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Abstract

Learning to compare support and query feature sets for few-shot image and video1

understanding has been shown to be a powerful approach. Typically, methods limit2

feature comparisons to a single feature layer and thus ignore potentially valuable3

information. In particular, comparators that operate with early network layer4

features support precise localization, but lack sufficient semantic abstraction. At the5

other extreme, operating with deeper layer features provide richer descriptors, but6

sacrifice localization. In this paper, we address this scale selection challenge with a7

meta-learned Multiscale Multigrid Comparator (MMC) transformer that combines8

information across scales. The multiscale, multigrid operations encompassed by our9

architecture provide bidirectional information transfer between deep and shallow10

features (i.e. coarse-to-fine and fine-to-coarse). Thus, the overall comparisons11

among query and support features benefit from both rich semantics and precise12

localization. Additionally, we present a novel multiscale memory learning in the13

decoder within a meta-learning framework. This augmented memory preserves the14

detailed feature maps during the information exchange across scales and reduces15

confusion among the background and novel class. To demonstrate the efficacy of16

our approach, we consider two related tasks, few-shot video object and actor/action17

segmentation. Empirically, our model outperforms state-of-the-art approaches on18

both tasks.19

1 Introduction20

Guided by a few labelled examples (i.e. the support set), few-shot learning is focused on improving the21

generalization ability of models to novel classes unseen during the initial training to classify the query22

images. In this paper, our focus is on metric learning for few-shot video segmentation, where methods23

learn to compare features between the support and query sets (i.e. learning comparators). Previous24

dense prediction work has documented that pixel-to-pixel comparisons between the query and support25

sets better capture fine details compared to working with global average pooled representations [19,26

21]. A key question arises: Which features should be compared? Limiting comparisons between27

the support and query sets at the finest scales (i.e. shallow network layers) capture only primitive28

semantics (e.g. local orientation) and thus are error prone, while the coarser scales (i.e. deeper network29

layers) capture abstract semantics but sacrifice detailed information that support precise localization.30

To address this scale selection challenge, we present a novel Multiscale Multigrid Comparator31

(MMC) transformer that takes as input a set of correlation tensors that encompass comparisons32

between support-query features at multiple abstraction levels. Our transformer incorporates multigrid33

processing [3, 2] that allows bidirectional information to be exchanged across scales (i.e. coarse-to-fine34

and fine-to-coarse). Critically, this multiscale information exchange reduces the impact of erroneous35

correlations at the finer scales by incorporating feedback from coarser scales and allows finer scale36
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Figure 1: Overview of our Multiscale Multigrid Comparator (MMC) transformer. Top: We take
as input correlations between backbone features at different scales for both support and query
sets. We meta-learn our MMC transformer that encompasses multiscale cross attention between
the spatial/spatiotemporal features at different levels and a memory module that helps separate the
background and novel class. Our MMC transformer allows bidirectional information exchange across
scales following the multigrid formulation between fine-mid-coarse scale features in the multiscale
cross attention blocks. Additionally, our design preserves the spatiotemporal dimension during the
information exchange across scales through multiscale memory learning (i.e. K and V ) that help
separates the background and novel class. Bottom: We demonstrate our approach on two video
tasks that require dense predictions: few-shot video object and action segmentation. The support set
groundtruth and query predictions are highlighted in red.

information to feedback to the coarser scales, allowing more detailed information to modulate the37

coarse-grained information. A key enabler of MMC is allowing the multiscale processing within the38

transformer decoder to preserve the spatiotemporal dimension, rather than pooling the information39

into a compact vector [7, 6]. Finally, to address the issue of confusions between the novel class and40

background we use a novel multiscale memory learning module. As two illustrative video tasks,41

we instantiate our model for few-shot video object (FSVOS) and actor/action segmentation. Fig. 142

provides an overview of our overall approach. Since our paper explores both few-shot learning and43

transformers, to reduce ambiguities between the term query used in both, we use the term target44

query when referring to its usage in few-shot throughout the rest of the paper.45

Few-shot learning. Metric learning (i.e. learning to compare) is a widely adopted approach in few-46

shot classification (e.g. [20, 22, 1, 24]), segmentation (e.g. [26, 21, 19]), video object segmentation [5]47

and action localization in video [29]. Multiscale processing often is not exploited in this paradigm48

[5, 29], even though it has the potential to enrich the representations over which support-to-target query49

comparators operate. While work in few-shot segmentation has considered multiscale processing in50

comparators [19], the model can be confused by erroneous correlations, especially at the finest scales.51

In our work, we investigate meta-learning a multiscale transformer with a memory module that better52

separates the background from the novel class by allowing bidirectional information exchange across53

scales.54

Multiscale transformers. Incorporating multiscale processing in transformers is an emerging topic55

(e.g. action recognition [10, 15] and panoptic segmentation [7]). Previous work has mainly explored56

multiscale information on the encoder side [10, 15, 27], which is not sufficient when computing57
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dense predictions. In recent work [7, 6], a multiscale transformer decoder was proposed, but its58

design exchanged information across scales on the compressed learnable queries. In our approach we59

preserve the spatiotemporal dimension in the multiscale processing to enable a multigrid formulation.60

Thus, information exchange across scales is on the detailed feature maps rather than a compressed61

representation. We also operate on correlation tensors rather than directly on features maps to induce62

a stronger bias towards learning a comparator. Closely related to our work is the task of finding63

dense correspondences between images, where both global and local information is combined using64

transformers [8]; however, they have no notion of memory or meta-learning. In contrast, our work65

explores multiscale memory learning in the transformer decoder within a meta-learning framework.66

