
Under review as submission to TMLR

HQ-VAE: Hierarchical Discrete Representation Learning
with Variational Bayes

Anonymous authors
Paper under double-blind review

Abstract

Vector quantization (VQ) is a technique to deterministically learn features with discrete
codebook representations. It is commonly achieved with a variational autoencoding model,
VQ-VAE, which is further extended to hierarchical structures for high-fidelity reconstruc-
tion. However, training hierarchical extensions of VQ-VAE is often unstable, where the
codebook is not efficiently used to express data well, hence deteriorates reconstruction ac-
curacy. To mitigate this problem, we propose a novel framework to stochastically learn
hierarchical discrete representation on the basis of the variational Bayes framework, called
hierarchically quantized variational autoencoder (HQ-VAE). HQ-VAE naturally unifies the
hierarchical variants of VQ-VAE such as VQ-VAE-2 and residual-quantized VAE (RQ-VAE)
and stabilizes their training in a Bayesian scheme. Our comprehensive experiments on image
datasets show that HQ-VAE enhances codebook usage and improves reconstruction perfor-
mance. We also validate HQ-VAE in terms of its applicability even to a different modality
with an audio dataset.

1 Introduction

Learning representations with discrete features is one of the core technologies in the field of deep learning.
Vector quantization (VQ) for approximating continuous features with a set of finite trainable code vectors
is a common technique to achieve such representation Toderici et al. (2016); Theis et al. (2017); Agustsson
et al. (2017). It has been widely adopted in several active applications including neural codecs, e.g., image
compression Williams et al. (2020); Wang et al. (2022) and audio codec Zeghidour et al. (2021); Défossez
et al. (2022). VQ-based representation methods have been improved with successful deep generative mod-
eling, especially denoising diffusion probabilistic models Sohl-Dickstein et al. (2015); Ho et al. (2020); Song
et al. (2020); Dhariwal & Nichol (2021); Hoogeboom et al. (2021); Austin et al. (2021) and autoregressive
models van den Oord et al. (2016); Chen et al. (2018); Child et al. (2019). Learning discrete features of
target data among finitely many representations can ignore redundant information, and such a lossy com-
pression can assist with training deep generative models on large-scale data. After compression, one can
train another deep generative model, which is called a prior model, on the compressed representation in-
stead of the raw data. This approach has achieved attractive results in various tasks, e.g., unconditional
generation tasks Razavi et al. (2019); Dhariwal et al. (2020); Esser et al. (2021b;a); Rombach et al. (2022),
text-to-image generation Ramesh et al. (2021); Gu et al. (2022); Lee et al. (2022a) and textually guided
audio generation Yang et al. (2022); Kreuk et al. (2022). Note that the compression performance of VQ
limits the overall generation performance regardless of the performance of the prior model.

VQ is usually achieved with the model vector quantized variational autoencoder (VQ-VAE) van den Oord
et al. (2017). In VQ-VAE, an input is first encoded and quantized with the code vectors, which extracts the
discrete representation of the encoded feature. The discrete representation is then decoded to the data space
to recover the original input. Subsequently, advanced studies incorporated the hierarchical structure into the
discrete latent space to effectively achieve high-fidelity reconstruction. Razavi et al. (2019) initially extended
VQ-VAE to a hierarchical model, which is called VQ-VAE-2. In this model, multi-resolution discrete latent
representations are introduced to extract local and global information of the target data. As another type

1

Under review as submission to TMLR

of hierarchical discrete representation, residual quantization (RQ), was proposed to reduce the gap between
the feature maps before and after the quantization process Zeghidour et al. (2021); Lee et al. (2022a).

Despite its successes in many tasks, training variants of VQ-VAE is still challenging. It is known that VQ-
VAE suffers from codebook collapse, where only few code vectors are used for the representation Kaiser et al.
(2018); Roy et al. (2018); Takida et al. (2022b). This inefficiency may deteriorate reconstruction accuracy,
hence, limit its applications to downstream tasks. The extension with hierarchical latent representations
suffers from the same issue. For example, Dhariwal et al. (2020) reported that it is generally difficult
to push information to higher levels in VQ-VAE-2, i.e., codebook collapse often occurs there. Therefore,
certain heuristic techniques such as the exponential moving average (EMA) update Polyak & Juditsky (1992)
and codebook reset Dhariwal et al. (2020) are usually implemented to mitigate these problems. Takida
et al. (2022b) claimed that the issue is triggered because the training scheme of VQ-VAE does not follow
the variational Bayes framework but relies on carefully designed heuristics. They proposed stochastically
quantized VAE (SQ-VAE), with which the components of VQ-VAE, i.e., the encoder, decoder and code
vectors, are trained in the variational Bayes framework with an SQ operator. The model was shown to
improve reconstruction performance by preventing the collapse issue thanks to the self-annealing effect Takida
et al. (2022b), where the SQ process gradually tends to the deterministic one during training. We expect
this has the potential to stabilize the training by mitigating this problem even in the hierarchical model,
which may lead to improving reconstruction performance with more efficient codebook usage.

We propose Hierarchically Quantized VAE (HQ-VAE), a general variational Bayesian model for learning
hierarchical discrete latent representations. Figure 1 illustrates the overall architecture of HQ-VAE. The novel
hierarchical structure in HQ-VAE consists of bottom-up and top-down path pair, which assists with capturing
local and global information of data. We instantiate the generic HQ-VAE by introducing two types of top-
down layers. These two layers formulate the hierarchical structures of VQ-VAE-2 and residual-quantized
VAE (RQ-VAE) within the variational scheme, which we call SQ-VAE-2 and RSQ-VAE, respectively. HQ-
VAE can be viewed as an extension of SQ-VAE with hierarchy, hence, shares similar favorable properties of
SQ-VAE (e.g., the self-annealing effect). In this sense, HQ-VAE unifies the current well-known VQ models in
the variational Bayes framework, which provides a novel training mechanism. We empirically show HQ-VAE
improves upon conventional methods in the vision and audio domains.

Throughout this paper, the uppercase letters (P , Q) and the lowercase letters (p, q) denote the probability
mass functions and probability density functions, respectively; calligraphy letters (P, Q) denote the joint
probabilistic distributions of both continuous and discrete random variables; bold lowercase and uppercase
letters (e.g., x and Y) respectively denote vectors and matrices, and the ith column vector in Y is written
as yi; [N] denotes a set of positive integers no more than N ∈ N. Finally, we use J and L for the objective
functions of HQ-VAE and conventional ones, respectively.

2 Background

We first revisit VQ-VAE and its extensions to hierarchical latent models. We then review SQ-VAE which
serves as the foundation framework of HQ-VAE.

2.1 VQ-VAE

To discretely represent observations x ∈ RD, a codebook B is introduced, which consists of finite trainable
code vectors {bk}K

k=1 (bk ∈ Rdb). A discrete latent variable Z is constructed to be in the dz-tuple of B,
i.e., Z ∈ Bdz , which is later decoded to generate data samples. To connect the observation and latent
representaion, a deterministic encoder and decoder pair is introduced, where the encoder maps x to Z and
the decoder recovers x from Z by a decoding function fθ : Rdb×dz → RD. For the encoder, an encoding
function, denoted as Gϕ : RD → Rdb×dz , and a deterministic quantization operator are introduced. The
encoding function first maps x to Ẑ ∈ Rdb×dz , then the quantization operator finds the nearest neighbor
of ẑi for i ∈ [dz], i.e., zi = arg minbk

∥ẑi − bk∥2
2. The trainable components (the encoder, decoder, and

2

Under review as submission to TMLR

codebook) are learned by minimizing the objective

LVQ-VAE =∥x − fθ(Z)∥2
2 + β∥Ẑ − sg[Z]∥2

F , (1)

where sg[·] is the stop-gradient operator and β is a hyperparameter balancing the two terms. The codebook
is updated by applying the EMA update to ∥sg[Ẑ] − Z∥2

F .

VQ-VAE-2. To model both local and global information separately, VQ-VAE-2 adopts a hierarchical
structure for vector quantization Razavi et al. (2019). The model consists of multiple levels of latents so that
top levels have global information while bottom levels are focused on local information, conditioned on the
top levels. The training of the model follows the same scheme as the original VQ-VAE (e.g., stop-gradient,
the EMA update, and deterministic quantization).

RQ-VAE. RQ provides a finer approximation of Z by taking into account the information of quantization
gaps (residuals) Zeghidour et al. (2021); Lee et al. (2022a). With RQ, L code vectors are assigned to
each vector zi (i ∈ [dz]), instead of increasing the codebook size K. To achieve multiple assignments, RQ
repeatedly quantizes the target feature and computes quantization residuals, denoted as Rl. Namely, the
following procedure is repeated L times starting with R0 = Ẑ: zl,i = arg minbk

∥rl−1,i − bk∥2
2 and Rl =

Rl−1 −Zl. By repeating RQ, the discrete representation is expected to be refined in a coarse-to-fine manner.
Finally, RQ discretely approximates the encoded variable as Ẑ ≈

∑L
l=1 Zl, where the conventional VQ is

regarded as a special case of RQ with L = 1.

