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Abstract

Multiplayer bandits have recently been extensively studied because of their applica-
tion to cognitive radio networks. While the literature mostly considers synchronous
players, radio networks (e.g. for IoT) tend to have asynchronous devices. This
motivates the harder, asynchronous multiplayer bandits problem, which was first
tackled with an explore-then-commit (ETC) algorithm (see Dakdouk, 2022), with
a regret upper-bound in O(T 2

3 ). Before even considering decentralization, un-
derstanding the centralized case was still a challenge as it was unknown whether
getting a regret smaller than Ω(T

2
3 ) was possible. We answer positively this ques-

tion, as a natural extension of UCB exhibits a O(
√

T log(T )) minimax regret.
More importantly, we introduce Cautious Greedy, a centralized algorithm that
yields constant instance-dependent regret if the optimal policy assigns at least
one player on each arm (a situation that is proved to occur when arm means are
close enough). Otherwise, its regret increases as the sum of log(T ) over some
sub-optimality gaps. We provide lower bounds showing that Cautious Greedy is
optimal in the data-dependent terms. Therefore, we set up a strong baseline for
asynchronous multiplayer bandits and suggest that learning the optimal policy in
this problem might be easier than thought, at least with centralization.

1 Introduction

In the classical multi-armed bandits (MAB) problem, a single player sequentially pulls arms
kt ∈ {1, . . . ,K}

∆
= [K], and receives a reward Xkt sampled from some unknown sub-Gaussian dis-

tribution of mean µkt
. This process undergoes repetition for a total of T rounds and the performance

of the sampling policy is measured by its regret, the difference between the total expected reward
obtained by choosing the best arm k∗ at each round and the total expected reward of the player’s
actual choices. This setting has been extensively studied (see Lattimore & Szepesvári, 2020, for
a survey). A fundamental component of MAB is the exploration and exploitation trade-off, as a
good policy should balance between both. Exploration involves trying out different arms to gather
information, while exploitation uses the acquired knowledge to favor arms more likely to be the best.
Optimal policies are known to have a regret scaling as O(

∑
k ̸=k∗

log(T )
µk∗−µk

) (Auer et al., 2002).

Classical applications of MAB include clinical trials, recommendation systems or ad placements.
For many applications, the MAB framework however does not fit the problem at hand. Consider
for instance cognitive radios Lai et al. (2008); Anandkumar et al. (2011); Mitola & Maguire (1999);
Jouini et al. (2010) where arms correspond to communication channels available to radio devices.
What differs from standard MAB is that if two radios choose the same communication channel, they
interfere. This example motivates the multiplayer multi-armed bandits (MMAB) setting introduced
in Liu & Zhao (2010). In MMAB, M players simultaneously pull arms. When a player pulls arm
k, it receives the reward ηkXk where ηk = 0 if two or more players collide, meaning they pull the
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same arm k, and ηk = 1 if a single player pulls k. In the centralized setting with M ≤ K, this
setting is equivalent to bandits with multiple plays (Komiyama et al., 2015; Anantharam et al., 1987;
Chen et al., 2013b; Gopalan et al., 2013), where a central entity decides on the behalf of agents
and trivially avoids collisions. Optimal algorithms are then known to yield an asymptotic regret∑K−M

k=1
log(T )

µ(K−M+1)−µ(k)
(Komiyama et al., 2015), where µ(i) is the i-th smallest mean reward.

Motivated by Internet of Things networks, we focus on the asynchronous multiplayer multi-armed
setting (AMMAB) where each round is decomposed into three successive steps (see Dakdouk, 2022;
Bonnefoi et al., 2017). First, all players decide which arm they would like to play. Second, the
environment activates independently player i with probability pi. In the third step, activated players
pull the arm they chose in the first step. In this model, players correspond to communicating devices,
arms to available channels and pi is the activation probability of the communicating device i.

We focus on the centralized setting (equivalently, agents’ communication is free). Although the
decentralized setting might be more fitted to communication network applications, the centralized
setting is already challenging enough to warrant a study (furthermore, centralized algorithm perfor-
mances are benchmarks for decentralized ones, hence it is crucial to investigate the former). Possible
extensions, including the decentralized case, are discussed in Section 6.

Notations. Vectors are denoted in bold. If u ∈ Rn, ui is the i-th coordinate of u while u(i) the
i-th smallest coordinate of u and support(u) = {i ∈ [n], ui ̸= 0}. We denote for u,v ∈ Rn,
⟨u,v⟩ =

∑n
i=1 uivi, ∥u∥∞ = maxi∈[n] |ui|, ∥u∥1 =

∑
i∈[n] |ui|. For a function f : R → R and

u ∈ Rn, f(u) ∈ Rn is defined by f(u)i = f(ui). Lastly, E denotes the complementary event of E.

Setting and assumptions. For simplicity, we follow Bonnefoi et al. (2017) and assume that the
probability of being active is the same for all players: pi = p, for all i ∈ [M ]. This makes players
exchangeable and allows for a simplified description of the AMMAB setting. At each round t, a
central entity chooses a (possibly random) assignment M(t) = (M1(t), . . . ,MK(t)) where Mk(t)
is the number of players assigned to arm k at round t; the environment then activates each player
with probability1 p and active players pull the arm to which they are assigned, each receiving reward
ηk(Mk(t))Xk where ηk = 1{exactly one player is active on arm k}. Active players communicate
to the central entity their earned reward Xkηk. Additionally, the central entity observes the collision
events (ηk)k∈[K], and the parameters M , K and p are assumed to be known beforehand.

At any time t, the assignment M(t) satisfies the budget constraint
∑K

k=1 Mk(t) = M and we assume:
Assumption 1.1. M ≥ K and for all k ∈ [K] and at all stages Mk(t) ≤ −1

log(1−p) ≃
1
p .

The second condition is not restrictive, as assigning more than −1
log(1−p) players on the same arm

only decreases the obtained reward and amount of information on that arm. A better policy would
then have some players not play at all instead, or equivalently assign players to a dummy arm whose
reward is known to be 0. The set of valid assignments is thus denoted by

M = {M ∈ [M ]K |
K∑

k=1

Mk = M,Mk ≤
−1

log(1− p)
}.

The goal is to minimize the expected regret defined by:

E[R] =

T∑
t=1

K∑
k=1

E[ηk(M∗
k )Xk]− E[ηk(Mk(t))Xk] (1)

where M∗ = (M∗
1 , . . . ,M

∗
K) is the optimal assignment:

M∗ = argmax
M∈M

E

[
K∑

k=1

ηk(Mk)Xk

]
. (2)

Bonnefoi et al. (2017) designed an algorithm solving Equation (2) with known µk, and Dakdouk
(2022) later proposed a simpler sequential algorithm. In combination with some explore-then-commit
policy, it yields a regret scaling in O(T 2

3 ). Additionally, Dakdouk (2022) show there is no random
assignment yielding a strictly larger expected reward than the deterministic optimal assignment M∗.

1The central entity does not know beforehand which players will be active, making collisions unavoidable.
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Contributions. We prove that an adapted version of UCB exhibits a regret in
O(

√
TK log(T )min(Mp,K)) where O(·) hides universal constant factors. This result

largely outperforms the O(T 2
3 ) regret bound of the ETC algorithm by Dakdouk (2022). Contrary to

the lower bound by Wang & Chen (2017, Theorem 2), the 1/p term does not appear in this bound, as
the two settings are slightly different: although rewards are observed with probability p, rewards
are also scaled by p in our case (thus canceling out the terms in p). More surprisingly, our main
contribution shows that achieving a constant regret (in T ) is sometimes possible with an algorithm
called Cautious Greedy. The analysis of centralized UCB is thus postponed to Appendix C and
the main text solely focuses on Cautious Greedy. In essence, it is a standard greedy algorithm that
estimates µk via empirical means, but it is cautious as it avoids assigning zero players to an arm
unless, with high confidence, assigning no players to it is optimal. More precisely, Cautious Greedy
maintains a lower bound ν of the number of arms that should be assigned zero players and stops
assigning players to the ν worst arms when confident enough.

The regret of Cautious Greedy depends on several data-dependent quantities defined in Section 3.2:

• ν∗ the number of arms that are assigned zero players in the optimal assignment,
• ∆(j) = µ(ν∗+1) − µ(j),
• M∗

ν the optimal assignment when ν arms are assigned zero players and
• r the infinity norm of the minimum perturbation of the true arm means µ that would modify

the sequence (M∗
ν)

ν∗

ν=1.

Proposition 3.1 together with Lemma 3.2 show that the regret of Cautious Greedy is upper bounded
by O

(
1
r +

∑
j≤ν∗

log(T )
∆(j)

)
, where O hides terms depending on K, p and M .

In particular, Cautious Greedy achieves constant regret if ν∗ = 0, i.e., when each arm is assigned
at least one player by the optimal policy. As shown by the lower bound in Lemma 4.1, under
mild conditions, the dependency in 1

r cannot be improved. In Lemma B.1, we give a sufficient
condition on the dispersion of arm means to get ν∗ = 0. In general, Cautious Greedy suffers an
additional dependency in

∑
j≤ν∗

log(T )
∆(j)

. This dependency also appears in bandits with multiple
plays (Komiyama et al., 2015) and as shown by Lemma 4.2 cannot be removed. This makes Cautious
Greedy optimal with respect to T and with respect to the data-dependent quantities r and ∆(j).

The main difficulty of the problem comes from the fact that ν∗ is unknown. A classical Greedy
algorithm yields a linear regret when ν∗ > 0, while a traditional bandits algorithm never reaches
constant regret when ν∗ = 0. On the other hand, Cautious Greedy performs optimally in both cases.

Section 5 benchmarks Cautious Greedy against our UCB algorithm and the centralized ETC algo-
rithm of Dakdouk (2022) on synthetic data and show that Cautious Greedy and UCB perform both
significantly better than ETC. Cautious Greedy outperforms UCB when no arms should be assigned
zero players while UCB tends to be better when at least one arm should be assigned zero players.

2 Related work

Centralized setting: multiplay, combinatorial and structured bandits. As already highlighted,
when M ≤ K and p = 1, AMMAB is equivalent to bandits with multiple plays. A lower bound
in

∑ν∗

j=1
log(T )
∆(j)

where ν∗ = K −M is shown in Anantharam et al. (1987). This lower bound is
reached by a Thompson sampling-based algorithm (Komiyama et al., 2015). Bandits with multiple
plays are an instance of combinatorial bandits (Gai et al., 2012; Chen et al., 2013a; Kveton et al.,
2015; Combes et al., 2015; Wang & Chen, 2018; Perrault et al., 2020) where an agent chooses an
action a ∈ S and receives reward r(µ,a). When M ≤ K, AMMAB is an instance of combinatorial
bandits with semi-bandit feedback and probabilistically triggered arms (meaning that chosen arms
are triggered with some probability) (Wang & Chen, 2017; Chen et al., 2016) with the difference that
in these works, rewards are scaled by 1/p. More generally, AMMAB can be viewed as combinatorial
bandits or structured bandits Combes et al. (2017) with semi-bandit feedback and KM possible
actions. None of these works yet allow to reach constant regret when ν∗ = 0.

Decentralized multiplayer bandits. In decentralized multiplayer bandits, players aim at speeding
up the collective learning of the arm rewards, while avoiding collisions. Motivated by cognitive radio
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networks, the decentralized problem of multiplayer bandits recently received a lot of attention (we
refer to Boursier & Perchet, 2022, for a review), sometimes assuming a pre-agreement on the ranks
of the players (Anandkumar et al., 2010; Liu & Zhao, 2010) or using few collisions to communicate
information between players (Avner & Mannor, 2014; Rosenski et al., 2016; Besson & Kaufmann,
2018b). However, Bistritz & Leshem (2018); Boursier & Perchet (2019); Wang et al. (2020)
enforce collisions to send a significant number of bits between the players, allowing to reach optimal
centralized performance. This idea is also used in many extensions of MMAB (Mehrabian et al., 2020;
Shi et al., 2020; Huang et al., 2021; Boursier & Perchet, 2020; Shi et al., 2021). This communication
through collision trick yet highly depends on the synchronicity of the players and becomes costly
with a lot of players. In AMMAB, the players are asynchronous (p < 1) and numerous (M ≥ K),
making both drawbacks significant. This work thus proposes a centralized asynchronous algorithm,
leaving open for future work a possible decentralized adaptation (see Section 6 for a discussion).

In the multi-agent bandit problem considered by Szorenyi et al. (2013); Landgren et al. (2016);
Martínez-Rubio et al. (2019), no collision happens when several players pull the same arm. The
problem is thus different in nature: the main objective of multi-agent bandits is to speed up learning
using decentralized communication protocols (e.g. gossip), without consideration of collision.

