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ABSTRACT

Large language models (LLMs) show great power by gathering almost all knowl-
edge in our human world. An appealing curiosity now arises regarding their adap-
tion to a new world setting, e.g from fictions and films, one with disparate funda-
mental laws, which is much more challenging than transferring between domains
of the same human world. This carries significant research potential for expanding
AI to multiple universes in the future. This paper chooses POKÉMON as the target,
a popular strategy game with a unique worldview. We introduce POKEMON-PY,
a Python library that provides an interactive playground as in the pokemon world.
Our analysis demonstrates that the outworld context can exacerbate knowledge
distortions and logical flaws in today’s LLMs, and this phenomenon has a signif-
icant negative impact. Based on POKEMON-PY, we propose Self-Training with
Self-Competition, a novel self-supervised learning method to effectively adapt the
model to a new or even unknown world setting, where the model is programmed
to keep learning through self-competition, and ultimately grows into a superior
individual. Our method achieves remarkable improvement to adapt LLaMA2-7b
to two downstream tasks within the pokemon world.

1 INTRODUCTION

Large language models (LLMs) (Chung et al., 2022; Chowdhery et al., 2022; OpenAI, 2023) have
demonstrated the remarkable ability of AI to navigate the textual wealth of the human world in a
super high efficiency, thereby acquiring nearly all human knowledge and cognitive power that even
outstrips human beings. An appealing curiosity ensues: can AI be generalized to a new world?

While LLMs have generalized well between different scenarios and domains that are part of our
familiar human world, which are exactly they are pre-trained on, with additional learning techniques
(e.g. RLHF and SFT) aiming to aligning them with. In this paper, we focus on the knowledge in a
new world. A new world is one in which there are disparate fundamental laws or even beyond the
boundaries of human existence. It can be a virtual universe, for instance, the wizard world in Harry
Potter and the planet Pandora in Avatar; or even a purely unknown space. LLMs faces a challenging
task of reshaping their knowledge framework and overturning commonsense. We call the knowledge
within these new worlds beyond the human world, outworld knowledge. The endeavor to generalize
AI to outworld knowledge carries significant research potential across diverse domains, including
metaverse, cinematic productions, electronic games.

In this paper, we study a specific case, the pokemon world, derived from POKÉMON, a popular strat-
egy game. As opposed to other games that have been well studied in the community (Abramson
et al., 2020; Shen et al., 2021; Küttler et al., 2020; Fan et al., 2022), which stick close to the human
world, POKÉMON has a unique worldview with overhead creatures and laws. To explore the poke-
mon world, individuals can meet a variety of magical creatures called pokemons, and train them to
battle against other players.

In the first part of this paper, we probe the pokemon knowledge in state-of-the-art LLMs, which
serves as a subset of outworld knowledge. Our observation is that while LLMs memorize some
pieces of pokemon knowledge, they fall into severe self-contradiction in their logic when reasoning
is required. This phenomenon can have a significant negative impact, incurring inaccurate and
misleading responses in the context of a new world.
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Command line:                                 
                     Turn 1
[Player1]  Pikachu used Nasty Plot.
[Player1]  Pikachu’s Sp. Atk rose by 2!
[Player2]  Squirtle used Hydro Pump.
[Player2]  Effective.
[Player1]  Pikachu received damage, HP=42!
                     Turn 2
[Player2]  Squirtle used Protect.
[Player1]  Pikachu used Thunderbolt.
[Player2]  Squirtle prootected itself!
                     Turn 3
[Player1]  Pikachu used Thunderbolt.
[Player1]  Super effective!
[Player2]  Squirtle received damage, HP=0!
[Player2]  Squirtle fainted!

Pikachu HP=100

Squirtle HP=100

—> Move
—> Switch

Name: Pikachu
Type: Electirc
Nature: Jolly
Ability: Static
Item: Sweet Apple
Move1: Nasty Plot
Move2: Thunderbolt
Move3: Light Screen
Move4: Charm
Tera: Flying

HistoryConfig

Figure 1: Illustration of POKEMON-PY, where two pokemons, Pikachu and Squirtle are battling.
Left: Pokemons can be configured with a number of parameters. Right: The detailed battle history
is provided in logs. One can play the battles by interaction in the command lines. It provides us with
a steady source of data.

