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Abstract

The labor market is changing rapidly, prompt-001
ing increased interest in the automatic extrac-002
tion of occupational skills from text. With the003
advent of English benchmark job description004
datasets, there is a need for systems that handle005
their diversity well. We tackle the complexity006
in occupational skill datasets tasks—combining007
and leveraging multiple datasets for skill extrac-008
tion, to identify rarely observed skills within a009
dataset, and overcoming the scarcity of skills010
across datasets. In particular, we investigate011
the retrieval-augmentation of language mod-012
els, employing an external datastore for retriev-013
ing similar skills in a dataset-unifying man-014
ner. Our proposed method, Nearest Neighbor015
Occupational Skill Extraction (NNOSE) effec-016
tively leverages multiple datasets by retriev-017
ing neighboring skills from other datasets in018
the datastore. This improves skill extraction019
without additional fine-tuning. Crucially, we020
observe a performance gain in predicting infre-021
quent patterns, with substantial gains of up to022
30% span-F1 in cross-dataset settings.023

1 Introduction024

Labor market dynamics, influenced by technologi-025

cal changes, migration, and digitization, have led026

to the availability of job descriptions (JD) on plat-027

forms to attract qualified candidates (Brynjolfsson028

and McAfee, 2011, 2014; Balog et al., 2012). JDs029

consist of a collection of skills that exhibit a char-030

acteristic long-tail pattern, where popular skills031

are more common while niche expertise appears032

less frequently across industries (Autor et al., 2003;033

Autor and Dorn, 2013), such as “teamwork” vs.034

“system design”.1 This pattern poses challenges for035

skill extraction (SE) and analysis, as certain skills036

may be underrepresented, overlooked, or emerg-037

ing in JDs. This complexity makes the extraction038

and analysis of skills more difficult, resulting in a039

1Examples are from the CEDEFOP Skill Platform.

sparsity of skills in SE datasets. We tackle this by 040

combining three different skill datasets. 041

To address the challenges in SE, we explore the 042

potential of Nearest Neighbors Language Models 043

(NNLMs; Khandelwal et al., 2020). NNLMs calcu- 044

late the probability of the next token by combining 045

a parametric language model (LM) with a distribu- 046

tion derived from the k-nearest context–token pairs 047

in the datastore. This enables the storage of large 048

amounts of training instances without the need to 049

retrain the LM weights, improving language model- 050

ing. However, the extent to which NNLMs enhance 051

application-specific end-task performance beyond 052

language modeling remains relatively unexplored. 053

Notably, NNLMs offer several advantages, as high- 054

lighted by Khandelwal et al. (2020): First, explicit 055

memorization of the training data aids generaliza- 056

tion. Second, a single LM can adapt to multiple 057

domains without domain-specific training, by in- 058

corporating domain-specific data into the datastore 059

(e.g., multiple datasets). Third, the NNLM architec- 060

ture excels at predicting rare patterns, particularly 061

the long-tail. 062

Therefore, we seek to answer the question: How 063

effective are nearest neighbors retrieval methods 064

for occupational skill extraction? Our contribu- 065

tions are as follows: 066

• To the best of our knowledge, we are the first 067

to investigate encoder-based kNN retrieval by 068

leveraging multiple datasets. 069

• Furthermore, we present a novel domain- 070

specific RoBERTabase-based language model, 071

JobBERTa, tailored to the job market domain. 072

• We conduct an extensive analysis to show 073

the advantages of kNN retrieval, in con- 074

trast to prior work that primarily focuses on 075

hyperparameter-specific analysis.2 076

2Code: anonymous.4open.science/r/nnose-3B3F.
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Figure 1: Setup of NNOSE. The data-
store consists of paired contextual to-
ken representations obtained from a fine-
tuned encoder and the corresponding BIO
tag. We use a whitening transformation
to enhance the isotropy of token represen-
tations. During inference, i.e., retrieving
tokens, we use the same whitening trans-
formation on the test token’s representa-
tion to retrieve the k-nearest neighbors
from the datastore. We interpolate the
encoder and kNN distributions with a hy-
perparameter λ as the final distribution.

2 Nearest Neighbor Skill Extraction077

Skill Extraction. The task of SE is formulated as078

a sequence labeling problem. We define a set of job079

description sentences X , where each d ∈ X repre-080

sents a set of sequences with the jth input sequence081

X j
d = {x1, x2, ..., xi}, with a corresponding target082

sequence of BIO-labels Yj
d = {y1, y2, ..., yi}. The083

labels include “B” (beginning of a skill token), “I”084

(inside skill token), and “O” (any outside token).085

The objective is to use D in training a labeling086

algorithm that accurately predicts entity spans by087

assigning an output label yi to each token xi.088

2.1 NNOSE089

The core idea of NNOSE is that we augment the090

extraction of skills during inference with a kNN091

retrieval component and a datastore consisting of092

context–token pairs. Figure 1 outlines our two-step093

approach. First, we extract skills by getting token094

representation hi from xi and assign a probability095

distribution pSE for each hi in the input sentence.096

Second, we use each hi to find the most similar097

token representations in the datastore and get the098

probability distribution pkNN, aggregated from the099

k-nearest context–token pairs. Last, we obtain the100

final probability distribution p by interpolating be-101

tween the two distributions. In addition to formaliz-102

ing NNOSE, we apply the Whitening Transforma-103

tion (Section 2.2) to the embeddings, an important104

process for kNN approaches as used in previous105

work (Su et al., 2021; Yin and Shang, 2022).106

Datastore. The datastore D comprises key–value107

pairs (hi, yi), where each hi represents the con-108

textualized token embedding computed by a fine-109

tuned SE encoder, and yi ∈ {B, I, O} denotes110

the corresponding gold label. Typically, the datas-111

tore consists of all tokens from the training set. In112

contrast to the approach employed by Wang et al.113

(2022b) for kNN–NER, where they only store B 114

and I tags in the datastore (only named entities), 115

we also include the O-tag in the datastore. This 116

allows us to retrieve non-named entities, which is 117

more intuitive than assigning non-entity probability 118

mass to the B and I tokens. 119

Inference. During inference, the NNOSE model 120

aims to predict yi based on the contextual represen- 121

tation of xi (i.e., hi). This representation is used to 122

query the datastore for kNN using an L2 distance 123

measure (following Khandelwal et al., 2020), de- 124

noted as d(·, ·). Once the neighbors are retrieved, 125

the model computes a distribution over the neigh- 126

bors by applying a softmax function with a temper- 127

ature parameter T to their negative distances (i.e., 128

similarities). This aggregation of probability mass 129

for each label (B, I, O) across all occurrences in 130

the retrieved targets is represented as: 131

pkNN(yi | xi) ∝
∑

(ki,vi)∈D

1y=vi exp

(
−d(hi,k)

T

)
. (1) 132

Items that do not appear in the retrieved targets 133

have zero probability. Finally, we interpolate the 134

nearest neighbors distribution pkNN with the fine- 135

tuned model distribution pSE using a tuned param- 136

eter λ to produce the final NNOSE distribution p: 137

p(yi | xi) = λ× pkNN (yi | xi)+
(1− λ)× pSE (yi | xi) .

