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Figure 1: This paper leverages high-level prior of video generative models to unify controllable image
generation in low-level. Bottom results show various types of task supported by DRA-Ctrl.

Abstract

Video generative models can be regarded as world simulators due to their abil-
ity to capture dynamic, continuous changes inherent in real-world environments.
These models integrate high-dimensional information across visual, temporal,
spatial, and causal dimensions, enabling predictions of subjects in various status.
A natural and valuable research direction is to explore whether a fully trained
video generative model in high-dimensional space can effectively support lower-
dimensional tasks such as controllable image generation. In this work, we propose
a paradigm for video-to-image knowledge compression and task adaptation, termed
Dimension-Reduction Attack (DRA-Ctrl), which utilizes the strengths of video
models, including long-range context modeling and flatten full-attention, to per-
form various generation tasks. Specially, to address the challenging gap between
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continuous video frames and discrete image generation, we introduce a mixup-
based transition strategy that ensures smooth adaptation. Moreover, we redesign the
attention structure with a tailored masking mechanism to better align text prompts
with image-level control. Experiments across diverse image generation tasks, such
as subject-driven and spatially conditioned generation, show that repurposed video
models outperform those trained directly on images. These results highlight the
untapped potential of large-scale video generators for broader visual applications.
DRA-Ctrl provides new insights into reusing resource-intensive video models and
lays foundation for future unified generative models across visual modalities. The
project page is https://dra-ctrl-2025.github.io/DRA-Ctrl/.

1 Introduction

Recent advances in text-to-image (T2I) generative models [38, 134} 9} 23] have significantly improved
the quality of image synthesis from natural language prompts. To enhance controllability, researchers
have introduced auxiliary conditions into the context of generation [54, 24, 149, |32} |60, |10} 18],
such as subject reference images, edge maps and depth cues. This has given rise to the paradigm
of controllable image generation, where both textual and visual conditions collaboratively guide
the synthesis process. While early methods relied on additional image adapters or cross-attention
mechanisms [54} 16, [15| 142} 44], recent approaches leverage full-attention architectures [61} 22, 150,
431151017, 1250 1121 29} 147]] that treat all input tokens as a unified sequence. However, these models are
all built upon image generative models, thus remain limited by the static nature of image data, which
lacks the continuous temporal and causal structures transformation present in the real world.

Video generative models [2, 53], 120l 45]], in contrast, are trained to predict sequences of frames with
rich spatiotemporal dependencies. The prior knowledge learned by these models incorporates long-
range context, consistent object transitions, non-rigid transformation and high-level scene dynamics.
These capabilities align closely with the goals of controllable image generation. This observation
inspires a new direction, i.e., repurposing pretrained video models to support image-level tasks by
transferring their high-dimensional knowledge into a lower-dimensional setting. This work dives
into this idea and presents a framework termed DRA-Ctr1 that efficiently adapts video generators for
diverse controllable image generation scenarios.

However, directly adapting video generative models to controllable image generation presents non-
trivial challenges. A naive baseline would be to gather the condition image and target image into
the frame sequence of video generators. The key hindrance confronted here is that the video data
inherently consists of temporally continuous frames with smooth transitions, while the condition-
target image pairs represent a discrete, abrupt change between two states. In detail, we investigate
to adapt two variants of video generative models treating the image pairs as two-framed video.
For image-to-video (I2V) model consuming the condition image as the first frame, it suffers to
over-constrain the output to mimic the condition image. While for text-to-video (T2V) model, it is
inevitable to inject the condition image as non-noisy frame tokens into the sequence. Thus the model
takes much efforts to readapt the new paradigm, and tends to forget its pre-training knowledge with
suboptimal performance. These baseline solutions expose the fundamental discrepancy between the
continuous dynamics learned by video models and the discrete transition required by controllable
image generation. Therefore, it is essential for DRA-Ctrl to conduct stable transferring when
repurposing the video models without forgetting their high-dimensional capabilities.

To address these challenges in DRA-Ctrl, we propose a mixup-based transition strategy, inspired
by the mixup [57] principle in representation learning, serving as a bridge connecting the diverse
intermediate gaps in videos and images. The core idea is to treat the condition and target images as
boundary frames of a synthetic shot transition sequence, with intermediate frames generated using a
temporal position-aware mixup. Each intermediate frame is weighted by its relative position between
the two endpoints, enabling smooth interpolation while preserving key visual characteristics. We
implement the mixup transition with the I2V model. When integrating with these augmented frames,
the constraint from condition to target images is significantly relaxed, making it easier to adapt to
discrete image generation. Despite this, real video transitions generally require dozens of intermediate
frames, resulting in dramatically increased computation cost. To mitigate this, we introduce Frame-
Skip Position Embedding, a positional encoding scheme that expands temporal intervals in the latent
space, allowing large image transformations with only a few frames. Additionally, to distinguish
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complex combination of subjects and environments in multiple images, we adapt the condition and
target prompts into the full-attention mechanism together with a masking strategy.

We evaluate DRA-Ctrl on a wide range of controllable image generation tasks, including subject-
driven image synthesis, spatially aligned condition generation (e.g., canny-to-image translation,
colorization, deblurring, depth-based generation and depth prediction), masking image generation
(inpainting and outpainting) and style transferring. Our experiments demonstrate that video generative
models can be effectively re-purposed for these tasks, consistently outperforming methods built
upon image generative models. This surprising effectiveness highlights a compelling “Dimension-
Reduction Attack”, where high-dimensional video priors offer enhanced control when adapted
to lower-dimensional image tasks, encouraging more efforts to further investigate the extending
capability of video generative models.

2 Related Works

Subject-driven Image Generation. Subject-driven image generation with diffusion models typically
follows two paradigms: tuning-based and tuning-free methods. Tuning-based methods [40L[11,[16}121]]
achieve strong identity consistency but require per-subject fine-tuning, limiting scalability and
introducing non-trival computational overhead. Tuning-free methods instead enhance generalization
through training on large-scale datasets, eliminating inference-time tuning. Early works [54} 24, 49|
321,160, [18]] extract subject information from reference images using an image encoder, and inject these
features into the generation process via cross-attention mechanisms. Then, Hu et al. [[15] propose using
a ReferenceNet which is architecturally identical to the denoising UNet as the image feature extractor,
providing detailed and accurate control information for controllable generation. Later advancements
in tuning-free methods leverage the model’s inherent in-context learning capabilities [17], treating
the model itself as an image feature extractor to provide subject-specific information for generation.
Zeng et al. [56] proposes to model the joint distribution of multiple text-image pairs sharing the same
subject, investigating in-context learning within UNet-based diffusion models for subject-driven image
generation. With the introduction of DiT architectures [33l], recent works [61} 22,150} 43,151} 7}, [25]]
have explored the full-attention mechanism, where reference images and generated images jointly
participate in self-attention, to facilitate subject feature extraction and enable in-context learning
for subject-driven generation. We propose leveraging video diffusion models’ inherent frame-level
full-attention mechanism for subject-driven generation.

Spatially-aligned Image Generation. Spatially-aligned control signals for fine-grained image
generation have emerged as a critical research direction. Early conditional Generative Adversarial
Networks (GANs) [[19,163] and transformers [4] achieve image-to-image translation by learning the
mapping from conditional images to target images. Recent diffusion models enable tighter integration
of such controls. SDEdit [30] guides generation process by first adding noise to stroke paintings and
then denoising them. In contrast, T2I-Adapter [31]] trains an adapter network to enable more diverse
and precise control signals. ControlNet [58]] reuses the encoding layers of pre-trained diffusion
models as a backbone for learning control signals. UniControl [36] further advances this direction by
integrating multiple tasks within a unified framework via a task-aware HyperNet, demonstrating zero-
shot capabilities on unseen tasks and combined tasks. Subsequent works [[7, 151} 143} 25} [12} 29} 47]]
have unified subject-driven and spatially-aligned image generation within one framework that maps
control images to target outputs, which DRA-Ctr1 also follows.

