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Abstract. Transformer-based ranking models have recently advanced
active-learning tools for accelerating systematic reviews, but the inter-
nal criteria they use to rank documents are opaque, limiting their util-
ity in scientific decision making. We introduce CLARIFY, a post-hoc
explainability method for active-learning applications that (i) automati-
cally derives high-level concepts from the model’s embedding space, (ii)
quantifies each concept’s influence on ranking, and (iii) links the most
influential concepts to sentences via occlusion and re-projection without
retraining or manual intervention. Evaluated on three SYNERGY sys-
tematic review datasets, CLARIFY uncovers latent concepts and repre-
sents them in a human understandable manner. Similarity metrics show
discernible relations between these concepts and elements of the inclu-
sion criteria. By making model reasoning transparent, CLARIFY sup-
ports accountable, evidence-based decision-making in systematic-review
screening. Our open-source work can be found on GitHub/Zenodo.

Keywords: Explainable Active learning · Systematic review · XAI ·
Concept activation vectors · ASReview · Interpretability.

1 Introduction

Machine learning, and more specifically Active learning (AL), is rapidly gaining
ground in the field of systematic reviews as the key approach for semi-automating
the screening phase of systematic reviews [24, 25]. As the volume of published
literature continues to grow exponentially, the need for systems that assist with
managing this information overload becomes increasingly urgent. Traditionally,
these systems have been treated as black boxes, with most available software
being closed-source1. The software provides a ranking or suggestions but do not
explain why a given reference was deemed relevant or not.

Researchers require insight into model decision-making processes in order
to understand how predictions are made, build trust in the model, and make

1 github.com/Rensvandeschoot/software-overview-machine-learning-for-screening-
text

https://doi.org/10.5281/zenodo.16797395
https://github.com/Rensvandeschoot/software-overview-machine-learning-for-screening-text
https://github.com/Rensvandeschoot/software-overview-machine-learning-for-screening-text
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informed decisions based on its outputs. Transparency, accountability, and in-
terpretability remain essential, especially in domains such as health, where in-
clusion decisions must be both defensible and reproducible. Opacity can hinder
trust and adoption of AI assistance [18]. Reviewers are understandably cautious
about relying on a model’s inclusions and exclusions without understanding the
model’s reasoning.

In the traditional screening phase, human reviewers manually assess each ab-
stract for relevance, selecting studies for inclusion in the next stages of analysis.
Machine learning tools like ASReview2 aim to reduce this burden by predicting
which documents are most likely to meet the review’s inclusion criteria, using
an iterative process called active learning [2]. When simple models are used, for
example TF-IDF (term frequency-inverse document frequency) and regression
models, interpretability is relatively straightforward: one can trace decisions to
specific words or combinations thereof [21]. This helps the reviewer understand
and justify the tool’s behavior, which is vital in contexts where methodological
rigor is non-negotiable and lack of transparency is one of the main barriers to
implementation [15].

However, recent developments in the field of active learning for systematic
reviews show that more complex natural language processing (NLP) models,
such as transformers (large language models, LLMs), can no longer be ignored
for their performance [23]. These models better capture the nuances of human
decision-making but do so in ways that are inherently opaque. Their logic ex-
ists in high-dimensional spaces, often unaligned with symbolic reasoning used
by humans. This presents a fundamental challenge: if researchers are to remain
accountable for the inclusion and exclusion decisions made with the aid of ma-
chine learning, they need a way to understand the basis for those decisions, even
if that understanding comes after the fact.

Explainable AI techniques have been shown to complement active learn-
ing workflows effectively. A general framework of Explainable Active Learning
(XAL) exists [6], in which local explanations are provided during the annota-
tion process to improve annotator understanding and model trust. This frame-
work demonstrates that explanations can enhance user engagement and decision
confidence in iterative labeling tasks. However, the work also cautions that ex-
planations may introduce cognitive biases, emphasizing the need for carefully
designed, domain-sensitive interpretation methods. While these findings are not
situated in the context of systematic reviews, they suggest that integrating ex-
plainability into active learning can be beneficial, particularly when model de-
cisions carry scientific or clinical weight. To fill this gap, in the current study,
we propose a new method for post-hoc, concept-based explanation of models
used in systematic review screening software, namely CLARIFY. Our goal in
CLARIFY is to create a tool for decomposing the internal representations of
neural networks, so that it can provide insight into the decision-making process
of automated active learning-based screening tools such as ASReview. Rather
than requiring retraining or architectural changes, CLARIFY operates after the

2 asreview.ai/
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model has completed its predictions, making it well-suited for integration into
established review workflows. The contributions in this study are to:

1. introduce CLARIFY, the first Explainable Active Learning pipeline for sys-
tematic review screening.