Full information. When each arm is assigned at least one player, it provides information with a
strictly positive probability at each time step. Therefore in this regime, the central entity is almost
in full information feedback, where information about all arms is received at every round. Bandits
with expert advice are examples of problems with full information feedback. The go-to algorithm
in the adversarial setting is (variants of) exponential weights or Hedge (Mourtada & Gaïffas, 2019).
However, in the stochastic setting, a constant regret is achieved by Greedy (aka Follow The Leader)
which plays according to the empirical mean estimate of the rewards (Degenne & Perchet, 2016).
Huang et al. (2017) show Greedy achieves constant regret in a more structured setting.

Resource allocation. Our problem is also a particular instance of sequential resource allocation
with concave utilities (Lattimore et al., 2015; Fontaine et al., 2020; Zuo & Joe-Wong, 2021). Although
general resource allocation algorithms could be used in our setting, much better solutions can be
obtained by leveraging the very specific structure of the utilities. The utility functions are indeed
exactly known up to the multiplicative factor µk.

Asynchronous multiplayer bandits. AMMAB was introduced by Bonnefoi et al. (2017) in the
context of cognitive radios. In Dakdouk (2022), players have heterogeneous activation probabilities.
In addition, the authors keep track of the amount of communication between agents. They propose
an explore and commit algorithm that reaches a sub-optimal O(T 2

3 ) regret. In contrast, we show
that under favorable conditions, a constant regret can be reached. Extending our results to the
heterogeneous setting of Dakdouk (2022) remains open for future work. Quite interestingly in
AMMAB, the expected individual reward decreases as more players are assigned to the same arm.
This relates the AMMAB model to more advanced collision models for MMAB, where a collision
only decreases the reward instead of yielding a 0 reward (Tekin & Liu, 2012; Bande & Veeravalli,
2019; Magesh & Veeravalli, 2019; Boyarski et al., 2021). AMMAB is also related to the problem of
online queuing systems (Gaitonde & Tardos, 2020; Sentenac et al., 2021), where packets arrive in a
queue (player) with random rates. This setting yet differs from AMMAB, as players are active as
long as they hold packets.

3 Cautious Greedy, an efficient centralized algorithm for AMMAB

Let us first define the function g(x) = xp(1− p)x−1, so that the regret in Equation (1) rewrites as

E[R] =

T∑
t=1

E
[〈
µ, g(M∗)− g(M(t))

〉]
(3)

where M∗ = argmaxM∈M⟨µ, g(M)⟩ is a rewritting of Equation (2).

4



3.1 Description

Cautious Greedy is based on a standard greedy strategy that plays the best policy according to the
estimated mean rewards. Cautious Greedy therefore computes mean rewards estimates µ̂(t):

µ̂k(t) =

∑t
ρ=1 η

ρ
k(M(ρ))Xρ

k

Tk(t)
(4)

where Tk(t) =
∑t

ρ=1 η
ρ
k(M(ρ)) is the number of samples gathered from arm k at time t or equiv-

alently, the number of times that arm k has been played by exactly one player up to time t. By
convention, we set µ̂k(t) = 1 if Tk(t) = 0.

A Greedy algorithm would then choose the assignment M(t) = M
µ̂(t)
M where

Mµ̂
M = argmax

M∈M
⟨µ̂, g(M)⟩. (5)

Such a simple strategy would quickly stop exploring, at the risk of committing to a suboptimal policy.
In order to maintain some level of exploration, a natural idea is to impose at least one player per
arm. However, in some settings, the optimal solution might assign no players to some arms. The
challenging task of Cautious Greedy is then to identify which arms should be assigned zero players.
We call such identified arms removed while active arms are those not removed yet. Cautious Greedy
can put a set of arms S under pressure, meaning that these arms are temporally allowed to be assigned
no player. Arms that are assigned at least one player are said to be played and note that it is possible
that an arm under pressure is played. Formally, the constraints that apply to M in the assignment
problem will be described by sets of the form:

MK = {M ∈M,∀k ∈ K,Mk ≥ 1}

where K ⊂ [K].MK is the set of assignments that put under pressure [K] \ K. In order to identify
the arms to remove, Cautious Greedy maintains confidence bounds on the mean of each arm. The
upper and lower bounds are given respectively by

µ̂H(t) = min(µ̂(t) + ζ(t), 1) and µ̂L(t) = max(µ̂(t)− ζ(t), 0) (6)

where for all k ∈ [K], ζk(t) =

√
log(2T 2K2)

2Tk(t)
. (7)

These bounds are used to eliminate sub-optimal arms. This could suggest a strategy that plays all
active arms at each round until enough information is gathered to remove an arm. However, such a
strategy yields high regret in the case where two arms that should be eliminated are very close to
each other. Therefore, the elimination of several arms at once is allowed. This is done in Cautious
Greedy by computing an estimate ν of the number of arms to remove, which is a lower bound of
ν∗ = |{k,M∗

k = 0}| and can be used to eliminate several arms at once without ordering them first.
We therefore introduceMν the set of assignments where ν arms are under pressure:

Mν = {M ∈M, | support(M)| ≥ K − ν}.

The number of arms to remove ν is then increased when ⟨µ̂L, g(Mµ̂L

M )⟩ > ⟨µ̂H , g(Mµ̂H

Mν
)⟩, i.e.

when a larger reward is guaranteed by removing more than ν arms. Cautious Greedy then uses ν
to build a set A of accepted arms which are arms that are not likely to be among the ν worst arms.
Cautious Greedy then puts under pressure a subset of arms among the arms that are not accepted yet.
The set of arms put under pressure rotates in a round-robin fashion. This mechanism ensures that
all active arms are regularly played. After the round-robin rotation is completed, Cautious Greedy
reevaluates ν and updates the sets of accepted arms and active arms. As ν increases, an arm can be
removed from the set of accepted arms. However as ν never decreases, a removed arm is removed
forever. The exact procedure is described in Algorithm 1 below.

3.2 Regret bound

The main result of this section is an upper bound on the expected regret of Cautious Greedy. This
bound depends on several data-dependent quantities that we now define precisely. ∆(ν∗) is the
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Algorithm 1 Cautious Greedy
1: Input : M (number of players), p (probability that a player is active), T (horizon)
2: ν = 0 // Estimate of ν∗
3: Initialize the set of active arms K = [K]; the set of accepted arms A = ∅

Initialize the set of arms under pressure U = ∅; the round-robin counter n = 0
4: for t = 1, . . . , T do
5: Play Mµ̂

ME
as defined in (5) where E = K \ U

6: Rotate U in a round robin fashion over K \ A (See Appendix A.2 for details)
7: Update µ̂ according to (4); n = n+ 1
8: if n = |K \ A| then // end of round robin
9: n = 0 and compute Mµ̂L

M and Mµ̂L

Mν
following (5)

10: while ⟨µ̂L, g(Mµ̂L

M )⟩ > ⟨µ̂H , g(Mµ̂H

Mν
)⟩ do

11: ν = ν + 1
12: end while
13: Update A = {k ∈ [K], µ̂H

(ν) < µ̂L
k } and K = [K] \ {k ∈ [K], µ̂H

k < µ̂L
(ν+1)}

14: Let U be ν − |[K] \ K| elements from K \ A
15: end if
16: end for

minimum simple regret achieved by an allocation removing exactly ν∗ − 1 arms, while the number
of arms removed by the optimal assignment is equal to ν∗. Denoting M∗

ν = Mµ
Mν

, ∆(ν∗) is
defined as ∆(ν∗) = ⟨µ, g(M∗) − g(M∗

ν∗−1)⟩. By convention, we set ∆(ν∗) = ∞ if ν∗ = 0.
∆(j) = µ(ν∗+1) − µ(j) is the difference between the reward of the worst arm not eliminated
in the optimal assignment and the reward of the j-th worst arm. Lastly, r is the norm of the
minimum perturbation of µ causing M∗

ν to change for some value of ν. More precisely, define
rν = minµ̂,Mµ̂

Mν
̸=M∗

ν
∥µ̂− µ∥∞, then r = minν∈[ν∗] rν . Proposition 3.1 shows that the expected

regret of Cautious Greedy is upper bounded by O(ν
∗+1
r + ν∗ log(T )

∆(ν∗) +
∑

j≤ν∗
log(T )
∆(j)

) where O hides
quantities independent of the data and T .
Proposition 3.1 (Upper bound on the regret Cautious Greedy). The expected regret of Cautious
Greedy satisfies

E[R] ≤ 20
KM(ν∗ + 1)

r
+

ν∗∑
ν=1

120 log(2T 2K2)

∆(ν)

+

[
72M min(Mp,K)(ν∗ + 1) + 120

]
log(2K2T 2)

∆(ν∗)
.

The first term is reminiscent of the regret induced by Greedy with full information. The second one
comes from the sample complexity of finding the ν∗ worst arms. The third one is finally due to the
sample complexity of detecting that the optimal policy eliminates ν∗ arms. Interestingly, the two last
terms are null when ν∗ = 0, which corresponds to situations where the optimal policy assigns at least
one player on every arm. This makes the regret of Cautious Greedy constant in such situations, which
happens when arm rewards have a similar order of magnitude (see Lemma B.1).

At first sight, it seems like the third term in Proposition 3.1 could be arbitrarily larger than the second
term. Fortunately, this is untrue as shown in the following Lemma:

Lemma 3.2. ∆(ν∗) ≥ (g(M∗
(ν∗+1) + 1)− g(M∗

(ν∗+1)))∆(ν∗).

Together with Proposition 3.1, Lemma 3.2 shows that the regret of cautious Greedy is upper bounded
by O( 1r +

∑ν∗

ν=1
log(T )
∆(ν)

) where O hides terms in M,p,K. The remainder of this section sketches
the proof of Proposition 3.1. The precise statement of lemmas and their proofs are deferred to
Appendix A.

Proof sketch of Proposition 3.1. Using classical concentration bounds (Lemma A.1), we can assume
that µH and µL (defined in Equation (6)) verify µH ≥ µ ≥ µL without affecting the regret bound.
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Consequently, Algorithm 1 ensures that ν is only increased if ν < ν∗ (Lemma A.3) and the update of
the set of active arms ensures that optimal arms are never eliminated (Lemma A.4).

We then focus on bounding the number of times each arm is played. The round-robin procedure
ensures that all active arms are assigned at least one player regularly, as proven by Lemma A.5.
However, because of collisions, assigning at least one player to an arm does not guarantee an
observation. Lemma A.6 makes this relation explicit. Now knowing how many observations are
gathered on each arm, we can focus on upper bounding the regret.

Denote M∗
ν = Mµ

Mν
the optimal assignment of players when at most ν arms can be assigned zero

players. For E(t) ⊂ [K], call M∗
E(t) = Mµ

ME(t)
the optimal assignment of players when only arms

not in E(t) can be assigned zero players. We can write the cost of the chosen assignment at time t
M(t) as the sum of three terms:

⟨µ, g(M∗)− g(M∗
ν)⟩︸ ︷︷ ︸

(i)

+ ⟨µ, g(M∗
ν)− g(M∗

E(t))⟩︸ ︷︷ ︸
(ii)

+ ⟨µ, g(M∗
E(t))− g(M(t))⟩︸ ︷︷ ︸

(iii)

These three terms measure a different aspect of the regret: (i) measures the error due to ν the number
of arms under pressure being different from ν∗ the optimal number of players to eliminate; (ii)
measures the error due to E(t) being different from support(M∗

ν), the optimal set of arms that must
be assigned at least one player by M∗

ν ; (iii) measures the error due to M(t) being different from
M∗

E(t), the optimal assignment of players among possible assignments inME(t).

Let us start with (i). As the number of samples seen increases, ν increases to get closer to ν∗.
Lemma A.7 bounds the number of samples seen before the algorithm increases ν, which leads to an
upper bound on the total regret due to this term shown in Lemma A.8.

Regarding (ii), for a given ν, two things may prevent a sub-optimal choice of arms E on which at
least one player must be assigned. Either an arm in E is eliminated or an arm in [K] \ E is accepted.
Lemma A.9 provides a lower bound on the number of samples seen before a sub-optimal arm is
eliminated while Lemma A.10 provides a lower bound on the number of samples seen before an
optimal arm is accepted. The two previous lemmas allow to quantify when arms are accepted or
rejected. We then compute the cost of a sub-optimal choice of arms E in Lemma A.11 and combine
these three lemmas to bound the total regret due to this term in Lemma A.12.

