples

18 common_samples = list (set (ferroptosis_expression.columns) & set(
kirc_survival.index))

19 ferroptosis_expression = ferroptosis_expression[common_samples]

20 kirc_survival = kirc_survival.loc[common_samples]

21
22 # Perform survival analysis for ferroptosis-related genes
23 from lifelines import CoxPHFitter

24 cox_results = []

26 for gene in ferroptosis_expression.index:

27 gene_expression = ferroptosis_expression.loc[gene]
28 cox_data = kirc_survival.copy ()

29 cox_data[’expression’] = gene_expression.values

30

31 cph = CoxPHFitter ()

32 try:

33 cph.fit (cox_data, duration_col=’0S.time’, event_col="0S’)
34 cox_summary = cph.summary

35 cox_summary[’Gene’] = gene

36 cox_results.append (cox_summary)

37 except:

38 continue

39
40 # Combine results into a single DataFrame
41 cox_results_df = pd.concat (cox_results)

42

43 # Display significant results (p < 0.05)

44 significant_cox_results = cox_results_df[cox_results_df[’p’] < 0.05]
45 print (significant_cox_results[[’'Gene’, ’'exp(coef)’, 'p’'11])
46 # Observation:

47 # Status: success

48 # stdout: Gene exp (coef) P

49 # covariate

50 # DSS.time NCOA4 0.989722 1.157488e-42

51 # expression NCOA4 0.707844 2.129359e-03

52 # DSS.time TFRC 0.989661 2.766492e-43

53 # DSS.time ALOX5 0.989670 4.009014e-43

54 # DSS.time ACSL4 0.989664 3.164226e-43

55 # DSS.time SLC7A11 0.989701 4.187018e-43

56 # expression SLC7A11 1.137357 1.313861e-02

57 # DSS.time FTHI1 0.989677 3.499023e-43

58 # DSS.time GPX4 0.989655 3.135233e-43

60 from gprofiler import GProfiler

62 # Initialize GProfiler for pathway enrichment analysis
63 gp = GProfiler (return_dataframe=True)

64

65 # Perform pathway enrichment analysis for ferroptosis-related genes

66 ferroptosis_pathway_enrichment = gp.profile(organism='"hsapiens’, query=['
NCOA4’, ’'TFRC’, ’ALOX5’, 'ACSL4’, ’'SLC7All’, 'FTH1’, ’'GPX4'])

67

68 # Display the top enriched pathways
69 print (ferroptosis_pathway_enrichment|[[’source’, ’'name’, ’'p_value’]].head
(10))
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70 # Observation:

71 # Status: success

72 # stdout: source name p_value
73 # 0 KEGG Ferroptosis 2.944772e-12
74 # 1 WP Ferroptosis 9.922609%e-11
75 # 2 GO:BP negative regulation of ferroptosis 1.896351e-06
76 # 3 GO:BP regulation of ferroptosis 4.964507e-06
77 # 4 GO:BP ferroptosis 6.452937e-06
78 # 5 GO:BP intracellular iron ion homeostasis 1.172731e-03
79 # 6 GO:CC autolysosome 1.226672e-03
80 # 7 REAC Synthesis of 5-eicosatetraenoic acids 2.005590e-03
81 # 8 GO:CC secondary lysosome 3.110110e-03
82 # 9 GO:BP long-chain fatty acid metabolic process 4.672125e-03

84 import pandas as pd

86 # Load the Probes & Drugs dataset

87 drug_data_path = ’data/pd_export_01_2025_targets_original.csv’
88 drug_data = pd.read_csv(drug_data_path, low_memory=False)

9% # Filter for compounds targeting ferroptosis-related genes

91 target_genes = [/NCOA4’, ’'TFRC’, ’'ALOX5’, 'ACSL4’, ’SLC7All’, 'FTH1’, '’
GPX4' ]
92 ferroptosis_drugs = drug_datal[drug_data[’gene_name’].isin(target_genes) ]

94 # Display identified drugs targeting ferroptosis—-related genes

95 print (ferroptosis_drugs[[’'name’, 'gene_name’, ’'moa’]].drop_duplicates())

96 # Observation:

97 # Status: success

98 # stdout: name gene_name moa

99 # 1041 PHENOTHIAZINE ALOX5 NaN

100 # 1442 Kaempherol ALOX5 NaN

101 # 1521 mesalazine ALOX5 inhibitor

102 # 1762 ZILEUTON ALOX5 1inhibitor

103 # 2909 DIALLYL SULFIDE ALOX5 NaN

104 # ...

105 # 226428 PD215795 GPX4 NaN

106 # 226538 PD215915 GPX4 NaN

107 # 226650 PD216127 GPX4 NaN

108 # 226872 PD216413 GPX4 NaN

109 # 227058 PD216625 GPX4 NaN

110 | #

111 # [380 rows x 3 columns]

112

113 cancer_related_moas = [’inhibitor’, ’antagonist’, ’binder’, ’'modulator’]

114 ferroptosis_drugs_with_moa = ferroptosis_drugs[ferroptosis_drugs[’moa’].
notna () ]

115
116 # Filter for compounds with cancer-related mechanisms of action

117 prioritized_drugs = ferroptosis_drugs_with_moa[ferroptosis_drugs_with_moa
["moa’].str.contains ('’ |’ .join(cancer_related_moas), case=False, na=
False) ]

118
119 # Display prioritized drugs

120 print (prioritized_drugs|[[’name’, ’'gene_name’, ’'moa’]].drop_duplicates())
121 # Observation:

122 # Status: success

123 # stdout: name gene_name moa

124  # 1521 mesalazine ALOX5 inhibitor
125 # 1762 ZILEUTON ALOX5 inhibitor
126 # 7212 OLSALAZINE SODIUM ALOX5 inhibitor
127 # 9730 DIACEREIN ALOX5 inhibitor
128 # 12257 THIMEROSAL SLC7A11 antagonist
129 # 12420 SULFASALAZINE SLC7A11 inhibitor
130 # 12442 SULFASALAZINE ALOX5 inhibitor
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131 # 19621 masoprocol ALOX5 inhibitor
132 # 19738 Quisqualic acid SLC7A11 inhibitor
133 # 21678 Bw B70C ALOX5 inhibitor
134 # 23301 HONOKIOL ALOX5 inhibitor
135 # 34183 ML162 GPX4 inhibitor
136 # 46078 MORNIFLUMATE ALOX5 antagonist
137 # 46950 TROGLITAZONE ACSL4 inhibitor
138 # 50357 MINOCYCLINE ALOX5 inhibitor
139 # 50381 Balsalazide ALOX5 inhibitor
140 # 50598 MECLOFENAMIC ACID ALOX5 inhibitor
141 # 56010 ROSIGLITAZONE ACSL4 inhibitor
142 # 56379 DIETHYLCARBAMAZINE ALOX5 inhibitor
143 # 57497 AMINOSALICYLIC ACID ALOX5 inhibitor
144 # 61579 FOSTAMATINIB ALOX5 inhibitor
145 # 64911 RHEIN ALOX5 inhibitor
146 # 89479 PD021959 ALOX5 inhibitor
147 # 93698 CJ-13610 ALOX5 inhibitor
148 # 94246 hyperforin ALOX5 inhibitor
149 # 95196 MECLOFENAMATE SODIUM ALOX5 inhibitor
150 # 98305 PF-4191834 ALOX5 inhibitor
151 # 110180 ATRELEUTON ALOX5 inhibitor
152 # 132469 PD086470 ALOX5 inhibitor
153 # 139634 BALSALAZIDE DISODIUM ALOX5 inhibitor
154 # 180955 RSL3 GPX4 inhibitor
155 # 213049 PD194953 FTHI inhibitor
156 # 214074 GPX4-IN-5 GPX4 inhibitor