To adapt the language model to a new world setting, we propose Self-Training with Self-Competition.
The model is programmed to compete against itself, weeping out flawed memories from the past and
acquiring superior ones, and ultimately grows into a strong individual after a series of generations.
The learning is self-supervised, driven by interaction with the environment, unlike text-based self-
supervised learning (Devlin et al., 2019; Brown et al., 2020). To simulate the pokemon world, we
introduce Pokemon-Py, an interactive environment built on Python.

We summarize our paper below:

• We present an interactive environment to stimulate pokemon battles (§ 2).

• We provide a qualitative analysis on the awareness of outworld knowledge in LLMs (§ 3).

• We propose a self-supervised learning method to adapt the model to an unknown world setting (§
4).

• We design two downstream tasks to evaluate the outworld adaption of a model (§ 5).

2 COMPETITION IN THE POKEMON WORLD AND POKEMON-PY

In this paper, we focus on the competition in a new world. In the world of pokemons, this is mainly
manifested as pokemon battles. This section presents the necessary background for pokemon battles
as well as an overview of POKEMON-PY.

2.1 OVERVIEW OF POKEMON-PY

POKEMON-PY is an interactive Python library to simulate the battles in the world of pokemons.
Compared to previous platform for online real-time battles1, POKEMON-PY is offline with a large
number of APIs, which facilitates researchers to develop promising algorithms.

We illustrate an overview of POKEMON-PY in Figure 1. In a single battle, there are two competitors
(players) who manipulate a number of pokemons. Each player can send out one pokemon at a time
onto the battlefield, with the rest as standbys. Each turn, the pokemon is allowed to take one action,
unleashing a move or switching out to another pokemon. If one pokemon is defeated, another one
from standbys should be sent out to the battle. Either of the competitors will win the battle when
defeating all of the opponent pokemons.

To plan for next actions, the competitor is required to take a range of key elements into account. It
is worth noting that explaining the following elements are necessary for our subsequent case study.

Pokemon Each pokemon is born with unique properties, e.g. types, attack and defense stats,
hit points (HP or life points). In addition to predetermined elements, as shown in Figure 1, each
pokemon can be customized in its nature, ability, item, moves, and tera type.

1https://pokemonshowdown.com/
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Move Each pokemon can learn four moves, each with a predetermined type, power, accuracy, and
secondary effect. For instance, moves of a high power can cause greater damage to the opponent,
while certain moves with no power yet possess a strong secondary effect, inducing benefits the user
or producing undesirable conditions for the opponent.

Item In a single battle, a pokemon is allowed to carry an item with it, serving various functions.

Type Either a pokemon or a move belongs to a specific type or combination of two types and
there are eighteen different types in the pokemon world. There is a matchup between types, which
indicates the effectiveness of one type against another. For example, Water type is super effective to
Fire type, while Fire type is resisted by Water type on the contrary. It is crucial to utilize the matchup
between types while choosing moves to cause greater damage to the opponent.

Tera During the battle, a player has once chance to switch a pokemon type to a different one by
terastallizing (tera). Due to the change of type, the matchup of type effectiveness will also change.

2.2 BENCHMARK IN POKEMON-PY

It is hard to measure the competitiveness of a player to play pokemon battles. POKEMON-PY pro-
vides a number of rule-based imaginary opponents to automate this process.

Random Player Random Player equally selects a move from all available moves in each turn of
the battle. It will not switch the pokemon until the current pokemon faints and then will uniformly
select a standby pokemon.

MaxDamage Player MaxDamage Player always selects the move that will cause the most damage
to the opponent by precisely calculating its power and type effectiveness of each available move. It
is much stronger than Random Player.