Lastly, the third term (iii) measures the mismatch between the chosen assignment M(t) and the best
possible assignment with the same support. Crucially there is no support mismatch and therefore we
are in a setting close to the full information setting which allows us to bound the regret due to these
terms by a quantity independent of the horizon T (see Lemma A.13).

Adding the upper bounds due to the terms (i), (ii) and (iii) and reorganizing concludes the proof.

4 Lower bound

The next lemma lower bounds the best possible constant term in the regret. Under mild conditions, it
shows there exists a choice of rewards µ such that any algorithm has a regret scaling in O( 1r ).
Lemma 4.1 (Lower bound for ν∗ = 0). Consider K = 2 arms and M = 2N + 1 players for some
N ∈ N∗ and assume p ≤ 1

M+1 , r0 < p
12 , T ≥ 1

16g(M)r20
. For any algorithm A, there exists a choice

of rewards µ such that r(µ) = r0 and

E[RA] ≥
1

256Mr0
.

Proof sketch (see proof in Appendix A.4) . We take parameters µ1 and µ2 such that r = ∆
2 and the

optimal solution is M∗ = (N,N + 1) if µ = µ1 and M∗ = (N + 1, N) if µ = µ2. Moreover, we
choose them so that the top two solutions are always (N,N + 1) and (N + 1, N). First, we augment
A so that each arm yields a sample Xk with probability g(M) instead of g(Mk(t)); moreover A
is forced to chose at each step between M(t) = (N,N + 1) or M(t) = (N + 1, N) (these two
modifications only improve A). Following the proof of Theorem 3 in Wang & Chen (2017), we
recast this setting as a 2-armed bandit problem where arm k has reward 1 with probability g(M)µk,
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0 with probability g(M)(1 − µk) and Xk =⊥ with probability 1 − g(M). The rest of the proof
follows closely the proof of Proposition 4 in Mourtada & Gaïffas (2019) and yields the lower
bound E[RA] ≥ ∆(g(M+1)−g(M))

2
T
4 exp(−4Tg(M)∆2). As the regret increases with T , taking

T = ⌊ 1
4g(M)∆2 ⌋ concludes.

The upper bound of Cautious Greedy when ν∗ = 0 is given by E[R] ≤ 20KM
r , i.e., the dependency

in r cannot be improved. Next, we investigate the case ν∗ > 0 and show a lower bound inspired by
the classical results of Lai et al. (1985). Let us first introduce the notion of a consistent algorithm. Let
Ti be the number of times with at least one player on the i-th worst arm. An algorithm is consistent if
∀α > 0, ∀j > ν∗ ∈ E[T − Tj ] = O(Tα) and ∀j ≤ ν∗,E[Tj ] = O(Tα).

Lemma 4.2 (Lower bound for ν∗ > 0). For any integers M ≥ 5, ν∗ > 0, p ≤ 1
M+1 , any gaps

∆(1), . . . ,∆(ν∗) ≤ p
8(M−4) , and for any consistent algorithm A, there exists a set of parameters

(µ1, . . . , µν∗+2) such that µ(ν∗+1) − µ(ν) = ∆(ν) for all ν ∈ [ν∗] and the regret of A satisfies

lim inf
T→∞

ERA

log(T )
≥

ν∗∑
ν=1

c

∆(ν)

for some universal constant c > 0.

Proof sketch (see proof in Appendix A.5). Assume for the sketch of proof that ν∗ = 1 and that there
are 3 arms. We are considering two alternative mean parameters (µ0, µ1, µ1+∆) and (µ0, µ1, µ1−∆)
chosen so that the optimal allocation is either (M − 1, 1, 0) or (M − 1, 0, 1). Moreover, we choose
µ0 and µ1 such that in both worlds, the top two allocations are always the aforementioned ones. This
might give the impression that there exists a trivial reduction to some standard 2-arm bandits (where
those arms are the tentative two optimal allocations). A consistent algorithm would indeed need
N∗ := Ω( log(T )

∆2 ) samples of sub-optimal arms to distinguish between the two worlds. In particular,
with the second set of parameters, this requires putting one player on the third arm N∗/p times
(in expectation), each one incurring a cost of p∆. This would give the result for ν∗ = 1 and this
technique can be immediately generalized to ν∗ > 1.

It is however not that simple, as putting more players on some (suboptimal) arm gives faster feedback,
yet at a higher cost. We yet show that the best trade-off (in feedback received vs. suboptimality cost)
for an algorithm to distinguish between the two worlds is indeed to allocate a single player on arm 2
or 3. The aforementioned intuition is thus actually correct but requires a cautious argument.

Lemma 4.2 shows that the dependency in
∑

j≤ν∗
log(T )
∆(j)

in the upper bound of Proposition 3.1 cannot
be improved. The results in Lemma 4.1 and Lemma 4.2 show that Cautious Greedy is optimal with
respect to its dependency in r, ∆(ν) and T . However, we do not claim that the dependency in M,p,
or K is optimal. Improving the dependency with respect to these parameters would be an interesting
although challenging direction for future work.

5 Experiments

Our experiments compare the expected regret of Cautious Greedy (Algorithm 1), UCB (Algorithm 3),
and ETC (Dakdouk, 2022, Algorithm 8). In all these algorithms, maximization problems of the form
maxM∈M⟨g(M),v⟩ are solved using the sequential algorithm of Dakdouk (2022, Algorithm 5). In
Cautious Greedy, the sequential algorithm is also adapted to solve maxM∈ME ⟨g(M),v⟩ for some set
E ⊂ [K]. This is done by first assigning one player to each arm in E and then running the sequential
algorithm for the rest of the players. The optimality of this approach is detailed in Appendix D.

At each step t ∈ [T ], algorithms compute a player assignment M(t) ∈M based on the rewards they
have seen so far. We record

∑t
τ=1⟨µ, g(M∗)− g(M(τ))⟩ which we call cumulative regret (instead

of pseudo regret). Each experiment is run 50 times, we plot the mean value of the cumulative regret
as a function of t ∈ [T ]. Error bars represent the first and last decile.

The first experiment in Figure 1 (left), there are M = 30 players, K = 2 arms, µ = (0.8, 0.5),
p = 0.01 and T = 104. The optimal assignment is M∗ = (26, 4) and note that ν∗ = 0. In this
example, Cautious Greedy clearly outperforms the other methods as expected when ν∗ = 0.
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Figure 1: Benchmark of ETC, UCB and Cautious Cautious Greedy on synthetic data (left)
ν∗ = 0 (right) ν∗ = 1.

The second experiment in Figure 1 (right) highlights that Cautious Greedy takes a longer time
than UCB to assign no player to a suboptimal arm. We have M = 3 players, K = 2 arms,
µ = (0.99, 0.01), p = 0.1 and T = 104. The optimal solution is M∗ = (3, 0) so that ν∗ = 1. In this
example, UCB largely outperforms Cautious Greedy. In both experiments, ETC incurs a much larger
regret, which is consistent with its suboptimal O(T 2

3 ) regret.

6 Conclusion, open problems and future work

We proposed an asynchronous multiplayer multi-armed bandits algorithm called Cautious Greedy,
achieving a regret of order 1/r +

∑ν∗

ν=1 log(T )/∆(ν). In particular, its regret does not scale with
T when ν∗ = 0. We also prove lower bounds suggesting that the dependency in both r and∑ν∗

ν=1 log(T )/∆(ν)) is optimal. A first remark is that the last term cannot be too large, since
Lemma B.1 shows that ν∗ = 0 when the gaps ∆(j) are small.

An open question for future work is whether the dependency with respect to other parameters K,M, p
can be improved. In particular, the analysis in Degenne & Perchet (2016) shows that in the stochastic
setting with full information, Greedy is upper bounded byO( log(K)

∆ ) when all arms have sub-optimal
gap ∆. This suggests the dependency w.r.t. M and K of the first term in our bound can be improved.

Our algorithm requires several assumptions to perform properly. Most of them are actually very
mild, while others would require an involved analysis to get discarded. Without prior knowledge of
T , a doubling trick (Besson & Kaufmann, 2018a, Theorem 7) can be used when the horizon T is
unknown. The activation probabilities of players might be heterogeneous in practice. However, the
optimization algorithm of Dakdouk (2022) is only optimal in the homogeneous case. No efficient
maximization scheme of the problem in Equation (2) in the heterogeneous case is currently known. If
however we were given access to an oracle maximizing this problem, we believe that our algorithms
and their bounds can be adapted. The analysis in the heterogeneous case would not need any change
for centralized UCB. Concerning Cautious Greedy, adapting its analysis is more difficult and requires
cautious work. Also, if p was unknown beforehand, it can easily be estimated on the fly. However,
additional errors would come from this estimation and should be handled carefully.

Another significant direction is to go beyond the centralized setting. Being able to handle the
decentralized setting where agents are no longer allowed to communicate without cost remains a
great challenge and the original motivation of asynchronous multiplayer bandits. A first possibility is
to track the number of communications, similarly to Dakdouk (2022). Although Cautious Greedy’s
number of communication steps is linear in T , a simple low-communication extension would proceed
in epochs of doubling size, where communication and updates occur at the end of each epoch. This
would make the number of communication steps sub-logarithmic in T , with the same regret bound
(up to a 2 factor). A second possibility is to directly use collisions to communicate as done for
example in (Bistritz & Leshem, 2018; Boursier & Perchet, 2019). These works however only tackle
the synchronized case. In our case, communicating through collisions remains possible but the length
of communication phases would be significantly increased. In the collision sensing setting, if players
i and j need to propagate a bit through collision, they roughly need log(T )

p2 time-steps to send a single
bit with high probability. Whether there exist quicker communication schemes (e.g. using random
phase length) for the asynchronous case is an open problem.
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A Analysis of Cautious Greedy

A.1 A useful upper bound

At many places we will have to bound quantity of the form ⟨µ − µ′, g(M) − g(M′)⟩ where
µ,µ′ ∈ [0, 1]K and M,M′ ∈M. We have

⟨µ− µ′, g(M)− g(M′)⟩ ≤ ⟨|µ− µ′|, |g(M)− g(M′)|⟩
≤ ⟨|µ− µ′|, g(M) + g(M′)⟩

≤
K∑

k=1

(g(Mk) + g(M ′
k))

≤
K∑

k=1

(Mk +M ′
k)p

≤ 2Mp

so that we have
⟨µ− µ′, g(M)− g(M′)⟩ ≤ 2Mp (8)

Note that since Mk ≤ 1
− log(1−p) ≤

1
p , we have Mp ≤ K.

A.2 A precise description of the Round Robin procedure

Rotating U in a round-robin fashion over Y ⊃ U means that U undergoes one iteration of the Round
Robin (RR) procedure. See Y as (y1, . . . , y|Y|), U as (u1, . . . , us). At each iteration, an element
from Y \ U is added to U and an element of U is dropped in such a way that after |Y| iterations, all
elements of U have been added and dropped from U exactly once.

A possible implementation of the RR procedure is the following. Initialize U = (y1, . . . , ys) and
t = s+ 1. Then, performing one iteration of the RR procedure means following Algorithm 2.

Algorithm 2 Rotate U in a round robin fashion over Y (one iteration)
1: Input : t (iteration number), U = (u1, . . . , u|U|), Y = (y1, . . . , y|Y|)
2: Remove u1 from U
3: ∀i ∈ [|U| − 1], set ui ← ui+1

4: Set u|U| = yt mod |Y|

A.3 Proof of Proposition 3.1 and Lemma 3.2

A.3.1 Proof of Lemma 3.2

Proof. Assume ν∗ ≥ 1. ∆(ν∗) is defined as ∆(ν∗) = ⟨µ, g(M∗) − g(M∗
ν∗−1)⟩ and ∆(ν∗) =

µ(ν∗+1) − µ(ν∗).

Call (i) the index of the i-th worst arm. M∗
ν∗−1 can be constructed from M∗

ν∗ . To do so, remove a
player from the arm j such that

j = argmin
i∈supp(M∗

ν∗ ),M
∗
i ≥2

µi(g(M
∗
i )− g(M∗

i−1))

where M∗
i denotes the i-th coordinate of M∗

ν∗ and place it on arm (ν∗).