2. provide a pipeline that integrates feature extractors and classification mod-
els with concept activation vectors, enabling human-readable concept scores
without the need for retraining or architectural changes.

3. reuse the active-learning state directly within the explanation pipeline
4. conduct experiments on multiple review datasets to demonstrate the gener-

alizability of the approach.

The rest of the paper is structured as follows. Section 2 explores related
work on active learning for systematic reviews and explainable machine learning.
Section 3 details the proposed CLARIFY pipeline and its integration within
existing active learning frameworks such as ASReview. Section 4 reports on
the results and Section 5 discusses limitations and future work, and section 6
concludes.

2 Related Work

In the domain of systematic reviews, recent work evaluates the performance of
various active learning strategies across a number of review datasets. The results
of the study show that the difficulty of applying active learning is not confined
to a particular research domain. Instead, the work suggests that a possible ex-
planation for difficulty could be attributed to factors such as the complexity of
inclusion criteria used to identify relevant publications [4]. Rathbone et al. [17],
as cited in Gates et al. [5], observes that the complexity of inclusion criteria can
substantially affect the precision of automated screening tools. In their evalua-
tion of Abstrackr, they note that imprecise population definitions (e.g., "young
adults") and reviews structured around multiple key questions poses challenges
for automated classification. Gates et al. extend this observation by showing
that tasks with broad or heterogeneous criteria (e.g., descriptive analyses with
no restriction by intervention or outcome) led to poor specificity and minimal
workload savings. Ferdinands et al. [4] suggest that variability in active learn-
ing performance may also stem from the complexity of the criteria themselves,
even across otherwise comparable domains. These results underscore the impor-
tance of well-defined and narrowly scoped inclusion criteria in enabling effective
automation—and potentially in making the classifier’s logic more interpretable.

More generally, Vilone and Longo [26] provide a comprehensive taxonomy
of explainable AI methods and their application domains. Their review em-
phasizes the distinction between global and local explanations, model-agnostic
versus model-specific approaches, and the varying interpretability needs across
domains. Although the review does not address active learning, it offers a con-
ceptual framework for situating post-hoc explanation techniques, such as the one
proposed here, within the broader XAI landscape.
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Jourdan et al. [10] introduce COCKATIEL, a post-hoc, concept-based,
model-agnostic explainer for neural text classifiers. It finds latent concepts in
final-layer representations, ranks their importance, and maps them to text spans
via occlusion, requiring only a non-negative embedding and no retraining.

Based on these developments, this study combines elements of XAL, ASRe-
view’s active learning approach, and COCKATIEL into a new framework CLAR-
IFY, which is a new method of explainable AI for systematic review screening
optimization. To our knowledge, this is the first explainability method specifi-
cally designed for active learning in the context of systematic reviews.

While popular explainability methods such as LIME [19], SHAP [14], or
attention-based visualizations have been applied to NLP tasks, they are not
well-suited for our setting. First, SHAP and LIME focus on local feature attri-
butions, which are often unstable in high-dimensional embedding spaces and do
not yield coherent or reusable semantic structures across documents. Attention-
based methods, while attractive due to their direct integration in transformer
architectures, have been shown to lack fidelity and can mislead users about model
causality [8]. Moreover, these techniques typically provide token-level or word-
level attributions, which do not align well with the sentence-level, concept-driven
reasoning that systematic reviewers use. Our approach instead emphasizes latent
concept discovery, enabling higher-level, reusable explanations that are better
suited to capturing structured decision criteria such as inclusion rules.

3 Methods

3.1 CLARIFY Architecture

In an active learning cycle, scientific records are iteratively screened and re-
prioritized, as implemented in frameworks such as ASReview. Each abstract is
first transformed into an embedded representation via a feature extractor h(x),
yielding a matrix A that encodes the semantic features of the record collection.
For this proof-of-concept, we employ the mxbai-embed-large-v1 model as the
embedding function. This model has shown good performance across a wide
range of models in simulations [13].