Image Generation with Video Models. While existing works employ video generative models
for image editing (requiring pixel-aligned partial modifications) that are methodologically naive,
our framework targets controllable image generation that enables comprehensive transformations
— including background replacement, subject pose/state alteration, and holistic content regenera-
tion. FramePainter [59] injects interactive editing signals extracted by the control encoder into the
generation process via cross-attention mechanisms and synthesizes a two-frame video where the
first frame reconstruct the condition image and the second one produces the edited output. Object-
Mover [55] addresses the object relocation task by fine-tuning a video generative model through
frame-wise concatenation of condition images with various control signals. Rotstein et al. [39]]
proposes a direct I2V approach for image editing, where condition images and Vision Language
Model (VLM)-processed prompts are jointly fed into the model, with edited results obtained through
a specialized frame selection strategy. While Lin et al. [27] and Chen et al. [7]] similarly employ
video models for controllable image generation or editing tasks, primarily motivated by their ability



Condition Image Target Image

Mixup-based Transition @ : Trainable

R

7 =7 \1/7 ¥ 3% . Frozen C;: Condition Image

-0l - o)
 — ¥ ' B=a?(3-20) Target  Condition | /7: Target Image
Prompt Prompt

Faco  Facpp Facgpp Facgis  Facspo’ WFacsse? WFasot oot Wroooi M ol Tl “Achairin  “Achar | P Target Image Prompt
- gaZi,,n MZ)Z;Z/;J Cp: Condition Image Prompt
oo W e W o W o W e W e ¥ !
’ #3D VAE ] ) Masked Unmasked
[ 3D VAE Encoder ]mm d{ EncaS ] f MLLM o

C T Tp Cp

g T Query™, e
ooOoO G« 00006, 00o00o 00000 v =as

DE000- i SSSNS) SO oomn eeme | ol A

+ Frame-Skip PE + Frame-Skip PE + Frame-Skip PE + Frame-Skip PE
7 Attention
[? Video Diffusion Transformer Blocks J ‘ Mask
e ODODD SSNNN! NSNNWN o
s Veight .
Rewl;igllting o] CIID

simiarity to target 2

Figure 2: The training framework of DRA-Ctrl. We propose a mixup-based transition strategy to
construction shot transition videos to adapt the video model for abrupt image changes, with FSPE
strategically reducing transitional frames. The loss function is adaptively reweighted according to the
proportion of target image in the token sequence. Besides, to align text prompts with image-level
control, we design an attention masking mechanism.

to perform full attention in the temporal dimension, our work further introduces strategies like mixup
to better exploit the rich priors inherent in video models.

3 Method

Given that video generative models’ inherent temporal full-attention and rich dynamics priors, we
argue they can be efficiently re-purposed for controllable image generation tasks. To successfully
adapt smooth-transition-capable video generative models for handling abrupt and discontinuous
image transitions, we propose multiple strategies, as shown in Figure[2] Specifically, in Section 3.1}
we introduce our foundational model, HunyuanVideo-I2V, detailing its architecture and objective
function; in Section [3.2] we present our mixup-based shot transition strategy that construct a shot
transition video with condition and target images; in Section[3.3] we propose a new position embed-
ding method that reduces the required number of transition frames; in Section[3.4] we describe an
attention masking strategy to properly guide information interaction.

3.1 Preliminaries

Our method builds upon HunyuanVideo-I12V [20]], which consists of three key components: (1) a
causal 3DVAE that compresses videos in both spatial and temporal dimensions, (2) a text encoder built
upon a Multimodal Large Language Model (MLLM), which processes not only textual information
but also partial conditioning image features, (3) a transformer employing a unified full-attention
mechanism to jointly process image and text signals.

The 3DVAE maps a video sequence x € R(47T+1)x3x16Hx16W jnto 5 compact latent representation
y € RIHTDXI6x2HX2W “which is subsequently patchified and unfolded to yield visual tokens
Zyisual Of length (T + 1) x H x W. Meanwhile, the textual tokens Z:cytuq; are obtained by
processing target prompt 7p and condition image C; through the MLLM. Then a concatenated
SeqUeNnce z = [Zy;suals Ztextuai] 18 fed into the transformer, where a unified full-attention mechanism
is applied to effectively fuse information across both modalities. To enhance the model’s ability to
capture positional relationships, 3D Rotary Position Embedding (RoPE) [41] is introduced in each
transformer block. To achieve 12V generation, HunyuanVideo-12V employs a token replacement
technique, where the visual tokens of the first frame are replaced with the condition image tokens. In
addition, CLIP-Large [37] text features and the diffusion timestep ¢ are adopted as global guidance
signals and incorporated into the transformer. The objective function follows flow matching [28]]:

L= |lvg(yt,t,Cr,Tp) — (e — y)|I%, (1

where e denotes Gaussian noise, y; = (1 — ¢)y + te, and v and 6 stand for the neural network and its
corresponding parameters respectively.
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Figure 3: The inference process of T2V/I2V models and their finetuned subject-driven image
generation models. By treating the condition and target images directly as a two-frame video and
fine-tuning T2V/I2V models accordingly, the corresponding T2V/I2V baselines can be obtained.

3.2 Mixup-based Shot Transition

The simplest approach for controllable image generation using video generative models is to treat
condition and target images as a two-frame video. During training, the condition image remains
noiseless and excluded from loss calculation, while the target image is noise-corrupted and included
in loss calculation. During inference, the condition image maintains noiseless to provide complete
control signals. Empirical tests with HunyuanVideo-T2V/I2V on subject-driven generation task, as
shown in Figure[3]and Table 3] demonstrate that neither model meets the requirements for subject-
driven generation: the T2V model lacks subject consistency, while the 12V model over-preserves
similarity to the condition image and exhibits poor prompt adherence. The observed results are
expected because T2V model does not enforce consistency as strictly as I2V model, while the 12V
model’s strong inter-frame consistency preservation limits prompts’ controllability.

To address these limitations, we draw inspiration from cinematic shot transitions by treating condition
and target images as storyboard endpoints. Then, we fine-tune the 12V model to generate transition
frames and target image according to condition image. This approach maintains consistency and
enhances controllability through smooth visual transitions. Specifically, we observe that certain 12V
models [20} [45]] can naturally produce fade-in-fade-out transitions similar to those in PowerPoint
presentations. Therefore, we propose constructing transition frames F,, with condition image F,,—
and target image F,—; by interpolation, F,, = ((1 — 8) Fl_, + BEI_), B = a2 (3 - 2a),
where « € [0, 1] and + is set to 2.2 ensure smooth inter-frame transitions. During training, we keep
the condition image F,,—( noise-free and exclude it from loss calculation, while applying noise and
including Fjy<,<1 in the loss calculation. The contribution weight of each latent frame in the loss is
determined by its proportional content from the target image, yielding the final loss function:

K
1
+1Zw ||'U9 Ytat Cfvc’PvTP) ( _y)H27
k=0
(1 —1t)- Encode(Fo<a<1, k) +te, ifk=0,1,...,K —1, ©
(1 —t) Encode(Fp=1,—-1) +te, ifk=K, )
1o Ak 41 \” ki)’
- 3_9 0
42:: <4K+1> ( 4K+1> ’

where Encode(-, k) is the encoder of the 3DVAE, which maps 47 + 1 frames in pixel space to 7'+ 1
latent representations and returns the (k+2)-th latent representation, C'p is the prompt of the condition
image. We encode the target image separately to ensure the independence of the corresponding latent
representation during inference. During inference, the condition image’s latent representation is
concatenated with K + 1 Gaussian noise in latent space and perform progressive denoising while
keeping the condition image’s latent representation unchanged throughout the process, ultimately
decoding the last frame of the denoised latent representations through the decoder Decode(-) of the

3DVAE to obtain the final generated result F,—; = Decode(y™).