We then have
∆(ν∗) = µj(g(Mj)− g(Mj − 1))− µ(ν∗)p

If j ̸= (ν∗ + 1), taking a player from arm j in M∗
ν∗ to put it on arm ν∗ + 1 would yield to a worse

assignment, we have that µj(g(Mj)− g(Mj − 1)) ≥ µν∗+1(g(M
∗
(ν∗+1) + 1)− g(M∗

(ν∗+1))). This
inequality is also true if j = (ν∗ + 1).
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This implies that

∆(ν∗) ≥ µν∗+1(g(M
∗
(ν∗+1) + 1)− g(M∗

(ν∗+1)))− µ(ν∗)p

≥ ∆(ν∗)(g(M
∗
(ν∗+1) + 1)− g(M∗

(ν∗+1)))

≥ ∆(ν∗)(g(M)− g(M − 1))

= ∆(ν∗)p(1− p)M−2(1−Mp)

A.3.2 Proof of Proposition 3.1

The analysis heavily builds upon confidence bounds. We first establish a concentration lemma on the
mean reward of each arm.
Lemma A.1 (Concentration of mean rewards). Let GOOD be the event

∀k ∈ [K],∀t ∈ [T ], |µ̂k(t)− µk| ≤ ζkt

Then, P (GOOD) ≤ 1
TK

Proof of Lemma A.1. Fix k ∈ [K], by Hoeffding, we have

P (|µ̂k(t)− µk| ≥ ϵ|Tk(t) = τ) ≤ 2 exp(−2τϵ2)

so that we have

P (|µ̂k(t)− µk| ≥

√
log(2T 2K2)

2Tk(t)
|Tk(t) = τ) ≤ 1

K2T 2

and with a union bound on τ ∈ [T ] and a second on k ∈ [K], we obtain:

P (∃k ∈ [K], |µ̂k(t)− µk| ≥

√
log(2T 2K2)

2Tk(t)
) ≤ 1

KT

Rearranging, we get with probability 1− 1
TK ,

∀k ∈ [K], |µ̂k(t)− µk| ≤

√
log(2T 2K2)

2Tk(t)
(9)

which is the desired result.

A consequence of Lemma A.1 is that up to a small additive constant in the regret, we can assume that
the GOOD event holds.
Lemma A.2 (Confidence bounds). Define RG = R1{GOOD}, then,

E[R] ≤ E[RG] + 2 (10)

Proof of Lemma A.2. E[R] = E[R1GOOD] + E[R1GOOD] and R1GOOD ≤ 2KT1GOOD, we then
conclude from Lemma A.1.

Working under the GOOD event makes the analysis much easier. We begin by showing that ν is a
lower bound on the optimal number of arms to eliminate:
Lemma A.3. Under the GOOD event, ν ≤ ν∗ at any time t.

Proof of Lemma A.3. ν is only increased in the while loop. We want to show that if ν = ν∗,
then the condition in the while loop cannot be met. Assume by contradiction that ν = ν∗ and
maxM∈M⟨µ̂L, g(M)⟩ > maxM∈Mν

⟨µ̂H , g(M)⟩. By the good event, we have

max
M∈M

⟨µ̂L, g(M)⟩ < max
M∈M

⟨µ, g(M)⟩
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and

max
M∈Mν

⟨µ̂H , g(M)⟩ > max
M∈Mν

⟨µ, g(M)⟩

Therefore

max
M∈M

⟨µ̂L, g(M)⟩ > max
M∈Mν

⟨µ̂H , g(M)⟩

=⇒ max
M∈M

⟨µ, g(M)⟩ > max
M∈Mν

⟨µ, g(M)⟩

and since ν = ν∗,
max

M∈Mν

⟨µ, g(M)⟩ = max
M∈M

⟨µ, g(M)⟩.

This yields the following contradiction:

max
M∈M

⟨µ, g(M)⟩ > max
M∈M

⟨µ, g(M)⟩.

More generally, under the GOOD event, Cautious Greedy never eliminates an optimal arm:
Lemma A.4 (Optimal arms are never eliminated). Under the GOOD event, the set of optimal arms
is always included in the set of active arms: support(M∗) ⊆ K(t)

Proof of Lemma A.4. Elimination may happen when the set of active arms is updated. An arm k
is eliminated at this stage if µ̂H

k < µL
(ν+1). But since ν ≤ ν∗, this implies µ̂H

k < µL
(ν∗+1). Under

the good event µ̂H
k > µk and µL

(ν∗+1) < µ(ν∗+1) so that µ̂H
k < µL

(ν∗+1) implies µk < µ(ν∗+1) and
therefore k /∈ E∗ν∗ .

Since Cautious Greedy never eliminates any optimal arm and since ν increases, ν will eventually
reach ν∗ and bad arms will no longer remain. But as long as ν < ν∗, Cautious Greedy will pay
a non-zero cost. This source of error as well as others strongly depends on the number of times
arms are pulled without collisions. Indeed, as the number of pulls without collision increases, the
reward estimates µ̂ become more accurate, making Cautious Greedy’s decisions better. Therefore,
we introduce q(t) = mink∈K(t) Tk(t), the number of times each active arm has been played without
collision.

To be able to understand how q(t) scales with t, a pre-requisite is to count the number of times that
arms are assigned at least one player. Denote τk(t) the number of times arm k has been assigned at
least one player at time t and τ(t) = mink∈K(t) τk(t). The next Lemma exhibits a lower bound on
τ(t):
Lemma A.5 ( Scaling of τ with t ). We have τ(t) ≥ max( t

ν∗+1 − ν∗, 0). Furthermore, if the
condition Line 8 in Algorithm 1 is satisfied, we have τ(t− 1) ≥ t−1

ν∗+1 .

Proof of Lemma A.5. Call tn the value of t the n-th time where t = 0 mod |U|. Between tn and
tn+1 − 1 (included) all arms have been played |Un| − un times where Un and un are the set of active
but not yet accepted arms U and the number of arms under pressure u after the updates at time t = tn.
τ increases linearly between time tn and tn+1 except for un time steps where un = νn− |[K] \K| is
the number of arms that need to be put under pressure during phase n but that are not yet eliminated
and νn is the value of ν during phase n.

We have that for tn ≤ t < tn+1 :

τ(t) ≥ τ(tn − 1) + max(t− (tn − 1)− un, 0)

= τ(tn − 1) + max((t− (tn − 1))
tn+1 − (tn − 1)− un

tn+1 − (tn − 1)
− (tn+1 − t)

un

tn+1 − (tn − 1)
, 0)

15



and

τ(tn+1 − 1)− τ(tn − 1) = tn+1 − (tn − 1)− un

= (tn+1 − (tn − 1))
tn+1 − (tn − 1)− un

tn+1 − (tn − 1)

Since tn+1 − (tn − 1) = |Kn \ An| we have:

tn+1 − (tn − 1)− un

tn+1 − (tn − 1)
=
|Kn| − |An| − un

|Kn| − |An|
≥ 1

un + 1
≥ 1

ν∗ + 1

It follows that for all n ≥ 1,

τ(tn − 1) ≥ tn − 1

ν∗ + 1

Therefore, we obtain tn ≤ t ≤ tn+1

τ(t) ≥ tn − 1

ν∗ + 1
+max((t− (tn − 1))

1

ν∗ + 1
− (tn+1 − t)

un

tn+1 − (tn − 1)
, 0)

≥ tn − 1

ν∗ + 1
+max((t− (tn − 1))

1

ν∗ + 1
− ν∗, 0)

≥ max(
t

ν∗ + 1
− ν∗,

tn − 1

ν∗ + 1
)

≥ max(
t

ν∗ + 1
− ν∗, 0)

Since this last line holds for all n, we have for any t that τ(t) ≥ max( t
ν∗+1 − ν∗, 0).

The next step is to link τ(t) to q(t) by taking collisions into account. By noting that g(Mk) ≥ p, a
first easy observation is that E[Tk | τk] ≥ τkp. We, therefore, expect q to scale approximately with
pτ . The next Lemma shows a more precise statement:

Lemma A.6. Define Rq =
∑

Rq,t where Rq,t = Rt1{GOOD}1
{
q(t) ≥ 1

3pτ(t)
}

,

E[RG] = E[Rq] + 11(ν∗ + 1)KM

Proof of Lemma A.6. Rename Tk(t) = Tk(τ(t)), to make the dependence on τ obvious. We have
the lower bound E[Tk(τ(t))] ≥ pτ(t).

We can write

E[RG] = E[
(ν∗+1)2∑

t=1

RG,t +

T∑
t=(ν∗+1)2

RG,t]

≤ (ν∗ + 1)22Mp+ E[
T∑

t=(ν∗+1)2

RG,t] (By Equation (8))

16



Then for Rt
∆
=

∑K
k=1 E[ηk(M∗)Xk]− E[ηtk(M(t))Xt

k],

E[
T∑

t=(ν∗+1)2

RG,t]

= E[
T∑

t=(ν∗+1)2

Rt(1
{
∃k ∈ K(t), Tk(τ(t)) < (1− ρ)E[Tk(τ(t))|M[1:t]]

}
+ 1

{
∀k ∈ K(t), Tk(τ(t)) ≥ (1− ρ)E[Tk(τ(t))|M[1:t]]

}
)]

≤ E[
T∑

t=(ν∗+1)2

2MpE[1
{
∃k ∈ K(t), Tk(τ(t)) < (1− ρ)E[Tk(τ(t))|M[1:t]]

}
|M[1:t]]]︸ ︷︷ ︸

(i)

(By Equation (8))

+

T∑
t=(ν∗+1)2

E[Rt1
{
∀k ∈ K(t), Tk(τ(t)) ≥ (1− ρ)E[Tk(τ(t))|M[1:t]]

}
]

︸ ︷︷ ︸
(ii)

Bounding (i):

(i) ≤ E[
T∑

t=(ν∗+1)2

2Mp

K(t)∑
k=1

P (Tk(τ(t)) < (1− ρ)E[Tk(τ(t))|M[1:t]]|M[1:t])]

≤ E[
T∑

t=(ν∗+1)2

2Mp

K(t)∑
k=1

E[exp(−ρ2

2
E[Tk(τ(t))|M[1:t]])|M[1:t]]]

≤ E[
T∑

t=(ν∗+1)2

2KMp exp(−ρ2

2
pτ(t))]

≤
+∞∑
t=1

2KMp exp(−ρ2

2
p

t

ν∗ + 1
) (By Lemma A.5)

≤ 2KMp
2(ν∗ + 1)

ρ2p

= 2KM
2(ν∗ + 1)

ρ2

Bounding (ii)

(ii) =

T∑
t=1

E[Rt1
{
∀k ∈ K(t), Tk(τ(t)) ≥ (1− ρ)E[Tk(τ(t))|M[1:t]]

}
]

≤
T∑

t=1

E[Rt1{∀k ∈ K(t), Tk(τ(t)) ≥ (1− ρ)pτ(t)}]

Setting ρ = 2
3 gives

E[RG] ≤ E[Rq] + 2(ν∗ + 1)2Mp+ 9KM(ν∗ + 1) ≤ E[Rq] + 11KM(ν∗ + 1)
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We can now focus on upper-bounding the different sources of errors. First, E[Rq] can trivially be
written as:

E[Rq] = E[Rν ] + E[RE ] + E[RM]

where Rν =

T∑
t=1

⟨µ, g(M∗)− g(M∗
ν)⟩,

RE =

T∑
t=1

⟨µ, g(M∗
ν)− g(M∗

E(t))⟩

and RM =

T∑
t=1

⟨µ, g(M∗
E(t))− g(M(t))⟩.

M∗
ν = Mµ

Mν
is the optimal assignment of players when at most ν arms can be assigned zero

players and M∗
E(t) = Mµ

ME(t)
is the optimal assignment of players when only arms not in E(t)

can be assigned zero players. Here and in the rest of the analysis, we have dropped the factors
1{GOOD}1

{
q(t) ≥ 1

3pτ(t)
}

to simplify the notations.

These three terms measure a different aspect of the regret: Rν measures the error due to ν the number
of arms under pressure being different from ν∗ the optimal number of players to eliminate, RE
measures the error due to E(t) being different from support(M∗

ν) the optimal set of arms that must
be assigned at least one player when up to ν players can be assigned zero players and RM measures
the error due to M(t) being different from M∗

E(t) the optimal assignment of players among possible
assignments inME(t).

Let us start with the first term Rν . As the number of samples seen increases, ν increases to get
closer to ν∗. The following Lemma provides a maximum on the number of samples seen before the
algorithm detects that ν should increase.
Lemma A.7 (Number of iterations before ν increases). If each active arm has been played without
collision at least q times with q ≥ qk = 8M2p2 log(2K2T 2)

(∆(k))2
, then ν ≥ k.