(2) 138

2.2 Whitening Transformation 139

Several works (Li et al., 2020a; Su et al., 2021; 140

Huang et al., 2021) note that if a set of vectors 141

are isotropic, we can assume it is derived from the 142

Standard Orthogonal Basis, which also indicates 143
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Dataset Loc. License Train Dev. Test D (tokens)

SKILLSPAN * CC-BY-4.0 5,866 3,992 4,680 86.5K
SAYFULLINA UK Unknown 3,706 1,854 1,853 53.1K
GREEN UK CC-BY-4.0 8,670 963 336 209.5K

TOTAL 349.2K

Table 1: Dataset Statistics. We provide statistics for all three datasets, including the location and license. Input
granularity is at the token level, with performance measured in span-F1. The size of the datastore D is in tokens and
determined by embedding tokens and their context from the training sets, resulting in approximately 350K keys.
See Appendix B for examples.

that we can properly calculate the similarity be-144

tween embeddings. Otherwise, if it is anisotropic,145

we need to transform the original sentence embed-146

ding to enforce isotrophorism, and then measure147

similarity. Su et al. (2021); Huang et al. (2021)148

applies the vector whitening approach (Koivunen149

and Kostinski, 1999) on BERT (Devlin et al., 2019).150

The Whitening Transformation (WT), initially em-151

ployed in data preprocessing, aims to eliminate152

correlations among the input data features for a153

model. In turn, this can improve the performance154

of certain models that rely on uncorrelated features.155

Other works (Gao et al., 2019; Ethayarajh, 2019; Li156

et al., 2020b; Yan et al., 2021; Jiang et al., 2022b,157

among others) found that (frequency) biased to-158

ken embeddings hurt final sentence representations.159

These works often link token embedding bias to160

the token embedding anisotropy and argue it is the161

main reason for the bias. We apply WT to the token162

embeddings like previous work for nearest neigh-163

bor retrieval (Yin and Shang, 2022). In short, WT164

transforms the mean value of the embeddings into165

0 and the covariance matrix into the identity ma-166

trix, and these transformations are then applied to167

the original embeddings. We apply WT to the em-168

beddings before putting them in the datastore and169

before querying the datastore. The workflow of WT170

is detailed in Appendix A.171

3 Experimental Setup172

3.1 Data173

All datasets are in English and have different label174

spaces. We transform all skills to the same label175

space and give each token a generic tag (i.e., B,176

I, O). We give a brief description of each dataset177

below and Table 1 summarizes them:178

SKILLSPAN (Zhang et al., 2022a). This job179

posting dataset includes annotations for skills and180

knowledge derived from the ESCO taxonomy. To181

fit our approach, we flatten the two label layers into 182

one layer (i.e., BIO). The baseline is the JobBERT 183

model, which was continuously pre-trained on a 184

dataset of 3.2 million job posting sentences. The 185

industries represented in the data range from tech 186

to more labor-intensive sectors. 187

SAYFULLINA (Sayfullina et al., 2018) is used 188

for soft skill sequence labeling. Soft skills are 189

personal qualities that contribute to success, such 190

as teamwork, dynamism, and independence. Data 191

originated from the UK. This is the smallest dataset 192

among the three, with no specified industries. 193

GREEN (Green et al., 2022). A dataset for ex- 194

tracting skills, qualifications, job domain, experi- 195

ence, and occupation labels. The dataset consists 196

of jobs from the UK, and the industries represented 197

include IT, finance, healthcare, and sales. This is 198

the largest dataset among the three. 199

3.2 Models 200

We use 3 English-based LMs: 1 general-purpose 201

and 2 domain-specific models. Implementation de- 202

tails for fine-tuning and NNOSE are in Appendix C. 203

JobBERT (Zhang et al., 2022a) is a 110M 204

parameter BERT-based model continuously pre- 205

trained (Gururangan et al., 2020) on 3.2M English 206

job posting sentences. It outperforms BERTbase on 207

several skill-specific tasks. 208

RoBERTa (Liu et al., 2019). We also use 209

RoBERTabase (123M parameters). It showed to out- 210

perform JobBERT in our initial experiments and 211

we therefore include this model as a baseline. 212

JobBERTa (Ours). Given that RoBERTa out- 213

performed JobBERT, we create another baseline 214

and release a model named JobBERTa. This is a 215

RoBERTabase model continuously pre-trained (Gu- 216

rurangan et al., 2020) on the same 3.2M JD sen- 217

tences as JobBERT. 218
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Setting SKILLSPAN SAYFULLINA GREEN avg. span-F1

JobBERT (Zhang et al., 2022a) 60.47 88.16 42.55 63.73
+ kNN {D}+WT 61.06 ↑0.59 88.25 ↑0.09 43.56 ↑1.01 64.29 ↑0.56
+ kNN ∀D+WT 60.93 ↑0.48 88.26 ↑0.10 44.44 ↑1.89 64.54 ↑0.81

RoBERTa (Liu et al., 2019) 63.88 91.97 44.49 66.78
+ kNN {D}+WT 63.57 ↓0.31 91.97 –0.00 45.02 ↑0.53 66.85 ↑0.07
+ kNN ∀D+WT 63.98 ↑0.10 91.97 –0.00 44.86 ↑0.37 66.94 ↑0.16

JobBERTa (This work) 63.74 92.06 49.61 68.47
+ kNN {D}+WT 64.14 ↑0.40 91.89 ↓0.17 50.35 ↑0.74 68.79 ↑0.32
+ kNN ∀D+WT 64.24 ↑0.50

† 92.15 ↑0.09 50.78 ↑1.17
† 69.06 ↑0.59

Table 2: Test Set Results. Two settings are considered for each model based on dev. set results in Appendix D: {D}
refers to the in-dataset datastore, containing keys from the specific training data, while ∀D represents a datastore
with keys from all available training sets. The notation +WT indicates the application of Whitening Transformation
to the keys before adding them to and querying the datastore. The performance impact of using kNN is indicated
as ↑ (increase), ↓ (decrease), or – (no change). The best-performing setup for each dataset is highlighted. For the
top-performing model (JobBERTa), † signifies statistical significance over the baseline using a token-level McNemar
test (McNemar, 1947). The avg. span-F1 performance of each model across the three datasets is displayed.