To facilitate the process of selecting proper pokemons for the opponent, POKEMON-PY includes a
range of predefined pokemons collected from the Internet. So far, there are 200 popular pokemons
with detailed configurations. To evaluate a player against Random or MaxDamage Player, both
sides are allowed to uniformly select a number of pokemons from the predefined pokemon pool.
This random battle will be repeated for multiple times to reduce the variance.

In addition, POKEMON-PY integrates a series of databases, covering the detailed information in the
pokemon world, e.g. pokemons, moves, abilities, items, which can be accessed by APIs.

2.3 PROBLEM DEFINITION FOR A LANGUAGE MODEL PLAYER

A language model player learns to plan the next action for the pokemon based on the context of the
battle in the form of text.

We denote the language model parameters as θ and the corresponding classifier as pθ(·). Given a
pokemon on the battlefield, we denote all its features as P0, including its name, hit points, types,
item, available moves, and tera type. Similarly, we denote the opponent pokemon as Q0. The
difference is that only the name and hit points are observable from Q0, while all the other features
are hidden from the model. We denote the standby pokemons as P1, · · · ,Pk−1, where k refers
to the number of available pokemons. The battle history is composed of a set of natural language
sentences provided by POKEMON-PY, which we denote as L.

Hence, the language model seeks to solve the probability:
pθ(Y|P0,Q0,P1, · · · ,Pk−1,L) (1)

where Y represents the action. For each turn in the battle, three actions are allowed:

• move: the model chooses an available move;

• switch: the model switches out the current pokemon and switches in another standby pokemon;

• tera&move: the model chooses an available move and in the meantime terastallizes the current
pokemon before using the move.
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Figure 2: Accuracy in answering factual questions on various concepts.

3 ANALYSIS OF OUTWORLD KNOWLEDGE ON LLMS

In this section, we report empirical analysis on the outworld knowledge in state-of-the-art large
language models (LLMs). We probe into their awareness of knowledge as well as capability to use
it for logical reasoning.

We choose three LLMs for the experiment:

• ChatGPT (OpenAI, 2023): the strongest LLM to follow various human instructions;

• LLaMA2-70b (Touvron et al., 2023): one of the strongest open-source foundation language mod-
els pre-trained on a mix of public data sources;

• Alpaca-7b (Taori et al., 2023): a fine-tuned model to follow instructions based on LLaMA.

3.1 KNOWLEDGE

We select five primary concepts in the pokemon world and generate a set of factual questions on
them, including pokemon types (PT), move types (MT), abilities (AB), items (IM), and type effec-
tiveness (ET). Concretely, we select 100 questions for PT, MT, and ET respectively, with rule-based
evaluation, and 20 questions for AB and IM, with human evaluation for them.

For all questions, we prompt the model with “In the pokemon world” to limit the scope of its re-
sponses. For example, we ask the model “In the pokemon world, what type is Pikachu?”, “In the
pokemon world, what is the effectiveness of Water type against Dragon type?”. Besides, we follow
the predefined instruction formats to improve the quality of responses for LLaMA2 and Alpaca.

We report the accuracy of the LLMs in answering various questions in Figure 2. We find that
ChatGPT achieves the best accuracy, particularly in answering PT and MT, achieving an accuracy
score over 80%. In contrast, the other two open-source models do not perform well. LLaMA2
achieves the accuracy score over 50% only on PT and MT, and shows limited awareness of more
complex concepts like abilities and items. Alpaca performs poorly on all questions, suggesting that
it is almost unaware of the pokemon knowledge.

Our finding indicates that LLMs retain part of the pokemon knowledge since they have been ex-
posed to relevant corpus during the training process, while smaller LLMs are almost unaware of that
knowledge.

3.2 LOGIC

Secondly, we study whether LLMs can utilize the outworld knowledge for reasoning. We construct
a set of reasoning-required questions by asking the model to suggest a move for a pokemon against
an opponent. The model is expected to offer a reasonable move from the four choices based on
the properties of the opponent pokemon. For example, we prompt it with “In the pokemon battle,
suggest a move for Pikachu against Chien-Pao, from the following moves.”. Besides, we use the
“Let’s think step by step” prompt to encourage the model to offer its detailed thoughts (Wei et al.,
2022; Zhang et al., 2022b; Yao et al., 2023).
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Table 1: Representative cases when ChatGPT is requested to answer a factual question and to make
reasoning, in which the knowledge in different responses contradicts itself.
[Question]: What is the effectiveness of Water type to Dragon type?