Proof of Lemma A.7. Call M∗,H
ν = argmaxM∈Mν

⟨µH , g(M)⟩.

max
M∈M

⟨µL, g(M)⟩ > ⟨µH , g(M∗,H
ν )⟩

⇐= ⟨µL, g(M∗)⟩ > ⟨µ+ 2ζ, g(M∗,H
ν )⟩ (By the GOOD event)

⇐= ⟨µ− 2ζ, g(M∗)⟩ > ⟨µ, g(M∗
ν)⟩+ 2⟨ζ, g(M∗,H

ν )⟩
(By the GOOD event and optimality of M∗

ν)

⇐= ⟨µ, g(M∗)− g(M∗
ν)⟩ > 2⟨ζ, g(M∗) + g(M∗,H

ν )⟩
⇐= ⟨µ, g(M∗)− g(M∗

ν)⟩ > 4Mpmax
k∈K

ζk (By Equation (8))

⇐= ⟨µ, g(M∗)− g(M∗
ν)⟩ > 4Mpmax

k∈K

√
log(2T 2K2)

2Tk(t)

⇐= 8M2p2 log(2K2T 2)

(⟨µ, g(M∗)− g(M∗
ν)⟩)2

< min
k∈K

Tk

⇐= 8M2p2 log(2K2T 2)

(⟨µ, g(M∗)− g(M∗
ν)⟩)2

< q

Note that as long as ν ≤ ν∗, Rν increases by ⟨µ, g(M∗) − g(M∗
ν)⟩. Lemma A.7 then allows to

bound Rν :
Lemma A.8 (Bound on Rν).

E[Rν ] ≤ 72M min(Mp,K)(ν∗ + 1)
log(2K2T 2)

∆(ν∗)
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Proof of Lemma A.8. Call tv the last time that ν(t) = ν and set tν∗ = T + 1 and t−1 = 0. Note that
tν + 1 necessarily verifies t = 0 mod |U| so that τ(tν) ≥ tν

ν∗+1 according to Lemma A.5.

E[Rν ] = E[
T∑

t=1

⟨µ, g(M∗)− g(M∗
ν(t))⟩]

= E[
ν∗∑
ν=0

tν∑
t=tν−1+1

⟨µ, g(M∗)− g(M∗
ν)⟩︸ ︷︷ ︸

Aν

]

= E[
ν∗∑
ν=0

(tν − tν−1)Aν ]

= E[
ν∗∑
ν=0

tνAν −
ν∗∑
ν=0

tν−1Aν ]

= E[
ν∗∑
ν=1

tν−1(Aν−1 −Aν)− t−1A0 + tν∗Aν∗ ]

= E[
ν∗∑
ν=1

tν−1(Aν−1 −Aν)]

≤ E[
ν∗∑
ν=1

(ν∗ + 1)τ(tν−1)(Aν−1 −Aν)] (By Lemma A.5)

≤ E[
ν∗∑
ν=1

3(ν∗ + 1)

p
qν−1(Aν−1 −Aν)] (By Lemma A.6)

=
3(ν∗ + 1)

p

ν∗∑
ν=1

8(Mp)2 log(2K2T 2)⟨µ, g(M∗
ν)− g(M∗

ν−1)⟩(
⟨µ, g(M∗)− g(M∗

ν−1)⟩
)2 (By Lemma A.7)

= 24M2p log(2K2T 2)(ν∗ + 1)

ν∗∑
ν=1

(
1

⟨µ, g(M∗)− g(M∗
ν−1)⟩

− ⟨µ, g(M∗)− g(M∗
ν)⟩(

⟨µ, g(M∗)− g(M∗
ν−1)⟩

)2)︸ ︷︷ ︸
∆
=lν

= 24M2p log(2K2T 2)(ν∗ + 1)

[
1

⟨µ, g(M∗)− g(M∗
ν−1)⟩

+

ν∗−1∑
ν=1

(
1

⟨µ, g(M∗)− g(M∗
ν−1)⟩

− ⟨µ, g(M∗)− g(M∗
ν)⟩(

⟨µ, g(M∗)− g(M∗
ν−1)⟩

)2)︸ ︷︷ ︸
∆
=lν

]

where qν is given in A.7 and we used Aν∗ = 0. From there, we have the following inequalities
ν∗−1∑
ν=1

lν ≤
ν∗−1∑
ν=1

(
1

⟨µ, g(M∗)− g(M∗
ν)⟩
− ⟨µ, g(M∗)− g(M∗

ν)⟩(
⟨µ, g(M∗)− g(M∗

ν−1)⟩
)2)

=

ν∗−1∑
ν=1

(
1

⟨µ, g(M∗)− g(M∗
ν)⟩
− 1

⟨µ, g(M∗)− g(M∗
ν−1)⟩

)(
1 +

⟨µ, g(M∗)− g(M∗
ν)⟩

⟨µ, g(M∗)− g(M∗
ν−1)⟩

)
≤ 2

ν∗−1∑
ν=1

(
1

⟨µ, g(M∗)− g(M∗
ν)⟩
− 1

⟨µ, g(M∗)− g(M∗
ν−1)⟩

)
≤ 2

⟨µ, g(M∗)− g(M∗
ν∗−1)⟩

We conclude the proof by using Mp ≤ min(Mp,K).
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We now focus on the second term RE . For a given ν, two things may prevent a sub-optimal choice of
arms E on which at least one player must be assigned. Either an arm in E is eliminated or an arm in
[K] \ E is accepted. Lemma A.9 shows a condition under which a sub-optimal arm i is eliminated:
Lemma A.9 (Number of samples seen before a sub-optimal arm is eliminated). Fix ν, let E∗ν =
support(M∗

ν) and let i /∈ E∗ν be a sub-optimal arm. When each arm has been played without
collision at least q times with

q ≥ qE,i =
8 log(2T 2K2)

(µ(ν+1) − µi)2

then arm i has necessarily been eliminated.

Proof of Lemma A.9. Since i /∈ E∗ν , µi < µ(ν+1), the algorithm notices that i must be eliminated if

µH
i < µL

(ν+1)

⇐= µi + 2ζi < µ(ν+1) − 2ζ(ν+1)

⇐= ζi + ζ(ν+1) <
µ(ν+1) − µi

2

⇐= 2

√
log(2T 2K2)

2q
<

µ(ν+1) − µi

2

⇐= q >
8 log(2T 2K2)

(µ(ν+1) − µi)2

Lemma A.10 shows a condition under which an optimal arm j is accepted:
Lemma A.10 (Number of samples seen before an optimal arm is accepted). Fix ν, let E∗ν =
support(M∗

E) and let j ∈ E∗ν an optimal arm. When each arm has been played without collision at
least q times with

q ≥ qA,i =
8 log(2T 2K2)

(µj − µ(ν))2

then arm j has necessarily been accepted.

Proof of Lemma A.10. Since j ∈ E∗ν , µj > µ(ν), the algorithm notices that j must be accepted if

µH
(ν) < µL

j (11)

⇐= µ(ν) + 2ζ(ν) < µj − 2ζj (12)

⇐= ζ(ν) + ζj <
µj − µ(ν)

2
(13)

⇐= 2

√
log(2T 2K2)

2q
<

µj − µ(ν)

2
(14)

⇐= q >
8 log(2T 2K2)

(µj − µ(ν))2
(15)

The two previous lemmas allow to quantify when arms are accepted or rejected. The next lemma
measures the cost of choosing a sub-optimal set of arms on which at least one player must be assigned.
Lemma A.11 (Cost of choosing a sub-optimal E). Let E a set of arms of size K − ν such that
E ̸= E∗ν = support(M∗

ν). Then, we have:

⟨µ, g(M∗
ν)−g(M∗

E)⟩ ≤

p(
∑

i∈E\E∗
ν

µ(ν+1) − µi +
∑

j∈E∗
ν\E

µj − µ(ν))
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Proof of Lemma A.11. Let E ̸= E∗ν and define indexes i1, . . . , in by
E \ E∗ν = {i1, . . . , in}

and indexes j1, . . . , jn by
E∗ν \ E = {j1, . . . , jn}

We now construct ME . Arms that are in E but not in E∗ν are assigned 1 player the corresponding
players are taken from arms in E∗ν but not in E . Formally

∀k ∈ [n],ME [ik] = 1

and
∀k ∈ [n],ME [jk] = M∗[jk]− 1

and other arms are untouched:
∀k ∈ E∗ν ∩ E ,ME [k] = M∗[k]

The cost is given by:
⟨µ, g(M∗

ν)− g(M∗
E )⟩ ≤ ⟨µ, g(M∗

ν)− g(ME)⟩

=

n∑
k=1

(µjk [g(M
∗[jk])− g(M∗[jk]− 1)]− µikp)

≤
n∑

k=1

(µjk − µik)p

≤
n∑

k=1

(µjk − µ(ν) + µ(ν+1) − µik)p

≤ p(
∑

i∈E\E∗
ν

µ(ν+1) − µi +
∑

j∈E∗
ν\E

µj − µ(ν))

We can now bound RE :
Lemma A.12 (Bound on RE ).

E[RE ] ≤
120 log(2K2T 2)

∆(ν∗)
+

ν∗∑
i=1

120 log(2T 2K2)

∆(i)

Proof of Lemma A.12. Call tv the last time that ν(t) = ν and set tν∗ = T + 1 and t−1 = 0. We can
write

RE =

T∑
t=1

⟨µ, g(M∗
ν(t))− g(M∗

E(t))⟩

=

ν∗∑
ν=0

tν∑
t=tν−1+1

⟨µ, g(M∗
ν)− g(M∗

E(t))⟩

≤
ν∗∑
ν=0

tν∑
t=tν−1+1

p(
∑

i∈E(t)\E∗
ν

(µ(ν+1) − µi) +
∑

j∈E∗
ν\E(t)

(µj − µ(ν))) (Using Lemma A.11)

=

ν∗∑
ν=0

tν∑
t=tν−1+1

p
∑

i∈E(t)\E∗
ν

(µ(ν+1) − µi)︸ ︷︷ ︸
(i)

+

ν∗∑
ν=0

tν∑
t=tν−1+1

p
∑

j∈E∗
ν\E(t)

(µj − µ(ν))︸ ︷︷ ︸
(ii)

Let us cut the execution of the algorithms in phases where phase n starts when it is the n-th time that
the condition Line 1 in Algorithm 1 is satisfied. Note again that updates of A, K, and ν occur at the
beginning of each phase. Denote Nν the phases between tν−1 + 1 and tν .
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Bounding (i) Denote τn the number of pulls of active arms at the end of phase n.

(i) ≤
ν∗∑
ν=0

tν∑
t=tν−1+1

p
∑
i/∈E∗

ν

(µ(ν+1) − µi)1{i ∈ E(t)}

=

ν∗∑
ν=1

tν∑
t=tν−1+1

p
∑
i/∈E∗

ν

(µ(ν+1) − µi)1{i ∈ E(t)}

=

ν∗∑
ν=1

∑
n∈Nν

tν∑
t=tν−1+1

p
∑
i/∈E∗

ν

(µ(ν+1) − µi)1{i ∈ E(t)}1{ t belong to phase n }

≤
ν∗∑
ν=1

∑
n∈Nν

p
∑
i/∈E∗

ν

(µ(ν+1) − µi)( Number of times arm i is pulled during phase n )

=

ν∗∑
ν=1

∑
n∈Nν

p

ν∑
i=1

(µ(ν+1) − µ(i))( Number of times arm (i) is pulled during phase n )

= p

ν∗∑
i=1

ν∗∑
ν=i

∑
n∈Nν

(µ(ν+1) − µ(i))( Number of times arm (i) is pulled during phase n )︸ ︷︷ ︸
si

where (i) the index of the arm with reward µ(i).

Let Tν,i be the number of times arm (i) has been pulled in total at the end of the epoch where
ν(t) = ν. This means

∑
ν∈Nν

Number of times arm (i) is pulled during phase n = Tν,i − Tν−1,i

Call nE,(i) the phase at which arm (i) is rejected. Call νi the epoch where arm (i) is eliminated. This
means nE,(i) ∈ Nνi . Call si =

∑νi

ν=i(µν+1 − µ(i))(Tν,i − Tν−1,i).