Once embedded, the active learning system iteratively trains a classifier c(x),
updating the model each time new user labels are provided. At each step, the
classifier ranks the remaining unlabeled documents by their estimated relevance,
reordering the review queue accordingly. When the user classifies additional
records, these are added to the labeled set, and the classifier is retrained. This
process continues until the screening task is completed.

To provide insight into this classifier’s decision process, we apply the CLAR-
IFY explanation method in three stages. First, we factorize the embedding ma-
trix A using Non-negative Matrix Factorization (NMF), yielding two low-rank
matrices: a concept alignment matrix U , and a concept base matrix W . The
columns of W are interpreted as latent “concepts” learned from the data, while
each row of U quantifies the degree to which a given document aligns with those
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concepts. Lee and Seung [12] show that imposing non-negativity produces a
parts-based representation: each column Wk of W captures a latent con-
cept, and any document vector is reconstructed solely by non-negative mixes of
those parts [11, 12]. Non-negativity forces negative alignments toward zero, re-
sulting in sparse representations where each document aligns with only a subset
of concepts. This sparsity enhances interpretability by allowing us to disregard
concepts with (near) zero alignment, effectively identifying which parts are ir-
relevant for a given document.

In the second step, we compute the global importance of each discovered
concept by perturbing concept activations U directly using Sobol sampling, and
measuring the resulting variance in classifier output using Total Sobol indices.
This uses the latest trained generation of the classifier c(x) in the active learning
cycle of ASReview. These indices quantify the variance in the model output
attributable to perturbations in each concept’s activation, capturing both direct
and interaction effects.

The third step involves estimating local contributions: we assess which parts
of an abstract contribute to a document’s alignment with each concept. We mask
individual sentences and create perturbations of the abstract. For each perturba-
tion, we re-embed the perturbed abstract using the same feature extractor h(x)
and project it into the concept space using the fixed concept base W using the
NMF transformation. This projection results in a new alignment matrix, reveal-
ing the new alignment for each perturbed abstract, minus the alignment for the
masked sentence to the concept base W . A strong shift in alignment suggests
that the masked sentence is strongly associated with the affected concept. While
COCKATIEL performs occlusion at the word level, we found that sentence-level
masking is more suitable for systematic reviews. In CLARIFY, we therefore ap-
ply this approach, since inclusion and exclusion criteria are often satisfied, or
violated, within single, self-contained sentences.

For practical deployment, we propose applying CLARIFY in an on-the-fly
fashion: explanations are generated for the document currently at the top of the
active learning queue—that is, the next document the screener is expected to as-
sess. While sentence-level occlusion explanations (step three) are recomputed for
each document, both the NMF decomposition and the Sobol-based global con-
cept importances can be reused across iterations. This makes CLARIFY efficient
enough to be integrated into an interactive screening workflow.

Importantly, concept extraction is performed using only the embeddings of
positively labeled documents. Since the top-ranked document is selected by the
model as most likely to be relevant, it is most informative to explain its alignment
with inclusion-related concepts. Attempting to extract concepts from documents
predicted to be irrelevant would shift the focus toward exclusion justification,
which is not aligned with how active learning operates in ASReview.

3.2 Dataset Selection

This study uses the SYNERGY dataset, a well-established benchmark in the
development and evaluation of automated tools for systematic review screen-
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ing [3], for the evaluation of CLARIFY. The dataset comprises 26 independent
review datasets, each annotated with clearly defined inclusion and exclusion cri-
teria. This availability of inclusion criteria is a key advantage over many other
datasets, allowing for a direct comparison between learned model concepts and
explicit domain rules.

From the full set, we select a subset of datasets that demonstrate high clas-
sification performance in prior simulations, as seen in Table 13. While strong
model performance does not necessarily imply the presence of well-defined crite-
ria, we specifically avoid low-performing datasets, following Ferdinands et al. [4],
suggestion that poor performance may result from vague or inconsistently ap-
plied inclusion and exclusion rules. By focusing on high-performing datasets, we
reduce the likelihood of encountering such issues, thereby increasing the chance
that the model’s decision-making is based on clearer and more stable criteria.
Selection is further refined by assessing the quality and conceptual clarity of the
inclusion and exclusion rules for each review. Priority is given to datasets where
criteria are clearly interpretable, mutually distinct, and plausibly separable in
the text.