[ChatGPT]: Water type moves are not effective against Dragon type pokemons. (✓)

[Question]: Given an opponent pokemon, suggest a move for... Let’s think step by step.

[ChatGPT]: Water type Hydro Pump is super effective to Dragon type Dragonite due to type weakness. (×)

Table 2: Accuracy in answering factual and reasoning-required questions.
Fact % Reason % Reason (CoT) % CoT %

ChatGPT 72.6 32 39 18↓54.6
LLaMA2-70b 47.1 24 - -
Alpaca-7b 22.4 18 22 6↓16.4

As it turns out, there are serious logical flaws even in the strongest ChatGPT. We showcase an
example in Table 1 and we can see contradictory answers given by ChatGPT to the two questions.
Specifically, it is aware of the fact that “Water type moves are not effective to Dragon type”, while
this is distorted in its reasoning procedure. It suggests that while the model retains a certain level of
pokemon knowledge, it falters to harness it for reasoning, or may even suffers from forgetfulness.

Below, we provide quantitative results in Table 2 where LLMs answer 100 reasoning-required ques-
tions. We also report the overall accuracy in answering factual questions from previous Figure 2 for
comparison. We access the correctness of the answers by human evaluation and report the following
metrics:

• Fact %: accuracy in answering a given factual question;

• Reason %: accuracy in answering a reasoning-required question;

• Reason (CoT) %: accuracy in answering a reasoning-required question with the chain-of-thought
prompt (LLaMA2 is not fine-tuned for CoT);

• CoT %: accuracy of the reasoning procedure (if any of the statements in it is wrong, we label the
entire thought as wrong).

We find that while ChatGPT is very likely to give the correct answers to factual questions, it per-
forms much worse on reasoning-required questions even with the assistance of CoT. However, the
reasoning procedures provided by LLMs are filled with even more flaws, with ChatGPT and Alpaca
only achieving an accuracy score of 18% and 6%, which drops significantly compared to factual
questions. It is worth noting that the knowledge required for reasoning greatly overlaps with an-
swers for factual questions.

This phenomenon is akin to the hallucination (McKenna et al., 2023; Agrawal et al., 2023; Mündler
et al., 2023), an emerging issue within LLMs that they lean to offer counterfactual contents in their
responses. Our results indicate that the hallucination issue can be even more serious in the face of
outworld knowledge. In Sec. 5, we show that interacting with the environment is helpful to alleviate
the hallucinations in LLMs.

4 METHOD

From the previous section, we highlights an issue within LLMs - the insufficient adaption to rare
or specialized outworld knowledge, as exemplified by the pokemon knowledge. This phenomenon
poses a significant challenge for LLMs to effectively navigate and comprehend a new world setting.
For a brand new world, however, the various settings in it can be unknown, and one might barely
have prior knowledge for it. Consequently, it is impossible to improve the adaption of LLMs by
feeding them with a large amount of annotated data.
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Figure 3: Training algorithm of Self-Training with Self-Competition.

4.1 SELF-TRAINING WITH SELF-COMPETITION

Though the model is unknown about the mechanism behind the world, it can learn through its own
experiences and thus improves itself step-by-step. The experiences derive from interacting with the
world environment, which completely adheres to the laws of this world. However, there are various
forms of interaction in the world, while certain forms cannot provide useful signals.

Competition is the heart of evolution, providing individuals with useful signals that allow for grow-
ing into stronger ones. We propose to program the model to compete against itself, and the model in
the later generations to learn the victorious experiences from the past. We call it Self-Training with
Self-Competition, simply self-training in the following experiments.