157

158 from scipy.stats import ttest_ind

159

160 # Define tumor and normal samples

161 tumor_samples = [col for col in kirc_rna_seqg.columns if col.endswith (' 01’
)]

162 normal_samples = [col for col in kirc_rna_seqg.columns if col.endswith(’11
") 1]

163

164 # Perform differential expression analysis for ferroptosis-related genes

165 diff_expr_results = []

166 for gene in [/NCOA4’, ’'TFRC’, ’'ALOX5’, ’'ACSL4’, ’'SLCT7All’, 'FTH1’, ’'GPX4’
]1:

167 if gene in kirc_rna_seq.index:

168 tumor_expr = kirc_rna_seq.loc[gene, tumor_samples]

169 normal_expr = kirc_rna_seq.loc[gene, normal_samples]

170 log2_fc = tumor_expr.mean() - normal_expr.mean ()

171 t_stat, p_val = ttest_ind(tumor_expr, normal_expr, equal_var=
False)

172 diff_expr_results.append({’Gene’: gene, ’'Log2_Fold_Change’:

log2_fc, ’'P_Value’: p_val})
173
174 # Convert results to a DataFrame
175 diff_expr_df = pd.DataFrame (diff_expr_results)
176
177 # Display significant dysregulated genes (p < 0.05)
178 significant_diff expr = diff_expr df[diff_expr df[’P_Value’] < 0.05]
179 print (significant_diff_ expr)
180 # Observation:
181 # Status: success

182 # stdout: Gene Log2_ Fold _Change P_Value
183 # 0 NCOA4 -0.414105 8.720619e-21
184 # 1 TFRC -0.157482 3.510574e-02
185 # 2 ALOX5 2.264952 2.440342e-22
186 # 3 ACSL4 -1.510587 3.482024e-37
187 # 4 SLC7A11 1.845668 1.789021e-23
188 # 5 FTHI1 0.889489 7.987854e-23
189 # 6 GPX4 0.471884 1.992841e-09
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Table 5: Candidate inhibitors targeting ABCCS8 and SLC5A2.

Target Inhibitor Note / MOA

ABCCS Glyburide Sulfonylurea; ABCC8 (SURT1) inhibition
SLC5A2  Canagliflozin SGLT?2 inhibition; glucose transport modulation

D.2 CASE STUDY 2: ABCC8 AND SLC5A2 FOR PAAD

We assessed the novelty of Targeting ABCCS and SLC5A2 for Therapeutic Intervention in Pancreatic
Adenocarcinoma via targeted searches on PubMed and Google (keywords: “SLC5A2 pancreatic
cancer”). A subsequent study from July 2025 independently confirmed an association between
SLC5A2 (i.e., SGLT2) and PAAD (Xie et al., 2025). Contextualizing our findings, prior work had
reported prognostic significance for SGLT] (but not SGLT2) in pancreatic cancer (Du et al., 2022),
and most SGLT?2 studies focused on normal pancreatic physiology rather than oncologic roles (Jurczak
et al., 2011). Consistent with our protocol in other case studies, we verified that the 2025 confirmation
paper was not accessed by the agent during generation, supporting that our result is an independent
rediscovery that anticipated later literature. In parallel, expression of ABCCS has been reported in
isolation in the literature (Cervenkova et al., 2023). We also note that a second article (published
after the knowledge cut-off) was surfaced by the agent at analysis time and reported a correlation for
SLC5A2 in PAAD; the agent correctly cited and used this to refine its conclusions (Yang et al., 2024).

TARGETING ABCC8 AND SLC5A2 FOR THERAPEUTIC INTERVENTION IN PANCREATIC
ADENOCARCINOMA

Meta-Review (for context). Decision: accept; Overall score: 0.75; Rank: 1/4. Justification:
robust computational evidence and actionable insights, making it the most impactful and original
submission among its cohort.

Research Question. Can ABCCS8 and SLC5A2 serve as actionable therapeutic targets for pancreatic
adenocarcinoma (PAAD)?

Hypothesis and Key Findings. ABCCS8 and SLC5A2 are dysregulated in PAAD and represent
promising therapeutic targets. Drugs targeting these genes—glyburide (ABCCS8 inhibitor) and
canagliflozin (SLC5A2 inhibitor)—could potentially modulate disease progression.

Rationale / Mechanism. ABCCS has been implicated in multidrug resistance and pancreatic cancer
risk, while SLC5A2 is associated with glucose metabolism and pancreatic cancer. Targeting these
pathways may disrupt tumor growth and improve therapeutic outcomes.

Empirical Evidence.

* Differential expression: Identified 2,531 DEGs in tumor vs. normal samples, with ABCCS and
SLC5A2 among them.

* Drug-target landscape: 5,930 drug-target interactions with defined mechanisms of action
(MOAs), including glyburide (ABCCS8 inhibitor) and canagliflozin (SLC5A2 inhibitor).

Literature Evidence.

* ABCCS is linked to pancreatic cancer risk (OR: 15.058, P = 0.0001). Association of glucose-
lowering drug target and risk of gastrointestinal cancer: a mendelian randomization study (2024).

* ABCCS is associated with multidrug resistance in cancer treatment. Structural bioinformatics
studies of six human ABC transporters and their AlphaFold2-predicted water-soluble QTY variants
(2024).

* SLC5A2 is connected with pancreatic cancer (OR: 8.096, P < 0.0001). Association of glucose-
lowering drug target and risk of gastrointestinal cancer: a mendelian randomization study (2024).
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Assumptions.

* Dysregulation of ABCCS8 and SLC5A2 contributes to tumor progression in PAAD.
* Drugs targeting these genes are effective in modulating their activity in PAAD.

Limitations.

* The functional roles of ABCCS8 and SLC5A2 in PAAD require further experimental validation.
* Potential off-target effects of inhibitors such as glyburide and canagliflozin need to be assessed.

References.

* Association of glucose-lowering drug target and risk of gastrointestinal cancer: a mendelian
randomization study. (2024). Copyright © 2024.

* Structural bioinformatics studies of six human ABC transporters and their AlphaFold2-predicted
water-soluble QTY variants. (2024). Copyright © 2024.