3.3 Frame Skip Position Embedding

Achieving smooth shot transition often requires dozens or even hundreds of frames. Since we only
aim to obtain the final frame, inserting so many transition frames between condition and target
images would severely degrade the efficiency of both training and inference. In HunyuanVideo,
the model incorporates both temporal and spatial information (n, 4, j) into tokens through RoPE,
where n = 0,1, --- , T represents the latent frame index of the tokens in temporal dimension and
1=0,1,--- ,H—1andj =0,1,--- ,WW — 1 denote the height and width coordinates of the tokens
in spatial dimensions, respectively. To achieve long-term effects with minimal latent frames, we
enhance RoPE by incorporating skip intervals along the temporal dimension, called Frame Skip
Position Embedding (FSPE), (n/,,j’) = (n X §,1, j), where § represents the skip interval. This
approach constructs a long-term sparse representation of latent frames using minimal latent frames,
significantly reducing computational overhead.

3.4 Attention Masking Strategy

Due to the absence of textual descriptions for shot transition videos, we jointly input the prompts from
both condition and target image into the network on subject-driven generation task. This approach
enables the model to acquire all textual information corresponding to the shot-transition videos.
However, in this way, there are four distinct token sequences during full-attention computation,
i.e., condition image tokens C7, generated frame tokens 77, target image prompt tokens 7'p, and
condition image prompt tokens C'p. To prevent unintended information blending across these token
sequences, we design an attention masking strategy as illustrated in Figure [2] Specifically, our
designed attention mask assigns a extremely negative value to similarity scores between incompatible
token sequences (e.g., condition image tokens and target image prompt tokens) to effectively block
unintended interactions while maintaining necessary information flows,

A = {700 if(pg) € (Cr xTr) U(Tr x Cp) U(Tp x Cr) U (Tp x Cp) U (Cp x T1),
pa 0, otherwise.

3
Furthermore, during inference, we enhance the differentiation between Tp and Cp influences by
augmenting the attention mask region corresponding to (77 x Tp) with an offset of w times its
absolute mean value, where we set w = 0.6.

4 Experiments

4.1 Experimental Setup

Tasks. We extensively evaluate the effectiveness of our method across multiple tasks, including
spatially-aligned generation, subject-driven generation and style tranferring. For spatially-aligned
image generation, we specifically design five distinct sub-tasks: canny-to-image generation, depth-to-
image generation, image colorization, image deblurring and image in/out-painting.

Training. For spatially-aligned image generation, we adopt a subset of the Text-to-Image-2M
dataset [64]] for training, consisting of around 160K samples, where the condition images are extracted
from the corresponding ground-truth images. The models are trained with a batch size of 8 and
gradient accumulation over 2 steps, resulting in an effective batch size of 16. We employ the AdamW
optimizer and conduct training on 2 NVIDIA H800 GPUs (80GB memory each). For subject-driven
image generation, we utilize the high-quality subset of the Subjects200K dataset [43]], comprising
approximately 110K image pairs for training. This model is trained using 4 NVIDIA H800 GPUs.

Benchmarks. For spatially-aligned generation, we employ the COCO2017 validation dataset [26]
comprising 5,000 images resized to 512x512 resolution as the test set, where the corresponding
prompts are randomly selected from multiple candidate captions associated with each image. For
subject-driven generation, we evaluate our method on DreamBench [40] by generating images for 25
text prompts per subject, using one reference image for each of the 30 subjects in the benchmark.

Metrics. For spatially-aligned generation, we evaluate methods in terms of controllability and
generation quality. Controllability is assessed by the similarity of the extracted condition images
from generated and ground-truth image. Specifically, we employ the F1 score for canny-to-image



Table 1: Quantitative results on COCO2017 validation set. The best results are in bold.

ope Controllability General Quality
Condition = Model Method F11/MSE| FID, SSIM{
ControlNet [58] 0.34 18.74 0.35
SD1.5 [38] T2I-Adapter [31]] 0.22 20.06 0.35
Uni-ControlNet [62] 0.20 17.38 -
Canny ControlNet 0.21 98.68  0.25
FLUX.1 [23] OminiControl [43] 0.38 20.63 0.40
EasyControl [61]] 0.31 16.07 -
HunyuanVideo-12V [20] DRA-Ctrl 0.42 19.44 0.38
ControlNet 923 23.02 0.34
SD1.5 T2I-Adapter 1560 24.72 0.27
Uni-ControlNet 1685 21.79 -
Depth ControlNet 2958 6220 026
FLUX.1 OminiControl 903 27.26 0.39
EasyControl 1092 20.39 -
HunyuanVideo-12V DRA-Ctrl 76 20.83 0.33
ControlNet 572 30.38 0.74
Deblur FLUX.1 OminiControl 132 1149 087
HunyuanVideo-12V DRA-Ctrl 11 9.08 0.64
ControlNet 351 16.27 0.64
Colorization T-UX1 OminiControl 24 1023 073
HunyuanVideo-12V DRA-Ctrl 30 8.39 0.85
SD1.5 ControlNet 7588 13.14 0.40
Mask FLUX.1 OminiControl 6248 15.66  0.48
HunyuanVideo-12V DRA-Ctrl 16 9.87 0.59

task and use Mean Squared Error (MSE) for other tasks. Generation quality is quantified using
Fréchet Inception Distance (FID) [13] and Structural Similarity Index Measure (SSIM) [48]] between
generated and ground-truth images. For subject-driven generation, we evaluate methods by standard
automatic metrics and a Vison-Language (VL) Model. We measure subject consistency by DINO and
CLIP-I scores, which compute the cosine similarity between the condition image and the generated
image in DINO [3]] and CLIP [37] embedding spaces. Prompt adherence is quantified by the cosine
similarity between the CLIP embeddings of the prompt and the generated image, referred to as
CLIP-T score. However, these metrics have inherent limitations: DINO and CLIP-I measure global
image similarity rather than directly evaluating subject consistency, while CLIP-T struggles with fine-
grained semantic alignment and other challenges [37]]. To address this, we propose VL score, a novel
metric based on QWen2.5-VL [1]], which evaluates generated images for subject consistency and
prompt adherence via tailored prompts. The VL model outputs discrete scores (0-4) per dimension,
with the final score computed as their average.