4 Results219

We evaluate the performance of fine-tuning mod-220

els enhanced with NNOSE. We consider different221

setups: First, we compare using the Whitening222

Transformation (+WT) or without. Second, we ex-223

plore two datastore setups: One using an in-dataset224

datastore ({D}), where each respective training set225

is stored separately, and another where all datasets226

are stored in the datastore (∀D). In the latter setup,227

we encode all three datasets with each fine-tuned228

model, and each model has its own WT matrix. For229

example, we fine-tune a model on SKILLSPAN and230

encode the training set tokens of SKILLSPAN, SAY-231

FULLINA, and GREEN to populate the datastore.232

From the results on the development set (Table 11,233

Appendix D), we observe that adding WT consis-234

tently improves performance. Therefore, we only235

report the span-F1 scores on each test set (Table 2)236

with WT and the average over all three datasets.237

Best Model Performance. In Table 2, we show238

that the best-performing baseline model is Job-239

BERTa, achieving more than 4 points span-F1 im-240

provement over JobBERT and 2 points higher than241

RoBERTa on average. This confirms the effective-242

ness of DAPT in improving language models (Han243

and Eisenstein, 2019; Alsentzer et al., 2019; Guru-244

rangan et al., 2020; Lee et al., 2020; Nguyen et al.,245

2020; Zhang et al., 2022a).246

Best NNOSE Setting. We confirm the trends247

from dev. on test: The largest improvements come248

from using the setup with WT, especially in the 249

∀D+WT setting. All models seem to benefit from 250

the NNOSE setup, JobBERT and JobBERTa shows 251

the largest improvements, with the largest gains ob- 252

served in the ∀D+WT datastore setup. In summary, 253

∀D+WT consistently demonstrates performance en- 254

hancements across all experimental setups. 255

5 Analysis 256

As we store training tokens from all datasets in the 257

datastore, we expect the model to recall a greater 258

number of skills based on the current context dur- 259

ing inference. In turn, this would lead to improved 260

downstream model performance. We want to ad- 261

dress the challenges of SE datasets by predicting 262

long-tail patterns, and if we observe improvements 263

in detecting unseen skills in a cross-dataset setting. 264

To investigate in which situations our model im- 265

proves, we are analyzing the following: 1 The pre- 266

dictive capability of NNOSE in relation to rarely 267

occurring skills compared to regular fine-tuning 268

(Section 5.1). Skills exhibit varying frequencies 269

across datasets, we categorize the skill frequencies 270

into buckets and compare the performance between 271

vanilla fine-tuning and the inclusion of kNN. 2 272

If NNOSE actually retrieves from other datasets 273

when they are combined (Section 5.2), and if there 274

is a sign of leveraging multiple datasets, then; 3 275

How much does NNOSE enhance performance in 276

a cross-dataset setting (Section 5.3)? Our results in- 277

dicate a large performance drop when a fine-tuned 278

SE model, trained on one dataset, is applied to 279
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Figure 2: Long-tail Prediction Performance. kNN is based on the datastore with all the datasets. We categorize
the occurrences of a skill in the test set with respect to the training set. For example, a skill in the test set occurs two
times in the training set, we put this in the “low” bin. There are three frequency ranges: high: 10–15, mid–high:
7–10, mid–low: 4–6, low: 0–3. SAYFULLINA does not have any test set skills that occur more than 10 times in the
training set. On top of the bars is the number of predicted skills for the test set in each bucket.

another dataset, highlighting the sparsity across280

datasets. We demonstrate that NNOSE helps alle-281

viate this, both from an empirical perspective and282

by inspecting the prediction errors (Section 5.4).283

5.1 Long-tail Skills Prediction284

Khandelwal et al. (2020) observed that due to ex-285

plicitly memorizing the training data, NNLMs ef-286

fectively predict rare patterns. We analyze whether287

the performance of “long-tail skills” improves us-288

ing NNOSE. A visualization of the long-tail distri-289

bution of skills is in Figure 8 (Appendix E).290

We present the results in Figure 2. We investi-291

gate the performance of JobBERTa with and with-292

out kNN based on the occurrences of skills in the293

evaluation set relative to the train set. We count the294

skills in the evaluation set that occur a number of295

times in the training set, ranging from 0–15 occur-296

rences and is grouped into low, mid–low, mid–high,297

and high–frequency bins (0–3, 4–6, 7–10, 10–15,298

respectively). This approach estimates the number299

of skills the LM recalls from the training stage.300

Our findings reveal that skills with low-frequent301

skills are the most difficult and make up the largest302

bucket, and our approach is able to improve on303

them on all three datasets. For SKILLSPAN, we304

observe an improvement in the low-frequency bin,305

from 53.9→54.5 span-F1. Similarly, GREEN ex-306

hibits a similar trend with an improvement in the307

low-frequency bin (49.2→50.1). Interestingly, it308

also shows gains in most other frequency bins. Last,309

for SAYFULLINA, there is also an improvement310

(69.7→70.7 in the low bin). It is worth pointing311

out that there are many skills that fall in the low312

bin in SKILLSPAN and GREEN. This is exactly313

where NNOSE improves most for these datasets. 314

For SAYFULLINA, we notice the largest number 315

of predicted skills is in the mid–low bin. This is 316

where we also see improvements for NNOSE. 317

5.2 Retrieving From All Datasets 318

We presented the best improvements of NNOSE 319

in the ∀D+WT datastore in Section 4. An important 320

question remains: Does the ∀D+WT setting retrieve 321

from all datasets? Qualitatively, Figure 3 shows 322

the UMAP visualization (McInnes et al., 2018) of 323

representations stored in each ∀D+WT datastore. We 324

mark the retrieved neighbors with orange for each 325

downstream dev. set. In all plots, we observe that 326

GREEN is prominent in the representation space 327

(green), while SKILLSPAN (darkcyan) and SAY- 328

FULLINA (blue) form distinct clusters. Each plot 329

has its own pattern: SKILLSPAN and SAYFULLINA 330

have well-shaped clusters, while GREEN consists 331

of one large cluster. SKILLSPAN and SAYFUL- 332

LINA mostly retrieve from their own clusters. In 333

contrast, GREEN retrieves from the entire represen- 334

tation space, which could explain the largest span- 335

F1 performance gains (Table 2). This suggests that 336

kNN effectively leverages multiple datasets in most 337

cases (qualitative analysis see Appendix F). 338

5.3 Prediction of Unseen Skills 339

The UMAP plots in Figure 3 suggest that some 340

datasets are closer to each other than others. To 341

quantify this, we investigate the overlap of an- 342

notated skills between datasets and assess cross- 343

dataset performance of NNOSE on unseen skills. 344
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Figure 3: UMAP Visualization of Nearest Neighbors Retrieval. The datastore consists of the training set (+WT) of
all three datasets used in this work. Each colored dot represents a non-O token from the training set. The embeddings
are generated using JobBERTa. The orange shade represents the retrieved neighbors with k = 4 for each token that
is a skill (i.e., not an O token). Note that for the middle plot, the orange shade covers the blue clusters SAYFULLINA.
GREEN has the green shade and SKILLSPAN are the darkcyan colors.