Listing 12: Differential expression, survival, enrichment, and drug-target mining for PAAD.
import pandas as pd
# Load the gene expression dataset
data_path = "data/TCGA.PAAD.sampleMap%2FHiSeqV2.gz"

gene_expression = pd.read_csv(data_path, sep=’\t’, compression=’gzip’,
index_col=’'sample’)

# Separate tumor and normal samples

tumor_samples = [col for col in gene_expression.columns if col.endswith ("
-01") ]

normal_samples = [col for col in gene_expression.columns if col.endswith (
ll_ll") ]

# Calculate mean expression for tumor and normal samples
tumor_mean = gene_expression[tumor_samples].mean (axis=1)
normal_mean = gene_expression[normal_samples].mean (axis=1)

# Calculate log2 fold change (log2FC) and filter for significant DEGs
log2fc = tumor_mean - normal_mean

deg_threshold = 1 # Log2FC threshold for differential expression
degs = log2fclabs(log2fc) >= deg_threshold]

# Output the number of DEGs and preview the top genes
print (f"Number of DEGs: {len(degs)}")

print (degs.sort_values (ascending=False) .head(10))

# Observation:

# Status: success

# stdout: Number of DEGs: 2531
# sample

# CEACAM5 6.291835
# TFF1 6.172998
# UGT1A10 6.144656
# PSCA 5.961392
# AGR2 5.938662
# TFF2 5.777967
# S100P 5.709678
# ERN2 5.639717
# SERPINB5 5.620392
# PITX1 5.555346
# dtype: floaté4

# Inspect the structure of the enrichment_results dataframe
print (enrichment_results.columns)
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43 print (enrichment_results.head())

44

45 # Observation:

46 # Status: success

47 # stdout: Index([’source’, ’‘native’, ’name’, ’'p_value’, ’significant’, '
description’,

48  # "term _size’, ’‘query_size’, ’intersection_size’, '
effective domain size’,

19 # ’precision’, ’recall’, ’query’, ’parents’],
50 | # dtype=’object”’)
51 # source native name p_value
\
52 # 0 GO:CC GO:0071944 cell periphery 3.030988e-137
53 # 1 GO:CC GO:0005886 plasma membrane 2.175693e-127
54 # 2 GO:BP GO:0032501 multicellular organismal process 1.397718e-94
55 # 3 GO:BP G0O:0002376 immune system process 2.129839e-81
56 # 4 GO:BP GO:0050896 response to stimulus 2.495028e-73
57 #
58 # significant description
term size \
59 # 0 True "The broad region around and including the pla...
6347
60 # 1 True "The membrane surrounding a cell that separate...
5866
61 # 2 True "Any biological process, occurring at the leve...
7322
62 # 3 True "Any process involved in the development or fu...
2871
63 # 4 True "Any process that results in a change in state...
8999
64  #
65 # query_size 1ntersection_size effective domain_size precision
recall \
66 # 0 2123 1132 22149 0.533208
0.178352
67 # 1 2123 1058 22149 0.498351
0.180361
68 # 2 2033 1148 21026 0.564683
0.156788
69 # 3 2033 595 21026 0.292671
0.207245
0 # 4 2033 1265 21026 0.622233
0.140571
T #
72 # query parents
73 # 0 query_1 [GO:0110165]
74 # 1 query_1 [GO:0016020, GO:0071944]
75 # 2 query_ 1 [GO:0008150]
76 # 3 query_1 [GO:0008150]
77 # 4 query_ 1 [GO:0008150]
78

79

80 # Filter results for significant pathways (p-value < 0.05)

81 significant_pathways = enrichment_results[enrichment_results[’p_value’] <
0.05]

82

83 # Output the number of significant pathways and the top results

84 print (f"Number of significant pathways: {len(significant_pathways)}")

85 print (significant_pathways[[’name’, ’'p_value’]].head(10))

87 # Observation:

88 # Status: success

89 # stdout: Number of significant pathways: 1689

90 # name p_value
91 # 0 cell periphery 3.030988e-137
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2 # 1 plasma membrane 2.175693e-127
93 # 2 multicellular organismal process 1.397718e-94
9 # 3 immune system process 2.129839%9e-81
95 # 4 response to stimulus 2.495028e-73
9% # 5 membrane 4.603862e-73
97 # 6 immune response 3.509625e-71
98 # 7 regulation of immune system process 2.033572e-70
9 # 8 defense response 2.205079e-68
100 # 9 cell activation 2.278886e-67

101

102

103 # Load the drug-target dataset

104 drug_target_path = "data/pd_export_01_2025_targets_original.csv"

105 drug_target_data = pd.read_csv(drug_target_path, low_memory=False)

106

107 # Extract gene names from the significant pathways

108 significant_genes = set (deg_genes)

109

110 # Filter drug-target interactions for genes in significant pathways

111 drug_targets = drug_target_data[drug_target_data[’gene_name’].isin(
significant_genes) ]

112

113 # Output the number of drug-target interactions and preview the top

results
114 print (£"Number of drug-target interactions: {len(drug_targets)}")
115 print (drug_targets[[’name’, ’'gene_name’, ’'moa’]].head(10))
116
117 # Observation:
118 # Status: success
119 # stdout: Number of drug-target interactions: 35929
120 # name gene_name moa
121 # 26 UNC1215 L3MBTL4 NaN
122 # 28 UNC1215 ADRA2C NaN
123 # 29 UNC1215 CHRM4  NaN
124 # 72 PFI-3 ADRAIA NaN
125 # 77 PFI-3 NRI1I2 NaN
126 # 89 UNC0642 ADRAID NaN
127 # 141 (+)—-Jo1 DNER NaN
128 # 142 (+)—-JQ1 CCL2 NaN
129 # 194 DIMETHYL GAMBOGATE CYP3A4 NaN
130 # 199 DIMETHYL GAMBOGATE RORC NaN

131

132

133 # Filter drug-target interactions for those with a defined MOA

134 drug_targets_with_moa = drug_targets.dropna (subset=["moa’])

135

136 # Prioritize drugs targeting immune-related or membrane-associated genes

137 immune_related_keywords = [’immune’, ’'membrane’, ’response’]

138 immune_related_drugs = drug_targets_with_moal

139 drug_targets_with_moa[’gene_name’].str.contains(’ |’ .join(
immune_related_keywords), case=False, na=False)

140 | 1]

141

142  # Output the number of prioritized drug-target interactions and preview
the top results

143 print (f"Number of prioritized drug-target interactions: {len(
immune_related_drugs) } ")
144 print (immune_related_drugs|[[’name’, ’'gene_name’, ’'moa’]].head(10))

145
146 # Observation:
147 # Status: success
148 # stdout: Number of prioritized drug-target interactions: 0
1499 # Empty DataFrame
150 # Columns: [name, gene_name, moa]

#

151 Index: []
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# Extract specific pathways related to immune system and membrane

immune_and_membrane_pathways = significant_pathways]|[
significant_pathways[’name’].str.contains (’ immune |membrane’, case=
False)

]

# Extract genes involved in these pathways

immune_and_membrane_genes = set ()

for genes in immune_and_membrane_pathways|[’ query’]:
immune_and_membrane_genes.update (genes)

# Filter drug-target interactions for these genes
immune_and_membrane_drugs = drug_targets|[drug_targets[’gene_name’].isin(
immune_and_membrane_genes) ]

# Output the number of interactions and preview the top results

print (f"Number of immune and membrane-related drug-target interactions: {
len (immune_and_membrane_drugs) } ")

print (immune_and_membrane_drugs|[[’name’, ’gene_name’, ’'moa’]].head(10))

# Observation:

# Status: success

# stdout: Number of immune and membrane-related drug-target interactions:
0

# Empty DataFrame

# Columns: [name, gene_name, moa]

# Index: []

# Extract the top significant pathways based on p-value
top_pathways = significant_pathways.nsmallest (10, 'p_value’)

# Extract genes involved in these pathways

top_pathway_genes = set ()

for genes in top_pathways[’query’]:
top_pathway_genes.update (genes)

# Filter drug-target interactions for these genes
top_pathway_drugs = drug_targets[drug_targets[’gene_name’].isin(
top_pathway_genes) ]

# Output the number of interactions and preview the top results

print (f"Number of top pathway-related drug-target interactions: {len(
top_pathway_drugs) } ")

print (top_pathway_drugs|[[’name’, ’'gene_name’, 'moa’]].head(10))