Name Relevant records Total Records Topic

Hall_2012 [7] 104 8793 Computer science
Jeyaraman_2020 [9] 96 1175 Medicine
Menon_2022 [16] 74 975 Medicine

Table 1: Datasets used for the evaluation of CLARIFY

3.3 Implementation

The CLARIFY explainability method was adapted to operate within the AS-
Review framework. While the original implementation is based on the PyTorch
ecosystem, ASReview incorporates a range of models and utilities implemented
in both scikit-learn and TensorFlow, necessitating cross-framework integration.
To address this, a hybrid pipeline was developed that extracts final-layer em-
beddings from ASReview, formats them for compatibility with the decomposi-
tion and attribution modules, and returns sentence-level explanations for the
top-ranked documents. All code, along with configuration files, results, and doc-
umentation, is published openly via GitHub and archived on Zenodo to ensure
transparency and reproducibility.

We refactored CLARIFY into a self-contained ASReview plug-in, replacing
the PyTorch code with scikit-learn-compatible components and a lightweight
NMF-based concept module. The pipeline now (i) extracts transformer embed-
dings through MXBAI, (ii) normalizes them once via a shared min-max scaler,
(iii) restricts concept factorization and Sobol attribution to the positively la-
beled subset, and (iv) returns sentence-level heat-maps through a fast occlusion
routine built directly on ASReview’s feature interface.
3 Full Synergy table available online Full Synergy table available

https://github.com/asreview/synergy-dataset
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Figure 1 shows the schematic overview of the final CLARIFY architecture
embedded in the ASReview active-learning based system, and the pseudo code
view of this work can be found in Appendix .2.

Fig. 1: Overview of CLARIFY explainable active learning pipeline embedded in
ASReview. The figure represents the important components of the pipeline using
process and data blocks.
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Hall Jeyaraman

Menon
Fig. 2: Global concept importance across datasets. Threshold µ+σ shown in red.

4 Results

4.1 Concept Importance and Sentence-Level Highlights

To evaluate whether the CLARIFY yields useful and interpretable outputs in
the context of systematic review screening, we applied it to a select subset of
high-performing datasets from the SYNERGY benchmark. The central question
was whether the discovered concepts extracted from the model’s internal repre-
sentations, can be useful to human reviewers, either by giving insight into the
model decision mechanism or by aligning to the inclusion criteria.

We present the results in two stages. First, we present the direct outcomes
of the method, including concept importance rankings and highlighted abstracts
with sentence-level alignment. These results are shown alongside each dataset’s
inclusion criteria to support alignment analysis. Second, we present the normal-
ized cosine similarity between the identified concepts and the inclusion criteria,
to serve as a quantitative evaluation of the concept usefulness in regards to the
inclusion criteria.

Figure 2 shows global concept importance per dataset, computed as total
Sobol indices on embeddings of positively labeled records. The red horizontal line
marks the selection threshold, defined as the mean plus one standard deviation
of the positive-importance distribution ((µ+σ)). Concepts above this threshold
are used in the later analyses. In these runs, Hall and Jeyaraman each yield two
selected concepts; Menon yields three. The threshold is a pragmatic heuristic;
other cut-offs (for example a top-quantile rule or a fixed number of important
concepts) are also reasonable, providing little difference.

We observe that importance drops sharply after roughly concept 10. We
keep all 20 bars visible for transparency, since NMF was run with k=20. In our
setup, scikit-learn’s NMF initialization uses NNDSVDa, an SVD-based initial-
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izer that is energy ordered. On our positive-only data this tends to concentrate
mass in early components, yielding lower importance at higher indices [1]. Us-
ing nndsvdar or random spreads variance more evenly and can lift late-index
importances, although the set retained after the (µ + σ) threshold is largely
uninfluenced.

We set k=20 for NMF to avoid collapse into one dominant factor when k is
too small. Overcompleting the basis lets the model express variation, after which
Sobol ranking identifies the few concepts that affect the classifier; almost half
have near-zero importance. Because NMF is initialization-sensitive, the amount
and the exact indices above the threshold can change between runs, but the
pattern is consistent: a small set of high-importance concepts and a long tail of
negligible ones, consistent with COCKATIEL’s outcomes.