2.2 SQ-VAE

SQ-VAE Takida et al. (2022b) also has deterministic encoding/decoding functions and a trainable codebook.
However, unlike the deterministic quantization scheme of VQ and RQ, SQ-VAE designs an SQ procedure
for the encoded features following the variational Bayes framework. More precisely, it defines a stochastic
dequantization process ps2(z̃i|Z) = N (z̃i; zi, s2I), which converts a discrete variable zi into a continuous
one z̃i by adding Gaussian noise with a learnable variance s2. By Bayes’ rule, it associates with a reverse
operation, i.e., SQ, which is given by P̂s2(zi = bk|Z̃) ∝ exp

(
− ∥z̃i−bk∥2

2
2s2

)
. Thanks to this variational

framework, the degree of the stochasticity in the quantization scheme becomes adaptive. This allows SQ-
VAE to benefit from the effect of self-annealing, where the SQ process gradually approaches the deterministic
one as s2 decreases. This generally improves the efficiency of codebook usage.

3 Hierarchically quantized VAE

In this section, we formulate the generic HQ-VAE model, which learns hierarchical discrete latent representa-
tion in the variational Bayes framework. It serves as a backbone of the instantiations of HQ-VAE presented
in Section 4.

To achieve hierarchical discrete representation of depth L, we first introduce L groups of discrete latent
variables, which are denoted as Z1:L := {Zl}L

l=1. For each l ∈ [L] we introduce a trainable codebook
Bl := {bl

k}Kl

k=1, consisting of Kl db-dimensional code vectors, i.e., bl
k ∈ Rdb for k ∈ [Kl]. The variable Zl is

represented as a dl-tuple of the code vectors in Bl; namely, Zl ∈ Bdl

l . Similarly to conventional VAEs, the
latent variable of each group is assumed to follow a pre-defined prior mass function. We set the prior as an
i.i.d. uniform distribution, defined as P (zl,i = bk) = 1/Kl for i ∈ [dl]. The probabilistic decoder is set as a
normal distribution with a trainable isotropic covariance matrix as pθ(x|Z1:L) = N (x; fθ(Z1:L), σ2I) with
a decoding function fθ : Rdb×d1 ⊕ · · · ⊕ Rdb×dL → RD. It decodes latent variables sampled from the prior
to generate instances. Here, the exact evaluation of Pθ(Z1:L|x) is required to train the generative model
with the maximum likelihood. However, it is intractable in practice. Thus, we introduce an approximated
posterior on Z1:L given x and derive the evidence lower bound (ELBO) for maximization instead.

Inspired by hierarchical Gaussian VAEs Sønderby et al. (2016); Vahdat & Kautz (2020); Child (2021), HQ-
VAE consists of bottom-up and top-down paths, as shown in Figure 1a. The approximated posterior has the
top-down structure (Z1 → Z2 → · · · → ZL). For this process, the bottom-up path first generates features

3

Under review as submission to TMLR

...
...

Resblock

...
...

...

For posterior
Prior distribution

...

Pre-processing () Decoding ()

Bottom-up path

Top-down layer

Top-down path

Original Reconstruction

...

(a) Overview of HQ-VAE.

........

Codebook

Quantization

Output

or

Prior distribution

(b) First top-down layer.

Concat

Enc. block
........

Codebook

Quantization

Input from top layers ()

Input from
bottom-up () Pass

+

Upsampling

Output (input to next layer)

Prior distribution

(c) Injected top-down layer.
Input from top layers ()

Pass

........

Codebook

Quantization

Output (input to next layer)

+

Prior distribution

(d) Residual top-down layer.

Figure 1: (a) HQ-VAE consists of bottom-up and top-down paths. Red arrows are for approximated posterior.
Kullback–Leibler divergence of posterior and prior (in the blue box) is evaluated for objective function. (b)
First layer for top-down path. (c)-(d) We introduce two types of layers: injected top-down and residual
top-down. HQ-VAE that consists only of the injected (residual) top-down layer is analogous to VQ-VAE-2
(RQ-VAE).

4

Under review as submission to TMLR

from x as Hr
ϕ(x) at different resolutions (r ∈ [R]). In the top-down path, the latent variable in each group is

processed in the order from Z1 to ZL by taking Hr
ϕ(x) into account. To achieve this, two features including

that extracted by the bottom-up path (Hr
ϕ(x)) and that processed at higher layers in the top-down path

(Z1:l−1) can be fed to each layer and processed to estimate Zl corresponding to x, which we denote it as
Ẑl = Gl

ϕ(Hr
ϕ(x), Z1:l−1). The lth group Zl has a unique resolution index r, and we denote it as r(l). For

simplicity, we ignore Hr
ϕ in Ẑl and write Ẑl = Gl

ϕ(x, Z1:l−1). The design of the encoding function Gl
ϕ

brings us to different modeling of the approximated posterior. We leave the detailed discussion in the next
section.

It should be noted that the outputs of Gl
ϕ lie in Rdz×db , whereas the support of Zl is restricted to Bdz

l .
To connect these continuous and discrete spaces, we introduce a pair of stochastic dequantization and
quantization processes, as in Takida et al. (2022b). We first define the stochastic dequantization process for
each group as

ps2
l
(z̃l,i|Zl) = N (z̃l,i; zl,i, s2

l I), (2)

which is equivalent to adding Gaussian noise to the discrete variable the covariance of which, s2
l I, depends

on the index of the group l. We hereafter denote the set of Z̃l as Z̃1:L, i.e., Z̃1:L := {Z̃l}L
l=1. Next, we can

derive a stochastic quantization process as the inverse operator of the above stochastic dequantization:

P̂s2
l
(zl,i = bk|Z̃l) ∝ exp

(
−∥z̃l,i − bk∥2

2
2s2

l

)
. (3)

By using these stochastic operators, we can connect Ẑ1:L and Z1:L via Z̃1:L in a stochastic manner, which
leads to the entire encoding process:

Q(Z1:L, Z̃1:L|x) =
L∏

l=1

dl∏
i=1

ps2
l
(z̃l,i|Gl

ϕ(x, Z1:l−1))P̂s2
l
(zl,i|Z̃l). (4)

The prior distribution on Z1:L and Z̃1:L is defined using the stochastic dequantization process as

P(Z1:L, Z̃1:L) =
L∏

l=1

dl∏
i=1

P (zl,i)ps2
l
(z̃i|Zl), (5)

where the latent representations are generated in the order from l = 1 to L. The generative process from
the prior does not use Z̃ but Z as x = fθ(Z).

4 Instantiations of HQ-VAE

Now that we have established the overall framework of HQ-VAE, we consider two special cases of HQ-VAE
by designing two types of top-down layers: injected top-down and residual top-down. We derive two instances
of HQ-VAE that consists only of the injected top-down layer or the residual top-down layer, which we call
SQ-VAE-2 and RSQ-VAE, respectively due to their analogue to VQ-VAE-2 and RQ-VAE. These two layers
can be combinatorially used to define a hybrid model of SQ-VAE-2 and RSQ-VAE, which is explained in
Appendix B. Note that the prior distribution (Equation (5)) is identical across all instantiations.

4.1 First top-down layer

We introduce the first top-down layer, which is put at the top of layers in HQ-VAE. As illustrated in
Figure 1b, this layer takes H1

ϕ(x) as an input and processes it with SQ. HQ-VAE constructed only with this
layer reduces to SQ-VAE.

5

Under review as submission to TMLR

4.2 Injected top-down layer

We design an injected top-down layer for the approximated posterior as in Figure 1c. This layer infuses the
variable processed in the top-down path with the higher resolution information from the bottom-up layer.
The lth layer takes the feature from the bottom-up path (Hr(l)

ϕ (x)) and the variable from the higher groups
in the top-down path as inputs. In the layer, the variable from higher layers is first upsampled to be aligned
with H

r(l)
ϕ (x). These two variables are then concatenated and processed with an encoding block. The above

overall process corresponds to Ẑl = Gl
ϕ(x, Z1:l−1) in Section 3. The encoded variable Ẑl is then quantized

into Zl with the codebook Bl through the process described in Equation (3)1. Finally, the sum of the
variable from the top layers and quantized variable Zl is passed through to the next layer.