4.2 Spatially-aligned Image Generation Results

To validate DRA-Ctrl’s effectiveness for spatially-aligned generation tasks, we conduct compre-
hensive comparisons with multiple competitive approaches. As shown in Figure fb] our method
demonstrates superior performance in several aspects: compared to OminiControl, our approach
generates more realistic traffic light images for canny-to-image; produces images with more vivid
details for depth-to-image; achieves richer color variations in the blue-boxed regions for colorization;
better preserves original image details in red-boxed areas for deblurring; and creates more authentic
results for inpainting. These qualitative comparisons consistently highlight our method’s advantages
in maintaining spatial alignment while generating high-quality images across diverse generation
scenarios. Quantitative results presented in Table [I] further demonstrate the superiority of DRA-Ctrl.
DRA-Ctrl achieves significant advantages in controllability, attaining the best results across all tasks
except colorization, while maintaining highly competitive performance in general quality.
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4.3 Subject-driven Image Generation Results

To validate the effectiveness of DRA-Ctrl for subject-driven generation, we conduct comprehensive
comparisons with multiple state-of-the-art approaches. Qualitative results are presented in Figure ffa]
where our method demonstrates superior subject consistency. As shown in the third row, our approach
generates a dog that even preserves details like the neck tag, while competing methods exhibit
inconsistent breeds or fail to generate the subject altogether. The quantitative results are presented in
Table[2] where we compare various tuning-based and tuning-free approaches. Under all comparison
methods, our approach achieves the highest VL Score (2.56), DINO (0.722), and CLIP-I (0.825),
along with a competitive CLIP-T score of 0.302.

4.4 Style Transfer

We employ GPT-40 to generate 100 original-to-Bitmoji-style image pairs, which are subsequently
used to fine-tune our subject-driven model for achieving style transfer effects. The results are demon-
strated in Figure[5] where our model successfully captures the distinctive aesthetic characteristics of
Bitmoji-style animation while preserving the original content’s structural integrity.

4.5 Ablation Studies

To validate the effectiveness of our proposed strategies, we conduct comprehensive ablation studies
on our method from multiple perspectives, including comparisons with T2V/I2V baselines, analysis
of different shot transition types, ablation on the number of transition frames, and module ablation.



Table 3: Comparison with baselines. Table 6: Ablation on modules in DRA-Ctrl.

VL1 DINOt CLIP-I1 CLIP-T1 VL1 DINOT CLIP-IT CLIP-T1
Oracle - 0774 0.885 - Oracle - 0774 0.885 -
T2V baseline 2.01 0.658 0.787  0.306 w/o loss reweighting 2.32 0.744  0.839 0.292
12V baseline 2.34 0.803 0.874  0.291 w/o FSPE 228 0.777  0.853 0.287
DRA-Ctrl 2.44 0.715 0.821  0.298 w/o mixup strategy ~ 2.38 0.900  0.918 0.271
w/o attention masking 2.41 0.777  0.856 0.292
Table 4: Ablation on transition types. full version 242 0742 0834  0.295

VLt DINO{ CLIP-It CLIP-T}
slideaway ~ 2.19 0.708 0.822  0.292

fade in fade out 2.42 0.742  0.834  0.295 Table 7: Generation efficiency analysis.
latent .
Table 5: Ablation on frame numbers. frames ¥ T PINOT CLIP-IT CLIP-TT Time/s|
number of Oracle — — 0.774 0.885 — —
transition frames VLT DINOT CLIP-It CLIP-TT v
4 219 0692 0820 0292 baseline 2 234 0.803 0874 0291 108
8 242 0742 0834 0295 DRA-Ctrl 4 244 0715 0821 0298 240
12 209 0.715 0826 0283 I2V 37 1.09 0.698 0810 0257 251

Comparison between T2V/I2V baselines. Quantitative results[3Jon DreamBench align with Figure[3]
and Section[3.2] The T2V baseline, whose base model is unable to accept images as control signals,
achieves a high CLIP-T score but suffers from low DINO and CLIP-I scores. The I2V baseline
produces condition image-like outputs, with the DINO score even surpassing the result measured on
real images, but suffers from low prompt adherence. Under identical experimental configurations,
DRA-Ctrl achieves a balanced performance, with DINO, CLIP-I and CLIP-T positioned between
the two baselines and the highest VL Score, exhibiting superior performance.

Different mixup-based shot transition types. In addition to the fade-in-fade-out approach for
constructing transition frames, we also experimented with slide-away transitions, with examples
illustrated in Figure[§] Quantitative results in Table ] demonstrate that the fade-in-fade-out mixup
strategy outperforms slide-away across all three metrics. This observation aligns with our findings
that video models tend to exhibit stronger priors for fade-in-fade-out shot transitions, while showing
weaker priors for more complex transition types.

Number of transition frames. We investigate the impact of varying numbers of transition frames on
experimental results, as shown in Table E} Both insufficient and excessive transition frames harm
performance. This phenomenon may stem from two factors: too few frames create excessively large
inter-frame variations that increase learning difficulty, while too many frames introduce unnecessary
computational overhead and slower convergence under the same training budget.

Module ablation. We conduct ablation studies on our proposed modules, including loss reweighting,
FSPE, mixup strategy, and attention masking, with experimental results summarized in Table[6} Since
our method employs an 12V model as the base architecture, all proposed modules aim to address its
inherent limitations of excessive similarity to the condition image and poor prompt adherence. The
results demonstrate that FSPE, mixup strategy, and attention masking significantly mitigate these
issues, while loss reweighting primarily accelerates model convergence.

4.6 Generation Effiency Analysis

To analyze DRA-Ctrl’s generation efficiency, we compare against the 12V baseline and the 12V model
on DreamBench, assessing generation quality and efficiency. The 12V model generates videos from
prompts and condition images, using the final frames as outputs. With 6 = 12 in FSPE (corresponding
to 48 pixel-space frames), we set the 12V model to produce 145-frame videos. Table [7]results show
our method achieves 90.4% faster generation than the 12V model with the highest VL score.



5 Conclusion

Leveraging the rich high-dimensional information priors inherent in video models, we propose to
repurpose them for low-dimensional controllable image generation, demonstrating advantages akin
to a “Dimensionality-Reduction Attack” effect compared to conventional image generation models.
Specifically, to bridge the gap between video models’ native capability for modeling continuous
smooth transitions and the requirement for discrete abrupt changes in controllable image generation,
we introduce a novel mixup-based transition strategy that constructs smooth transition between
condition image and target image. Moreover, we redesign the attention masking mechanism that
precisely aligns text prompts with image-level control signals. Our work establishes a new paradigm
for activating high-dimensional video models to solve low-dimensional image generation tasks, while
paves the way for future development of unified generative models across visual modalities.

Limitations. Our method employs a video model not optimized for image generation, resulting in
slightly inferior performance on image quality metrics (FID, SSIM) compared to image-specific
approaches. Besides, since HunyuanVideo-I2V primarily uses LLaVA [8] for prompt understanding,
our CLIP-T scores are marginally lower than competing methods. Additionally, the requirement for
transitional frames leads to reduced generation efficiency.

References

[1] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang,
Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo
Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v] technical report, 2025. URL https://arxiv.org/
abs/2502.13923|

[2] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor,
Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. OpenAl Blog, 1:8, 2024.

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers, 2021. URL https://arxiv.org/
abs/2104.14294,

[4] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu,
Chao Xu, and Wen Gao. Pre-trained image processing transformer, 2021. URL https://arxiv.org/
abs/2012.00364.

[5] Wenhu Chen, Hexiang Hu, Chitwan Saharia, and William W. Cohen. Re-imagen: Retrieval-augmented
text-to-image generator, 2022. URL https://arxiv.org/abs/2209.14491,

[6] Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao, and Hengshuang Zhao. Anydoor: Zero-shot
object-level image customization. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6593-6602, 2024.

[7]1 Xi Chen, Zhifei Zhang, He Zhang, Yuqian Zhou, Soo Ye Kim, Qing Liu, Yijun Li, Jianming Zhang,
Nanxuan Zhao, Yilin Wang, Hui Ding, Zhe Lin, and Hengshuang Zhao. Unireal: Universal image
generation and editing via learning real-world dynamics, 2024. URL https://arxiv.org/abs/2412,
07774l

[8] XTuner Contributors. Xtuner: A toolkit for efficiently fine-tuning llm. https://github. com/InternLM/
xtuner, 2023.