↓Trained on SKILLSPAN SAYFULLINA GREEN

V
an

ill
a SKILLSPAN 18.05 43.17

SAYFULLINA 9.44 11.79
GREEN 29.67 15.93

ALL 59.33 90.16 44.59

+k
N

N SKILLSPAN 45.86 ↑27.81 45.44 ↑2.27
SAYFULLINA 26.16 ↑16.72 25.38 ↑13.59
GREEN 41.22 ↑11.55 46.58 ↑30.65

ALL 59.51 ↑0.31 90.33 ↑0.17 45.63 ↑1.04

Table 3: Results of Unseen Skills based on JobBERTa
(∀D+WT). In the vanilla setting, models trained on one
skill dataset are applied to another on test, showing var-
ied performance. However, applying kNN improves the
detection of unseen skills. Diagonal results can be found
in Table 2. Refer to Table 10 for tuned hyperparameters.

Overlap of Datasets. We calculate the exact345

span overlap of skills between the training sets346

of the datasets using the Jaccard similarity co-347

efficient (Jaccard, 1901): J(A,B) = |A∩B|
|A∪B| ,348

where A and B are sets of multi-token spans349

(e.g., “manage a team”) from two separate train-350

ing sets. The Jaccard similarity coefficients351

are as follows: J(SKILLSPAN, SAYFULLINA)352

= 0.35, J(SAYFULLINA, GREEN) = 0.10, and353

J(SKILLSPAN, GREEN) = 0.29. These Jaccard354

coefficients indicate overlap between unique skill355

spans across datasets, suggesting that NNOSE can356

introduce the model to new and unseen skills.357

Results. Table 3 presents the performance of Job-358

BERTa across datasets. For completeness, we in-359

clude a baseline where JobBERTa is fine-tuned on360

a union of all datasets (ALL). We notice training on361

the union of the data never leads to the best target 362

dataset performance. Generally, we observe that 363

in-domain data is best, both in vanilla and NNOSE 364

setups (diagonal in Table 3). Performance drops 365

when a model is applied to a dataset other than the 366

one it was trained on (off-diagonal). Using NNOSE 367

leads to substantial improvements across the chal- 368

lenging off-diagonal (cross-dataset) settings, while 369

performance remains stable within datasets. We 370

observe the largest improvements when applied to 371

SAYFULLINA, with up to a 30% increase in span- 372

F1. This is likely due to SAYFULLINA consisting 373

mostly of soft skills, which are less prevalent in 374

SKILLSPAN and GREEN, making it beneficial to 375

introduce soft skills. Conversely, when the model 376

is trained on SAYFULLINA, the absolute improve- 377

ment on SKILLSPAN is lower, indicating that skill 378

datasets can benefit each other to different extents. 379

Cross-dataset Long-tail Analysis. Table 3 380

shows improvements when NNOSE is used in 381

favor of vanilla fine-tuning. Figure 4 presents 382

the long-tail performance analysis in the cross- 383

dataset scenario, similar to Figure 2. We ob- 384

serve the largest gains with NNOSE in the low 385

or mid–low frequency bins. However, excep- 386

tions are SKILLSPAN→GREEN and SAYFUL- 387

LINA→GREEN, where most gains occur in the mid– 388

high bin. Notably, SAYFULLINA→GREEN demon- 389

strates higher performance with NNOSE, where all 390

6 skills are incorrectly predicted in the mid–high 391

bin. An analysis of precision and recall in Table 12 392

(Appendix G) substantiates that the improvements 393

are both precision and recall-based, with gains of 394
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Figure 4: Cross-dataset Long-tail Performance. Similar to Figure 2, we plot the cross-dataset long-tail perfor-
mance. NNOSE uses the datastore with all datasets. Training and evaluation data (test) are indicated in graph
titles. Frequency bins are based on the training data span frequency; there are three frequency ranges: high: 10–15,
mid–high: 7–10, mid–low: 4–6, low: 0–3.

up to 40 recall points and 35.4 precision points in395

GREEN→SAYFULLINA. There is also an improve-396

ment up to 35.5 recall points and 34.1 precision397

points for SKILLSPAN→SAYFULLINA. This fur-398

ther solidifies that memorizing tokens (i.e., stor-399

ing all skills in the datastore) helps recall as men-400

tioned in Khandelwal et al. (2020), and more im-401

portantly, highlighting the benefits of NNOSE in402

cross-dataset scenarios for SE.403

5.4 Qualitative Check on Prediction Errors.404

We perform a qualitative analysis on the false posi-405

tives (fp) and false negatives (fn) of NNOSE pre-406

dictions compared to vanilla fine-tuning for each407

dataset. This analysis tells us whether a prediction408

corresponds to an actual skill, even if it does not409

contribute positively to the span-F1 metric. We ob-410

serve that NNOSE produces a significant number411

of false positives that are “similar” to genuine skills.412

In Table 4, for each dataset, we picked five fps and413

fns that represent hard, soft, and personal skills414

well (if applicable). We show the fps and fns for415

JobBERTa with NNOSE, we only show predictions416

that are not in the vainlla model predictions. In417

SAYFULLINA, there is only one fn. We notice from418

the errors, and especially the fps, that these are 419

definitely skills, indicating the benefit of NNOSE 420

helping to predict new skills or missed annotations. 421

6 Related Work 422

Skill Extraction. The dynamic nature of labor 423

markets has led to an increase in tasks related 424

to JD, including skill extraction (Kivimäki et al., 425

2013; Zhao et al., 2015; Sayfullina et al., 2018; 426

Smith et al., 2019; Tamburri et al., 2020; Shi et al., 427

2020; Chernova, 2020; Bhola et al., 2020; Gugnani 428

and Misra, 2020; Fareri et al., 2021; Konstantini- 429

dis et al., 2022; Zhang et al., 2022a,b,c; Green 430

et al., 2022; Gnehm et al., 2022; Beauchemin et al., 431

2022; Decorte et al., 2022; Ao et al., 2023; Goyal 432

et al., 2023; Zhang et al., 2023). These works 433

employ methods such as sequence labeling (Say- 434

fullina et al., 2018; Smith et al., 2019; Chernova, 435

2020; Zhang et al., 2022a,c), multi-label classifica- 436

tion (Bhola et al., 2020), and graph-based meth- 437

ods (Shi et al., 2020; Goyal et al., 2023). Re- 438

cent methodologies include domain-specific mod- 439

els where LMs are continuously pre-trained on 440

unlabeled JD (Zhang et al., 2022a; Gnehm et al., 441

2022). However, none of these methodologies in- 442
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False Positives False Negatives

cleaning GCP
SKILLSPAN decisive IBM MQ

Apache Camel AWS
building consumer demand for sustainable products budget responsible

empathy leadership
SAYFULLINA leadership management

communication
ability to manage and prioritise multiple assignments and tasks

SQL scripting languages software engineering
GREEN Manage a team development

troubleshooting activities DevOps
dealing with tenants Cisco network administration