4.2.1 SQ-VAE-2

We especially instantiate the HQ-VAE only with the injected top-down layers in addition to the first
layer, which reduces to SQ-VAE-2. Note that since the index of resolutions and layers have a one-to-
one correspondence in this structure, r(l) = l and L = R. As in usual VAEs, we evaluate the ELBO as
log pθ(x) ≥ −JSQ-VAE-2(x; θ, ϕ, s2, B), where s2 := {s2

l }L
l=1, B := (B1, · · · , BL) and

JSQ-VAE-2(x; θ, ϕ, s2, B) = EQ(Z1:L,Z̃1:L|x)

[
− log pθ(x|Z1:L) + log Q(Z1:L, Z̃1:L|x)

P(Z1:L, Z̃1:L)

]
(6)

Hereafter, we omit the arguments of objective functions for simplicity. By decomposing Q and P and
substituting parameterizations for the probabilistic parts, we have

JSQ-VAE-2 = D

2 log σ2 + EQ(Z1:L,Z̃1:L|x)

[
∥x − fθ(Z1:L)∥2

2
2σ2 +

L∑
l=1

(
∥Z̃l − Zl∥2

F

2s2
l

− H(P̂s2
l
(Zl|Z̃l))

)]
, (7)

where H(·) indicates the entropy of a probability mass function and constant terms are omitted. The
derivation of Equation (7) is given in Appendix A. The objective function (7) consists of the reconstruction
term and the regularization terms for Z1:L and Z̃1:L. The expectation w.r.t. the probability mass function
P̂s2

l
(zl,i = bk|Z̃l) can be approximated with the corresponding Gumbel-softmax distribution Maddison et al.

(2017); Jang et al. (2017) in a reparameterizable manner.

4.2.2 SQ-VAE-2 vs. VQ-VAE-2

The architecture of VQ-VAE-2 is composed in a similar fashion to that of SQ-VAE-2 but is trained by the
following objective function:

LVQ-VAE-2 = ∥x − fθ(Z1:L)∥2
2 + β

L∑
l=1

∥Gl
ϕ(x, Z1:l−1) − sg[Zl]∥2

F , (8)

where the codebooks are updated with the EMA update in the same manner as the original VQ-VAE.
The objective function (8), except for the stop gradient operator and EMA update, can be obtained by
setting both s2

l and σ2 to infinity while keeping the ratio of the variances as s2
l = β−1σ2 for l ∈ [L] in

Equation (7). In contrast, since all the parameters but D and L in Equation (7) are optimized, the weight
of each term is automatically adjusted during training. Furthermore, SQ-VAE-2 is expected to benefit from
the self-annealing effect as in the original SQ-VAE (see Section 5.3).

4.3 Residual top-down layer

In this subsection, we set R = 1 for the simplicity of the demonstration purpose (general case of R is in
Appendix B). This means the bottom-up and top-down paths are connected only at the top layer. We design

1We empirically found setting Z̃l to Ẑl instead of sampling Z̃l from ps2 (z̃l,i|Ẑl) leads to better performance (as reported
in Takida et al. (2022b); therefore, we follow the procedure in practice.

6

Under review as submission to TMLR

a residual top-down layer for the approximated posterior as in Figure 1d. This layer is to better approximate
the target feature with additional assignments of code vectors. By stacking this procedure L times, the
feature is approximated as

Hϕ(x) ≈
L∑

l=1
Zl. (9)

Therefore, in this layer, only the information from the higher layers but from the bottom-up path is fed to
the layer. It is desired that

∑l+1
l′=1 Zl′ approximate the feature better than

∑l
l′=1 Zl′ . On this basis, we let

the following residual pass through to the next layer:

Gl
ϕ(x, Z1:l−1) = Hϕ(x) −

l−1∑
l=1

Zl′ . (10)

4.3.1 RSQ-VAE

We especially instantiate the HQ-VAE only with the residual top-down layers in addition to the first layer,
which reduces to RSQ-VAE. At this point, by following Equation (6) and omitting constant terms, we can
derive the same form of the ELBO objective as Equation (7):

J naïve
RSQ-VAE = D

2 log σ2 + EQ(Z1:L,Z̃1:L|x)

[
∥x − fθ(Z1:L)∥2

2
2σ2 +

L∑
l=1

(
∥Z̃l − Zl∥2

F

2s2
l

−H(P̂s2
l
(Zl|Z̃l))

)]
, (11)

where the numerator of the third term corresponds to the evaluation of the residuals Hϕ(x) −
∑l

l′=1 Zl′ for
all l ∈ [L] with the dequantization process. However, we empirically found training the model with the ELBO
objective was often unstable. We suspect this is because the objective regularizes Z1:L to make

∑l
l′=1 Zl′

close to the feature for all l ∈ [L]. We hypothesize that this regularization is too strong to regularize the
latent representation. To address the issue, we consider conditional distributions not on (Z1:L, Z̃1:L) but on
(Z1:L, Z̃), where Z̃ =

∑L
l=1 Z̃l. From the reproductive property of Gaussian distribution, the continuous

latent variable converted from Z via the stochastic dequantization processes, Z̃ =
∑L

l=1 Z̃l, follows the
following Gaussian distribution:

ps2(z̃i|Z) = N

(
z̃i;

L∑
l=1

zl,i,

(
L∑

l=1
s2

l

)
I

)
. (12)

We instead use the following prior distribution to derive the ELBO objective:

P(Z1:L, Z̃) =
dz∏

i=1

(
L∏

l=1
P (zl,i)

)
ps2(z̃i|Z). (13)

We now derive the ELBO using the newly established prior and posterior starting from

log pθ(x) ≥ −JRSQ-VAE

= −EQ(Z1:L,Z̃|x)

[
− log pθ(x|Z1:L) + log Q(Z1:L, Z̃|x)

P(Z1:L, Z̃)

]
. (14)

The above objective is further simplified as

JRSQ-VAE = D

2 log σ2 + EQ(Z1:L,Z̃1:L|x)

[
∥x − fθ(Z1:L)∥2

2
2σ2 + ∥Z̃ − Z∥2

F

2
∑L

l=1 s2
l

−
L∑

l=1
H(P̂s2

l
(Zl|Z̃l))

]
(15)

where the third term is different from that in Equation (11) and its numerator evaluates only the overall
quantization error Hϕ(x) −

∑L
l=1 Zl with the dequantization process.

7

Under review as submission to TMLR

0.9

0.8

0.7

0.01

0.10

0.05
0.04

0.03

Codebook size
8 16 32 64 128

RMSE ()

LPIPS ()

SSIM ()

(a) CIFAR10
Codebook size

32 64 128 256 512

0.85

0.80

0.20

0.24

0.32

0.40

VQ-VAE-2SQ-VAE-2

(b) CelebA-HQ

Figure 2: Impact of codebook capacity on reconstruction is investigated on (a) CIFAR10 and (b) CelebA-
HQ. Two and three layers are tested on CIFAR10 and CelebA-HQ, respectively.

Table 1: Evaluation on ImageNet (256×256) and FFHQ (1024×1024). RMSE (×102), LPIPS, and SSIM are
evaluated using test set. Following Razavi et al. (2019), codebook capacity for discrete latent space is set
to (dl, Kl) = (322, 512), (642, 512) and (dl, Kl) = (322, 512), (642, 512), (1282, 512) for ImageNet and FFHQ,
respectively. We also show codebook perplexity at each layer.

Dataset Model Reconstruction Codebook perplexity
RMSE ↓ LPIPS ↓ SSIM ↑ Z1 Z2 Z3

ImageNet VQ-VAE-2 6.071 ± 0.006 0.265 ± 0.012 0.751 ± 0.000 106.8 ± 0.8 288.8 ± 1.4
SQ-VAE-2 4.603 ± 0.006 0.096 ± 0.000 0.855 ± 0.006 406.2 ± 0.9 355.5 ± 1.7

FFHQ VQ-VAE-2 4.866 ± 0.291 0.323 ± 0.012 0.814 ± 0.003 24.6 ± 10.7 41.3 ± 14.0 310.1 ± 29.6
SQ-VAE-2 2.118 ± 0.013 0.166 ± 0.002 0.909 ± 0.001 125.8 ± 9.0 398.7 ± 14.1 441.3 ± 7.9

4.3.2 RSQ-VAE vs. RQ-VAE

RQ-VAE and RSQ-VAE both learn discrete representation in a coarse-to-fine manner, but RQ-VAE adopts
a deterministic RQ scheme to achieve Equation (9), where RQ-VAE is trained with the following objective
function:

LRQ-VAE = ∥x − fθ(Z1:L)∥2
2 + β

L∑
l=1

∥∥∥∥∥Hϕ(x) − sg
[

l∑
l′=1

Zl′

]∥∥∥∥∥
2

F

, (16)

where the codebooks are updated with the EMA update in the same manner as VQ-VAE. The second
term of Equation (16) resembles the third term of Equation (11), which strongly enforces certain degree of
reconstruction even only with partial information from the higher layers. RQ-VAE is beneficial from such a
regularization term, which leads to stable training. However, in RSQ-VAE, this regularization deteriorates
the reconstruction performance. Instead, we use Equation (15) as the objective, which regularizes the latent
representation by taking into account only accumulated information from all layers.

Remark. HQ-VAE has favorable properties similar to SQ-VAE. The training scheme does not require
hyperparameters except for a temperature parameter of Gumbel-softmax approximation (see Equations (7)
and (15)). Furthermore, the derived models can benefit from the self-annealing effect as in SQ-VAE, which
is empirically shown in Section 5.3.