[9] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Miiller, Harry Saini, Yam Levi,
Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution
image synthesis. In Forty-first international conference on machine learning, 2024.

[10] Yutong Feng, Biao Gong, Di Chen, Yujun Shen, Yu Liu, and Jingren Zhou. Ranni: Taming text-to-image
diffusion for accurate instruction following. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4744-4753, 2024.

[11] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel

Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual inversion,
2022. URL https://arxiv.org/abs/2208.01618,

10


https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2012.00364
https://arxiv.org/abs/2012.00364
https://arxiv.org/abs/2209.14491
https://arxiv.org/abs/2412.07774
https://arxiv.org/abs/2412.07774
https://github.com/InternLM/xtuner
https://github.com/InternLM/xtuner
https://arxiv.org/abs/2208.01618

[12]

(13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]
[24]

[25]

[26]

(27]

(28]

[29]

(30]

Zhen Han, Zeyinzi Jiang, Yulin Pan, Jingfeng Zhang, Chaojie Mao, Chenwei Xie, Yu Liu, and Jingren
Zhou. Ace: All-round creator and editor following instructions via diffusion transformer, 2024. URL
https://arxiv.org/abs/2410.00086.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium, 2018. URL https://arxiv,
org/abs/1706.08500.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https://arxiv.org/
abs/2106.09685.

Li Hu, Xin Gao, Peng Zhang, Ke Sun, Bang Zhang, and Liefeng Bo. Animate anyone: Consistent and
controllable image-to-video synthesis for character animation, 2024. URL https://arxiv.org/abs/
2311.17117.

Miao Hua, Jiawei Liu, Fei Ding, Wei Liu, Jie Wu, and Qian He. Dreamtuner: Single image is enough for
subject-driven generation, 2023. URL https://arxiv.org/abs/2312.13691,

Lianghua Huang, Wei Wang, Zhi-Fan Wu, Yupeng Shi, Huanzhang Dou, Chen Liang, Yutong Feng, Yu Liu,
and Jingren Zhou. In-context lora for diffusion transformers, 2024. URL https://arxiv.org/abs/
2410.23775!

Linyan Huang, Haonan Lin, Yanning Zhou, and Kaiwen Xiao. Flexip: Dynamic control of preservation
and personality for customized image generation, 2025. URL https://arxiv.org/abs/2504.07405,

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image translation with conditional
adversarial networks, 2018. URL https://arxiv.org/abs/1611.07004|

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu,
Jianwei Zhang, Kathrina Wu, Qin Lin, Junkun Yuan, Yanxin Long, Aladdin Wang, Andong Wang, Changlin
Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song, Jiawang Bai, Jianbing Wu, Jinbao
Xue, Joey Wang, Kai Wang, Mengyang Liu, Pengyu Li, Shuai Li, Weiyan Wang, Wenging Yu, Xinchi Deng,
Yang Li, Yi Chen, Yutao Cui, Yuanbo Peng, Zhentao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan
Xu, Yangyu Tao, Qinglin Lu, Songtao Liu, Dax Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu,
Jie Jiang, and Caesar Zhong. Hunyuanvideo: A systematic framework for large video generative models,
2025. URL https://arxiv.org/abs/2412.03603|

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
customization of text-to-image diffusion, 2023. URL https://arxiv.org/abs/2212.04488|

Nupur Kumari, Xi Yin, Jun-Yan Zhu, Ishan Misra, and Samaneh Azadi. Generating multi-image synthetic
data for text-to-image customization, 2025. URL https://arxiv.org/abs/2502.01720.

Black Forest Labs. Flux. https://github.com/black-forest-1labs/flux, 2024.

Dongxu Li, Junnan Li, and Steven C. H. Hoi. Blip-diffusion: Pre-trained subject representation for
controllable text-to-image generation and editing, 2023. URL https://arxiv.org/abs/2305.14720.

Zhong-Yu Li, Ruoyi Du, Juncheng Yan, Le Zhuo, Zhen Li, Peng Gao, Zhanyu Ma, and Ming-Ming
Cheng. Visualcloze: A universal image generation framework via visual in-context learning, 2025. URL
https://arxiv.org/abs/2504.07960.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollar. Microsoft coco: Common objects in
context, 2015. URL https://arxiv.org/abs/1405.0312.

Yijing Lin, Mengqi Huang, Shuhan Zhuang, and Zhendong Mao. Realgeneral: Unifying visual generation
via temporal in-context learning with video models, 2025. URL https://arxiv.org/abs/2503.10406.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for
generative modeling, 2023. URL https://arxiv.org/abs/2210.02747.

Chaojie Mao, Jingfeng Zhang, Yulin Pan, Zeyinzi Jiang, Zhen Han, Yu Liu, and Jingren Zhou. Ace++:
Instruction-based image creation and editing via context-aware content filling, 2025. URL https:
//arxiv.org/abs/2501.02487.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations, 2022. URL https:
//arxiv.org/abs/2108.01073,

11


https://arxiv.org/abs/2410.00086
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2311.17117
https://arxiv.org/abs/2311.17117
https://arxiv.org/abs/2312.13691
https://arxiv.org/abs/2410.23775
https://arxiv.org/abs/2410.23775
https://arxiv.org/abs/2504.07405
https://arxiv.org/abs/1611.07004
https://arxiv.org/abs/2412.03603
https://arxiv.org/abs/2212.04488
https://arxiv.org/abs/2502.01720
https://github.com/black-forest-labs/flux
https://arxiv.org/abs/2305.14720
https://arxiv.org/abs/2504.07960
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2503.10406
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2501.02487
https://arxiv.org/abs/2501.02487
https://arxiv.org/abs/2108.01073
https://arxiv.org/abs/2108.01073

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, and Xiaohu
Qie. T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion models,
2023. URL https://arxiv.org/abs/2302.08453,

Xichen Pan, Li Dong, Shaohan Huang, Zhiliang Peng, Wenhu Chen, and Furu Wei. Kosmos-g: Generating
images in context with multimodal large language models, 2024. URL https://arxiv.org/abs/2310,
02992,

William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL https:
//arxiv.org/abs/2212.09748.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe Penna,
and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image synthesis. arXiv
preprint arXiv:2307.01952, 2023.

Senthil Purushwalkam, Akash Gokul, Shafiq Joty, and Nikhil Naik. Bootpig: Bootstrapping zero-shot
personalized image generation capabilities in pretrained diffusion models, 2024. URL https://arxiv,
org/abs/2401.13974,

Can Qin, Shu Zhang, Ning Yu, Yihao Feng, Xinyi Yang, Yingbo Zhou, Huan Wang, Juan Carlos Niebles,
Caiming Xiong, Silvio Savarese, Stefano Ermon, Yun Fu, and Ran Xu. Unicontrol: A unified diffusion
model for controllable visual generation in the wild, 2023. URL https://arxiv.org/abs/2305.11147,

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision, 2021. URL https://arxiv.org/abs/
2103.00020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models, 2022. URL https://arxiv.org/abs/2112.10752,

Noam Rotstein, Gal Yona, Daniel Silver, Roy Velich, David Bensaid, and Ron Kimmel. Pathways on
the image manifold: Image editing via video generation, 2025. URL https://arxiv.org/abs/2411,
16819,

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation, 2023. URL
https://arxiv.org/abs/2208.12242,

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104.09864.

Ke Sun, Jian Cao, Qi Wang, Linrui Tian, Xindi Zhang, Lian Zhuo, Bang Zhang, Liefeng Bo, Wenbo Zhou,
Weiming Zhang, et al. Outfitanyone: Ultra-high quality virtual try-on for any clothing and any person.
arXiv preprint arXiv:2407.16224, 2024.

Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang. Ominicontrol: Minimal
and universal control for diffusion transformer, 2025. URL https://arxiv.org/abs/2411.15098,

Linrui Tian, Qi Wang, Bang Zhang, and Liefeng Bo. Emo: Emote portrait alive generating expressive
portrait videos with audio2video diffusion model under weak conditions. In European Conference on
Computer Vision, pages 244-260. Springer, 2024.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming
Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan
Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pandeng Li,
Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing Wang, Tianyi Gui,
Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou, Wente Wang, Wenting Shen,
Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming
Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong,
Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced
large-scale video generative models, 2025. URL https://arxiv.org/abs/2503.20314,

Xierui Wang, Siming Fu, Qihan Huang, Wanggui He, and Hao Jiang. Ms-diffusion: Multi-subject zero-shot
image personalization with layout guidance, 2025. URL https://arxiv.org/abs/2406.07209.

Xinlong Wang, Wen Wang, Yue Cao, Chunhua Shen, and Tiejun Huang. Images speak in images: A
generalist painter for in-context visual learning, 2023. URL https://arxiv.org/abs/2212.02499.

12


https://arxiv.org/abs/2302.08453
https://arxiv.org/abs/2310.02992
https://arxiv.org/abs/2310.02992
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2401.13974
https://arxiv.org/abs/2401.13974
https://arxiv.org/abs/2305.11147
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2411.16819
https://arxiv.org/abs/2411.16819
https://arxiv.org/abs/2208.12242
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2411.15098
https://arxiv.org/abs/2503.20314
https://arxiv.org/abs/2406.07209
https://arxiv.org/abs/2212.02499

(48]

[49]

(50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

(591

[60]

[61]

[62]

[63]

[64]

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. /EEE Transactions on Image Processing, 13(4):600-612, 2004. doi:
10.1109/T1P.2003.819861.

Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, and Wangmeng Zuo. Elite: Encoding
visual concepts into textual embeddings for customized text-to-image generation, 2023. URL https!
//arxiv.org/abs/2302.13848.

Shaojin Wu, Mengqi Huang, Wenxu Wu, Yufeng Cheng, Fei Ding, and Qian He. Less-to-more generaliza-
tion: Unlocking more controllability by in-context generation, 2025. URL https://arxiv.org/abs/
2504.02160.

Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li, Shuting
Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation, 2024. URL https://arxiv,
org/abs/2409.11340,

Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything:
Unleashing the power of large-scale unlabeled data, 2024.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi
Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan Zhang, Weihan Wang, Yean Cheng, Bin Xu, Xiaotao
Gu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion models with an expert transformer,
2025. URL https://arxiv.org/abs/2408.06072.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt adapter
for text-to-image diffusion models, 2023. URL https://arxiv.org/abs/2308.06721,

Xin Yu, Tianyu Wang, Soo Ye Kim, Paul Guerrero, Xi Chen, Qing Liu, Zhe Lin, and Xiaojuan Qi.
Objectmover: Generative object movement with video prior, 2025. URL https://arxiv.org/abs/
2503.08037.

Yu Zeng, Vishal M. Patel, Haochen Wang, Xun Huang, Ting-Chun Wang, Ming-Yu Liu, and Yogesh Balaji.
Jedi: Joint-image diffusion models for finetuning-free personalized text-to-image generation, 2024. URL
https://arxiv.org/abs/2407.06187.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. arXiv preprint arXiv:1710.09412, 2017.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
models, 2023. URL https://arxiv.org/abs/2302.05543,

Yabo Zhang, Xinpeng Zhou, Yihan Zeng, Hang Xu, Hui Li, and Wangmeng Zuo. Framepainter: Endowing
interactive image editing with video diffusion priors, 2025. URL https://arxiv.org/abs/2501,
08225,

Yuxuan Zhang, Yiren Song, Jiaming Liu, Rui Wang, Jinpeng Yu, Hao Tang, Huaxia Li, Xu Tang, Yao Hu,
Han Pan, and Zhongliang Jing. Ssr-encoder: Encoding selective subject representation for subject-driven
generation, 2024. URL https://arxiv.org/abs/2312.16272,

Yuxuan Zhang, Yirui Yuan, Yiren Song, Haofan Wang, and Jiaming Liu. Easycontrol: Adding efficient
and flexible control for diffusion transformer, 2025. URL https://arxiv.org/abs/2503.07027,

Shihao Zhao, Dongdong Chen, Yen-Chun Chen, Jianmin Bao, Shaozhe Hao, Lu Yuan, and Kwan-
Yee K. Wong. Uni-controlnet: All-in-one control to text-to-image diffusion models, 2023. URL https:
//arxiv.org/abs/2305.16322,

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks, 2020. URL https://arxiv.org/abs/1703.10593|

zk.  text-to-image-2m (revision e64fcad4), 2024. URL https://huggingface.co/datasets/
jackyhate/text-to-image-2M.

13


https://arxiv.org/abs/2302.13848
https://arxiv.org/abs/2302.13848
https://arxiv.org/abs/2504.02160
https://arxiv.org/abs/2504.02160
https://arxiv.org/abs/2409.11340
https://arxiv.org/abs/2409.11340
https://arxiv.org/abs/2408.06072
https://arxiv.org/abs/2308.06721
https://arxiv.org/abs/2503.08037
https://arxiv.org/abs/2503.08037
https://arxiv.org/abs/2407.06187
https://arxiv.org/abs/2302.05543
https://arxiv.org/abs/2501.08225
https://arxiv.org/abs/2501.08225
https://arxiv.org/abs/2312.16272
https://arxiv.org/abs/2503.07027
https://arxiv.org/abs/2305.16322
https://arxiv.org/abs/2305.16322
https://arxiv.org/abs/1703.10593
https://huggingface.co/datasets/jackyhate/text-to-image-2M
https://huggingface.co/datasets/jackyhate/text-to-image-2M

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction (Section[I)), our main claims reflect the paper’s
contribution and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

14



Justification: This paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Our experimental details are provided in Section [4]
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide open access to data and code.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide experimental details in Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: All comparison experiments are conducted under the same experimental
settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Related experimental details are provided in Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our research fully complies with the NeurIPS Code of Ethics in all respects.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss societal impacts of the work in the Appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We describe the safeguards in the Appendix.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in the paper are properly credited in compliance with academic
standards

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have released our assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use a Vision-Language model for evaluation, and details are provided in
Section dl

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20


https://neurips.cc/Conferences/2025/LLM

A More Experimental Details

In this section, we provide additional experimental details, including the configurations of LoRA and
other hyperparameters. For different tasks, we employ distinct settings: Section [A.T]describes the
spatially-aligned image generation tasks, Section[A.2]covers the subject-driven image generation
task, and Section[A.3|presents the experimental details for style transfer.

DRA-Ctrl employs LoRA [14] to fine-tune the base model with a rank of 16. Since our method needs
to simultaneously process noiseless condition image token sequences and noisy generated image
token sequences, we set the LoRA scale to 0 when handling the generated image token sequences
to distinguish between them. Additionally, we set § to 12 in the Frame Skip Position Embedding
(FSPE). This configuration enables 4 frames in the latent space to effectively emulate 37 frames,
corresponding to 1 4+ 36 x 4 = 145 frames in pixel space — approximately equivalent to a 5-second
short video at 30 frames per second (fps), which sufficiently achieves the shot transition effect.

A.1 Spatially-aligned Image Generation

Attention
Mask C] Masked

Unmasked

T

Figure 7: Attention masking strategy in spatially-aligned tasks.