Table 4: FPs & FNs of NNOSE. We show several examples of false positives and false negatives in each dataset.
We only show the predictions of NNOSE that are not in the vanilla model predictions.

troduce a retrieval-augmented model like NNOSE.443

General Retrieval-augmentation. In retrieval444

augmentation, LMs can utilize external modules445

to enhance their context-processing ability. Two446

approaches are commonly used: First, using a sepa-447

rately trained model to retrieve relevant documents448

from a collection. This approach is employed in449

open-domain question answering tasks (Petroni450

et al., 2021) and with specific models such as451

ORQA (Lee et al., 2019), REALM (Guu et al.,452

2020), RAG (Lewis et al., 2020), FiD (Izacard and453

Grave, 2021), and ATLAS (Izacard et al., 2022).454

Second, previous work on explicit memoriza-455

tion showed promising results with a cache (Grave456

et al., 2017), which serves as a type of datastore.457

The cache contains past hidden states of the model458

as keys and the next word as tokens in key–value459

pairs. Memorization of hidden states in a datastore,460

involves using the kNN algorithm as the retriever.461

The first work of the kNN algorithm as the retrieval462

component was by Khandelwal et al. (2020), lead-463

ing to several LM decoder-based works.464

Decoder-based Nearest Neighbor Approaches.465

Decoder-based nearest neighbors approaches are466

primarily focused on language modeling (Khan-467

delwal et al., 2020; He et al., 2021; Yogatama468

et al., 2021; Ton et al., 2022; Shi et al., 2022; Jin469

et al., 2022; Bhardwaj et al., 2022; Xu et al., 2023)470

and machine translation (Khandelwal et al., 2021;471

Zheng et al., 2021; Jiang et al., 2021, 2022a; Wang472

et al., 2022a; Martins et al., 2022a,b; Zhu et al.,473

2022; Du et al., 2023; Zhu et al., 2023; Min et al.,474

2023b,a). These approaches often prioritize effi-475

ciency and storage space reduction, as the datas-476

tores for these tasks can contain billions of tokens. 477

Encoder-based Nearest Neighbor Approaches. 478

Encoder-based nearest neighbor approaches have 479

been explored in tasks such as named entity recog- 480

nition (Wang et al., 2022b) and emotion classifica- 481

tion (Yin and Shang, 2022). Here, the datastores 482

are limited to single datasets with the sentence (or 483

token) gold label pairs. Instead, we show the po- 484

tential of adding multiple datasets in the datastore. 485

7 Conclusion 486

We introduce NNOSE, an LM that incorporates and 487

leverages a non-parametric datastore for nearest 488

neighbor retrieval of skill tokens. To the best of our 489

knowledge, we are the first to introduce the nearest 490

neighbors retrieval component for the extraction of 491

occupational skills. We evaluated NNOSE on three 492

relevant skill datasets with a wide range of skills 493

and show that NNOSE enhances the performance 494

of all LMs used in this work without additionally 495

tuning the LM parameters. Through the combi- 496

nation of train sets in the datastore, our analysis 497

reveals that NNOSE effectively leverages all the 498

datasets by retrieving tokens from each. Moreover, 499

NNOSE not only performs well on rare skills but 500

also enhances the performance of more frequent 501

patterns. Lastly, we observe that our baseline mod- 502

els exhibit poor performance when applied in a 503

cross-dataset setting. However, with the introduc- 504

tion of NNOSE, the models improve across all set- 505

tings. Overall, our findings indicate that NNOSE is 506

a promising approach for application-specific skill 507

extraction setups and potentially helps discover 508

skills that were missed in manual annotations. 509
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Limitations510

We consider several limitations: One is the limited511

diversity of the datasets used in this work. Our512

study was constrained by the use of only three En-513

glish datasets. By focusing solely on English data,514

we might have overlooked insights that exist in515

other languages. While these datasets were care-516

fully selected to ensure relevance and quality, the517

limited scope of the data may restrict the generaliz-518

ability of our findings to other SE datasets. Future519

research includes incorporating a wider range of520

datasets from diverse sources to obtain a more com-521

prehensive understanding of the topic. Potential522

interesting future work should include validation523

on whether NNOSE works in a multilingual setting.524

Another limitation is that we do skill detection525

and not specific labeling of the extracted spans, i.e.,526

extracting generic B, I, O tags. This was to ensure527

that the datasets could be used in unison in the528

datastore. Interesting future work could extending529

NNOSE to include labeled skills in the datastore.530

Ethics Statement531

The subject of job-related language models is a532

highly contentious topic, often sparking intense533

debates surrounding the issue of bias. We acknowl-534

edge that LMs such as JobBERTa and NNOSE535

possess the potential for inadvertent consequences,536

such as unconscious bias and dual-use when em-537

ployed in the candidate selection process for spe-538

cific job positions. There are research efforts to539

develop fairer recommender systems in the field of540

human resources, focusing on mitigating biases541

(e.g., Mujtaba and Mahapatra, 2019; Raghavan542

et al., 2020; Deshpande et al., 2020; Köchling and543

Wehner, 2020; Sánchez-Monedero et al., 2020; Wil-544

son et al., 2021; van Els et al., 2022; Arafan et al.,545

2022). Nevertheless, one potential approach to alle-546

viating such biases involves the retrieval of sparse547

skills for recall (e.g., this work). It is important548

to note, however, that we have not conducted an549

analysis to ascertain whether this particular method550

exacerbates any pre-existing forms of bias.551
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A Whitening Transformation Algorithm1052

Algorithm 1: Whitening Transformation
Workflow

1 input: Embeddings {xi}Ni=1;
2 Compute µ = 1

N

∑N
i=1 xi and Σ of {xi}Ni=1

3 Compute U,Λ, U⊤ = SVD(Σ)

4 Compute W = U
√
Λ−1

5 for i = 1, 2, ..., n do
6 x̃i = (xi − µ)W
7 end
8 return {x̃i}Ni=1;