5 Experiments

8

Under review as submission to TMLR

Codebook size Codebook size Codebook size

R
M

S
E

L
P

IP
S

S
S

IM

0.06

0.04

0.03

0.05

0.1

0.01

0.9

0.8

16 32 64 128 256 16 32 64 128 256 16 32 64 128 256

RSQ-VAE
RSQ-VAE

RQ-VAE
RQ-VAE

RQ-VAE w/ code reset
RQ-VAE w/ code reset

(codebook share) (codebook share) (codebook share)

(a) CIFAR10 (L = 4)

Number of Layers
2 4 8 16 32 64

Number of Layers
2 4 8 16 32 64

Number of Layers
2 4 8 16 32 64

R
M

S
E

L
P

IP
S

S
S

IM

0.06

0.04

0.03

0.04

0.06

0.03

0.02

0.9

0.8

0.7

0.6

(b) CelebA-HQ (Kl = 32)

Perplexity

23 24 25

R
S

Q
-V

A
E

R
Q

-V
A

E
w

/ c
od

e
re

se
t

R
Q

-V
A

E

(c) Codebook perplexity.

Figure 3: Impact of codebook capacity on reconstruction is investigated on (a) CIFAR10 and (b) CelebA-
HQ. (c) Codebook perplexity at each layer is plotted, wheremodels with 32 layers are trained on CelebA-HQ
and all layers share same codebook.

(a) Reconstructed images and magnified differences of SQ-VAE-
2

2500 5000 7500
Iteration

2

4

6

0
5000 10000
Iteration

0.5

1.0

(b) H(P̂s2
l
(zl,i|Z̃l)) in SQ-VAE-2

(c) Reconstructed images and magnified differences of RSQ-VAE

2500 5000 7500
Iteration

2

4

6

5000 10000
Iteration

1.0

0.0

(d) H(P̂s2
l
(zl,i|Z̃l)) in RSQ-VAE

Figure 4: Reconstructed samples with partial layers in (a) SQ-VAE-2 and (c) RSQ-VAE. Top row shows
reconstructed images while bottom one shows added components at each layer. For l = 1, 2, 3 latent capacity
is set to (dl, Kl) = (162, 256), (322, 16), (642, 4) and (dl, Kl) = (322, 4), (322, 16), (322, 256), respectively.
Notice that the numbers of bits of these models are equal at each layer. For reasonable visualization, we
apply progressive coding to SQ-VAE-2, which induces progressive compression (see Appendix C.5). (b) and
(d) We plot variance parameter s2

l normalized by initial value s2
l,0 and average entropy of quantization process

(H(P̂s2
l
(zl,i|Z̃l))) at each layer.

9

Under review as submission to TMLR

We comprehensively examine SQ-VAE-2 and RSQ-VAE and visualize the effects of their individual top-down
paths. In Secs. 5.1 and 5.2, we comprehensively compare SQ-VAE-2 and RSQ-VAE with VQ-VAE-2 and
RQ-VAE, respectively to show our framework improves reconstruction performance against the baselines. In
addition, we show that RSQ-VAE trained with a perceptual loss Johnson et al. (2016) is competitive with
the state-of-the-art model based on RQ-VAE. Furthermore, we test HQ-VAE on an audio dataset to show
that it is applicable to a different modality. In Section 5.3, we investigate the characteristics of the injected
top-down and residual top-down layers with visualization (Section 5.3). Unless otherwise noted, we use the
same network architecture in all models and set the codebook dimension to db = 64. The experimental
details are given in Appendix C.

5.1 SQ-VAE-2 vs. VQ-VAE-2

We compare SQ-VAE-2 with VQ-VAE-2 from the aspects of reconstruction accuracy and codebook utiliza-
tion. We first investigate their performance on CIFAR10 Krizhevsky et al. (2009) and CelebA-HQ (256×256)
in various codebook settings: the configurations for the hierarchical structure and numbers of code vectors
(Kl). We evaluated the reconstruction accuracy in terms of the root mean squared error (RMSE), structure
similarity index (SSIM) Wang et al. (2004), and learned perceptual image patch similarity (LPIPS) Zhang
et al. (2018). As shown in Figure 2, SQ-VAE-2 achieved better reconstruction accuracy in all cases. The
difference of the performance between the two models is noticeable when the codebook size is small.

Comparison on large-scale datasets. Next, we demonstrate that SQ-VAE-2 outperforms VQ-VAE-
2 on ImageNet (256×256) Deng et al. (2009) and FFHQ (1024×1024) Karras et al. (2019) in the same
latent settings as in Razavi et al. (2019). As shown in Table 1, SQ-VAE-2 achieves better reconstruction
performance in terms of RMSE, LPIPS, and SSIM than VQ-VAE-2, which is a similar tendency as in the
comparison on CIFAR10 and CelebA-HQ. Furthermore, we measure codebook utilization by the perplexity of
latent variables. SQ-VAE-2 achieves higher codebook perplexities than VQ-VAE-2 at all the layers, whereas
the higher layers are not effectively used in VQ-VAE-2.

5.2 RSQ-VAE vs. RQ-VAE

We compare RSQ-VAE with RQ-VAE using the same metrics as in Section 5.1. As codebook reset is used in
the original study Zeghidour et al. (2021); Lee et al. (2022a), we added VQ-VAE with this technique to the
baselines. We first investigate their performances on CIFAR10 and CelebA-HQ (256×256) in various settings:
the number of times of quantization step (l) and number of code vectors (Kl). As shown in Figures 3a and 3b,
RSQ-VAE achieves better reconstruction accuracy in terms of RMSE, SSIM, and LPIPS than the baselines
although codebook reset overall enhances the performance of RQ-VAE. When the codebook is shared for
all layers, the performance difference is remarkable, with a noticeable difference in how codes are used.
Interestingly, more codes are assigned in the bottom layers in RSQ-VAE, unlike RQ-VAEs, as shown in
Figure 3c. RSQ-VAE captures the coarse information with a relatively small number of codes, and refines
the reconstruction with larger bits at the bottom layers.

Improvement in perceptual quality. Next, we use the same network architecture as that used in Lee
et al. (2022a) and set the codebook dimension to db = 256 for fair comparison with their RQ-VAE. We train
RSQ-VAE on FFHQ with an LPIPS loss Zhang et al. (2018) (see Appendix C.4) and compare it with their
RQ-VAE in terms of Fréchet Inception Distance (FID) Heusel et al. (2017). The reconstructed FID (rFID)
of RSQ-VAE is 8.47, whereas that of their RQ-VAE is 7.29. Note that we do not use an adversarial loss for
training RSQ-VAE but their RQ-VAE was trained with the combination of an LPIPS loss and adversarial
loss. This means that our RSQ-VAE achieves competitive performance without an adversarial loss. We leave
combining an adversarial loss with HQ-VAE for future work.

Validation on an audio dataset. To validate the effectiveness of RSQ-VAE in the audio domain, we
compare it with RQ-VAE by the reconstruction of the normalized log-Mel spectrogram using an environ-
mental sound dataset: UrbanSound8K Salamon et al. (2014). We follow the same network architecture used
in an audio generation paper Liu et al. (2021), which deploys multi-scale convolutional layers with varied

10

Under review as submission to TMLR

Table 2: Evaluation on UrbanSound8K. RMSE is evaluated using test set. Network architecture follows Liu
et al. (2021). Codebook size is set to Kl = 8.

Model Number of Layers RMSE ↓
RQ-VAE 4 0.506 ± 0.018

8 0.497 ± 0.057
RSQ-VAE 4 0.427 ± 0.014

8 0.314 ± 0.013

kernel sizes to capture the local and global features of audio signals in the time-frequency domain Xian et al.
(2021). Codebook size is set to Kl = 8. Number of layers is set to 4 and 8, and all the layers share the same
codebook. We run each trial with five different random seeds and obtain the average and standard deviation
of RMSEs. As shown in Table 2, RSQ-VAE achieves better average RMSEs than RQ-VAE across different
numbers of layers on the audio dataset.

5.3 Empirical study of top-down layers

In this section, we focus on visualizing the obtained discrete representations instead of comparing their
reconstruction performance. This will provide insights into the characteristics of the top-down layers. We
train both, SQ-VAE-2 and RSQ-VAE, with three layers on CelebA-HQ Karras et al. (2018), respectively.
Figure 4 shows the progressively reconstructed images. For demonstration purpose, we incorporate progres-
sive coding Shu & Ermon (2022) to SQ-VAE-2 to make the reconstructed images only with the top layers
interpretable. We note that progressive coding is not applied other than the illustration of Figure 4. Both,
SQ-VAE-2 and RSQ-VAE, share the similarity that the higher layers generate the coarse part of the image
while the lower layers complement them with details. However, comparing the two, we observe that in
SQ-VAE-2, the additionally generated components (bottom row in Figure 4a) in each layer have different
resolutions. We conjecture that the different layer-dependent resolutions H

r(l)
ϕ (x), which are injected into

the top-down layers, contain different information. This implies that we may obtain more interpretable
discrete representations if we can explicitly manipulate the extracted features in the bottom-up path to pro-
vide H

r(l)
ϕ (x) giving them more semantic meaning (e.g., texture or color). In contrast, RSQ-VAE seems

to obtain a different discrete representation which resembles more a decomposition. This might be due to
its approximated expansion in Equation (9). Moreover, we can observe from Figures 4b and 4d that the
top-down layers also benefit from the self-annealing effect.