In spatially-aligned image generation tasks, the condition image is directly extracted from the
ground-truth image without a corresponding prompt. Therefore, we do not employ the condition
image prompt C'p in our experiments, but we still utilize the attention masking strategy, with the
corresponding attention mask illustrated in Figure[/} Besides, we train the model for 6,000 steps.
In depth-to-image and depth prediction tasks, the depth image is extracted from the ground-truth
image using Depth Anything [52]. For the depth prediction task, we prepend “[depth] ” to the prompt
to guide the model to generate depth maps rather than regular images. In the deblurring task, we
apply Gaussian blur to the images with a randomly selected integer blur radius between 1 and 10
during training. For the in/out-painting task, we randomly select a rectangular region in the image
during training, then mask either the selected region (with 0.5 probability) or the area outside it (with
0.5 probability) to create the condition image. In the super-resolution task, the condition image is
obtained by downsampling the original image by a factor of 4.

A.2 Subject-driven Image Generation

For the subject-driven image generation task, we train the model for 9,000 steps. During inference,
while employing attention masking, the simultaneous presence of both target image prompts 7’p and
condition image prompts C'p may still cause information blending. To address this, we strengthen
the interaction between target image tokens 77 and Tp while suppressing C'p’s influence on the
generated output. Specifically, within the (77 x T'p) attention mask region, we augment the attention
weights by adding 0.6 x p (where p denotes the mean absolute value of the original weights). The
modified attention computation for this region is formulated as:

)) Vz. “)

QzK}
Vd

QzK)
Vd

Attention(Z) = softmax ( + 0.6 x mean (‘

A.3 Style Transfer
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Figure 8: Bitmoji-style example images in our dataset.

[USER PROMPT] :
B EEHEBGD AN bitmoji XA%, ROTANA{LY:{F, BHEMRIERE.

Figure 9: The prompt format used for generating Bitmoji-style images with GPT-4o.

We collected 100 diverse images containing subjects such as humans, animals and buildings from
the web. Using carefully designed prompts, we guided ChatGPT-40 to generate corresponding
Bitmoji-style images, which formed our training set. The subject-driven image generation model is
fine-tuned for 2,600 steps with a batch size of 8 on an NVIDIA H800 GPU to obtain the final model.
Example images from our dataset are shown in Figure [§] and the prompt format we employed is
shown in Figure [0 where the image dimensions are determined by their original resolutions.

B More Details about the VL Score

Current evaluation metrics for subject-driven image generation primarily employ DINO and CLIP-I to
assess subject consistency, and CLIP-T for prompt adherence. However, two critical limitations exist:
first, there lacks a comprehensive metric to directly evaluate subject-driven generation quality; second,
these existing metrics exhibit notable shortcomings — both DINO and CLIP-I are significantly
influenced by background interference, while CLIP-T struggles with fine-grained semantic alignment.

To address these issues, we propose leveraging an advanced Vision-Language (VL) model, such
as QWen2.5-VL [1I], as an evaluator to produce a holistic metric. Our approach consists of three
steps: First, we provide the VL model with a prompt instructing it to score (prompt, reference image,
generated image) triplets based on multiple fine-grained criteria for both subject consistency and
prompt adherence. Next, we have the model summarize its task to confirm proper understanding.
Finally, we input each triplet and collect the model’s scores. Since both metrics are discrete scores
ranging from O to 4, we average them to derive a comprehensive metric termed the VL Score. An
example input-output demonstration of the VL model is shown in Figure[T0]

C More Visualization

This section presents additional qualitative experimental results across all tasks, including transition
frames generated by our model. The spatially-aligned image generation results are detailed in
Section[C.1] while the subject-driven image generation outcomes are presented in Section[C.2} and
the style transfer performance is analyzed in Section [C.3] Unless otherwise specified, all image
generation in this paper uses 50 sampling steps by default, including both qualitative results and
quantitative evaluations, and generated images maintain a consistent resolution of 512 x 512 pixels.
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[USER PROMPT] :

[Task Instruction] As a professional evaluator, your role is to assess the semantic consistency between a
— reference image and an generated image based on a given text prompt. Focus on two aspects:

1. Subject Consistency: Compare key visual attributes (Shape: main body outline, structure, and

< proportions. Color: saturation, hue, brightness, and distribution. Texture: realism, clarity, and

< aesthetic appeal. Facial: facial features, only apply when subject is a person or animal) between the
— reference and generated image.

2. Prompt Adherence: Verify if the generated image accurately reflects all elements described in the text
< prompt (Relevance: whether core elements in text are shown. Accuracy: objects, settings, actions, or
< characteristics Completeness: whether the generated image omits significant details. Context:

< portrayal of the appropriate environment, interactions, and background elements).

You need to provide your scores Subject Consistency and Prompt Adherence based on the following criteria.
[Subject Consistency Scoring Criteria] Very Poor (0): No resemblance. The generated image's subject has
< mno relation to the reference.

Poor (1): Minimal resemblance. The subject falls within the same broad category but differs

— significantly.

Fair (2): Moderate resemblance. The subject shows likeness to the reference with notable variances.

Good (3): Strong resemblance. The subject closely matches the reference with only minor discrepancies.
Excellent (4): Near-identical. The subject of the generated image is virtually indistinguishable from the
— reference.

[Prompt Adherence Scoring Criteria] Very Poor (0): No resemblance. The generated image's subject has no
<— relation to the reference.

Poor (1): Minimal resemblance. The subject falls within the same broad category but differs

<— significantly.

Fair (2): Moderate resemblance. The subject shows likeness to the reference with notable variances.

Good (3): Strong resemblance. The subject closely matches the reference with only minor discrepancies.
Excellent (4): Near-identical. The subject of the generated image is virtually indistinguishable from the
— reference.

[Input Format] Every time you will receive two images and a prompt, the first image is a reference image,
<— and the second image is the generated image, and the text is the prompt describing the generated

— image.

[Output Format] return the scores (0-4) in JSON format, strictly following this example:

— {\"subject_consistency\": 3, \"prompt_adherence\": 4}.

[VL MODEL OUTPUT]:
Sure, I understand the task. Please provide me with the reference image, the generated image, and the
< text prompt so that I can evaluate them according to the provided criteria.

[USER PROMPT] :
Did you understand the task above? Please summarize the tasks you need to do and show how you will
<— execute the detailed plan for the task.

[VL MODEL QUTPUT]:
Yes, I understood the task clearly. too long, omitted

[USER PROMPT] :
{the first image} {the second image} {prompt}

[VL MODEL OUTPUT] :
“" " json\n{"subject_consistency": 3, "prompt_adherence": 2}\n "

More. ..

Figure 10: An example of VL Score evaluation process.

C.1 Spatially-aligned Image Generation Results

Our method performs image-to-video generation conditioned on input images, where the state of these
condition images significantly impacts the output quality. We found that directly using canny edges,
depth maps with black representing maximum depth, or black masks in in/out-painting tasks often
resulted in unnaturally dark generated images. To address this, we implemented a color normalization
scheme that remaps the darkest values (0, 0, 0) to medium-gray (128, 128, 128) while linearly scaling
all other color values proportionally, preventing extreme darkening.
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C.1.1 Canny-to-image

Serene lotus with pink petals floats near a glowing candle on dark reflective water, surrounded by stones

Figure 11: More canny-to-image generation results.