We have

si = (µνi+1 − µ(i))(Tνi,i − Tνi−1,i)︸ ︷︷ ︸
(iii)

+

νi−1∑
ν=i

(µ(ν+1) − ν(i))(Tν,i − Tν−1,i)︸ ︷︷ ︸
(iv)

By Lemma A.6 and Lemma A.9, Tνi,i ≤
24 log(2T 2K2)

p(µ(νi+1)−µ(i))2
so that

(iii) ≤ 24 log(2T 2K2)

p(µ(νi+1) − µ(i))

We also have

(iv) ≤ (µ(νi) − ν(i))

νi−1∑
ν=i

(Tν,i − Tν−1,i)

≤ (µ(νi) − ν(i))Tνi−1,i
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By Lemma A.6 and Lemma A.9, Tνi−1,i ≤ 24 log(2T 2K2)
p(µ(νi)

−µ(i))2
and by Lemma A.7, Tνi−1,i ≤

24M2p log(2K2T 2)
∆2

νi−1
so that

Tνi−1,i ≤ min(
24M2p log(2K2T 2)

∆2
νi−1

,
24 log(2T 2K2)

p(µ(νi) − µ(i))2
)

≤

√
24M2p log(2K2T 2)

∆2
νi−1

24 log(2T 2K2)

p(µ(νi) − µ(i))2

=
24M log(2K2T 2)

∆νi−1(µ(νi) − µ(i))

and therefore

(iv) ≤ 24M log(2K2T 2)

∆νi−1

Then either νi = ν∗ and

si ≤
24 log(2T 2K2)

µ(ν∗+1) − µ(i)
+

24M log(2K2T 2)

∆ν∗−1

or νi < ν∗ and then,

si =

νi∑
ν=i

(µν+1 − µ(i))(Tν,i − Tν−1,i)

≤ (µνi+1 − µ(i))

νi∑
ν=i

(Tν,i − Tν−1,i)

≤ (µνi+1 − µ(i))Tνi,i

≤ 24M log(2K2T 2)

∆νi

≤ 24M log(2K2T 2)

∆ν∗−1

where at the last line we used again Lemma A.9 and Lemma A.7.

So in any case

(i) ≤
ν∗∑
i=1

24 log(2T 2K2)

µ(ν∗+1) − µ(i)
+ pν∗

24M log(2K2T 2)

∆ν∗−1

Bounding (ii) we have

(ii) ≤
ν∗∑
ν=0

tν∑
t=tν−1+1

p
∑
j∈E∗

ν

(µj − µ(ν))1{j /∈ E(t)}
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We call un = νn − |[K] \ Kn| the number of arms put under pressure during phase n. We have:

(ii) ≤
ν∗∑
ν=0

∑
n∈Nν

p
∑
j∈E∗

ν

(µ(j) − µ(ν))

tν∑
t=tν−1+1

1{j /∈ E(t)}1{ t belong to phase n }

≤
ν∗∑
ν=0

∑
n∈Nν

p
∑
j∈E∗

ν

(µ(j) − µ(ν))( Number of times arm j is not pulled during phase n)

=

ν∗∑
ν=1

∑
n∈Nν

p
∑
j∈E∗

ν

(µ(j) − µ(ν))( Number of times arm j is not pulled during phase n)

≤
ν∗∑
ν=1

∑
n∈Nν

p
∑
j∈E∗

ν

(µ(j) − µ(ν))un1

n ≤ nA,j︸︷︷︸
Last phase where arm j is not accepted


≤

ν∗∑
ν=1

∑
n∈Nν

p
∑
j∈E∗

ν

(µ(j) − µ(ν))

ν∑
ν′=1

1

n ≤ nE,ν′︸ ︷︷ ︸
Last phase where arm ν′ is not rejected

1{n ≤ nA,j}

=

ν∗∑
ν′=1

p

ν∗∑
ν=ν′

K∑
j=ν+1

∑
n∈Nν

(µ(j) − µ(ν))1{n ≤ nE,ν′}1{n ≤ nA,j}︸ ︷︷ ︸
(A)

Call nν the last phase before ν is increased. We have that

(A) =

ν∗−1∑
ν=ν′

K∑
j=ν+1

∑
n∈Nν

(µ(j) − µ(ν))1{n ≤ nE,ν′}1{n ≤ nA,j}

+

K∑
j=ν∗+1

∑
n∈Nν∗

(µ(j) − µ(ν∗))1{n ≤ nE,ν′}1{n ≤ nA,j}

≤
∑
n∈N

K∑
j=ν+1

(µ(j) − µ(ν))1{n ≤ nA,j}1{n ≤ nν∗−1}+
K∑

j=ν∗+1

∑
n∈N

(µ(j) − µ(ν∗))1{n ≤ nE,ν∗}1{n ≤ nA,j}

Call τn the value of τ at the end of phase n. First notice that

n ≤ nA,j =⇒ qn−1 ≤ qA,j (qn−1: value of q at the end of phase n− 1)

=⇒ 1

3
pτn−1 ≤ qA,j (By Lemma A.6)

=⇒ τn−1 ≤
24 log(2T 2K2)

(µ(j) − µ(ν))2p
(By Lemma A.10)

=⇒ µ(j) − µν ≤

√
24 log(2T 2K2)

τn−1p

∆
= δn

Next, we write:

K∑
j=ν+1

1{n ≤ nA,j} = Number of arms not yet accepted at phase n

= τn − τn−1
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so we have:

(A) ≤
∑
n∈N

(τn − τn−1)δn

(
1{n ≤ nν∗−1}+ 1{n ≤ nE,ν∗}

)
Note that τn − τn−1 is the number of pulls during phase n which is equal to |Kn \ An| − un and
therefore equal to the number of arms that should be accepted but are not yet accepted.

Using the identity
√

24 log(2T 2K2)
τn−1p

= δn, we get

τn − τn−1 =
24 log(2T 2K2)

p

(
1

δ2n+1 − δ2n

)
=

24 log(2T 2K2)

p

(
1

δn
+

1

δn+1

)(
1

δn+1
− 1

δn

)

Let us now argue that for any n >= 1, τn ≤ 2τn−1. First, let us notice that

τn − τn−1 = |Kn−1 \ An−1| − (νn−1 − |[K] \ Kn−1|
= |Kn−1| − |An−1| − νn−1 +K − |Kn−1|
= K − |An−1| − νn−1

≤ K

Then note that τ0 = K (since all arms are active at the first iteration) so that 2τn−1 ≥ τn−1+K ≥ τn
This implies

δn−1

δn
=

√
τn

τn−1
≤
√
2.

We can then write:

(A) ≤ 24 log(2T 2K2)

p
(
√
2 + 1)

∑
n∈N

(
1

δn+1
− 1

δn

)(
1{n ≤ nν∗−1}+

∑
n∈N

1{n ≤ nE,ν}
)

We have

n ≤ nE,ν∗ =⇒ qn ≤ qE,ν∗

=⇒ 1

3
pτn−1 ≤ qE,ν∗ (By Lemma A.6)

=⇒ τn−1 ≤
24 log(2T 2K2)

(µ(ν∗+1) − µ(ν∗))2p
(By Lemma A.9)

=⇒ µ(ν∗+1) − µ(ν∗) ≤

√
24 log(2T 2K2)

τn−1p
= δn

so that
µ(ν∗+1) − µ(ν) ≤ δnE,ν

Similarly

n ≤ nν =⇒ qn ≤ qν

=⇒ 1

3
pτn−1 ≤ qν (By Lemma A.6)

=⇒ τn−1 ≤
24M2p2 log(2T 2K2)

∆2
νp

(By Lemma A.7)

=⇒ ∆ν

Mp
≤

√
24 log(2T 2K2)

τn−1p
= δn
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so that
∆ν∗−1

Mp
≤ ∆ν

Mp
≤ δnν

Using again that 1
δn
≤
√
2 1
δn−1

, we get

(A) ≤ 24 log(2T 2K2)

p
(
√
2 + 1)

√
2

1

µ(ν∗+1) − µν′
+Mp

24 log(2T 2K2)

p
(
√
2 + 1)

√
2

1

∆ν∗−1

so that

(ii) ≤
ν∗∑

ν′=1

96 log(2T 2K2)

µ(ν∗+1) − µν′
+ ν∗Mp

96 log(2T 2K2)

∆ν∗−1

where we used 2 +
√
2 ≤ 4

From the bound of (i) and (ii), we get:

RE ≤
ν∑

ν′=1

120 log(2T 2K2)

µ(ν∗+1) − µν′
+ ν∗Mp

120 log(2K2T 2)

∆ν∗−1

Since Mp ≤ 1
K we have the result.

It remains to bound RM . Recall that RM measures the mismatch between the chosen assignment
M(t) and the best possible assignment with the same support. Crucially there is no support mismatch
and therefore we are in a setting close to the full information setting which allows us to bound RM

by a quantity independent of the horizon T .

Lemma A.13 (Bound on RM ).

E[RM ] ≤ 2Mp(ν∗ + 1)2 + 2MK
3(ν∗ + 1)

r

Proof of Lemma A.13. The proof of Lemma A.13 follows similar techniques as Huang et al. (2017).

E[RM ] = E[
T∑

t=1

⟨µ, g(M∗
E(t))− g(M(t))⟩]

= E[
(ν∗+1)2∑

t=1

⟨µ, g(M∗
E(t))− g(M(t))⟩] + E[

T∑
t=(ν∗+1)2

⟨µ, g(M∗
E(t))− g(M(t))⟩]

≤ 2Mp(ν∗ + 1)2 + E[
T∑

t=(ν∗+1)2

⟨µ, g(M∗
E(t))− g(M(t))⟩]

︸ ︷︷ ︸
(i)

(By Equation (8))

Then we write

⟨µ, g(M∗
E(t))− g(M(t))⟩ ≤ E[⟨µ− µ̂, g(M∗

E(t))− g(M(t))⟩]
≤ 2MpE[|µ− µ̂|∞1{|µ− µ̂|∞ ≥ r}] (By Equation (8) and definition of r)

≤ 2MpE[
(
rP{|µ− µ̂|∞ ≥ r}+

∫ ∞

r

P{|µ− µ̂|∞ ≥ ε}dε
)
]

≤ E[2Mp
∑

k∈K(t)

(
r exp(−2q(t)r2) +

∫ ∞

r

exp(−2q(t)ε2)dε
)
]
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so we have

(i) ≤ E[
∞∑

t=(ν∗+1)2

2MpK
(
r exp(−2q(t)r2) +

∫ ∞

r

exp(−2q(t)ε2)dε
)
]

≤ E[
∞∑

t=(ν∗+1)2

2MpK
(
r exp(−21

3
pτ(t)r2) +

∫ ∞

r

exp(−21
3
pτ(t)ε2)dε

)
] (By Lemma A.6)

≤
∞∑

t=(ν∗+1)2

2MpK
(
r exp(−21

3
pmax(

t

ν∗ + 1
− ν∗, 0)r2) +

∫ ∞

r

exp(−21
3
pmax(

t

ν∗ + 1
− ν∗, 0)ε2)dε

)
(By Lemma A.5)

≤
∞∑
t=1

2MpK
(
r exp(−21

3
p

t

ν∗ + 1
r2) +

∫ ∞

r

exp(−21
3
p

t

ν∗ + 1
ε2)dε

)
≤ 2MpK

(
r
3(ν∗ + 1)

2pr2
+

∫ ∞

r

3(ν∗ + 1)

2pε2
dε
)

≤ 2MpK
3(ν∗ + 1)

2p

(1
r
+

1

r

)
= 2MK

3(ν∗ + 1)

r

so that

E[RM ] ≤ 2Mp(ν∗ + 1)2 + 2MK
3(ν∗ + 1)

r

The upper bound of Cautious Greedy in Proposition 3.1 follows by combining the previous lemmas.
We use 2Mp(ν∗+1)2 ≤ 2MK(ν∗+1)

r , 11(ν∗+1)KM ≤ 11KM(ν∗+1)
r and 2 ≤ KM(ν∗+1)

r to bound
the additive terms.

A.4 Proof of Lemma 4.1

Proof. We assume M = 2N +1. Take m1 = 1
2 , m2 = 1

2 +∆, µ1 = (m1,m2) and µ2 = (m2,m1).

Condition on ∆ such that M∗ = (N,N + 1) if µ = µ1 and M∗ = (N + 1, N) if µ = µ2 Let
us first find ∆ such that the optimal assignment is (N,N + 1) when µ = µ1 and (N + 1, N) when
µ = µ2. Assume µ = µ1, the reasoning is symmetric for µ = µ2. We want to find ∆ such that for
any −(N + 1) ≤ x ≤ N such that x ̸= 0:

g(N − x)
1

2
+ g(N + 1 + x)(

1

2
+ ∆) ≤ g(N)

1

2
+ g(N + 1)(

1

2
+ ∆) (16)
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First for x = N we look for ∆ in the form ∆ = O(p)

g(2N + 1)(
1

2
+ ∆) ≤ g(N)

1

2
+ g(N + 1)(

1

2
+ ∆)

⇐⇒ (2N + 1)(1− p)2N (
1

2
+ ∆) ≤ N

1

2
+ (N + 1)(1− p)(

1

2
+ ∆)

⇐= (2N + 1)(1− p)(
1

2
+ ∆) ≤ N

1

2
+ (N + 1)(1− p)(

1

2
+ ∆)

(Using (1− p)2N ≤ (1− p))

⇐⇒ N(1− p)(
1

2
+ ∆) ≤ N

1

2

⇐⇒ ∆ ≤ 1

2
(

1

1− p
− 1)

⇐⇒ ∆ ≤ p

2(1− p)

Then if ∆ ≤ p
1−p , Equation (16) is satisfied for x = N .