In Appendix C.3, we explore combining the two layers to form a hybrid model. We observe that individual
layers in a hybrid model produce similar effects as if they would be used alone. That is, outputs from injected
top-down layers have better resolution and residual top-down layers refine upon certain decomposition. Since
these two layers enjoy distinct refining mechanisms, a hybrid model may bring a more flexible approximation
to the posterior distribution.

6 Conclusion

We propose HQ-VAE, a general VAE approach that learns hierarchical discrete representations. HQ-VAE is
formulated within the variational Bayes framework as a stochastic quantization technique, which (1) greatly
reduces the number of hyperparameters to be tuned (only the one from the Gumbel-softmax trick), and
(2) enhances codebook usage without any heuristics thanks to the self-annealing effect. We instantiate
the general HQ-VAE with two types of posterior approximators for the discrete latent representations,
which lead to SQ-VAE-2 and RSQ-VAE. These two novel variants share a similar design of information
passing as VQ-VAE-2 and RQ-VAE, respectively, but their latent representations are quantized stochastically.
Our experiments show that SQ-VAE-2 and RSQ-VAE outperform their individual baselines with better
reconstruction and more efficient codebook usages in the image as well as audio domain.

As future work, we will incorporate adversarial training into HQ-VAE which is expected to further enhance
the perceptual quality of the reconstructed data. As discussed in Section 5.3, we will also explore the

11

Under review as submission to TMLR

feasibility of explicitly manipulating the injected information into the top-down layers to obtain discrete
representations with semantic meaning. At last, we explore one of the applications to image generation by
training a prior on extracted discrete representations with HQ-VAE in Section D. Nevertheless, this work is
focusing on providing a unified variational Bayesian framework of hierarchical quantization. Its downstream
applications such as content generation or neural codec will also be considered as future work.

References
Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Timofte, Luca Benini, and

Luc V Gool. Soft-to-hard vector quantization for end-to-end learning compressible representations. In
Proc. Advances in Neural Information Processing Systems (NeurIPS), 2017.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), volume 34, pp. 17981–17993, 2021.

Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An improved autoregressive
generative model. In Proc. International Conference on Machine Learning (ICML), pp. 864–872. PMLR,
2018.

Rewon Child. Very deep VAEs generalize autoregressive models and can outperform them on images. In
Proc. International Conference on Learning Representation (ICLR), 2021.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse trans-
formers. arXiv preprint arXiv:1904.10509, 2019.

Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio compression.
arXiv preprint arXiv:2210.13438, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In Proc. Advances
in Neural Information Processing Systems (NeurIPS), volume 34, pp. 8780–8794, 2021.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever. Juke-
box: A generative model for music. arXiv preprint arXiv:2005.00341, 2020.

Patrick Esser, Robin Rombach, Andreas Blattmann, and Bjorn Ommer. Imagebart: Bidirectional context
with multinomial diffusion for autoregressive image synthesis. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), volume 34, pp. 3518–3532, 2021a.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis.
In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12873–12883,
2021b.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining
Guo. Vector quantized diffusion model for text-to-image synthesis. In Proc. IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10696–10706, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), pp. 6626–6637, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proc. Advances in
Neural Information Processing Systems (NeurIPS), pp. 6840–6851, 2020.

12

Under review as submission to TMLR

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows and multi-
nomial diffusion: Learning categorical distributions. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), volume 34, pp. 12454–12465, 2021.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In Proc.
International Conference on Learning Representation (ICLR), 2017.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-
resolution. In Proc. European Conference on Computer Vision (ECCV), pp. 694–711, 2016.

Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish Vaswani, Niki Parmar, Jakob Uszkoreit, and Noam Shazeer.
Fast decoding in sequence models using discrete latent variables. In Proc. International Conference on
Machine Learning (ICML), pp. 2390–2399, 2018.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved
quality, stability, and variation. In Proc. International Conference on Learning Representation (ICLR),
2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
4401–4410, 2019.

Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet, Devi
Parikh, Yaniv Taigman, and Yossi Adi. Audiogen: Textually guided audio generation. arXiv preprint
arXiv:2209.15352, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image generation
using residual quantization. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 11523–11532, 2022a.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Draft-and-revise: Effective image
generation with contextual rq-transformer. In Proc. Advances in Neural Information Processing Systems
(NeurIPS), 2022b.

Xubo Liu, Turab Iqbal, Jinzheng Zhao, Qiushi Huang, Mark D Plumbley, and Wenwu Wang. Conditional
sound generation using neural discrete time-frequency representation learning. In IEEE Int. Workshop on
Machine Learning for Signal Processing (MLSP), pp. 1–6, 2021.

Chris J Maddison, Andriy Mnih, and Yee Why Teh. The concrete distribution: A continuous relaxation of
discrete random variables. In Proc. International Conference on Learning Representation (ICLR), 2017.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838–855, 1992.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. In Proc. International Conference on Machine Learning
(ICML), pp. 8821–8831, 2021.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with VQ-VAE-2.
In Proc. Advances in Neural Information Processing Systems (NeurIPS), pp. 14866–14876, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proc. IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10684–10695, 2022.

Aurko Roy, Ashish Vaswani, Arvind Neelakantan, and Niki Parmar. Theory and experiments on vector
quantized autoencoders. arXiv preprint arXiv:1805.11063, 2018.

13

Under review as submission to TMLR

Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. A dataset and taxonomy for urban sound
research. In ACM Int. Conf. on Multimedia (ACM MM), pp. 1041–1044, 2014.

Rui Shu and Stefano Ermon. Bit prioritization in variational autoencoders via progressive coding. In
International Conference on Machine Learning (ICML), pp. 20141–20155, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In Proc. International Conference on Machine Learning (ICML),
pp. 2256–2265. PMLR, 2015.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther. Ladder varia-
tional autoencoders. In Proc. Advances in Neural Information Processing Systems (NeurIPS), pp. 3738–
3746, 2016.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Proc. International
Conference on Learning Representation (ICLR), 2020.

Yuhta Takida, Wei-Hsiang Liao, Chieh-Hsin Lai, Toshimitsu Uesaka, Shusuke Takahashi, and Yuki Mitsufuji.
Preventing oversmoothing in VAE via generalized variance parameterization. Neurocomputing, 509:137–
156, 2022a.

Yuhta Takida, Takashi Shibuya, WeiHsiang Liao, Chieh-Hsin Lai, Junki Ohmura, Toshimitsu Uesaka, Naoki
Murata, Takahashi Shusuke, Toshiyuki Kumakura, and Yuki Mitsufuji. SQ-VAE: Variational bayes on
discrete representation with self-annealed stochastic quantization. In Proc. International Conference on
Machine Learning (ICML), 2022b.

Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy image compression with com-
pressive autoencoders. In Proc. International Conference on Learning Representation (ICLR), 2017.

George Toderici, Sean M O’Malley, Sung Jin Hwang, Damien Vincent, David Minnen, Shumeet Baluja,
Michele Covell, and Rahul Sukthankar. Variable rate image compression with recurrent neural networks.
In Proc. International Conference on Learning Representation (ICLR), 2016.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. In Proc. Advances in
Neural Information Processing Systems (NeurIPS), volume 33, pp. 19667–19679, 2020.

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In Proc.
International Conference on Machine Learning (ICML), pp. 1747–1756, 2016.

Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning. In
Proc. Advances in Neural Information Processing Systems (NeurIPS), pp. 6306–6315, 2017.

Dezhao Wang, Wenhan Yang, Yueyu Hu, and Jiaying Liu. Neural data-dependent transform for learned
image compression. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
17379–17388, 2022.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.

Will Williams, Sam Ringer, Tom Ash, John Hughes, David MacLeod, and Jamie Dougherty. Hierarchical
quantized autoencoders. arXiv preprint arXiv:2002.08111, 2020.

Yang Xian, Yang Sun, Wenwu Wang, and Syed Mohsen Naqvi. Multi-scale residual convolutional encoder
decoder with bidirectional long short-term memory for single channel speech enhancement. In Proc.
European Signal Process. Conf. (EUSIPCO), pp. 431–435, 2021.

Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu. Diffsound:
Discrete diffusion model for text-to-sound generation. arXiv preprint arXiv:2207.09983, 2022.

14

Under review as submission to TMLR

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. SoundStream: An
end-to-end neural audio codec. IEEE Trans. Audio, Speech, Lang. Process., 30:495–507, 2021.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 586–595, 2018.