# Observation:

# Status: success

# stdout: Number of top pathway-related drug-target interactions: 0

# Empty DataFrame

# Columns: [name, gene_name, moa]

# Index: []

# Filter drug-target interactions for any overlap with DEGs
deg_drug_targets = drug_targets[drug_targets|[’gene_name’].isin (deg_genes)

]

# Output the number of DEG-related drug-target interactions and preview
the top results

print (f"Number of DEG-related drug-target interactions: {len(
deg_drug_targets) }")
print (deg_drug_targets[[’name’, ’'gene_name’, 'moa’]].head(10))
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208

209 # Observation:

210 # Status: success

Il # stdout: Number of DEG-related drug-target interactions: 35929
212 # name gene_name moa
213 # 26 UNC1215 L3MBTL4 NaN
214 # 28 UNC1215 ADRA2C NaN
215 # 29 UNC1215 CHRM4 NaN
2106 # 72 PFI-3 ADRAIA NaN
P17 # 77 PFI-3 NR1I2 NaN
218 # 89 UNC0642 ADRAID NaN
219 # 141 (+)-JO1 DNER NaN
220 # 142 (+)—-JQ1 CCL2 NaN
21 # 194 DIMETHYL GAMBOGATE CYP3A4 NaN
2220 # 199 DIMETHYL GAMBOGATE RORC NaN
P23

P24

225 # Filter for drug-target interactions with a defined MOA

226 deg_drug_targets_with_moa = deg_drug_targets.dropna (subset=['moa’])

227

208 # Output the number of interactions with a defined MOA and preview the
top results

229 print (f"Number of DEG-related drug-target interactions with MOA: {len(
deg_drug_targets_with_moa) }")

230 print (deg_drug_targets_with_moa[[’name’, ’‘gene_name’, ’'moa’]].head(10))

232 # Observation:

p33 # Status: success

234 # stdout: Number of DEG-related drug-target interactions with MOA: 5930
235 # name gene_name moa
236 # 415 GLYBURIDE ABCCS8 inhibitor
237 # 416 GLYBURIDE SLCO2B1 inhibitor
238 # 431 DOMPERIDONE DRD2 antagonist
039 # 508 LEVODOPA DRD2 agonist
240 # 620 AMOXAPINE ADRAIA antagonist
241 # 629 AMOXAPINE DRD2 antagonist
242 # 642 AMOXAPINE HRH1 antagonist
243 # 648 AMOXAPINE HTR3A antagonist
244 # 673 AMOXAPINE HTRIB antagonist
p45  # 700 DPCPX  ADORA2B antagonist

248 # Identify genes from the top significant pathways
249 top_pathway_genes = set ()

250 for genes in top_pathways|[’query’]:

P51 top_pathway_genes.update (genes)

053 # Filter for drug-target interactions involving these genes

254 pathway_drug_targets_with_moa = deg_drug_targets_with_moal

255 deg_drug_targets_with_moa[’gene_name’].isin (top_pathway_genes)
256 ]

058 # Output the number of interactions and preview the top results
259 print (f"Number of pathway-related drug-target interactions with MOA: {len
(pathway_drug_targets_with_moa) }")

260 print (pathway_drug_targets_with_moa[[’name’, ’gene_name’, ’'moa’]].head
(10))

P61

262 # Observation:

263 # Status: success

264 # stdout: Number of pathway-related drug-target interactions with MOA: 0

265 # Empty DataFrame

266 # Columns: [name, gene_name, moa]

P67 # Index: []

268
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# Group drug-target interactions by MOA and count occurrences
moa_counts = deg_drug_targets_with_moa[’moa’].value_counts ()

# Identify the most common MOAs and their associated drugs and targets

top_moas = moa_counts.head(10) .index

top_moa_drug_targets = deg_drug_targets_with_moal
deg_drug_targets_with_moa[’moa’].isin (top_moas) ]

# Output the most common MOAs and their associated drug-target
interactions

print ("Most common MOAs and associated drug-target interactions:")

print (top_moa_drug_targets[[’'name’, ’'gene_name’, ’'moa’]].head(20))

# Observation:

# Status: success

# stdout: Most common MOAs and associated drug-target interactions:
# name gene_name moa
# 415 GLYBURIDE ABCCS8 inhibitor
# 416 GLYBURIDE SLCO2BI1 inhibitor
# 431 DOMPERIDONE DRDZ2 antagonist
# 508 LEVODOPA DRD2 agonist
# 620 AMOXAPINE ADRAIA antagonist
# 629 AMOXAPINE DRD2 antagonist
# 642 AMOXAPINE HRHI antagonist
# 648 AMOXAPINE HTR3A antagonist
# 673 AMOXAPINE HTRI1B antagonist
# 700 DPCPX ADORAZ2B antagonist
# 765 EBASTINE HRH1 inverse agonist
# 811 CARAZOLOL ADRBZ2 antagonist
# 841 CHLORPHENIRAMINE MALEATE HRH1 antagonist
# 874 MIRTAZAPINE HRHI1 antagonist
# 875 MIRTAZAPINE ADRA2C antagonist
# 894 DAPAGLIFLOZIN SLC5A1 inhibitor
# 900 VORTIOXETINE HYDROBROMIDE HTR3A antagonist
# 905 CANAGLIFLOZIN SLC5A1 inhibitor
# 1051 ETHANOLAMINE OLEATE Fi2 activator
# 1075 FOMEPIZOLE ADHIB inhibitor

D.3 CASE STtUuDY 3: BIRCS5 AND PRKD1 IN KIRC

Science advances not only by discovering new findings but also by validating and reproducing prior
results. In this case study, our agentic system independently recapitulates a published conclusion
about BIRC5 (Survivin) in clear-cell renal cell carcinoma (ccRCC) and extends it with additional
analyses and hypotheses around PRKDI. Using the TCGA KIRC cohort, our pipeline reaches the
same core conclusion as Wang et al. (2021) regarding the early diagnostic and prognostic value of
BIRCS. Because the authors’ code was not publicly available, the agent system re-ran the analysis
from scratch on TCGA expression and survival endpoints, confirming: (i) BIRCS overexpression in
tumors relative to normals; and (ii) significant association with adverse outcomes. This strengthens
confidence that the signal is robust to implementation details.

The system then expanded the analysis in two directions. Differential pathway enrichment on BIRCS-
stratified samples highlights reinforcement of cell-cycle programs (e.g., chromosome segregation,
mitotic spindle assembly) and mitotic checkpoint activity, consonant with Survivin’s role in chromo-
somal passenger complexes. Our drug-target mining proposed candidate compounds for follow-up,
including Survivin-directed strategies and kinase modulation consistent with the inferred networks.
These are hypotheses for experimental testing rather than clinical recommendations. PRKD]1 is
well-studied in renal physiology and polycystic kidney disease (Seeger-Nukpezah et al., 2015), and
has more recently been implicated across cancer-hallmark processes. In KIRC specifically, our
co-expression and enrichment analyses suggest that reduced PRKD] activity may coincide with dys-
regulation of nuclear—cytoplasmic transport and broader signaling modules. The joint consideration
of BIRCS (as an oncogenic driver of mitotic progression) and PRKD] (as a putative tumor-suppressive
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regulator of signaling/export) appears novel in the KIRC context and offers a mechanistic basis for
complementary intervention hypotheses.