For x = −(N + 1), the left-hand side of Equation (16) is g(2N + 1) 12 ≤ g(2N + 1)( 12 +∆) so if
∆ ≤ p

1−p Equation (16) is satisfied for x = −(N + 1).

For 0 < x < N , we have

g(N − x)
1

2
+ g(N + 1 + x)(

1

2
+ ∆) ≤ g(N)

1

2
+ g(N + 1)(

1

2
+ ∆)

⇐⇒ (N − x)
1

2
+ (N + 1 + x)(1− p)1+2x(

1

2
+ ∆) ≤ N(1− p)x + (N + 1)(1− p)x+1(

1

2
+ ∆)

⇐=
(
x(1− p)x+1

)
(
1

2
+ ∆) ≤ N(1− p)x − (N − x)

1

2
(Using (1− p)2x+1 ≤ (1− p)x+1)

⇐=
(
x(1− p)x+1

)
(
1

2
+ ∆) ≤ x

2
(Using (1− p)x ≥ 1√

e
≥ 1

2 since x ≤ 1
−2 log(1−p) )

⇐=
(
x(1− p)

)
(
1

2
+ ∆) ≤ x

2
(Using (1− p)x+1 ≤ (1− p))

⇐⇒ ∆ ≤ 1

2
(

1

1− p
− 1)

⇐⇒ ∆ ≤ p

2(1− p)

Therefore if ∆ ≤ p, Equation (16) is satisfied for 0 < x < N .

For −(N + 1) < x < 0, set y = −x − 1 so that x = −y − 1 and 0 ≤ y ≤ N . We can write
g(N − x) 12 + g(N + 1+ x)( 12 +∆) = g(N + y + 1) 12 + g(N − y)( 12 +∆) < g(N + y + 1)( 12 +

∆) + g(N − y) 12 which gives the desired inequality for y = 0. For y > 0, Equation (16) is satisfied
if ∆ ≤ p

1−p . Therefore if ∆ ≤ p
1−p , Equation (16) is satisfied and therefore, the optimal assignment

if µ = µ1 is M∗ = (N,N + 1).

Computing r Let us now compute r. Assume again µ = µ1 and the reasoning is symmet-
ric for µ = µ2. We have M1 ∪ M0 = M and we know M∗ = (N,N + 1) so that r =
minµ′,argmaxM∈M⟨µ′,g(M)⟩̸=M∗ ∥µ′ − µ∥∞. Call µr = argminµ′,argmaxM∈M⟨µ′,g(M)⟩̸=M∗ ∥µ′ −
µ∥∞ and Mr = argmaxM∈M⟨µr, g(M)⟩.
Since the number of players assigned to an arm increases with the reward of this arm, we have either
µr = µ+(r1,−r1) and then Mr = M∗+(1,−1) or µr = (−r2, r2) and then Mr = M∗+(−1, 1).
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r1 is the minimum value such that

g(N + 1)(
1

2
+ r1) + g(N)(

1

2
+ ∆− r1) ≥ g(N)(

1

2
+ r1) + g(N + 1)(

1

2
+ ∆− r1)

⇐⇒ (g(N + 1)− g(N))(
1

2
+ r1) ≥ (g(N + 1)− g(N))(

1

2
+ ∆− r1)

and therefore r1 = ∆
2

r2 is the minimum value such that

g(N − 1)(
1

2
− r2) + g(N + 2)(

1

2
+ ∆+ r2) ≥ g(N)(

1

2
− r2) + g(N + 1)(

1

2
+ ∆+ r2)

⇐⇒ (g(N + 2)− g(N + 1))(
1

2
+ ∆+ r2) ≥ (g(N)− g(N − 1))(

1

2
− r2)

⇐⇒ r2(g(N + 2)− g(N + 1) + g(N)− g(N − 1)) ≥ (g(N + 1)− g(N + 2))(
1

2
+ ∆) + (g(N)− g(N − 1))

1

2

=⇒ r2 ≥
(g(N + 1)− g(N + 2))( 12 +∆) + (g(N)− g(N − 1)) 12

2(g(N)− g(N − 1))

⇐⇒ r2 ≥
((N + 1)(1− p)2 − (N + 2)(1− p)3)( 12 +∆) + (N(1− p)− (N − 1)) 12

2(N(1− p)−N − 1)

⇐⇒ r2 ≥
(1− p)2((N + 2)p− 1)( 12 +∆) + (1−Np) 12

2(1−Np)

=⇒ r2 ≥
2p(1− p)2 1

2 + (1− p)2((N + 2)p− 1)∆

2(1−Np)
(Using (1− p)2 ≤ 1)

=⇒ r2 ≥
1
4 (p−∆)

2(1−Np)
(Using (1− p)2 ≥ 1

4 since p ≤ 1
2 )

=⇒ r2 ≥
1

4
(p−∆) (Using p ≤ 1

2N )

Therefore, we choose ∆ ≤ p
6 so that ∆

2 < 1
4 (p−∆) meaning r = r1 = ∆

2 .

Improve the power of the algorithm Let A be any algorithm that we run on data µ such that either
µ = µ1 or µ = µ2 (the choice is made by an adversary). Let us increase the amount of information
available to A. A is told that the optimal solution is either µ1 or µ2. Furthermore, at each time step,
A chooses M(t) and observes a sample from arm 1 with probability g(M) and similarly for arm 2.
However A does not observe the rewards. Note that this problem is simpler than the original problem
since in the original problem A observes a sample from arm k with probability g(Mk(t)) ≤ g(M).
Therefore, at each time step, A should play either (N, N+1) or (N+1, N) since any other play would
lead to a higher regret.

Link with classical 2-arms bandit problem With the additional information A can be seen as
playing a 2 arm bandits with probabilistic triggered arms: playing arm 1 means playing M(t) =
(N,N + 1) and playing arm 2 means playing M(t) = (N + 1, N). Call i∗ the optimal arm.

We follow the technique used in Wang & Chen (2017) to rewrite a bandit problem with probabilis-
tically triggered arms into a classical bandit problem with well chosen discrete random variables:
at each time step t, A chooses an arm it ∈ {1, 2} and observes X(t) = (X1t, X2t) where Xit = 1
with probability g(M)µi, Xit = 0 with probability g(M)(1 − µi) and Xit =⊥ with probability
1− g(M).
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However, the regret of A is computed as in the original problem (and this information is known to A):

E[RA] = E[
T∑

t=1

1{it ̸= i∗} ⟨µ, g(M∗)− g(M(t))⟩]

= E[
T∑

t=1

1{it ̸= i∗} (1
2
+ ∆)(g(N + 1)− g(N)) + (

1

2
)(g(N)− g(N + 1))]

= E[
T∑

t=1

1{it ̸= i∗} (∆)(g(N + 1)− g(N))

Then, the rest of the proof is then identical to Mourtada & Gaïffas (2019). Call for i = 1, 2, let Pi be
the joint probability on (X(1), . . . ,X(T )) when µ = µi.

The regret incurred by A on the worst choice of µ is higher than the regret incurred by choosing the
worst between µ1 and µ2.

E[RA] ≥ max
i∗∈{1,2}

Ei∗ [

T∑
t=1

1{it ̸= i∗} (∆)(g(N + 1)− g(N))]

≥ 1

2

2∑
i∗=1

Ei∗ [

T∑
t=1

1{it ̸= i∗} (∆)(g(N + 1)− g(N))]

=
∆(g(N + 1)− g(N))

2

2∑
i∗=1

Ei∗ [T − Ni∗︸︷︷︸
∆
=
∑T

t=1 1{it=i∗}

]

≥ ∆(g(N + 1)− g(N))

2

T

2

2∑
i∗=1

Pi∗ [
T

2
≥ Ni∗ ]

≥ ∆(g(N + 1)− g(N))

2

T

2
(P1(N1 ≥

T

2
) + P2(N2 ≥

T

2
))

Then by Bretagnolle–Huber inequality (Th 14.2 in Lattimore & Szepesvári (2020)), we have

P1(N1 ≥
T

2
) + P2(N2 ≥

T

2
) ≥ 1

2
exp(−KL(P1,P2))

where KL is the KL-divergence.

More precisely, we have

KL(P1,P2) ≤ Tg(M)(KL(B((1
2
+ ∆)),B(1

2
)) +KL(B((1

2
)),B(1

2
+ ∆)))

≤ 4Tg(M)∆2

and therefore

E[RA] ≥
∆(g(N + 1)− g(N))

2

T

4
exp(−4Tg(M)∆2)

and since the regret increases with T (see (a)), we can assume without loss of generality that
T = ⌊ 1

4g(M)∆2 ⌋ ≥ 1
8g(M)∆2 and obtain
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E[RA] ≥
(g(N + 1)− g(N))

64g(M)∆
exp(−1)

≥ (g(N + 1)− g(N))

64Mp∆
exp(−1)

=
((N + 1)(1− p)−N)

64M∆
exp(−1)

=
(1− (N + 1)p)

64M∆
exp(−1)

≥ 1

128M∆
exp(−1) (Using p ≤ 1

2(N+1) )

A.5 Proof of Lemma 4.2

Take K = ν∗+2 arms, M players and µ = (µ1, µ0, µ0+∆(1)−∆(2), . . . , µ0+∆(1)−∆(ν∗), µ0+
∆(1)). For simplicity denote ∆ = ∆(1).

Let us choose µ1, µ0 and ∆ such that the ν∗ + 1-st best assignments are to put M − 1 player on the
first arm and one player on a different arm.

For this we need to ensure the three conditions:

g(M − 1)µ1 + g(1)(µ0 +∆) ≥ g(M − 2)µ1 + 2g(1)(µ0 +∆) (17)
g(M − 1)µ1 + g(1)µ0 ≥ g(M)µ1 (18)

g(M)µ1 ≥ g(M − 2)µ1 + g(2)(µ0 +∆) (19)

Equation (17) ensures that putting strictly less than M − 1 players on the first arm is sub-optimal.
Equation (18) ensures that putting M players on the first arm is worse than any assignment that puts
exactly M − 1 players on the first arm. Equation (19) ensures that putting stricly less than M − 1
players on the first arm is worse than putting all players on the first arm.

Equation (17) yields

g(M − 1)µ1 + g(1)(µ0 +∆) ≥ g(M − 2)µ1 + 2g(1)(µ0 +∆)

⇐⇒ (µ0 +∆) ≤ g(M − 1)− g(M − 2)

g(1)︸ ︷︷ ︸
h1

µ1

Equation (18) yields

g(M − 1)µ1 + g(1)µ0 ≥ g(M)µ1

⇐⇒ µ0 ≥
g(M)− g(M − 1)

g(1)︸ ︷︷ ︸
h2

µ1

Equation (19) yields

g(M)µ1 ≥ g(M − 2)µ1 + g(2)(µ0 + ∆)

⇐⇒ g(M)− g(M − 2)

g(2)︸ ︷︷ ︸
h3

µ1 ≥ (µ0 +∆)
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We have h1 > h2 and

h3 =
g(M)− g(M − 1) + g(M − 1)− g(M − 2)

g(2)
µ1

>
2(g(M)− g(M − 1))

2g(1)
µ1

= h2.