15

Under review as submission to TMLR

A Derivations

A.1 SQ-VAE-2

The ELBO of SQ-VAE-2 is formulated by using Bayes’ theorem as
log pθ(x) ≥ log pθ(x) − DKL(Q(Z1:L, Z̃1:L|x) ∥ P(Z1:L, Z̃1:L|x))

= EQ(Z1:L,Z̃1:L|x)

[
log pθ(x)P(Z1:L, Z̃1:L|x)

Q(Z1:L, Z̃1:L|x)

]
= EQ(Z1:L,Z̃1:L|x)

[
log pθ(x|Z1:L) − log Q(Z1:L, Z̃1:L|x)

P(Z1:L, Z̃1:L)

]

= EQ(Z1:L,Z̃1:L|x)

[
log pθ(x|Z1:L) −

L∑
l=1

dl∑
i=1

(
log

ps2
l
(z̃l,i|Ẑl)

ps2
l
(z̃l,i|Zl)

+ log
P̂s2

l
(zl,i|Z̃l)

P (zl,i)

)]

= EQ(Z1:L,Z̃1:L|x)

[
log pθ(x|Z1:L) +

L∑
l=1

dl∑
i=1

(
log

ps2
l
(z̃l,i|Zl)

ps2
l
(z̃l,i|Ẑl)

+ H(P̂s2
l
(zl,i|Z̃l)) − log Kl

)]
. (17)

Since the probabilistic parts are modeled as Gaussian distributions, the first and second terms can be
calculated as

log pθ(x|Z1:L) = log N (x; fθ(Z1:L), σ2I)

= −D

2 log(2πσ2) − 1
2σ2 ∥x − fθ(x)∥2

2 and (18)

EQ(Z1:L,Z̃1:L|x)

[
ps2

l
(z̃l,i|Zl)

ps2
l
(z̃l,i|Ẑl)

]
= EQ(Z1:L,Z̃1:L|x)

[
− 1

2s2
l

∥z̃l,i − zl,i∥2
2 + 1

2s2
l

∥z̃l,i − ẑl,i∥2
2

]
= −EQ(Z1:L,Z̃1:L|x)

[
1

2s2
l

∥z̃l,i − zl,i∥2
2

]
+ db

2 . (19)

By substituting Equations (18) and (19) into Equation (17), we have Equation (7), where we use Z̃l = Ẑl

instead of sampling it in practical implementation.

A.2 RSQ-VAE

The ELBO of RSQ-VAE is formulated by using Bayes’ theorem as
log pθ(x) ≥ log pθ(x) − DKL(Q(Z1:L, Z̃|x) ∥ P(Z1:L, Z̃|x))

= EQ(Z1:L,Z̃1:L|x)

[
log pθ(x)P(Z1:L, Z̃|x)

Q(Z1:L, Z̃|x)

]
= EQ(Z1:L,Z̃|x)

[
log pθ(x|Z1:L) − log Q(Z1:L, Z̃|x)

P(Z1:L, Z̃)

]

= EQ(Z1:L,Z̃|x)

[
log pθ(x|Z1:L) −

dl∑
i=1

log ps2(z̃i|Ẑ)
ps2(z̃i|Z) −

L∑
l=1

dl∑
i=1

log
P̂s2

l
(zl,i|Z̃l)

P (zl,i)

]

= EQ(Z1:L,Z̃|x)

[
log pθ(x|Z1:L) +

dl∑
i=1

log ps2(z̃i|Z)
ps2(z̃i|Ẑ)

+
L∑

l=1

dl∑
i=1

H(P̂s2
l
(zl,i|Z̃l)) − log Kl

]
. (20)

Since the probabilistic parts are modeled as Gaussian distributions, the second term can be calculated as

EQ(Z1:L,Z̃|x)

[
ps2(z̃i|Z)
ps2(z̃i|Ẑ)

]
= EQ(Z1:L,Z̃|x)

[
− 1

2
∑L

l=1 s2
l

∥z̃i − zi∥2
2 + 1

2
∑L

l=1 s2
l

∥z̃i − ẑi∥2
2

]

= −EQ(Z1:L,Z̃|x)

[
1

2
∑L

l=1 s2
l

∥z̃i − zi∥2
2

]
+ db

2 . (21)

16

Under review as submission to TMLR

...

Injected top-down layer

Residual top-down layers

...

Figure 5: Top-down layers corresponding to the rth resolution in hybrid model in Appendix B.

By substituting Equations (18) and (21) into (20), we have Equation (15), where we use Z̃ = Hϕ(x) instead
of sampling it in practical implementation. We have derived the ELBO objective in the case of R = 1. We
extend the model to the general case of R, equivalent to the hybrid model, in Appendix B.

B Hybrid model

We provide the ELBO of a hybrid model, where the two types of top-down layers are combinatorially used
to build a top-down path as in Figure 5. We introduce some extra notations: Lr indicates the number of
layers corresponding to the resolutions from the first to rth order; ℓr := {Lr−1 + 1, · · · , Lr} is a set of all the
layers corresponding to the resolution r; and the output of the encoding block in the (Lr−1 + 1)th layer is
denoted as G̃r

ϕ(Hr
ϕ(x), Z1:Lr−1). In Figure 5, the quantized variables Zℓr aim at approximating the variable

encoded at l = Lr−1 + 1 as

G̃r
ϕ(Hr

ϕ(x), Z1:Lr−1) ≈
∑
l∈ℓr

Zl =: Yr. (22)

On this basis, the lth top-down layer quantizes the following information:

Ẑl = Gl
ϕ(x, Z1:l−1) =

{
H1

ϕ(x) (l = 1)
G̃

r(l)
ϕ (Hr(l)

ϕ (x), Z1:Lr(l)−1) −
∑l

l′=Lr(l)−1+1 Zl′ (l > 1).
(23)

To derive the ELBO objective, we consider conditional distributions on (Z1:L, Ỹ1:R), where Ỹr :=
∑

l∈ℓr
Z̃l.

From the reproductive property of Gaussian distribution, the continuous latent variable converted from Yr

via the stochastic dequantization processes, Z̃ℓr , follows the following Gaussian distribution:

ps2
r
(ỹr,i|Zℓr

) = N

(
ỹr,i;

∑
l∈ℓr

zl,i,

(∑
l∈ℓr

s2
l

)
I

)
, (24)

where s2
r := {s2

l }l∈ℓr . We use the following prior distribution to derive the ELBO objective:

P(Z1:L, Ỹ1:R) =
R∏

r=1

dr∏
i=1

(∏
l∈ℓr

P (zl,i)
)

ps2
r
(ỹr,i|Zℓr

), (25)

17

Under review as submission to TMLR

where dr := dl for l ∈ ℓr. With the prior and posterior distributions, the ELBO of the hybrid model is
formulated by using Bayes’ theorem as

log pθ(x) ≥ log pθ(x) − DKL(Q(Z1:L, Ỹ1:R|x) ∥ P(Z1:L, Ỹ1:R|x))

= EQ(Z1:L,Ỹ1:R|x)

[
log pθ(x)P(Z1:L, Ỹ1:R|x)

Q(Z1:L, Ỹ1:R|x)

]
= EQ(Z1:L,Ỹ1:R|x)

[
log pθ(x|Z1:L) − log Q(Z1:L, Ỹ1:R|x)

P(Z1:L, Ỹ1:R)

]

= EQ(Z1:L,Ỹ1:R|x)

[
log pθ(x|Z1:L) −

R∑
r=1

dr∑
i=1

log
ps2

r
(ỹr,i|Ẑℓr)

ps2
r
(ỹr,i|Zℓr

) −
L∑

l=1

dl∑
i=1

log
P̂s2

l
(zl,i|Z̃l)

P (zl,i)

]

= EQ(Z1:L,Ỹ1:R|x)

[
log pθ(x|Z1:L) +

R∑
r=1

dr∑
i=1

log
ps2

r
(ỹr,i|Zℓr

)
ps2

r
(ỹr,i|Ẑℓr)

+
L∑

l=1

dl∑
i=1

H(P̂s2
l
(zl,i|Z̃l)) − log Kl

]
,

(26)

where Ŷr = G̃r
ϕ(Hr

ϕ(x), Z1:Lr−1). Since we model the dequantization process and the probabilistic decoder
as Gaussians, by substituting their closed forms into the above equation, we have

JHQ-VAE = D

2 log σ2

+ EQ(Z1:L,Z̃1:L|x)

∥x − fθ(Z1:L)∥2
2

2σ2 +
R∑

r=1

∥∥∥G̃r
ϕ(Hr

ϕ(x), Z1:Lr−1) −
∑

l∈ℓr
Zl

∥∥∥2

F

2
∑

l∈ℓr
s2

l

−
L∑

l=1
H(P̂s2

l
(Zl|Z̃l))

 ,

(27)

where we used

EQ(Z1:L,Ỹ1:R|x)

[
ps2

r
(ỹr,i|Zℓr)

ps2
r
(ỹr,i|Ẑℓr)

]
= EQ(Z1:L,Ỹ1:R|x)

[
− 1

2
∑

l∈ℓr
s2

l

∥ỹr,i − yr,i∥2
2 + 1

2
∑

l∈ℓr
s2

l

∥ỹr,i − ŷr,i∥2
2

]

= −EQ(Z1:L,Ỹ1:R|x)

[
1

2
∑

l∈ℓr
s2

l

∥ỹr,i − yr,i∥2
2

]
+ dr

2 . (28)

Here, we use Ỹr = Ŷr instead of sampling it in practical implementation.