We apply the whitening transformation to the1053

query embedding and the embeddings in the datas-1054

tore. We can write a set of token embeddings as a1055

set of row vectors: {xi}Ni=1. Additionally, a linear1056

transformation x̃i = (xi − µ)W is applied, where1057

µ = 1
N

∑N
i=1 xi. To obtain the matrix W , the fol-1058

lowing steps are conducted: First, we obtain the1059

original covariance matrix1060

Σ =
1

N

N∑
i=1

(xi − µ)⊤ (xi − µ) . (3)1061

Afterwards, we obtain the transformed covari-1062

ance matrix Σ̃ = W⊤ΣW , where we specify1063

Σ̃ = I . Therefore, Σ =
(
W⊤)−1

W−1 =1064 (
W−1

)⊤
W−1. Here, Σ is a positive definite sym-1065

metric matrix that satisfies the following singu-1066

lar value decomposition (SVD; Golub and Rein-1067

sch, 1971) as indicated by Su et al. (2021): Σ =1068

UΛU⊤. U is an orthogonal matrix, Λ is a diagonal1069

matrix, and the diagonal elements are all positive.1070

Therefore, let W−1 =
√
ΛU⊤, we obtain the so-1071

lution: W = U
√
Λ−1. Putting it all together, as1072

input, we have the set of embeddings {xi}Ni=1. We1073

compute µ and Σ of {xi}Ni=1. Then, we perform1074

SVD on Σ to obtain matrices U , Λ, and U⊤. Us-1075

ing these matrices, we calculate the transformation1076

matrix W . Finally, we apply the transformation to1077

each embedding in the set by subtracting µ and mul-1078

tiplying by W . We are left with x̃i = (xi − µ)W .1079

Note that we do WT before we store the embedding1080

in the datastore, and apply WT to the token embed-1081

ding before we query the datastore.1082

We show the Whitening Transformation proce-1083

dure in Algorithm 1. Note that Li et al. (2020a); Su1084

et al. (2021) introduced a dimensionality reduction1085

factor k on W (W [:, : k]). he diagonal elements in1086

the matrix Λ obtained from the SVD algorithm are 1087

in descending order. One can decide to keep the 1088

first k columns of W in line 6. This is similar to 1089

PCA (Abdi and Williams, 2010). However, empiri- 1090

cally, we found that reducing dimensionality had a 1091

negative effect on downstream performance, thus 1092

we omit that in this implementation. 1093

B Data Examples 1094

SKILLSPAN Figure 5
SAYFULLINA Figure 6
GREEN Figure 7

Table 5: Data example references for each dataset.

In Table 5, we refer to several listings of exam- 1095

ples of the datasets. Notably in SKILLSPAN, the 1096

original samples contain two columns of labels. 1097

These refer to skills and knowledge. To accom- 1098

modate for the approach of NNOSE, we merge 1099

the labels together and thus removing the possible 1100

nesting of skills. Zhang et al. (2022a) mentions 1101

that there is not a lot of nesting of skills. Follow- 1102

ing Zhang et al. (2022a), we prioritize the skills 1103

column when merging the labels. When there is 1104

nesting, we keep the labels of skills and remove the 1105

knowledge labels. 1106

C Implementation Details 1107

General Implementation. We obtain all LMs 1108

from the Transformers library (Wolf et al., 2020) 1109

and implement JobBERTa using the same library. 1110

All learning rates for fine-tuning are 5× 10−5 us- 1111

ing the AdamW optimizer (Loshchilov and Hutter, 1112

2019). We use a batch size of 16 and a maximum 1113

sequence length of 128 with dynamic padding. The 1114

models are trained for 20 epochs with early stop- 1115

ping using a patience of 5. We implement the re- 1116

trieval component using the FAISS library (John- 1117

son et al., 2019), which is a standard for nearest 1118

neighbors retrieval-augmented methods.3 1119

JobBERTa. We apply domain-adaptive pre- 1120

training (Gururangan et al., 2020), which involves 1121

continued self-supervised pre-training of a large 1122

LM on domain-specific text. This approach en- 1123

hances the modeling of text for downstream tasks 1124

within the domain. We continue pre-training on a 1125

roberta-base checkpoint with 3.2M job posting 1126

3https://faiss.ai/
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1 Experience O
2 in O
3 working B
4 on I
5 a I
6 cloud-based I
7 application I
8 running O
9 on O

10 Docker B
11 . O
12

13 A O
14 degree B
15 in I
16 Computer I
17 Science I
18 or O
19 related O
20 fields O
21 . O

Figure 5: Data Example for
SkillSpan. In SKILLSPAN, note
the long skills.

1 ability O
2 to O
3 work B
4 under I
5 stress I
6 condition O
7

8 due O
9 to O

10 the O
11 dynamic B
12 nature O
13 of O
14 the O
15 group O
16 environment O
17 , O
18 the O
19 ideal O
20 candidate O
21 will O

Figure 6: Data Example for Say-
fullina. In SAYFULLINA, the skills
are usually soft-like skills.

1 A O
2 sound O
3 understanding O
4 of O
5 the O
6 Care B
7 Standards I
8 together O
9 with O

10 a O
11 Nursing B
12 qualification I
13 and O
14 current O
15 NMC B
16 registration I
17 are O
18 essential O
19 for O
20 this O
21 role O

Figure 7: Data Example for
Green. There are many qualifica-
tion skills (e.g., certificates).

sentences from Zhang et al. (2022a). We use a1127

batch size of 8 and run MLM for a single epoch1128

following Gururangan et al. (2020). The rest of1129

the hyperparameters are set to the defaults in the1130

Transformer library.41131

NNOSE Setup. Following previous work, the1132

keys used in NNOSE are the 768-dimensional rep-1133

resentation logits obtained from the final layer of1134

the LM (input to the softmax). We perform a single1135

forward pass over the training set of each dataset1136

to save the keys and values, i.e., the hidden rep-1137

resentation and the corresponding gold BIO tag.1138

The FAISS index is created using all the keys to1139

learn 4096 cluster centroids. During inference, we1140

retrieve k neighbors. The index looks up 32 cluster1141

centroids while searching for the nearest neighbors.1142

For all experiments, we compute the squared Eu-1143

clidean (L2) distances with full precision keys. The1144

difference in inference speed is almost negligible,1145

with the kNN module taking a few extra seconds1146

4https://github.com/huggingface/transformers/
blob/main/examples/pytorch/language-modeling/
run_mlm.py

compared to regular inference. For the exact hy- 1147

perparameter values, we indicate them in the next 1148

paragraph. 1149

Hyperparameters NNOSE. The best- 1150

performing hyperparameters and search space can 1151

be found in Table 6, Table 7, Table 8, and Table 9. 1152

We report the k-nearest neighbors, λ value, and 1153

softmax temperature T for each dataset and model. 1154

In Table 10, we show the hyperparameters for 1155

the cross-dataset analysis. In the vanilla setting, 1156

we apply the models trained on a particular skill 1157

dataset to another skill dataset, similar to trans- 1158

fer learning. We observe a significant discrepancy 1159

in performances cross-dataset, indicating a wide 1160

range of skills. However, when kNN is applied, 1161

it improves the detection of unseen skills. The 1162

datastore contains tokens from all datasets. 1163

D Development Set Results 1164

We show the dev. set results in Table 11. Overall, 1165

the patterns of improvements hold across datasets 1166

and models. We base the test set result on the 1167

best-performing setups in the development set, i.e., 1168
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Dataset → SKILLSPAN SAYFULLINA GREEN