D.3.1 THERAPEUTIC TARGETING OF PRKD1 AND BIRCS5 IN KIDNEY RENAL CLEAR CELL
CARCINOMA (KIRC): DISTINCT PATHWAYS AND MECHANISMS

Meta-Review (for context). Decision: accept; Overall score: 0.75; Rank: 1/4. Justification:
robust empirical evidence and actionable insights into distinct pathways.

Research Question. Can PRKDI and BIRCS serve as therapeutic targets in KIRC, and what are
their distinct biological roles and associated pathways?

Hypothesis and Key Findings. PRKDI1 and BIRCS represent promising therapeutic targets in
KIRC based on differential expression, survival correlations, and pathway involvement:

* PRKD1: Functions as a tumor suppressor; correlates with genes involved in nuclear protein export
and cellular signaling.

* BIRCS: Acts as an oncogenic driver; correlates with genes enriched in cell cycle processes,
including chromosome segregation and mitotic spindle assembly.

Rationale / Mechanism.

* PRKD1: Downregulated in tumors; positive survival correlation (Spearman with OS.time = 0.128,
p = 0.0016). Co-expression network implicates regulation of protein export and cellular signaling.

* BIRCS: Upregulated in tumors; negative survival correlation (Spearman with OS.time = —0.148,
p = 0.0003). Co-expression network highlights roles in cell-cycle progression and mitosis.

Empirical Evidence.

* Differential expression:
— PRKDI: downregulated in tumors (fold change = —1.178).
— BIRCS: upregulated in tumors (fold change = 2.892).
* Survival correlations:
— PRKDI: positive correlation with OS.time (Spearman = 0.128, p = 0.0016).
— BIRCS: negative correlation with OS.time (Spearman = —0.148, p = 0.0003).
* Pathway enrichment:
— PRKDI1: enriched in “positive regulation of protein export from nucleus” (p = 0.034).
- BIRCS: enriched in “chromosome segregation” (p = 1.25 x 10~!%) and “mitotic spindle

assembly” (p = 4.40 x 10719),
Assumptions.

* PRKDI and BIRCS directly influence KIRC progression through their associated pathways.
* Identified correlations and pathways reflect biologically relevant mechanisms in KIRC.

Limitations.

* Protein-level expression data for PRKD1 and BIRCS were not available in the RPPA dataset.
» KIRC-specific experimental validation of therapeutic interventions targeting these genes is required.

Literature and Prior Evidence.

* Abdelrazig et al. (2025). Protein Kinase D1 (PRKDI) as a Diagnostic, Prognostic, and Im-
munomodulatory Biomarker in Human Cancers.

* Survivin as a Multifaceted Oncogenic Driver and Therapeutic Target in Renal Cell Carcinoma.
(2025).
* Probes & Drugs database entries for PRKD1 and BIRCS inhibitors.

37



16

26
27
28

29
30
31

Under review as a conference paper at ICLR 2026

Listing 13: Differential expression, survival, enrichment, and drug-target mining for KIRC BIRC5
genes.

import pandas as pd

from gprofiler import GProfiler

from scipy.stats import spearmanr

# Load RNA-seq dataset

data_path_rna = ’'data/TCGA.KIRC.sampleMap_HiSeqV2.gz'’

rna_seq_data = pd.read_csv (data_path_rna, sep=’\t’, compression=’gzip’,
index_col='sample’)

# Load survival dataset

data_path_survival = ’"data/survival%2FKIRC_survival.txt’
survival_data = pd.read_csv(data_path_survival, sep='\t’, index_col=’'
sample’)

# Genes of interest
genes_of_interest = ['PRKD1l’, ’"BIRC5’]

# Filter for tumor and normal samples

tumor_samples = [col for col in rna_seq _data.columns if col.endswith ('’ 01’
) ]

normal_samples = [col for col in rna_seq _data.columns if col.endswith(’11
") 1]

# Calculate mean expression for tumor and normal samples
rna_seq_data[’tumor_mean’] = rna_seq_data[tumor_samples].mean (axis=1)
rna_seq_data[’normal_mean’] = rna_seq datal[normal_samples].mean (axis=1)

# Compute fold change (log2 ratio)
rna_seq_data[’ fold_change’] = rna_seq _data[’tumor_mean’] - rna_seqg_datal’
normal_mean’ ]

# Extract fold change for genes of interest
fold_changes = rna_seq _data.loc[genes_of_interest, [’tumor_mean’, '

normal_mean’, ’fold_change’]]

# Identify common samples between RNA-seq and survival datasets

common_samples = set (rna_seq _data.columns) .intersection (survival_data.
index)
common_samples = list (common_samples)

# Merge data for survival analysis
merged_data = survival_data.loc[common_samples] .copy ()

# Compute survival correlations for genes of interest
correlation_results = {}
for gene in genes_of_interest:

if gene in rna_seqg_data.index:

merged_data[f’ {gene}_expression’] = rna_seq data.loc[gene,
common_samples]

corr, p_value = spearmanr (merged_datal[f’ {gene}_expression’],
merged_data[’0S.time’])

correlation_results[gene] = (corr, p_value)

# Perform pathway enrichment analysis for genes of interest

gp = GProfiler (return_dataframe=True)

enrichment_results = gp.profile(organism=’hsapiens’, query=
genes_of_interest)

# Display results
fold_changes, correlation_results, enrichment_results.head(10)

# Observation:
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Status: success
result: ( tumo
sample
PRKD1 8.589648
BIRCS5 5.859713
{’PRKD1’: (np.floaté

r_mean normal_mean fold _change
9.767624 -1.177975
2.967788 2.891925,

4(0.12829828043224845), np.float64

(0.001551387689555918) ),

/BIRCS5’: (np.floaté
np.float64(0.00026
source native

name |\

0 WP WP:WP1772
signaling
1 WP WP :WP4659
signaling
2 GO:CC GO:1990713
complex
3 CORUM CORUM:2580
complex
4 GO:BP G0:0014723
5 CORUM CORUM:1117
complex
6 CORUM CORUM:2581
complex
7 CORUM CORUM:6756
complex

p_value signifi

description \

0 0.004547
signaling

1 0.007313
signaling

2 0.020616
Bloo o

3 0.024966
complex

4 0.049542

rat...

5 0.049932

complex

6 0.049932

complex

7 0.049932

complex

term size
precision '\

query._

0 90
1.0

1 114
1.0

2 1
0.5

3 1
1.0

4 1
0.5

5 2
1.0

6 2
1.0

7 2
1.0

4(-0.14756835893794445),
721000654785355)) },
Apoptosis modulation and
Gastrin
survivin

Survivin homodimer
regulation of skeletal muscle contraction

CRMI1-Survivin mitotic

RasGAP-AURKA-survivin
RasGAP-AURKB-survivin
cant
True Apoptosis modulation and
True Gastrin
True "A protein complex that negatively regulates
True Survivin homodimer
True "Any process that modulates the frequency,
True CRM1-Survivin mitotic
True RasGAP-AURKA-survivin
True RasGAP-AURKB-survivin
size 1ntersection size effective _domain size
2 2 8752
2 2 8752
2 1 22149
1 1 3383
2 1 21026
1 1 3383
1 1 3383
1 1 3383
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S H R W R R R R R W%

recall
.022222
.017544
.000000
.000000
.000000
.500000
.500000
.500000

NOoOY s W RO
QOO R RRKROO

query
query_1
query._1
query_1
query._1
query_1
query_ 1
query_1
query_1

parents

[WP:000000]
[WP:000000]