C Experimental details

We explain the details of the experiments2 in Section 5. For all the experiments except for RSQ-VAE and
RQ-VAE on FFHQ and UrbanSound8K in Section 5.2, we construct architectures for both the bottom-up
and top-down paths as described in Figures 1 and 6. To build these paths, we introduce two common blocks,
the Resblock and Convblock by following Child (2021) as in Figure 6a, which are used in Figures 6b and 6c.
Here, we denote the width and height of Hr

ϕ(x) as wr and hr, respectively, i.e., Hr
ϕ(x) ∈ Rdb×wr×hr . We

set cmid = 0.5 in Figure 6. For all the experiments, we use the Adam optimizer with β1 = 0.9 and β2 = 0.9.
Unless otherwise noted, we reduce the learning rate in half if the validation loss is not improved in the last
three epochs.

In HQ-VAE, we deal with the decoder variance σ2 using the update scheme with the maximum likelihood
estimation Takida et al. (2022a). We gradually reduce the temperature parameter of Gumbel–softmax trick
with a standard scheduler τ = exp(10−5 · t) Jang et al. (2017), where t is the iteration step.

We set hyperparameters of VQ-VAE to standard parameter values: the balancing parameter β in Equa-
tions (8) and (16) to 0.25, and the weight decay in EMA for the codebook update to 0.99, respectively.

2The source code is attached in the supplementary material.

18

Under review as submission to TMLR

Table 3: Notations of convolutional layers used in Figure 6.

Notation Description
Conv(1×1)

d 2D Convolutional layer (channel= n, kernel= 1 × 1, stride= 1, padding= 0)
Conv(3×3)

d 2D Convolutional layer (channel= n, kernel= 3 × 3, stride= 1, padding= 1)
Conv(4×4)

d 2D Convolutional layer (channel= n, kernel= 4 × 4, stride= 2, padding= 1)
ConvT(3×3)

d 2D Transpose convolutional layer (channel= n, kernel= 3 × 3, stride= 1, padding= 1)
ConvT(4×4)

d 2D Transpose convolutional layer (channel= n, kernel= 4 × 4, stride= 2, padding= 1)

We here review the datasets used in Section 5 below.

CIFAR10. CIFAR10 Krizhevsky et al. (2009) contains 10 classes of 32×32 color images, which are separated
into 50,000 and 10,000 samples for train and test sets, respectively. We use the default split and further
randomly select 10,000 samples from the train set to prepare the validation set.

CelebA-HQ. CelebA-HQ Karras et al. (2018) contains 30,000 high-resolution face images that are selected
from the CelebA dataset by following Karras et al. (2018). We use the default train/validation/test split.
We preprocess the images by cropping and resizing them to the size of 256×256.

FFHQ. FFHQ Karras et al. (2019) contains 70,000 high-resolution face images. In Section 5.1, we split the
images into three sets: train (60,000 samples), validation (5,000 samples), and test (5,000 samples) sets. We
crop and resize them to 1024×1024. In Section 5.2, we follow the same preprocessing as in Lee et al. (2022a),
respectively, where it splits the images into two sets, train (60,000 samples), validation (10,000 samples) sets
and crop and resize them to 256×256.

ImageNet. ImageNet Deng et al. (2009) contains 1000 classes of natural images in RGB scales. We use the
default train/val/test split. We crop and resize the images to 256×256.

UrbanSound8K. UrbanSound8K Salamon et al. (2014) contains 8,732 labeled audio clips of urban sound
from 10 classes. UrbanSound8K has a wide range of sound classes, such as dog barking and drilling. Ur-
banSound8K is divided into 10 folds, and we use the fold 1-8/9/10 as the train/validation/test split. The
duration of each audio clip is less than 4 seconds. In our experiments, to align the length of input audio, we
pad the all audio clips to 4 seconds. We also convert the all audio clips to 16 bit and down-sampled them
to 22,050 kHz. A 4-second waveform audio clip is converted to a Mel spectrogram with shape 80 × 344. We
preprocess an audio clip following the paper Liu et al. (2021):

1. We extract an 80-dimensional Mel spectrogram using the short-time Fourier transform (STFT) with
a frame size of 1024, a hop size of 256, and a Hann window.

2. We apply dynamic range compression to the Mel spectrogram by first clipping it to a minimum
value of 1 × 10−5 and then applying a logarithmic transformation.

C.1 SQ-VAE-2 vs VQ-VAE-2

C.1.1 Comparison on CIFAR10 and CelebA-HQ

We construct the architecture as depicted in Figures 1 and 6. To build the top-down paths, we use two
injected top-down layers (i.e., R = 2) with w1 = h1 = 8 and w2 = h2 = 16 for CIFAR10, and three layers
(i.e., R = 3) with w1 = h1 = 8, w2 = h2 = 16 and w3 = h3 = 32 for CelebA-HQ, respectively. For
the bottom-up paths, we repeatedly stack two Resblocks and an average pooling layer once and four times,
respectively, for CIFAR10 and CelebA-HQ. We set the learning rate to 0.001 and train all the models for a
maximum of 100 epochs with a mini-batch size of 32.

19

Under review as submission to TMLR

(a) Basic blocks.

(b) Pre-processing and decoding (c) Blocks in top-down layer

Figure 6: Architecture details in Figure 1. Notations of convolutional layers, Conv(k×k)
d and ConvT(k×k)

d ,
are summarized in Table 3.

C.1.2 Comparison on large-scale datasets

We construct the architecture as depicted in Figures 1 and 6. To build the top-down paths, we use two
injected top-down layers (i.e., R = 2), with w1 = h1 = 32 and w2 = h2 = 64 for ImageNet, and three layers
(i.e., R = 3) with w1 = h1 = 32, w2 = h2 = 64 and w3 = h3 = 128 for FFHQ, respectively. For the
bottom-up paths, we repeatedly stack two Resblocks and an average pooling layer three times and five times
respectively for ImageNet and FFHQ. We set the learning rate to 0.0005. We train ImageNet and FFHQ for
a maximum of 50 and 200 epochs with a mini-batch size of 512 and 128, respectively. Figure 7 and Figure 8
show reconstructed samples of SQ-VAE-2 on ImageNet and FFHQ, respectively.

C.2 RSQ-VAE vs RQ-VAE

C.2.1 Comparison on CIFAR10 and CelebA-HQ

We construct the architecture as depicted in Figures 1 and 6 without injected top-down layers, i.e., R = 1.
We set the resolution of Hϕ(x) to w = h = 8. For the bottom-up paths, we repeatedly stack two Resblocks
and an average pooling layer once and four times, respectively, for CIFAR10 and CelebA-HQ. We set the
learning rate to 0.001 and train all the models for a maximum of 100 epochs with a mini-batch size of 32.

C.2.2 Improvement in perceptual quality

In this experiment, we use the same network architecture as that used in Lee et al. (2022a). We set the
learning rate to 0.001 and train an RSQ-VAE model for a maximum of 300 epochs with a mini-batch size
of 128 (4 GPUs, 32 samples for each GPU) on FFHQ. We use our modified LPIPS loss (see Appendix C.4)
in training. For evaluation, we compute rFID scores with the code provided in their repository3 on the
validation set (10,000 samples). And, we use the pre-trained RQ-VAE model offered in the same repository
for evaluating RQ-VAE.

We show examples of reconstructed images in Appendix C.4 after we explain our modified LPIPS loss.

3https://github.com/kakaobrain/rq-vae-transformer

20

https://github.com/kakaobrain/rq-vae-transformer

Under review as submission to TMLR

(a) Source images

(b) Reconstructed images

Figure 7: Reconstructed samples of SQ-VAE-2 trained on ImageNet

(a) Source images

(b) Reconstructed images

Figure 8: Reconstructed samples of SQ-VAE-2 trained on FFHQ

21

Under review as submission to TMLR

Bottom-up path Top-down path

(a) Case1: ℓ1 = {1, 2}, ℓ2 = {3, 4} and ℓ3 = {5, 6}

Bottom-up path Top-down path

(b) Case2: ℓ1 = {1, 2, 3, 4}, ℓ2 = {5, 6} and ℓ3 = {7}

Figure 9: Architecture of the hybrid model in Appendix C.3.

C.2.3 Validation on an audio dataset

We construct the architecture by following the previous audio generation work Liu et al. (2021). For the
top-down paths, the architecture consists of several strided convolutional layers in parallel Xian et al. (2021).
We use four strided convolutional layers consisting of two sub-layers with stride 2, followed by two ResBlocks
with ReLU activations. The kernel sizes of these four strided convolutional layers are 2 × 2, 4 × 4, 6 × 6 and
8×8 respectively. We add the outputs of the four strided convolutional layers, and pass it to a convolutional
layer with kernel size 3 × 3. Then we get the resolution of Hϕ(x) to w = 20, h = 86. For the bottom-up
paths, we stack a convolutional layer with kernel size 3 × 3, two Resblocks with ReLU activations, and two
transposed convolutional layers with stride 2 and kernel size 4 × 4. We set the learning rate to 0.001 and
train all the models for a maximum of 100 epochs with a mini-batch size of 32.