JobBERT k 4 4 16
λ 0.3 0.3 0.15
T 0.1 2.0 10.0

RoBERTa k 32 4 64
λ 0.3 0.3 0.25
T 10.0 0.1 10.0

JobBERTa k 16 4 8
λ 0.2 0.1 0.1
T 5.0 10.0 10.0

k {4, 8, 16, 32, 64, 128}
Search Space λ {0.1, 0.15, 0.2, 0.25, ..., 0.9}

T {0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0}

Table 6: Tuned Hyperparameters on Dev. These are
for {D}.

Dataset → SKILLSPAN SAYFULLINA GREEN

JobBERT k 4 4 64
λ 0.35 0.35 0.4
T 2.0 0.1 5.0

RoBERTa k 32 4 16
λ 0.35 0.45 0.25
T 0.1 0.1 1.0

JobBERTa k 64 128 128
λ 0.25 0.35 0.45
T 10.0 0.5 10.0

k {4, 8, 16, 32, 64, 128}
Search Space λ {0.1, 0.15, 0.2, 0.25, ..., 0.9}

T {0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0}

Table 7: Tuned Hyperparameters on Dev. These are
for {D}+WT .

Dataset → SKILLSPAN SAYFULLINA GREEN

JobBERT k 4 16 32
λ 0.3 0.25 0.15
T 10.0 5.0 10.0

RoBERTa k 16 8 8
λ 0.15 0.1 0.1
T 10.0 10.0 10.0

JobBERTa k 8 4 8
λ 0.2 0.15 0.1
T 0.5 0.1 10.0

k {4, 8, 16, 32, 64, 128}
Search Space λ {0.1, 0.15, 0.2, 0.25, ..., 0.9}

T {0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0}

Table 8: Tuned Hyperparameters on Dev. These are
for ∀D.

Dataset → SKILLSPAN SAYFULLINA GREEN

JobBERT k 32 4 128
λ 0.3 0.3 0.4
T 1.0 0.5 2.0

RoBERTa k 128 128 64
λ 0.35 0.1 0.25
T 0.1 0.5 0.1

JobBERTa k 32 8 128
λ 0.15 0.3 0.2
T 0.1 0.1 2.0

k {4, 8, 16, 32, 64, 128}
Search Space λ {0.1, 0.15, 0.2, 0.25, ..., 0.9}

T {0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0)}

Table 9: Tuned Hyperparameters on Dev. These are
for ∀D+WT.

↓Trained on Hyperparams. SKILLSPAN SAYFULLINA GREEN

SKILLSPAN k 16 32
λ 0.9 0.7
T 0.1 0.5

SAYFULLINA k 64 32
λ 0.9 0.8
T 0.1 0.1

GREEN k 32 32
λ 0.85 0.9
T 0.5 0.1

ALL k 4 128 32
λ 0.25 0.6 0.65
T 1.0 1.0 0.5

k {4, 8, 16, 32, 64, 128}
Search Space λ {0.1, 0.15, 0.2, 0.25, ..., 0.9}

T {0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0}

Table 10: Results of Unseen Skills (Development Set)
based on JobBERTa.

{D}+WT and ∀D+WT.1169

E Frequency Distribution of Skills1170

We show the skill frequency distribution of the1171

datasets in Figure 8, as mentioned in Section 5.1.1172

Here, we show evidence of the long-tail pattern in 1173

skills for each dataset. There is a cut-off at count 1174

15 for GREEN, indicating that there are skills in the 1175

development set that occur more than 15 times. 1176

F Qualitative Results NNOSE 1177

We show several qualitative results of NNOSE. In 1178

Table 13, we show a qualitative sample of using 1179

JobBERTa on SKILLSPAN. The current token is 1180

“IT” with gold label O. The language model puts 0.4 1181

softmax probability on the tag I. By retrieving the 1182

nearest neighbors, the final probability mass gets 1183

shifted towards O with probability 0.43, which is 1184

the correct tag. 1185

In Table 14, we show a qualitative sample of us- 1186

ing JobBERTa on SKILLSPAN with multi-token an- 1187

notations and how this behaves. The current skill is 1188

“coding skills” with gold labels B and I respectively. 1189

Both the model and kNN puts high confidence in 1190

the correct label. Note that the nearest neighbors 1191

of “coding” are quite varied, which shows the ben- 1192
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Dataset (Dev.) → Setting SKILLSPAN SAYFULLINA GREEN avg. Span-F1

JobBERT (Zhang et al., 2022a) 61.08 89.26 37.27 62.54
+ kNN {D} 61.56 ↑0.48 89.69 ↑0.43 37.48 ↑0.21 62.91 ↑0.37
+ kNN {D}+WT 61.77 ↑0.69 89.78 ↑0.52 38.07 ↑0.80 63.21 ↑0.67
+ kNN ∀D 61.58 ↑0.50 89.50 ↑0.24 37.27 –0.00 62.78 ↑0.24
+ kNN ∀D+WT 61.50 ↑0.42 89.37 ↑0.11 38.19 ↑0.92 63.02 ↑0.48

RoBERTa (Liu et al., 2019) 65.02 92.91 40.33 66.09
+ kNN {D} 65.36 ↑0.34 92.76 ↓0.15 40.53 ↑0.20 66.22 ↑0.13
+ kNN {D}+WT 65.34 ↑0.32 93.07 ↑0.16 41.22 ↑0.89 66.54 ↑0.45
+ kNN ∀D 64.98 ↓0.04 92.78 ↓0.13 40.60 ↑0.27 66.12 ↑0.03
+ kNN ∀D+WT 65.38 ↑0.36 92.92 ↑0.01 41.11 ↑0.77 66.47 ↑0.38

JobBERTa (This work) 65.15 92.09 40.59 65.94
+ kNN {D} 65.25 ↑0.10 91.99 ↓0.10 41.31 ↑0.72 66.18 ↑0.24
+ kNN {D}+WT 65.21 ↑0.06 92.10 ↑0.01 41.41 ↑0.82 66.24 ↑0.30
+ kNN ∀D 65.15 –0.00 92.04 ↓0.05 40.83 ↑0.24 66.01 ↑0.07
+ kNN ∀D+WT 65.22 ↑0.07 92.13 ↑0.04 41.45 ↑0.86 66.26 ↑0.32

Table 11: Development Set Results. There are four settings for each model. {D}: in-dataset datastore (i.e., the
datastore only contains the keys from the specific training data it is applied on). ∀D: The datastore contains the keys
from all available training datasets. +W : Whitening Transformation is applied to the keys before adding them to
the datastore or querying the datastore. We indicate the performance increase (↑), decrease (↓), or no change (–)
when using kNN compared to not using kNN. Additionally, we show the average span-F1 performance of each
model across the three datasets. In the development set, it seems that an in-dataset datastore works best.