Inclusion Criteria Hall 2012

– An empirical study
– Focused on predicting faults in units of a software system
– Faults in code is the main output (dependent variable)

Inclusion Criteria Jeyaraman 2020

– Patients with knee osteoarthritis
– Intervention with MSC therapy
– Comparator: usual care
– Outcomes: VAS for Pain, WOMAC, Lysholm, WORMS, KOOS, and

adverse events
– Study design: Randomized controlled trials

Inclusion Criteria Menon 2021

– Explicitly identified as a “systematic review” in the title
– Assessed the effect of a non-acute, non-communicable, environmental

exposure on a health outcome
– Included studies in people or mammalian models

Figure 3, Figure 4 and Figure 5 present abstracts the datasets that were
included in the study and labeled as relevant. The color indicates concept align-
ment; values below a set threshold are omitted as the alignment with a concept
is deemed too weak to be relevant. The abstracts were selected based on con-
cept occurrence. Not all abstracts contain all concepts, some abstracts have less
or no above-threshold sentences. The computations for occlusion, embedding,
NFM projection, and delta required for visualizing alignment per abstract take
an average of 21 seconds per abstract. Timings were obtained on a 2021 4-core
laptop-class CPU. The granularity of the abstracts is sentence based.
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Fig. 3: A selection of highlighted abstracts with all concepts present from the
Hall Dataset

Fig. 4: A selection of highlighted abstracts with all concepts present from the
Jeyaraman Dataset
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Fig. 5: A selection of highlighted abstracts with all concepts present from the
Menon Dataset

4.2 Quantitative Evaluation of Concept Usefulness

As shown in the Inclusion Criteria for Hall 2012, this study applied three in-
clusion criteria. Using cosine similarity, we calculate the similarity between the
embedding of each criterion and each learned concept vector. This allows us
to assess whether certain concepts align more strongly with specific criteria. A
high similarity score for a given criterion–concept pair suggests that the concept
captures semantic information directly related to that criterion, while low scores
indicate weak or no alignment.

To calculate similarity, the inclusion criteria are embedded using h(x); the
same feature extractor applied during model training. These embeddings are
then normalized and compared, via cosine similarity, to the learned concept base
W from the NMF decomposition. Along with the inclusion criteria, the similarity
scores are computed for unrelated baseline sentences, providing a reference level.
Finally, the scores are normalized and visualized in a bar plot, with dashed
horizontal lines indicating the mean baseline similarity for each concept. The
baseline is the mean similarity to the embeddings of unrelated sentences.

Figure 6 shows the output of this process. We select the concepts identified
as important in the CLARIFY process, and compare them to the inclusion cri-
teria for a dataset. For the Hall dataset, 2 important concepts were discovered
(concept 5 and concept 7), and 3 inclusion criteria were used for the creation of
the dataset (identified as criterion 1, 2 and 3). After calculations, all three inclu-
sion criteria have similarity scores that rise clearly above the baseline for each
concept. Inclusion criterion 1 shows a strong alignment with the first important
concept, while criterion 2 is more strongly aligned with the second important
concept. Criterion 3 exhibits comparable similarity to both concepts. This pat-
tern indicates that the discovered concepts lie within the semantic space of the
inclusion criteria. The model’s concept structure is organized along dimensions
that correspond to the review’s decision rules, supporting the hypothesis that
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Fig. 6: Normalized cosine similarity for the Hall_2012 dataset between concepts
and inclusion criteria, with baseline similarity shown as dashed lines. The plot
shows the different similarity between inclusion criteria and concepts.

concept discovery near the classifier (in the final hidden layer) recovers decision-
relevant signals.

5 Discussion

5.1 Role of concept positioning

Concept extraction is performed on the embeddings produced by the feature
extractor h(x), immediately prior to classification c(x). This location within
the pipeline prioritizes the extraction of latent representations that are closely
aligned with the classifier’s decision function over the interpretability of the
concepts, as this is most useful for ASReview.

The hypothesis in this work is that these representations reflect the semantic
signals relevant to the inclusion criteria, to the extent that such signals are
captured by the model. The goal is not to reconstruct the input or surface
linguistically grounded structures, but to identify internal signals that influence
classification outcomes. Extracting concepts too early risks overfitting to shallow
lexical patterns; extracting them too late risks reducing them to direct encodings
of the predicted label.

This is not to say that directly encoding the classification prediction as a con-
cept is useless. By masking each sentence in turn, re-embedding the perturbed
text, and comparing the change in predicted relevance to the full abstract, we
obtain sentence-level alignment scores visualized in Figure 7. We interpret the
final classification output as a single concept and quantify each sentence’s effect
on the predicted relevance. This provides local accountability for a specific ab-
stract. However, it does not reveal the intermediate semantic factors the model
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relies on. It shows the impact sentences have on the classification probability,
not which latent dimensions structure the decision.