C.1.2 Colorization

e e e e

Iridescent rainbow beetle with metallic sheen, spiky legs, and dark eyes against soft pink background, resembling a jewel

Vibrant orange-red ladybug with black spots and white speckles perched on dried seed pods, blurred green background

Figure 12: More colorization generation results.
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C.1.3 Deblurring

Feisty stylized duck with glaring eyes, sharp plumage, and vivid orange bill against solid neutral backdrop

Platinum blonde woman with striking blue-green eyes, neutral makeup, and white collar against soft gray background

Short black-haired woman holds red poppies near her face, green eyes, orange eyeshadow, dark clothes, solid green background

ETERRR)

Vibrant rainbow ball creates dramatic splash in clear water, bubbles swirling against crisp white background

Figure 13: More deblurring generation results.

C.1.4 Depth-to-image

Adorable fuzzy chick in soft pink stands on green clover patch under dappled forest sunlight

¥ V6 35 0

Vibrant pink lilies with curved petals and green-tipped stamens glow against a dreamy sunlit backdrop of amber and teal

Vintage yellow car with black stripes parked on cobblestone alley, chrome details gleaming under moody urban lighting

Figure 14: More depth-to-image generation results.
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C.1.5 Depth Prediction

Vibrant red Pokéball rests on cracked ledge amid ruined city's gray rubble and eerie silence

Figure 15: More image-to-depth generation results.

C.1.6 In/out-painting

1/ /. / I/ I {5
Young woman with long brown hair beams gently, bathed in cozy natural light against blurred home backdrop

In the lower half of the image, Mona Lisa is holding an adorable orange kitten

Figure 16: More in/out-painting generation results.
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C.1.7 Super-resolution

o RN L. 15

hes on branch amid pink blossoms, its orange chest glowing against soft green foliage

Stylish blonde in black turtleneck and suspenders gazes confidently against a bright blue sky with fluffy clouds

Figure 17: More super-resolution generation results.

C.2 Subject-driven Image Generation Results

condition image prompt: a cat target image prompt: a cat in a chef outfit

o® ¢® g 3% se e ve Vo Vo by

condition image prompt: a glasses target image prompt: a glasses on top of a white rug

condition image prompt: a stuffed animal target image prompt: a stuffed animal with a blue house in the background

Figure 18: More subject-driven generation results on DreamBench.
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condition image prompt: A wooden violin rests on the ground beside flowers and a clock
target image prompt: A wooden violin lies on sandy beach by the ocean

condition image prompt: Chair with white leather cushions and smooth wood grain, angled legs on minimalist gray backdrop
target image prompt: Chair before floor-to-ceiling windows, skyscrapers glowing through glass as sunlight traces its polished frame

condition image prompt: Tiger sits politely on wooden chair beside stacked pancakes and cream container, gazing upward indoors
target image prompt: Cool tiger with sunglasses sprawls in sunny grass, beside stacked pancakes

condition image prompt: Pink sports car parked on wet road, rainbow arching over suburban house with autumn trees and glistening raindrops
target image prompt: Pink sports car streaks down sunlit highway, silver rims flashing, silhouette slicing through golden summer air

condition image prompt: Woman in cream knit sweater sits calmly by a crackling fireplace, surrounded by warm candlelight and rustic wooden shelves
target image prompt: The woman stands in a snowy forest, captured in a half-portrait

Figure 19: More subject-driven generation results.

Interestingly, we discover that during subject-driven image generation, DRA-Ctrl can occasionally
control two subjects in the condition image simultaneously. As shown in the third row of Figure [T9}
our method successfully makes the tiger wear sunglasses while placing the stacked pancakes on the
grass.
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C.3 Style Transfer

i — iy t — i3

condition image prompt: An orange cat sits quietly on the stone slab. Beside it are the green grasses. With its ears perked up, it looks to one side.
target image prompt: bitmoji style. An orange cat sits quietly on the stone slab. Beside it are the green grasses. With its ears perked up, it looks to one side.

condition image prompt: The back view of an old couple. The man is wearing a hat. They are walking hand in hand on the leaf-covered road. Surrounded by lush green trees.
target image prompt: bitmoji style. The back view of an old couple. The man is wearing a hat. They are walking hand in hand on the leaf-covered road. Surrounded by lush green trees.

condition image prompt: A little boy holds the hand of an old man with a cane and they talk amiably.
target image prompt: bitmoji style. A little boy holds the hand of an old man with a cane and they talk amiably.

condition image prompt: Gray dolphin leaping in the sea.
target image prompt: bitmoji style. Gray dolphin leaping in the sea.

condition image prompt: Colorful flowers in the front, a light-colored house with a chimney in the back, surrounded by trees.
target image prompt: bitmoji style. Colorful flowers in the front, a light-colored house with a chimney in the back, surrounded by trees.

Figure 20: More style transfer generation results.

D Failure Cases

While DRA-Ctrl successfully achieves controllable image generation in most cases, it may occasion-
ally fail in the image-to-depth task, primarily manifesting as the presence of colored regions in the
generated depth images. We attribute this limitation to the inherent nature of video models, which
predominantly generate color data. A failure case is presented in Figure 21]

Origin Image Generated Image

A cheerful, smiling cartoon cactus with raised arms
stands in a vibrant desert landscape under a blue sky

Figure 21: A failure case of DRA-Ctrl.

E Societal Impact

Our work advances controllable image generation with significant societal implications, offering both
opportunities for innovation and risks requiring proactive mitigation. Below, we outline the potential
positive and negative impacts, alongside measures to address the latter.

On the positive side, our high-quality, controllable generation method empowers creative and practical
applications. Artists and designers can leverage it to produce imaginative content efficiently, while
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educators benefit from dynamically generated visual aids for teaching. The fine-grained control also
enables ethical uses in journalism and advertising, enhancing productivity and accessibility across
domains.

However, negative impacts must be acknowledged. Malicious actors could exploit the technology
to create convincing fake images for disinformation, fraud, or impersonation; to mitigate this, we
adopt a gated release of models to restrict access. Bias in training data might lead to stereotypical or
discriminatory outputs, disproportionately harming marginalized groups — addressed through rigor-
ous bias testing during development. Further, misuse for non-consensual imagery (e.g., deepfakes)
necessitates monitoring mechanisms and legal safeguards to protect privacy.

In summary, while our technology unlocks creative and educational potential, its risks-particularly
around misinformation, bias, and privacy-demand deliberate countermeasures. By combining techni-
cal safeguards with policy-oriented solutions, we aim to foster responsible use and maximize societal
benefit.

F Safeguards

To mitigate potential misuse risks associated with our controllable image generation technology, we
will implement a gated release strategy when making the models publicly available. This will include:
comprehensive usage guidelines explicitly prohibiting malicious applications such as disinformation
campaigns and non-consensual imagery generation; an access control mechanism requiring users
to agree to ethical use terms before obtaining the model. While we recognize no safeguards can
eliminate all risks, these measures represent our proactive commitment to responsible Al development
and deployment.

30



	Introduction
	Related Works
	Method
	Preliminaries
	Mixup-based Shot Transition
	Frame Skip Position Embedding
	Attention Masking Strategy

	Experiments
	Experimental Setup
	Spatially-aligned Image Generation Results
	Subject-driven Image Generation Results
	Style Transfer
	Ablation Studies
	Generation Effiency Analysis

	Conclusion
	More Experimental Details
	Spatially-aligned Image Generation
	Subject-driven Image Generation
	Style Transfer

	More Details about the VL Score
	More Visualization
	Spatially-aligned Image Generation Results
	Canny-to-image
	Colorization
	Deblurring
	Depth-to-image
	Depth Prediction
	In/out-painting
	Super-resolution

	Subject-driven Image Generation Results
	Style Transfer

	Failure Cases
	Societal Impact
	Safeguards