Concretely, based on POKEMON-PY, which performs the duty of hosting a competition in the poke-
mon world, taking the form of two sides playing pokemon battles.

As depicted in Figure 3, the language model acts as a start learner from the beginning. We acquire
the first batch of training data by random sampling, uniformly choosing one move in each turn, and
use this data to train the initial model. The resultant model learns to make choices of moves in
battles, even though its choices are random. We make a copy of this model and have the two of it
play against each other for multiple times. The outcome of a battle is that one side of them wins.
We ignore the rare case where there is a draw, which occurs in a very low probability. For each time
of the battle, we trace and record the actions of the winner. We thus acquire a new batch of training
data, which is stronger than the last, and retrain a new model using the new data (reinitialize the
model). Similarly, we have two new models to play against each other and record the actions of the
winner every time. We keep iterating over this process and each iteration is referred to a generation.
After a series of generations, we eventually obtain the strongest model.

To avoid the learning process falling into a local optimum, we set a probability ϵ in which the model
will choose a random move rather than its own decision. The choice of ϵ affects the convergence rate
of the algorithm, and a larger one will make it slower. In our experiments, ϵ is set to 0.2 heuristically
and the empirical results are in Appendix A.1.

Because POKÉMON is a well-known game, there are multiple language resources related to it, while
we chose not to use them. We assume that the pokemon world is new or unknown to the learners.
Therefore, our method can be generalize to other world settings.

4.2 TRAINING SETUP

We present setups for our experiments. For two competitors, we randomly assign them a poke-
mon chosen from the pool of predefined pokemons. The problem definition for a language model
competitor is in Sec. 2. POKEMON-PY provides all battle information.

In each generation, we replicate the model and have them compete against each other for multiple
times, and continuously collect data data from the winners til 5,000 samples. Each generation takes
about 8 GPU hours. We train 50 generations of the model.

We choose LLaMA2-7b as the learner and adopt LoRA (Hu et al., 2022) to improve the training
efficiency. The learning rate is chosen from {3e-4,8e-4} and batch size from {2,4} for each chip.
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Table 3: Victory rate against two rule-based players over 100 times and 3 random seeds.
Gen 1 Gen 2 Gen 3 Gen 5 Gen 10 Gen 20 Gen 30 Gen 40 Gen 50

Random 52.2 53.6 58.5 61.2 75.5 75.5 80.8 83.7 89.7
MaxDamage 11.8 18.0 23.0 32.7 40.0 51.0 67.6 73.2 72.0

The learner is trained to predict the move option in each turn through the next token prediction loss.

4.3 EMPIRICAL RESULT

We evaluate the performance of each generation by battling against Random Player and MaxDamage
Player. Table 3 summarizes the victory rate of each model against two rule-based players for 100
battles. Initially, we observe that the LLaMA2 model performs on par with a random selector. By
the third generation, it makes noticeable progress and starts to surpass Random Player. By the tenth
generation, it makes a significant stride and achieves an impressive victory rate of 75.5% against
Random Player. As it advances to the thirtieth generation and beyond, the model continues to boost,
reaching a remarkable victory rate of 89.7% in the fiftieth generation.

MaxDamage Player is much strong than Random Player. It is nearly invincible from the start.
However, we observe a big boost in the fifth generation, where the victory rate comes to 32.7%.
The truth behind is that the model learns the type effectiveness between different types. It suggests
that superficial mapping relations are easier to learn for LLMs, while deeper strategies are difficult
to explore. It experiences a flat growth over the next ten generations. By the twentieth generation,
its victory rate against MaxDamage Player just reaches 51%, while it has achieved a victory rate
of 75.5% against Random Player. However, by the thirtieth generation, the victory rate surges to
67.6%, and after the fortieth generation, the model eventually achieves a victory rate over 70%
against MaxDamage Player.