We therefore choose µ1 = 1, µ0 = h2+min(h1,h3)
2 and need ∆ ≤ min(h1,h3)−h2

4

Since g(M)− g(M − 1) = p(1− p)M−2(1−Mp) and

g(M)− g(M − 2) = Mp(1− p)M−1 − (M − 2)p(1− p)M−3

= p(1− p)M−3(M(1− p)2 − (M − 2))

= p(1− p)M−3(M(1− 2p+ p2)−M + 2)

= p(1− p)M−3(2− 2Mp+Mp2)

we get

h1 − h2 = (1− p)M−3(1− (M − 1)p)− (1− p)M−2(1−Mp)

= (1− p)M−3(1− (M − 1)p− (1− p)(1−Mp))

= (1− p)M−3(1− (M − 1)p− (1− p)(1−Mp))

= (1− p)M−3(1−Mp+ p− (1−Mp− p+Mp2))

= (1− p)M−3(2p−Mp2)

≥ (1− p)M−3p (Using p ≤ 1
M )

≥ (1− p)M−3p (Using p ≤ 1
M )

≥ p

M − 3
(Using minx∈[M ] g(x) = p)

and

h3 − h2 =
1

2
(1− p)M−4(2− 2Mp+Mp2)− (1− p)M−2(1−Mp)

=
1

2
(1− p)M−4(2− 2Mp+Mp2 − 2(1−Mp)(1− p)2)

=
1

2
(1− p)M−4(2− 2Mp+Mp2 − (1−Mp)(2− 4p+ 2p2))

=
1

2
(1− p)M−4(2− 2Mp+Mp2 − (2− 4p+ 2p2 − 2Mp+ 4Mp2 − 2Mp3))

=
1

2
(1− p)M−4(4p− 2p2 + 2Mp3 − 3Mp2)

≥ 1

2
(1− p)M−4(4p− (3M + 2)p2)

≥ 1

2
(1− p)M−4(p) (Using p ≤ 1

M+1 )

≥ p

2(M − 4)
(Using minx∈[M ] g(x) = p)

Noting that 2(M − 4) ≥ M − 3 ⇐⇒ M ≥ 5, we obtain that ∆ ≤ min(h1,h3)−h2

4 is implied by
∆ ≤ p

8(M−4) .
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Let Nk(T ) be the number of samples of arm k + 1 observed by the consistent algorithm A. Using
arguments similar to Lai & Robbins result Lai et al. (1985) 2 we can prove that

lim inf
T

E[Nk(T )]

log(T )
≥ 1

2∆2
(k)

If mt denotes the number of players put on arm k + 1 at stage t, then E[Nk(T )] =
∑T

t=1 g(mt).
Denote by ∆k(m) the cost of the best assignment with m > 0 players on arm k + 1, i.e.,

∆k(m) :=
(
g(M − 1)µ1 + g(1)(µ0 +∆)

)
−

(
g(M −m)µ1 + g(m)(µ0 +∆−∆(k)

)
≥

(
g(M −m)µ1 + g(m)(µ0 +∆)

)
−

(
g(M −m)µ1 + g(m)(µ0 +∆−∆(k)

)
= g(m)∆(k)

and ∆k(0) = 0.

Then consider Ck the cost of the assignment putting the optimal number of players on arm k + 1 and
the rest on arm 1, under the constraint that arm k + 1 has been played sufficiently often.

Ck = min
m1,...,mT :

∑
t g(mt)≥ log(T )

2∆2
(k)

T∑
t=1

∆k(mt) (20)

It is clear that

lim inf
T

E[R(T )]

log(T )
≥ lim inf

T

∑ν∗

k=1 Ck

log(T )

The solution of Equation (20) has a specific form: for t ∈ [τ ], mt is constant, equal to mτ , and
defined by

τg(mτ ) ≥
log(T )

2∆2
(k)

and mt = 0 afterwards (with a cost also equal to zero).

As a consequence, one gets that, for a specific value of τ∗,

Ck = τ∗∆k(mτ∗) ≥ log(T )

2∆2
(k)

∆k(mτ∗)

g(mτ∗)
≥ log(T )

2∆(k)

as ∆k(m) ≥ g(m)∆(k).

This implies that, for any consistent algorithm, one must have

lim inf
T

E[R(T )]

log(T )
≥

ν∗∑
ν=1

1

2∆(ν)

B Arms elimination when rewards are close

Lemma B.1 (Necessary conditions for arm elimination). Let k∗ = argmaxk∈[K] µk and α = Mp
K .

If p ≤ 0.1, α ∈ (2p, 1), and mink′∈[K]
µk′
µk∗ ≥ 1.3 exp(−α)(1− α), then ν∗ = 0.

Proof of Lemma B.1. From Bonnefoi et al. (2017), g is concave if x ≤ 2
− log(1−p) and so this is also

the case for x ≤ 1
− log(1−p) . Therefore, we have that for any x ≤ 1

− log(1−p) , g(x) − g(x − 1) ≤
g(y)− g(y − 1) for any y ≤ x.

Assume ν∗ > 0 and consider the optimal policy M∗. Then take an eliminated arm i and consider M′

constructed from M∗ by taking one player from k∗ and putting it on the eliminated arm i. Using M′

instead of M∗ increase the utility by: G = µip− µk(g(M
∗
k∗)− g(M∗

k∗ − 1)).

2Consider for any sub-optimal arm k the two possibilities µ and µ′ such that µ′
i = µi for all i except for

i = k where µ′
k = µ0 +∆1 + ϵ and use the same arguments as in Lai & Robbins
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Note that M∗
k∗ ≥ Mk for any k ̸= k∗ since k∗ is the best arm. In particular Mk∗ ≥ M

K and by the
hypothesis on the range of α, we have M

K > 2. Also note that by definition of ∆max, µi ≥ ρµk∗ .

We can then write :

G = µip− µk(g(M
∗
k∗)− g(M∗

k∗ − 1))

≥ µk∗

[
ρp− (g(M∗

k∗)− g(M∗
k∗ − 1))

]
(Since µi ≥ ρµk∗ )

≥ µk∗

[
ρp− (g(

α

p
)− g(

α

p
− 1))

]
(By concavity of g and M∗

k∗ ≥ M
K = α

p )

= µk∗

[
ρp− p(1− p)

α
p −2(1− α)

]
= µk∗

[
ρp− p(1− p)

α
p (1− α)

(1− p)2

]

The gain is positive if ρ ≥ 1.3 exp(−α)(1− α) since exp(−α) ≥ exp(−− log(1−p)
p α) = (1− p)

α
p

and 1.3 ≥ 1
0.92 ≥

1
(1−p)2 .

Therefore, M∗ cannot be an optimal policy. This shows that ν∗ = 0.

C Centralized UCB

C.1 Description

At time t ∈ [T ], for all k ∈ [K], compute an estimate µ̂k(t) of µk using (4) and an upper bound using
µ̂H
k (t) = min(µ̂k(t) + ζk(t), 1) where ζ is given by Equation (7) and take

M(t+ 1) = argmax
M∈M

⟨µ̂H(t), g(M)⟩

where µ̂H [k] = µ̂H
k .

The code is given in Algorithm 3.

Algorithm 3 UCB
1: Input : M (number of players), K (number of arms), p (probability that a player is active), T

(horizon)
2: Initialize estimated rewards: µ̂H = 1
3: for t from 1 to T do
4: Play argmaxM∈M⟨µ̂H , g(M)⟩
5: Compute µ̂ according to (4)
6: Compute ζ according to (7)
7: Set µ̂H = min(µ̂+ ζ,1)
8: end for

C.2 Analysis

The next Lemma gives an upper bound on the regret of UCB:
Lemma C.1 (Regret of UCB). The regret of UCB satisfies

E[RUCB ] ≤ 2

√
2K log(2T 2K2)T min(K,Mp+

K

T
) + 2 (21)

Proof. Define the GOOD event as in Lemma A.1.

From Lemma A.2, we have E[RCUCB ] = E[RUCB1{GOOD}] + 2.
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Then, under the GOOD event, we have:

RCUCB =

T∑
t=1

⟨µ, g(M∗)⟩ −
T∑

t=1

⟨µ, g(M(t))⟩

=

T∑
t=1

⟨µ− µ̂H(t), g(M∗)⟩+ ⟨µ̂H(t), g(M∗)− g(M(t))⟩+ ⟨µ̂H(t)− µ, g(M(t))⟩

≤ ⟨µ̂H(t), g(M∗)− g(M(t))⟩+ ⟨µ̂H(t)− µ, g(M(t))⟩
(Since µ̂H ≥ µ by the GOOD event)

≤
T∑

t=1

⟨µ̂H(t)− µ, g(M(t))⟩ (Since M(t) = argmaxM∈M⟨µ̂H , g(M)⟩)

=

K∑
k=1

T∑
t=1

min(1, 2ζk(t))g(Mk(t)) (Since µ ≥ max(µ̂− ζ,0) by the GOOD event)

=

K∑
k=1

T∑
t=1

min(1,

√
2
log(2T 2K2)

Tk(t)
)(g(Mk(t))− ηk(t) + ηk(t)) (*)

≤
K∑

k=1

T∑
t=1

(g(Mk(t))− ηk(t))︸ ︷︷ ︸
(i)

+

K∑
k=1

T∑
t=1

√
2
log(2T 2K2)

Tk(t)
ηk(t)︸ ︷︷ ︸

(ii)

(*) Recall the convention that µ̂k = 1 if Tk(t) = 0. In order to ease the notation, we do not make the
distinction and write 1

Tk(t)
instead of 1{Tk(t)̸=0}

Tk(t)
+ 1{Tk(t) = 0}.

We have that E[(i)] = 0 since

E[g(Mk(t))− ηk(t)] = E[g(Mk(t)]− E[E[ηk(t)|Mk(t)]]

= E[g(Mk(t)]− E[g(Mk(t)]

= 0

and

(ii) =
K∑

k=1

T∑
t=1

√
2
log(2T 2K2)ηk(t)

Tk(t)
(Since ηk(t) =

√
ηk(t) as ηk(t) ∈ {0, 1})

=

K∑
k=1

√
2 log(2T 2K2)

T∑
t=1

√
ηk(t)∑t

ρ=1 ηk(ρ)

=

K∑
k=1

√
2 log(2T 2K2)

max(Tk(T ),1)∑
i=1

1√
i

(Since ∀ρ ∈ [t], ηk(ρ) ∈ {0, 1})

≤
K∑

k=1

2
√

2 log(2T 2K2)max(Tk(T ), 1)

Then we have trivially:

E[(ii)] ≤ 2K
√
2 log(2T 2K2)T (22)
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Otherwise, we write:

E[(ii)] ≤ E[2

√√√√2K log(2T 2K2)

K∑
k=1

(Tk(T ) + 1{Tk(T ) = 0})]

(Using
∑K

i=1

√
ai ≤

√
K

∑K
i=1 ai)

≤ 2

√√√√2K log(2T 2K2)

K∑
k=1

(E[Tk(T )] + P(Tk(T ) = 0)) (By Jensen inequality)

= 2

√√√√2K log(2T 2K2)

K∑
k=1

(

T∑
ρ=1

g(Mk(ρ)) +

T∏
ρ=1

(1− g(Mk(ρ))))

≤ 2

√√√√2K log(2T 2K2)

K∑
k=1

(

T∑
ρ=1

Mkp+ 1) (Since 0 ≤ g(Mk) ≤ 1 and g(Mk) ≤Mkp)

≤ 2
√
2K log(2T 2K2)(TMp+K))

and therefore

E[(ii)] ≤ 2

√
2K log(2T 2K2)T min(K,Mp+

K

T
)

so that

E[RUCB ] ≤ 2

√
2K log(2T 2K2)T min(K,Mp+

K

T
)

E[RUCB ] ≤ 2K
√
2 log(2T 2K2)T also holds in the case where players have different probability of

activation (pi)i ∈[M ]. This is shown by following the same proof and stopping at Equation (22).

D Solving argmaxME
⟨g(M),v⟩ via a sequential algorithm

We want to solve
argmax

ME

⟨g(M),v⟩ (23)

where E ⊂ [K].

The sequential algorithm of (Dakdouk, 2022, Algorithm 5) is optimal if E = ∅ and Mp
1−p ≤ K (Th

4.2). At each time step, the sequential algorithm chooses a new player to assign to an arm based on
some arm-specific criterion that decreases with the number of players assigned to this arm (Lemma
4.2).

Call a1, . . . , aM ∈ [K] the arms chosen by the sequential algorithm for players 1, . . . ,M . The first
thing to note is that if the first player is assigned to ai and then the sequential algorithm is run. The
resulting algorithm that we call A reaches the same solution as the sequential algorithm (ignoring the
order).

Indeed as adding a player to some arm can only decrease its criterion, the assignment chosen by A
is ai, a1, . . . , ak until ak+1 = ai. Then everything happens as if the assignment chosen by A was
a1, . . . , ak+1 and therefore the rest of the run is the same as the sequential algorithm.

Consider A∗ is the algorithm that starts by assigning one player to every arm in E and then follow the
sequential algorithm. Cal E ′ the set of arms in E such that for any arm k ∈ E ′ there exists an index
i such that ai = k. Then from the previous argument A∗ behaves as if one player was assigned to
every arm in E ′′ = E \ E ′ and then the sequential algorithm is run. But since none of the arms in
E ′′ are equal to a1, . . . , aM and again because the arm specific criterion decreases with the number
of players, the run of A∗ after arms in E ′′ are assigned one player is a1, . . . , aM−|E′′| which is the
optimal solution with M − |E ′′| players. This implies that A∗ produces the optimal solution.
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