Fig. 7: Final layer accountability highlighted at sentence level for abstract from
the Hall 2012 dataset.

Reversing this perspective, CLARIFY does not provide direct accountability
for the final classification in the way shown in Figure 7. Instead, it identifies latent
concepts that represent intermediate decision signals within the model. These
should not be interpreted as explanations for the final prediction. If the goal is
to assess the contribution of individual sentences to the final classification, final-
layer occlusion as in this example is appropriate. Conversely, occlusion applied to
the final hidden layer is suited to revealing which semantic dimensions influence
the decision.

In practice, we could use final-layer occlusion for sentence-level accountabil-
ity, and final hidden-layer occlusion to explain which semantic dimensions drive
decisions.

5.2 Cognitive biases and interpretability limitations

The assumption that inclusion criteria are encoded in interpretable units is dif-
ficult to support. It is often used to explain the workings of CNN’s for images: a
complex task like digit recognition is decomposed into simple visual components
such as loops, straight lines, and intersections, and recomposed layer by layer
into digit identities. Early layers are frequently interpretable; they learn edges,
curves, and simple shapes. But move deeper into the network, and the visual-
izations quickly degrade. Later layers do not resemble meaningful visual parts
but instead appear random to the human eye. Neural networks are optimized
for task performance, not human interpretability. Often learning performance
degrades with an increased explainability [20].

The same goes for lexical challenges. Although earlier layers may offer more
interpretable patterns, they carry limited information about the final classifica-
tion outcome. Highlighting features from these layers may expose the building
blocks the model uses and how the lexical input is broken into subproblems, but
not how these components are recombined to form a classification. As a result,
such representations are not only weakly informative but potentially mislead-
ing. They may appear meaningful, yet offer no insight into why a document is
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marked relevant. To surface decision-relevant signals, we must operate further
towards the end of the pipeline, even if that means forgoing interpretability of
steps. Figure 8 visualizes this gradient.

Fig. 8: Abstract visualization of the interpretability-task alignment gradient
found in a transformer based classification pipeline.

This pattern holds for ASReview and CLARIFY. While earlier transformer
layers may contain interpretable meaningful patterns, the deeper layers, those
near the classifier, reflect highly task-specific transformations. There is no reason
to assume that latent units in these layers correspond to human-interpretable
concepts, even when the training task is structured around inclusion criteria.

This also motivates the decision not to pursue manual labeling of concepts.
The pipeline produces alignments between sentences and abstract latent units
that influence classification, but does not explain why. Any interpretation beyond
this point risks reflecting human pattern-seeking rather than grounded evidence.
This cognitive bias must be acknowledged when interacting with model expla-
nations.

5.3 Findings in Relation to the Study Objectives

Our findings can be summarized along four main objectives. First, we examined
whether latent concepts could be extracted directly from ASReview’s trans-
former’s hidden embedding layer without retraining. The results show that this
is feasible: concepts can be surfaced and presented as sentence-level highlights
accessible to users. These reflect decision-relevant internal signals rather than
surface-level lexical features. While the extracted concepts encode information
used by the model for its final predictions, further work is needed to determine
whether they form coherent, user-understandable units. Second, we explored
whether the discovered concepts align with inclusion criteria. Cosine similarity
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analyses revealed associations between concepts and criteria, suggesting that the
model’s latent space captures aspects of these criteria. However, this evidence
is correlational and does not imply that the criteria are explicitly encoded as
separable concepts. Risks of cognitive bias and interpretability limitations (see
Section 5.2) further constrain the strength of this claim. Third, we considered
the practical usefulness of the explanations for reviewers. While we demonstrate
sentence-level alignment with concept activation, their effectiveness in practice
remains inconclusive. A controlled user study would be needed to assess their im-
pact on reviewer performance. Importantly, high concept importance should not
be taken as evidence of causal contribution to inclusion decisions, and any imple-
mentation must make this distinction explicit to avoid misinterpretation. Finally,
we assessed the pipeline’s practicality for on-the-fly use in ASReview. Results in-
dicate that the method produces concept-level explanations with low latency on
standard laptop hardware. By reusing the fixed NMF basis, Sobol importances,
and ASReview’s feature extractor, and only recomputing sentence-level occlu-
sions as needed, the approach enables ad-hoc execution without retraining. The
design is model-agnostic and suitable for integration into active learning work-
flows. Looking ahead, concept labeling remains an open challenge. Assigning
coherent labels without introducing bias is difficult, but one promising direction
is to leverage similarity between concepts and sentences. Because active learning
keeps the reviewer in the loop, the system could accept reviewer-proposed labels
or criteria and return similarity scores to each concept, optionally with represen-
tative sentences. Our results suggest this interaction is viable. The approach is
simple to implement, adds minimal computational cost, and enables less biased,
user-steerable exploration of the concept space to improve understanding.