5 EVALUATION OF OUTWORLD ADAPTION

We have demonstrated that the model grows stronger through learning from self-competition. How-
ever, it is unclear that whether it has adapted to the new world. We notice that it is hard to directly
measure the level of adaptation because there is no matching task. Hence, we design two down-
stream tasks and fine-tune the resultant model on them. Note that both tasks are derived from Sec.
3, but we make them simpler for automatic evaluation. The fine-tuning results indicate whether the
model can better adapt to various specific tasks in the world of pokemons.

Boolean Question-Answering The first task is similar to factual question-answering. The differ-
ence is that the fine-tuned model can only respond true or false for the given question. Specifically,
we sample 200 factual knowledge as the positive samples (answer true). On top of them, we con-
duct random substitution of characters to obtain the negative samples (answer false). The model is
trained on these 400 samples with half positive and half negative samples. For test samples, we keep
the positive training samples and conduct another random substitution of characters to obtain new
negative samples. Since the positive samples are the same from training data to test data, we report
the performance on them separately.

Language Inference The second task is more complicated, which requires the model to inference
and offer the procedure. As illustrated in Table 4, we give the model a move and a pokemon. The first
step for the model is to tell the types of them. The second step is to inference the type effectiveness
between them based on the first result. We randomly combine different moves and pokemons by
rules and get 200 training samples 100 test samples. The accuracy of this task is calculated by human
evaluation. We notice that this task serves a similar purpose to measure LLMs’ hallucinations.

We fine-tune two models, with original LLaMA2-7b weights and the pre-learned weights via self-
training, and average the results over three random seeds. The results are summarized in Table
5, where we pick the checkpoints in four generations for comparison. We observe that the model
demonstrates a substantial improvement after self-training in its proficiency for discerning facts and
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Table 4: Examples of two downstream tasks.
Boolean QA

Instruction: Given a statement, tell it true or false.
Input: Pikachu is Electric type.
Response: true

Instruction: Given a statement, tell it true or false.
Input: Pikachu is Ghost type.
Response: false

Inference

Instruction: Given a move and a pokemon, inference the type effectiveness.
Input: Earthquake and Pikachu
Response: Pikachu is Electric type and Earthquake is Ground type.
Ground type moves are effective to Electric type pokemons, so Earthquake is effective to Pikachu.

Table 5: Fine-tuning results on downstream tasks with standard deviations over 3 seeds.
Boolean QA Inference

LLaMA2 96.0 / 58.0(1.14) 46.0(1.63)

LLaMA2 - Self-Training (Gen 5) 96.0 / 64.0(0.86) 46.0(0.00)

LLaMA2 - Self-Training (Gen 20) 94.4 / 68.0(0.90) 49.7(1.25)

LLaMA2 - Self-Training (Gen 30) 97.9 / 74.5(1.56) 55.0(0.82)

LLaMA2 - Self-Training (Gen 50) 98.6 / 75.0(1.03) 60.0(2.90)

inference. On Boolean QA, specifically, the model does well in memorizing positive samples as
well as recognizing negative ones after self-training. It substantiates our method, underscoring that
the self-competition can effectively help the model to adapt to the pokemon world. In addition, we
find that the easier boolean QA task is gained more quickly, while the inference task doesn’t show a
significant rise till generation 30. This also suggests that the gain derives from interaction with the
environment, rather than the corpus itself, since models in all generations see similar corpus.

6 CASE STUDY

In this section, we take a closer look at what the model learns from self-training.

Learning to use non-damage moves As a start learner, the model turns out to learn the short-term
impact of the moves, in terms of the damage that they can cause to the opponent immediately. As
a result, the model lean to choose the move with a higher power and type effectiveness, similar as
MaxDamage Player. However, this is still a naive strategy for a sophisticated player. From Table 6
(a), we can find that the model in generation 8 has learned to use Will-O-Wisp at the beginning of the
battle. This move will not cause damage, in exchange for weakening the opponent, thus acquiring
for long-term gain.

Learning to terastallize Terastallization is not taught to the model, since the model is initialized
from randomly sampled training data. From Table 6 (b), however, we find that the model in the last
generation learns the correct usage of terastallization, where the pokemon Magnezone terastallizes
to Fairy type such that the move Tera Blast is super effective to the opponent.