As an example of demonstration, we randomly select audio clips from our test split of UrbanSound8K and
show their reconstructed Mel spectrogram samples from RQ-VAE and RSQ-VAE in Figure 10. While the
samples from RQ-VAE have difficulty to reconstruct the sources with shared codebooks, the samples from
RSQ-VAE reconstruct detailed features of the sources.

C.3 Empirical study of top-down layers

For a demonstration, we build two HQ-VAEs by combinatorially using both the injected top-down and the
residual top-down layers with three resolutions, w1 = h1 = 16, w2 = h2 = 32 and w3 = h3 = 64. We
construct the architectures as described in Figure 9 and train them on CelebA-HQ. Figure 12 shows the
progressively reconstructed images for each case. We can observe the same tendencies as in Figures 4a and
4c.

C.4 Perceptual loss for images

We found that LPIPS loss Zhang et al. (2018), which is a perceptual loss for images Johnson et al. (2016),
works well with our HQ-VAE. However, we also noticed that just replacing ∥x − fθ(Z1:L)∥2

2 in the objective
function of HQ-VAE (Equations (7) and (15)) with an LPIPS loss LLPIPS(x, fθ(Z1:L)) leads to artifacts in
generated images. We hypothesize that those artifacts are caused by the max-pooling layers in VGGNet used
in LPIPS. Signals from VGGNet might not reach all pixels in backpropagation due to the max-pooling layers.
To mitigate this issue, we applied a padding-and-trimming operation to both a generated image fθ(Z1:L) and
the corresponding reference image x before the LPIPS loss function. That is LLPIPS(pt [x] , pt [fθ(Z1:L)]),

22

Under review as submission to TMLR

where pt [] denotes our padding-and-trimming operator. The PyTorch implementation of such an operation
is described below.

import random
import torch
import torch.nn.functional as F

def padding_and_trimming(
x_rec, # decoder output
x # reference image

):
_, _, H, W = x.size()

x_rec = F.pad(x_rec, (15, 15, 15, 15), mode=’replicate’)
x = F.pad(x, (15, 15, 15, 15), mode=’replicate’)

_, _, H_pad, W_pad = x.size()
top = random.randrange(0, 16)
bottom = H_pad - random.randrange(0, 16)
left = random.randrange(0, 16)
right = W_pad - random.randrange(0, 16)

x_rec = F.interpolate(x_rec[:, :, top:bottom, left:right],
size=(H, W), mode=’bicubic’, align_corners=False)

x = F.interpolate(x[:, :, top:bottom, left:right],
size=(H, W), mode=’bicubic’, align_corners=False)

return x_rec, x

Note that our padding-and-trimming operation includes downsampling with a random ratio. We assume that
this random downsampling provides a generative model with diversified signals in backpropagation across
training iterations, which makes the model more generalizable.

Figure 11 shows images reconstructed by an RSQ-VAE model trained with a normal LPIPS loss,
LLPIPS(x, fθ(Z1:L)), and ones reconstructed by an RSQ-VAE model trained with our modified LPIPS loss,
LLPIPS(pt [x] , pt [fθ(Z1:L)]). As shown, our padding-and-trimming technique alleviates the artifacts issue.
For example, vertical line noise can be seen in hairs in the images generated by the former model, but those
lines are removed or softened in the images generated by the latter model. Indeed, our technique improves
rFID from 10.07 to 8.47.

C.5 Progressive coding

For demonstration purpose of Figure 4a, we incorporate the concept of progressive coding Ho et al. (2020); Shu
& Ermon (2022) to our framework, which helps hierarchical models to be more sophisticated in progressive
lossy compressing and may generate high-fidelity samples. One can train SQ-VAE-2 to achieve progressive
lossy compression (as in Figure 4a) by introducing additional generative processes x̃l ∼ N (x̃l; fθ(Z1:l), σ2

l I)
for l ∈ [L]. We here derive the corresponding ELBO objective with this concept. Its benefit is to produce
more reasonable reconstructed images only with higher layers (i.e., using only low-resolution information
Hr

ϕ(x)).

First, we consider corrupted data x̃l for l ∈ [L], which is obtained by adding noises, for example, i.e.,
x̃l = x + ϵ. We here adopt the Gaussian distribution ϵl.d ∼ N (0, vl) for the noises. Note that {σ2

l }L
l=1

is set to be a non-increasing sequence. We model the generative process using only the top l groups as

23

Under review as submission to TMLR

pl
θ(x̃l) = N (x̃l; fθ(Z1:l), σ2

l I). Now the ELBO is obtained as

J prog
SQ-VAE-2 =

L∑
l=1

D

2 log σ2
l + EQ(Z1:L,Z̃1:L|x)

[
∥x − fθ(Z1:l) + Dvl∥2

2
2σ2

l

+ ∥Z̃l − Zl∥2
F

2s2
l

− H(P̂s2
l
(Zl|Z̃l))

]
(29)

In Section 5.3, we simply set vl = 0 in the above objective when this technique is activated.

This concept can be also applied to the hybrid model derived in Appendix B by considering additional
generative processes pr

θ(x̃r) = N (x̃r; fθ(Z1:Lr
), σ2

rI). The ELBO objective is as follows:

J prog
HQ-VAE =

R∑
r=1

D

2 log σ2
r

+ EQ(Z1:L,Ỹ1:R|x)

 R∑
r=1

∥x − fθ(Z1:Lr) + Dvr∥2
2

2σ2
r

+
R∑

r=1

∥∥∥Ŷr −
∑

l∈ℓr
Zl

∥∥∥2

F

2
∑

l∈ℓr
s2

l

−
L∑

l=1
H(P̂s2

l
(Zl|Z̃l))

 . (30)

In Section C.3, we simply set vl = 0 in the above objective when this technique is activated.

D Application of HQ-VAE to image generation

To demonstrate the applicalability of HQ-VAE to generation tasks, we train a prior model on the FFHQ
latent features extracted by RSQ-VAE using a contextual RQ-Transformer (Lee et al., 2022b). Figure 13
shows the generated samples from RSQ-VAE with the prior. Accordingly, the latent representations learned
by HQ-VAEs are shown to be tractable for prior models.

24

Under review as submission to TMLR

(a) Source.

(b) RQ-VAE with 4 layers.

(c) RQ-VAE with 8 layers.

(d) RSQ-VAE with 4 layers.

(e) RSQ-VAE with 8 layers.

Figure 10: Mel spectrogram of (a) sources and (b)-(e) reconstructed samples of UrbanSound8K dataset.
The left panel and the right panel are audio clips of dog barking and drilling, respectively. We observe
that RQ-VAEs struggle to reconstruct the sources with shared codebooks. In contrast, the reconstruction of
RSQ-VAE can reflect the details of the source samples.

25

Under review as submission to TMLR

(a) Source

(b) RSQ-VAE trained with a normal LPIPS loss (rFID= 10.07)

(c) RSQ-VAE trained with our improved LPIPS loss (rFID= 8.47)

Figure 11: Reconstructed samples of FFHQ.

26

Under review as submission to TMLR

(a) Case1: ℓ1 = {1, 2}, ℓ2 = {3, 4} and ℓ3 = {5, 6}

(b) Case2: ℓ1 = {1, 2, 3, 4}, ℓ2 = {5, 6} and ℓ3 = {7}

Figure 12: Reconstructed images and magnified differences of HQ-VAE on CelebA-HQ

Figure 13: Samples of FFHQ from RSQ-VAE with contextual RQ-Transformer (Lee et al., 2022b).

27

	Introduction
	Background
	VQ-VAE
	SQ-VAE

	Hierarchically quantized VAE
	Instantiations of HQ-VAE
	First top-down layer
	Injected top-down layer
	SQ-VAE-2
	SQ-VAE-2 vs. VQ-VAE-2

	Residual top-down layer
	RSQ-VAE
	RSQ-VAE vs. RQ-VAE

	Experiments
	SQ-VAE-2 vs. VQ-VAE-2
	RSQ-VAE vs. RQ-VAE
	Empirical study of top-down layers

	Conclusion
	Derivations
	SQ-VAE-2
	RSQ-VAE

	Hybrid model
	Experimental details
	SQ-VAE-2 vs VQ-VAE-2
	Comparison on CIFAR10 and CelebA-HQ
	Comparison on large-scale datasets

	RSQ-VAE vs RQ-VAE
	Comparison on CIFAR10 and CelebA-HQ
	Improvement in perceptual quality
	Validation on an audio dataset

	Empirical study of top-down layers
	Perceptual loss for images
	Progressive coding

	Application of HQ-VAE to image generation