Vanilla +kNN
Setup↓ Precision Recall Precision Recall

SAYFULLINA→SKILLSPAN 10.20 10.50 37.67↑27.47 29.62↑19.12
GREEN→SKILLSPAN 28.40 33.56 46.00↑11.60 46.29↑12.73

SKILLSPAN→SAYFULLINA 15.19 23.42 49.25↑34.06 58.95↑35.53
GREEN→SAYFULLINA 12.80 21.58 48.21↑35.41 61.87↑40.29

SKILLSPAN→GREEN 52.01 37.42 55.37↑3.36 38.74↑1.32
SAYFULLINA→GREEN 17.79 7.64 39.83↑22.04 18.31↑10.67

Table 12: Precision & Recall Numbers Cross-dataset on Test. We show the precision and recall numbers in the
cross-dataset setup. We use the ∀D+WT setup here, with JobBERTa as the backbone model.

efit of NNOSE. Note that all the retrieved “skills”1193

tokens are from different contexts.1194

In Table 15, we show a qualitative sample of1195

using JobBERTa on SKILLSPAN. The current to-1196

ken is “optimistic” with gold label B. This is a so-1197

called “soft skill”. The language model puts high1198

confidence in the tag B, which is the correct tag.1199

The retrieved neighbors are frequently relevant, but1200

sometimes less. This indicates that the retrieved1201

neighbors (all soft skills) occur in similar contexts.1202

In Table 16, we show a qualitative sample of1203

using JobBERTa on SKILLSPAN. The current to-1204

ken is “optimistic” with gold label B. This is a so-1205

called “soft skill”. The language model puts high1206

confidence in the tag B, which is the correct tag.1207

The retrieved neighbors are frequently relevant, but 1208

sometimes less. This indicates that the retrieved 1209

neighbors (all soft skills) occur in similar contexts. 1210

G Further Cross-dataset Analysis 1211

Precision and Recall Scores Cross-dataset. 1212

In Table 12, we checked the precision and recall 1213

numbers for the cross-dataset setup with ∀D+WT 1214

and JobBERTa as the backbone model. When us- 1215

ing NNOSE, we generally notice an increase in 1216

precision, with the largest when applied to SAY- 1217

FULLINA. The largest gains are with respect to 1218

recall, we notice a significant gain in all setups, 1219

where the recall and precision increase is mixed. 1220

This indicates that NNOSE is a useful method for 1221
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Figure 8: Frequency Distribution of Skill Occurrences in the Train Set. We display the frequency distribution of
skill occurrences in each train set. How to read: For instance, in the case of Sayfullina, there are over 2,000 skills
that occur only once in the training set. We demonstrate that all skill datasets exhibit an inherent long-tail pattern.

both precision-focused and recall-focused applica-1222

tions, as we are storing skills in the datastore to be1223

retrieved.1224
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JobBERTa → SKILLSPAN

Current token IT

Gold label O

LM prediction probs [0.277, 0.404, 0.319]

Nearest neighbors (k = 8) [’IT’, ’Software’, ’Software’, ’Cloud’,
’Cloud’, ’Database’, ’Ag’, ’software’]

Aggregated kNN scores [0.000, 0.132, 0.868]

Final predicted probs [0.221, 0.350, 0.429]

Table 13: Cherry Picked Qualitative Sample NNOSE of Higher Precision. We show a qualitative sample of
using JobBERTa on SKILLSPAN. In this case, we see more weight being put on a specific tag, resulting in higher
precision.

JobBERTa → SKILLSPAN

Current token coding

Gold label B

LM prediction probs [0.988, 0.000, 0.012]

Nearest neighbors (k = 8) [’programming’, ’coding’, ’programming’, ’debugging’,
’scripting’, ’writing’, ’coding’, ’programming’]

Aggregated kNN scores [1.000, 0.000, 0.000]

Final predicted probs [0.991, 0.000, 0.009]

Current token skills

Gold label I

LM prediction probs [0.000, 0.990, 0.010]

Nearest neighbors (k = 8) [’skills’, ’skills’, ’skills’, ’skills’, ’skills’,
’skills’, ’skills’, ’skills’]

Aggregated kNN scores [0.000, 1.000, 0.000]

Final predicted probs [0.000, 0.992, 0.008]

Table 14: Cherry Picked Qualitative Sample NNOSE of Multiple Tokens. We show a qualitative sample of using
JobBERTa on SKILLSPAN with multi-token annotations and how this behaves.

JobBERTa → GREEN

Current token tools

Gold label I

LM prediction probs [0.250, 0.374, 0.379]

Nearest neighbors (k = 8) [’tools’, ’tools’, ’transport’, ’transport’,
’transport’, ’transport’, ’car’, ’transport’]

Aggregated kNN scores [0.124, 0.626, 0.250]

Final predicted probs [0.234, 0.399, 0.366]

Table 15: Cherry Picked Qualitative Sample NNOSE of Randomness. We show a qualitative sample of using
JobBERTa on SKILLSPAN.The language model puts high confidence on the tag I, which is the correct tag. Here the
retrieved neighbors do not seem too relevant, which in this case is mostly random chance that it got it correctly.

JobBERTa → SKILLSPAN

Current token optimistic

Gold label B

LM prediction probs [0.998, 0.000, 0.002]

Nearest neighbors (k = 8) [’proactive’, ’responsible’, ’holistic’, ’operational’,
’positive’, ’open’, ’professional’, ’agile’]

Aggregated kNN scores [1.000, 0.000, 0.000]

Final predicted probs [0.999, 0.000, 0.001]

Table 16: Cherry Picked Qualitative Sample NNOSE of Variety. We show a qualitative sample of using
JobBERTa on SKILLSPAN. The language model puts high confidence in the tag B, which is the correct tag. The
retrieved neighbors are frequently relevant.
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