In the above two cases, the model successfully learns more complex strategies and new concepts
through learning from self-competition.

7 RELATED WORK

This paper explores the outworld knowledge in large language models (LLMs) (Chowdhery et al.,
2022; OpenAI, 2023; Zhang et al., 2022a; Chung et al., 2022) in the hope of generalizing today’s
LLMs to multiple universes. We select the pokemon world as our target, derived from a popular
strategy game. There are other games that have been studied in the AI community, e.g. Atari (Mnih
et al., 2013), Minecraft (Fan et al., 2022), NetHack (Küttler et al., 2020), Werewolf (Xu et al., 2023),
and beyond (Wang et al., 2019; Juliani et al., 2019; Abramson et al., 2020; Shen et al., 2021).
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Table 6: Case study where the model is asked to offer a move suggestion given the battle context.
(a) [Input]

pokemon: Skeledirge
moves: Slack Off, Torch Song, Hex, Will-O-Wisp
opponent: Kingambit
history:

pokemon: Skeledirge
moves: Slack Off, Torch Song, Hex, Will-O-Wisp
opponent: Kingambit
history: Kingambit received damage, HP=180/404...

[Generation 1 Response]:

Torch Song [a move to cause damage] Torch Song [a move to cause damage]

[Input]

pokemon: Skeledirge
moves: Slack Off, Torch Song, Hex, Will-O-Wisp
opponent: Kingambit
history:

pokemon: Skeledirge
moves: Slack Off, Torch Song, Hex, Will-O-Wisp
opponent: Kingambit
history: Kingambit fell into Burn...

[Generation 8 Response]:

Will-O-Wisp [a move to weaken the opponent] Torch Song [a move to weaken the opponent]

(b) [Input]

pokemon: Magnezone
moves: Thunder, Flash Cannon, Rest, Tera Blast
opponent: Roaring Moon
history:

pokemon: Magnezone
moves: Thunder, Flash Cannon, Rest, Tera Blast
opponent: Roaring Moon
history:

[Generation 10 Response]: [Generation 50 Response]:

Thunder [not effective] Tera Blast, tera Fairy [super effective]

However, we do not focus on playing games by AI, but rather creating AI for a new world. Our work
is different from learning an AI agent or interacting with LLMs for planning (Park et al., 2023; Wang
et al., 2023; Zhu et al., 2023). Instead, we focus on world-level understanding rather than policies
for specific objectives. It is a high-level perspective of unsupervised domain adaption (Ganin &
Lempitsky, 2015; Ramponi & Plank, 2020).

We analyze LLM’s awareness of the outworld knowledge, and our findings are relevant to halluci-
nations (McKenna et al., 2023; Agrawal et al., 2023; Mündler et al., 2023) and logical robustness
(Zhou et al., 2021; Sanyal et al., 2022), where the model is weak against offering self-contradictory
responses. Our method is shown to alleviate hallucinations, and thus is promising to general LLMs.

In the text domain, self-supervised learning methods typically generate learnable input text from
unlabeled corpus, e.g. masked language modeling (Devlin et al., 2019), contrastive learning (Gao
et al., 2021), text ennoising (Lewis et al., 2020; Wu et al., 2022). In contrast, the self-supervised
signals in our method come from competition in the environment, which weeds out inferior samples
and produces strong ones. We believe its idea is akin to genetic algorithms (Mitchell, 1998), with
the specific fitness function referring to the competitiveness for pokemon battles.

The mechanism of self-play has been discussed in other contexts in previous work (Vinyals et al.,
2019). For instance in emergent communication (Lowe et al., 2020), the authors propose to have
two agents cooperate with each other to boost the adaption to a new language, while our focus is
self-competition during the process of self-play, which is the most general way to screen out for
better data or individuals in nature. This also means our method can be totally unsupervised.