[GO:
[CORUM:
[GO:
[CORUM:
[CORUM :
[CORUM:

# Load Probes & Drugs dataset
data_path_pd =
pd_data = pd.read_csv(data_path_pd, low_memory=False, index_col='name’)

0140513]
0000000]
0014722]
0000000]
0000000]
0000000] )

"data/pd_export_01_2025_targets_original.csv’

# Filter Probes & Drugs dataset for PRKD1 and BIRCS
target_genes =
pd_filtered = pd_data[pd_data[’gene_name’].isin(target_genes) ]

[’ PRKD1’,

"BIRC5’ ]

# Display the filtered compounds and their mechanisms of action
"target_name’, ’'moa’]].drop_duplicates|()

pd_filtered[ [’ gene_name’,

S oH H R R R R R R R R

S

H

S S e I Hh R R

Observation:

Status: success

result:

name
NERATINIB
TCS PIM-1 1
GW855857
Bryostatin 1
compound IIT

target_name
name
NERATINIB
D1
TCS PIM-1 1
protein 5
GW855857
D1
Bryostatin 1
D1
compound IIT
protein 5

name
NERATINIB
TCS PIM-1 1
Gw855857
Bryostatin 1
compound III

[PMID: 24080463]

\

[PMID: 24080463]

[PMID: 24080463]

gene_name |\
PRKD1
BIRCS
PRKD1

PRKD1
BIRCS

Serine/threonine-protein kinase
Baculoviral IAP repeat-containing

Serine/threonine-protein kinase

Serine/threonine-protein kinase

Baculoviral IAP repeat-containing

moa

NaN
NaN
inhibitor
activator
inhibitor

# Display the first few rows of the RPPA dataset to inspect its structure
rppa_data.head ()

#
#
#

Observation:

Status: success

result:
A54F-01 \
sample

14-3-3 beta—-R-V

TCGA-B8-A54D-01 TCGA-G6-A8L7-01 TCGA-BS8-

0.065007 -0.103411 -0.071788
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160
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167
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170
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177

178
179
180
181
182
183
184
185
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188
189
190
191
192
193
194
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201
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S H H R H R R S S e e R R R S S S R Sk S

S

S S

S S S S S R Sk e

S S e e IR e YR R R R R R R R R h

14-3-3_epsilon-M-C
14-3-3_zeta-R-V
4E-BP1-R-V
4E-BP1_pS65-R-V

\
sample
14-3-3 beta-R-V
14-3-3 _epsilon-M-C
14-3-3 zeta—-R-V
4E-BP1-R-V
4E-BP1_pS65-R-V

\

sample

14-3-3 beta—-R-V

14-3-3_epsilon-M-C

14-3-3_zeta-R-V

4E-BP1-R-V

4E-BP1_pS65-R-V
-4981-01 \

sample

14-3-3 beta-R-V
-0.013955

14-3-3_epsilon-M-C

0.030217
14-3-3_zeta-R-V
0.267474
4E-BP1-R-V
0.360712
4E-BP1_pS65-R-V
-0.052082

\
sample
14-3-3 beta—-R-V
14-3-3_epsilon-M-C
14-3-3_zeta-R-V
4E-BP1-R-V
4E-BP1_pS65-R-V

\
sample
14-3-3 beta—-R-V
14-3-3 _epsilon-M-C
14-3-3 zeta-R-V
4E-BP1-R-V
4E-BP1_pS65-R-V

sample

14-3-3 beta-R-V
14-3-3_epsilon-M-C
14-3-3 zeta-R-V
4E-BP1-R-V
4E-BP1_pS65-R-V

-0.175905
-0.195639
-0.286517
-0.020339

TCGA-B8-A8YJ-01

0.556920
0.175525
-1.272674
-0.828272
-0.166733

TCGA-G6-A8L6-01

-0.037139
0.089388
0.204648
0.377911

-0.000909

TCGA-G6-A5PC-01

-0.010247

0.237651
-0.026489
-0.229184

0.608147
TCGA-B8-4622-01

0.150967
0.016982
0.278651
0.041094
-0.269524

TCGA-BP-4347-01

0.137857
-0.071562
-0.440944
-0.437115

0.612101

tumor_mean

.084855
.027040
.039044
.069128
.006978

el el eBe)

[5 rows x 480 columns]
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0.130026
-0.174381
1.231338
1.542328

TCGA-B8-A54K-01

.130937
.198440
.168871
.240631
.063540

Sl eleBele)

TCGA-MW-A4EC-01

.022034
0.027828
.008644
0.091436
0.257222

TCGA-B0-4703-01

-0.080084
0.064587
0.012585

-0.325206

TCGA-3Z-A932-01

0.406331
.053131
.321452
0.122247
0.155350

TCGA-DV-A4w0-01

.056487
.089663
0.013026
0.014693
0.065496

TCGA-BP

.035964

.083376

0.293633

.139995

0.183363

TCGA-B0-4819-01

.025524
.204421
.403945
.425633
. 365388

(e eBelele)

TCGA-B2-5636-01

-0.041162
0.087068
-0.031086
-0.331337
0.128544

normal_mean

NaN
NaN
NaN
NaN
NaN

TCGA-A3-3316-01

.047050
.138947
.109604
0.062104
.059234

TCGA-CW-5584-01

-0.001714
-0.112748
-0.078699

0.282619

.104384
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204 # Filter the RPPA dataset for potential aliases or descriptions related
to PRKD1 and BIRCS

205 potential_aliases = [’Protein kinase D1’, ’'Survivin’, ’Baculoviral IAP
repeat-containing protein 5']

206 matching_entries = rppa_datal[rppa_data.index.str.contains(’ |’ .join(
potential_aliases), case=False)]

207

208 # Display matching entries
209 matching_entries

210
211
212

Observation:

Status: success

result: Empty DataFrame

Columns: [TCGA-B8-A54D-01, TCGA-G6-A8L7-01, TCGA-B8-A54F-01, TCGA-B8-
A8YJ-01, TCGA-B8-A54K-01, TCGA-3Z-A93Z-01, TCGA-G6-A8L6-01, TCGA-MW-
A4EC-01, TCGA-DV-A4W0-01, TCGA-G6-A5PC-01, TCGA-B8-A54E-01, TCGA-B8-
A54G-01, TCGA-6D-AA2FE-01, TCGA-B2-A4SR-01, TCGA-B8-A54H-01, TCGA-MM-
A563-01, TCGA-G6-A8L8-01, TCGA-DV-A4VZ-01, TCGA-B8-A54I-01, TCGA-GK-
A6C7-01, TCGA-DV-A4VX-01, TCGA-B8-A54J-01, TCGA-MM-A564-01, TCGA-B8-
A7U6-01, TCGA-B4-5844-01, TCGA-B0-4701-01, TCGA-BP-4970-01, TCGA-A3
-3373-01, TCGA-B0-5113-01, TCGA-B8-5164-01, TCGA-CJ-4878-01, TCGA-BP
-5189-01, TCGA-BP-4988-01, TCGA-BP-4351-01, TCGA-BP-4803-01, TCGA-A3
-3352-01, TCGA-BP-4965-01, TCGA-BP-4766-01, TCGA-BP-4987-01, TCGA-BP
-4787-01, TCGA-B0-5707-01, TCGA-B0-5100-01, TCGA-DV-5573-01, TCGA-BP
-4769-01, TCGA-B0-5099-01, TCGA-BP-4959-01, TCGA-CZ-5984-01, TCGA-BO
-4852-01, TCGA-CZ-4857-01, TCGA-CZ-4856-01, TCGA-Cw-5583-01, TCGA-B8
-5163-01, TCGA-BP-5201-01, TCGA-CJ-5686-01, TCGA-BP-4174-01, TCGA-B8
-5546-01, TCGA-A3-3306-01, TCGA-B0-4707-01, TCGA-CJ-4642-01, TCGA-A3
-3363-01, TCGA-CW-6093-01, TCGA-A3-3324-01, TCGA-BP-5001-01, TCGA-BP
-4995-01, TCGA-B0-4693-01, TCGA-A3-3329-01, TCGA-BP-4976-01, TCGA-CJ
-4890-01, TCGA-B0-4700-01, TCGA-CJ-5683-01, TCGA-CwW-5580-01, TCGA-BP
-4756-01, TCGA-B0-5699-01, TCGA-BP-5191-01, TCGA-B0-5098-01, TCGA-A3
-3336-01, TCGA-BP-5009-01, TCGA-CW-5589-01, TCGA-CJ-4640-01, TCGA-BP
-4334-01, TCGA-B0-4824-01, TCGA-CJ-6030-01, TCGA-B0-4718-01, TCGA-BP
-4964-01, TCGA-A3-3376-01, TCGA-B0-5096-01, TCGA-CJ-4638-01, TCGA-B4
-5377-01, TCGA-BP-4982-01, TCGA-BP-4968-01, TCGA-B0-5812-01, TCGA-B8
-4621-01, TCGA-A3-3387-01, TCGA-BP-4799-01, TCGA-B0-5711-01, TCGA-BP
-4355-01, TCGA-CZ-5988-01, TCGA-B0-5108-01, TCGA-CZz-5452-01, TCGA-BO
-5094-01, ...]

215 # Index: []

216 #

217 # [0 rows x 480 columns]

218

219

220 # Broaden search criteria for potential entries related to PRKD1 and

213

214

S HR I

BIRCS

221 broader_aliases = [’kinase’, ’'survivin’, ’apoptosis’]

222 broader_matching_entries = rppa_data[rppa_data.index.str.contains(’|’.
join (broader_aliases), case=False)]

223

224 # Display broader matching entries

225 broader_matching_entries

226

227 Observation:

Status: success

result: Empty DataFrame

Columns: [TCGA-B8-A54D-01, TCGA-G6-A8L7-01, TCGA-B8-A54F-01, TCGA-B8-
A8YJ-01, TCGA-B8-A54K-01, TCGA-3Z-A937-01, TCGA-G6-A8L6-01, TCGA-MW-
A4EC-01, TCGA-DV-A4W0-01, TCGA-G6-A5PC-01, TCGA-B8-A54E-01, TCGA-BS8-—
A54G-01, TCGA-6D-AA2E-01, TCGA-B2-A4SR-01, TCGA-B8-A54H-01, TCGA-MM-
A563-01, TCGA-G6-A8L8-01, TCGA-DV-A4VZ-01, TCGA-B8-A54I-01, TCGA—-GK-
A6C7-01, TCGA-DV-A4VX-01, TCGA-B8-A54J-01, TCGA-MM-A564-01, TCGA-B8-
A7U6-01, TCGA-B4-5844-01, TCGA-B0-4701-01, TCGA-BP-4970-01, TCGA-A3
-3373-01, TCGA-B0-5113-01, TCGA-B8-5164-01, TCGA-CJ-4878-01, TCGA-BP

228
229

230

S HR W
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-5189-01,
-3352-01,
-4787-01,
-4769-01,
-4852-01,
-5163-01,
-5546-01,
-3363-01,
-4995-01,
-4890-01,
-4756-01,
-3336-01,
-4334-01,
-4964-01,
-5377-01,
-4621-01,
-4355-01,
-5094-01,
# Index: []
#

TCGA-BP-4988-01,
TCGA-BP-4965-01,
TCGA-B0-5707-01,
TCGA-B0-5099-01,
TCGA-CZ-4857-01,
TCGA-BP-5201-01,
TCGA-A3-3306-01,
TCGA-CW-6093-01,
TCGA-B0-4693-01,
TCGA-B0-4700-01,
TCGA-B0-5699-01,
TCGA-BP-5009-01,
TCGA-B0-4824-01,
TCGA-A3-3376-01,
TCGA-BP-4982-01,
TCGA-A3-3387-01,
TCGA-CZ-5988-01,
oy

# [0 rows x 480 columns]

TCGA-BP-4351-01,
TCGA-BP-4766-01,
TCGA-B0-5100-01,
TCGA-BP-4959-01,
TCGA-CZ-4856-01,
TCGA-CJ-5686-01,
TCGA-B0-4707-01,
TCGA-A3-3324-01,
TCGA-A3-3329-01,
TCGA-CJ-5683-01,
TCGA-BP-5191-01,
TCGA-CW-5589-01,
TCGA-CJ-6030-01,
TCGA-B0-5096-01,
TCGA-BP-4968-01,
TCGA-BP-4799-01,
TCGA-B0-5108-01,

TCGA-BP-4803-01,
TCGA-BP-4987-01,
TCGA-DV-5573-01,
TCGA-CZ-5984-01,
TCGA-CW-5583-01,
TCGA-BP-4174-01,
TCGA-CJ-4642-01,
TCGA-BP-5001-01,
TCGA-BP-4976-01,
TCGA-CW-5580-01,
TCGA-B0-5098-01,
TCGA-CJ-4640-01,
TCGA-B0-4718-01,
TCGA-CJ-4638-01,
TCGA-B0-5812-01,
TCGA-B0-5711-01,
TCGA-CZ-5452-01,

# Inspect columns of RNA-seq dataset to confirm available tumor
identifiers

available_tumor_samples =

endswith (/01")]

# Compare with the original list of tumor samples

missing_samples =

set (tumor_samples)

# Display missing samples and refine tumor sample 1list

missing_samples,

available_tumor_samples[:10]

available samples for verification

# Observation:
success
({"TCGA-A3-3336-01",

# Status:
# result:

[/ TCGA-BP-4162-01",
’TCGA-DV-5566-01",
’TCGA-BP-5191-01",
’TCGA-BP-5200-01",
/TCGA-BP-4347-01",

’TCGA-BP-4762-01",
’TCGA-BP-4158-01",
"TCGA-CJ-4887-01",
"TCGA-B2-4098-01"1])

#
#
#
#
#
# ’TCGA-BP-4770-01",
#
#
#
#

"TCGA-CJ-4913-01",

"TCGA-CW-6096—

TCGA-A3
TCGA-BP
TCGA-BP
TCGA-BO
TCGA-BS8
TCGA-BS8
TCGA-A3
TCGA-BP
TCGA-CJ
TCGA-BP
TCGA-A3
TCGA-BP
TCGA-BP
TCGA-B4
TCGA-BS8
TCGA-BP
TCGA-BO

sample

[col for col in rna_seqg_data.columns if col.