6 Conclusion

This study introduced CLARIFY, a post-hoc, concept-based explanation pipeline
for active learning screening in systematic reviews. Using embeddings from the
final hidden layer, the method factorizes the representation space with NMF
to discover latent concepts. It integrates without retraining and reuses model
elements to minimize computational cost. The pipeline was evaluated on three
SYNERGY datasets, producing ranked concept importance, concept–criterion
similarity measures, and sentence-level highlights. All code and results are openly
available [22].

CLARIFY demonstrates that post-hoc, concept-based explanations can be
integrated into active learning screening without retraining or heavy computa-
tion, while preserving model-agnosticism, with about 20 seconds per highlighted
abstract in our setup. By surfacing decision-relevant signals, the method moves
transformer-based screening models toward greater transparency and interactiv-
ity. Practical reviewer benefit requires validation in controlled studies. We see
this work as a step toward explainable systematic review tools while employing
black-box machine learning models, by (re)enabling accountability in AI-assisted
screening.
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7 Appendix

.1 Usage of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the authors used Open Source Generative
AI in order to increase language readability. After use of this tool, the authors
reviewed and edited the content as needed and take full responsibility for the
content of the publication.

.2 PseudoCode

INPUT
Dataset of abstracts with titles and labels
Feature extractor FE
Classifier CLF , Balancer BAL , Querier QRY
K = number of NMF concepts
S = number of Sobol designs

OUTPUT
Global concept importances
Per -abstract highlighted sentences with (concept , intensity)

1. EMBED AND NORMALIZE
FOR each record i IN corpus DO

SET text_i = CONCAT(title_i , abstract_i)
OBTAIN x_i = FE.EMBED(text_i)

ENDFOR
SET A = STACK(x_i)
COMPUTE A = NORMALIZE(A, θ_min , θ_max) // store θ_min , θ_max for reuse

2. ACTIVE LEARNING
INIT cycle with CLF , BAL , QRY on features A
WHILE stopping criterion NOT met DO

CALL QRY to obtain next records
OBTAIN labels for queried records
FIT CLF on labeled set with BAL

ENDWHILE
SET A_pos = SUBSET of A WHERE label_i = 1

3. CONCEPT FACTORIZATION
CALL NMF.FIT on A_pos with K components
SET W = concept basis , U = activations for A_pos

4. GLOBAL CONCEPT IMPORTANCE (SOBOL TOTAL -ORDER)
FOR each positive embedding a_i IN A_pos DO

OBTAIN Sobol perturbations guided by concept base W
ESTIMATE classifier variance using JANSEN_TOTAL_ORDER
ACCUMULATE importance scores
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ENDFOR
COMPUTE S_global = average accumulated scores
COMPUTE τ = MEAN(S_global) + STD(S_global)
SET C_top = { k | S_global[k] > τ }

5. SENTENCE -LEVEL OCCLUSION WITH FIXED W
FOR any positive record i DO

SET T_full = CONCAT(title_i , abstract_i)
SET u_full = U[i]

SPLIT T_full into components = sentences
FOR each component_j IN components DO

FORM T_minus_j by removing component_j from T_full
OBTAIN a_minus_j = FE.EMBED(T_minus_j)
COMPUTE a_minus_j = NORMALIZE(a_minus_j , θ_min , θ_max)
OBTAIN u_minus_j = NMF.TRANSFORM_W(a_minus_j , W)
COMPUTE ∆u_j = u_full - u_minus_j
RESTRICT ∆u_j to indices in C_top
SCALE ∆u_j to [0, 1]
SET concept_id = ARGMAX(∆ u_j[k])
SET intensity = MAX(∆ u_j[k])
ASSIGN component_j WITH (concept_id , intensity)

ENDFOR
ENDFOR

6. OUTPUT
DISPLAY S_global and C_top
FOR each abstract_i DO

DISPLAY components with assigned concept labels and intensities
ENDFOR
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