8 CONCLUSION

This paper presents an empirical case study in the pokemon world for outworld generalization of
LLMs, and shows that existing LLMs are poorly skilled at outworld knowledge. A self-supervised
learning method based on competition is proposed, and shows its effectiveness on two downstream
tasks. In addition, a Python environment to simulate the pokemon world is introduced.
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inney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
Chris Apps, and David Silver. Grandmaster level in starcraft II using multi-agent reinforce-
ment learning. Nat., 575(7782):350–354, 2019. doi: 10.1038/S41586-019-1724-Z. URL
https://doi.org/10.1038/s41586-019-1724-z.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
CoRR, abs/2305.16291, 2023. doi: 10.48550/arXiv.2305.16291. URL https://doi.org/
10.48550/arXiv.2305.16291.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley. Paired open-ended trailblazer (POET):
endlessly generating increasingly complex and diverse learning environments and their solutions.
CoRR, abs/1901.01753, 2019. URL http://arxiv.org/abs/1901.01753.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language

12

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2304.03442
https://doi.org/10.48550/arXiv.2304.03442
https://doi.org/10.18653/v1/2020.coling-main.603
https://doi.org/10.18653/v1/2020.coling-main.603
https://aclanthology.org/2022.emnlp-main.653
https://aclanthology.org/2022.emnlp-main.653
https://doi.org/10.1109/IROS51168.2021.9636667
https://doi.org/10.1109/IROS51168.2021.9636667
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2305.16291
http://arxiv.org/abs/1901.01753


Under review as a conference paper at ICLR 2024

models. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/
2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.
html.

Hongqiu Wu, Ruixue Ding, Hai Zhao, Boli Chen, Pengjun Xie, Fei Huang, and Min Zhang. Forging
multiple training objectives for pre-trained language models via meta-learning. In Yoav Gold-
berg, Zornitsa Kozareva, and Yue Zhang (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp. 6454–
6466. Association for Computational Linguistics, 2022. URL https://aclanthology.
org/2022.findings-emnlp.482.

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang Liu.
Exploring large language models for communication games: An empirical study on werewolf.
CoRR, abs/2309.04658, 2023. doi: 10.48550/arXiv.2309.04658. URL https://doi.org/
10.48550/arXiv.2309.04658.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. CoRR,
abs/2305.10601, 2023. doi: 10.48550/arXiv.2305.10601. URL https://doi.org/10.
48550/arXiv.2305.10601.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. OPT: open pre-trained transformer language models. CoRR, abs/2205.01068, 2022a. doi:
10.48550/arXiv.2205.01068. URL https://doi.org/10.48550/arXiv.2205.01068.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. CoRR, abs/2210.03493, 2022b. doi: 10.48550/arXiv.2210.03493. URL
https://doi.org/10.48550/arXiv.2210.03493.

Pei Zhou, Rahul Khanna, Seyeon Lee, Bill Yuchen Lin, Daniel Ho, Jay Pujara, and Xiang Ren.
RICA: evaluating robust inference capabilities based on commonsense axioms. In Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pp. 7560–7579. As-
sociation for Computational Linguistics, 2021. doi: 10.18653/v1/2021.emnlp-main.598. URL
https://doi.org/10.18653/v1/2021.emnlp-main.598.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, Yu Qiao, Zhaoxiang Zhang, and Jifeng Dai. Ghost in the minecraft:
Generally capable agents for open-world environments via large language models with text-based
knowledge and memory. CoRR, abs/2305.17144, 2023. doi: 10.48550/arXiv.2305.17144. URL
https://doi.org/10.48550/arXiv.2305.17144.

A APPENDIX

A.1 SELECTION OF ϵ

Table 7: Results with different values of ϵ.
Gen 1 Gen 2 Gen 3 Gen 5 Gen 10 Gen 20 Gen 30

ϵ=0 51.5 52.7 56.2 59.5 68.8 62.0 68.5
ϵ=0.2 52.2 53.6 58.5 61.2 75.5 75.5 80.8
ϵ=0.5 51.9 51.4 52.3 52.1 55.9 58.8 62.6

We see that ϵ plays an important role for the eventual performance, while the model converges much
slower when ϵ=0.5, since the randomness is too high.
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