- set (available_tumor_samples)

# Display a subset of

017},

# Convert indices of top correlated genes to lists for pathway enrichment
top_correlated_prkdl_list = top_correlated_prkdl.index.tolist ()
top_correlated_birc5_list = top_correlated_birc5.index.tolist ()

261
262
263

264 # Perform pathway enrichment analysis for top correlated genes

265 enrichment_results_prkdl = gp.profile(organism='"hsapiens’, query=
top_correlated_prkdl_list)
266 enrichment_results_bircb = gp.profile(organism=’hsapiens’, query=

top_correlated_birc5_list)
267
268
269

# Display results
top_correlated_prkdl,
top_correlated_birch,

enrichment_results_prkdl.head(10),
enrichment_results_birc5.head (10)
270

271 # Observation:
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272
273
274
275
276
277
278
279
280
P81
282
283
284

289
290

291

292
293

294

295
296
297
P98
299
300
301
302
303
B04
305
306
307
308
309
B10
311
312
313
314
315
316
317
318
319
320
321
B22
323
324
325
326
327
328
329
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Status: success
result: ( corr._prkdl corr_birch
PRKD1 1.000000 -0.422963

NUMB 0.723506 -0.455379

FAM161B 0.656223 -0.393488

PPMIA 0.646236 -0.466748

L2HGDH 0.643696 -0.476554

ALDH6A1 0.643234 -0.507840

MOAP1 0.641932 -0.438381
RALGAPAI 0.638948 -0.479813

GPHN 0.632647 -0.439207

FAM179B 0.631081 -0.417649,

source native
name \
0 GO:BP G0O:0046827 positive regulation of protein export from nuc
p_value significant

description \

0

0.034246 True

o 00

term _size query_size 1intersection_size

precision '\

0 20 9 2
0.222222
recall query

0 0.1 query_1 [GO:0006611, GO:0046824,

corr_prkdl corr_birch
BIRCS5 -0.422963 1.000000
CDC20 -0.398473 0.902944
AURKB -0.445077 0.890122
CCNB2 -0.397994 0.885516
UBE2C -0.500449 0.883852
HJURP -0.371927 0.869710
MYBLZ2 -0.433110 0.862108
TPX2 -0.356099 0.861416
CDCAS8 -0.356784 0.859240
PTTG1 -0.515681 0.859221,

source native \
0 GO:BP GO:0007059
1 GO:BP GO:0098813
2 GO:BP GO:0000280
3 GO:BP GO:0048285
4 GO:BP GO:0051225
5 GO:BP GO:0051276
6 GO:BP G0:1901970
7 REAC REAC:R-HSA-1640170
8 GO:BP GO:0090307
9 GO:BP GO:0000070
name

0 chromosome segregation 1
1 nuclear chromosome segregation 4
2 nuclear division 1
3 organelle fission 2
4 spindle assembly 5
5 chromosome organization 8
6 positive regulation of mitotic sister chromati... 1
7 Cell Cycle 2
8 mitotic spindle assembly 4
9 mitotic sister chromatid segregation 6

44

"Any process that activates or increases the

effective_domain size

21026

parents

G0:0046825, GO:0090316]

p_value \

.250349e-14
.892650e-13
.034081e-11
.579222e-11
.564453e-11
.987358e-11
.736488e-10
.065140e-10
.400940e-10
.711199e-10
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# significant
term size \
# 0 True
427
# 1 True
323
# 2 True
452
# 3 True
500
# 4 True
136
# 5 True
574
# 6 True
21
# 7 True
679
# 8 True
76
# 9 True
193
#
# query_size
recall \
# 0 10
0.023419
# 1 10
0.027864
# 2 10
0.019912
# 3 10
0.018000
# 4 10
0.051471
# 5 10
0.015679
# 6 10
0.238095
# 7 10
0.014728
# 8 10
0.078947
# 9 10
0.036269
#
# query
# 0 query 1
# 1 query 1
# 2 query 1
# 3 query_ 1
# 4 query_1 [GO
# 5 query_ 1
# 6 query_1 [GO
# 7 query 1
# 8 query_1 [GO
# 9 query 1 [GO

D.4 META-REVIEW PROCESS REJECTS PAPERS WITH LOW NOVELTY OR WEAK EVALUATION

Paper: Therapeutic Potential of Targeting the PI3K/mTOR Pathway in Kidney Renal Clear Cell

Carcinoma (KIRC)

Decision: Reject

description

"The process in which genetic material,

"The process in which genetic material,

in the...

in the...

"The division of a cell nucleus into two nucle...

"The creation of two or more organelles by div...

"The aggregation,

arrangement and bonding toge...

"A process that is carried out at the cellular...

"Any process that activates or increases the f...

Cell Cycle

"Mitotic bipolar spindle assembly begins with

"The cell cycle process in which replicated ho...

intersection_size

:0007051, GO
:0010965, GO

: 0000070, GO
:0000819, GO

10

9

: 0007059,

effective domain_size

[GO
[GO
[GO
[GO

GO
[GO

: 0051306, GO
[REAC:0000000]
: 0007052, GO

:0140014,

GO

Overall Score: 0.45 Rank: 4/4
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parents
:0022402]
:0007059]
:0048285]
:0006996]
:0140694]
:0006996]
:1905820]

:0051225]
:1903047]

21026

21026

21026

21026

21026

21026

21026

11004

21026

21026

precision

&

0.

0

9
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Justification (abridged): Incremental insights into PI3K/mTOR targeting; modest expression shifts;
limited added value over an extensively studied pathway and approved agents.

Paper: Targeting CDKN2A to Disrupt Oncogene-Induced Senescence and Apoptosis in KIRC
Decision: Reject Overall Score: 0.40 Rank: 4/4

Justification (abridged): Weak survival evidence and limited mechanistic novelty; CDKN2A/9p21
status is a known prognostic marker in ccRCC, but the work does not convincingly translate this into
actionable therapy.

Paper: Therapeutic Potential of AKT2 in KIRC: Pathway and Drug Target Analysis

Decision: Reject Overall Score: 0.40 Rank: 4/4

Justification (abridged): Limited novelty and weak survival correlation; evidence for AKT2 as a
specific ccRCC driver is sparse relative to broader PI3K/AKT/mTOR activation.

Context and expert literature rationale. The PI3K/AKT/mTOR axis is long recognized in
ccRCC and broadly profiled by TCGA (Network, 2013). Clinically, mTOR inhibitors (temsirolimus,
everolimus) have shown activity yet modest durability, and have been surpassed in survival by
modern standards such as PD-1 blockade and VEGF-targeted TKIs in advanced RCC (Battelli &
Cho, 2011; Motzer et al., 2015; 2013). Consequently, papers that merely reiterate PI3K/mTOR
“targetability” without new biomarkers, response predictors, or superior combinations add limited
novelty. For CDKN2A, deletion at 9p21 is a well-documented adverse prognostic feature in ccRCC
(El-Mokadem et al., 2014), so proposals centered on its prognostic association—without rigorous
causal or translational advances—do not clear the novelty bar. Finally, while AKT pathway activation
is frequent in RCC, ccRCC-specific evidence elevating AKT2 (as distinct from AKT1/AKT3 or
upstream PI3K alterations (Guo et al., 2015)) is comparatively limited and largely preclinical making
an AKT2-only therapeutic thesis insufficiently substantiated. Taken together, the meta-review
rejections are consistent with a mature literature where incremental analyses, weak survival signals,
or narrow target rationales fall short of publication standards prioritizing novelty and robust evaluation.

E LLM USAGE

We used large language models (LLMs) to assist with improving the clarity of writing and refining
the formatting of tables and figures. LLMs were not used for research ideation, experimental design,
analysis, or any substantive contributions that would merit authorship.
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