There has been previous works on memory augmented transformers [30, 18]; however, our approach67

is the first to explore multiscale memory learning in the transformer decoder. This novelty is crucial68

to preserve the spatiotemporal dimension during the cross scale information exchange and to better69

separate the background and novel class. Additionally, we establish connections to classical multiscale70

processing methods [3], which has not been explored in the context of transformers.71

Multigrid methods. Multigrid methods [3, 2] were initially developed to accurately solve large72

systems of partial differential equations in a computationally efficient manner and with reduced73

residual error. They operate on multiple discretization levels, where interactions among fine and74

coarse grids occur when deriving the approximate solution. The V-cycle correction scheme [3]75

is one form of a recursive solution that allows bidirectional information flow across the different76

scales to ensure smooth solutions with low error as well as efficient computation. This approach77

inspires our multigrid formulation that reduces the effect of erroneous correlations across the scales78

via bidirectional information exchange. While previous work has integrated multigrid-like operations79

in convolutional architectures [14], we are the first to explore multigrid processing within multiscale80

transformers. Additionally, our formulation is cast within a meta-learning framework that targets81

few-shot learning tasks associated with dense predictions in videos.82

Contributions. In this paper, we present a novel comparator for few-shot learning tasks associated83

with dense predictions in videos. Our main contributions are threefold: (i) We present the first attempt84

to meta-learn a multiscale comparator between the support and target query sets in few-shot video85

dense prediction tasks. (ii) Our comparator encompasses a multiscale, multigrid transformer decoder86

that operates on correlation tensors between the support and target query set features with bidirectional87

multiscale information exchange. (iii) We present multiscale memory learning in the transformer88

decoder within a meta-learning framework that operates on top of the correlation feature pyramid to89

better separate the novel class from the background. We demonstrate our MMC transformer on two90

few-shot video tasks, few-shot video object and action segmentation, where our method outperforms91

the state of the art on both tasks. Our code will be publicly released upon acceptance.92

2 Multiscale multigrid transformer comparator93

In this section, we detail our multiscale comparator design. Inspired by classical multigrid methods [3],94

we develop a formulation that allows bidirectional information exchange across scales. Additionally,95

to allow for information exchange across scales using detailed feature maps we perform cross attention96

with a learnable memory module and preserve the spatiotemporal dimension of the feature maps97

within our decoder. The proposed memory module helps to distinguish the novel class from the98

background and enhances support-to-target query correlation features.99

2.1 Multiscale comparator transformer100

Since we are operating on multiple levels of feature abstractions and resolutions, we use the subscript101

_p to denote the features from scale level p ∈ 1, 2, . . . , P , which are extracted from late (coarse),102

p = 1, intermediate or early (fine), p = P , stages. The input features for level p after flattening103

are Zp ∈ RTHpWp×Cp , where Hp,Wp are spatial dimensions, T is the clip length and Cp are104

the channels for the corresponding scale. The input features are constructed on the support-query105

correlation tensors, as detailed in Sec. 3. We further project it with a 1× 1 convolutional layer, to106

reduce the dimensionality for a memory efficient solution, and end up with Z̄p ∈ RTHpWp×D.107

We start by defining (multihead) attention [25] as,108

Ah(X
q, Xk, Xv) = Softmax

(
XqW q(XkW k)⊤√

D

)
XvW v, (1)
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Figure 2: Overview of our architecture for few-shot video object and action segmentation. Features
from a convolutional backbone that capture information conveyed from single static images (a.k.a.
static backbone) are extracted. It can optionally (∗) be combined with features from a convolutional
backbone that capture dynamics conveyed from a set of frames (a.k.a. dynamic backbone). 4D
correlation tensors are computed among spatial/spatiotemporal features from support and target query
sets using ϕ. Subsequently, the tensors go through a 4D convolution that yields 2D feature maps
for memory efficiency. A multigrid multiscale comparator transformer is used on the input pyramid,
{Z̄p}Pp=1. Cross attention among the feature pyramid and the learnable memory, B, is performed to
generate attention maps, {αp}Pp=1. The cross attention module encompasses key, Wk, and value, Wv ,
weight matrices. The attention maps are used to re-weight the memory, B, in each spatiotemporal
position to enhance query features and separate the background from the novel class in the output,
{Op}Pp=1, Eq. 2. Information is transferred bidirectionally between scales (denoted by red arrows)
and the final output at the finest scale is used as input to the segmentation decoder.

where Ah represents the attention per head, h, and the full multihead attention is, A, that corresponds109

to the concatenation of each head’s output. The inputs Xq, Xk, Xv represent the query, key, value,110

resp., and W q,W k,W v ∈ RD×D are the query, key and value weight matrices, resp., for D feature111

dimensions. We use fixed spatiotemporal positional embeddings, Es
p ∈ RTHpWp×D, corresponding112

to every scale level, p, and learnable scale embeddings, El
p ∈ R1×D, following [7]. We repeat the113

scale embedding at all spatiotemporal positions, T , Hp, Wp, resulting in Êl
p ∈ RTHpWp×D.114

Importantly, we seek a formulation that preserves the spatiotemporal dimension during the information115

exchange across scales in the multiscale transformer decoder and cross attention. This ensures the116

multiscale processing and information transfer can capture detailed information in the feature maps117

rather than a compressed representation. Therefore, in contrast to previous work that instantiate118

a set of learnable queries [7], we meta-learn a memory module that has D dimensional vectors,119

B ∈ RN×D, with N memory entries that are shared across all decoding layers and scales. This120

multiscale memory learning allows the per-scale decoded output to preserve the spatiotemporal121

dimension, unlike [7]. We perform cross attention per resolution and feature abstraction level, p,122

where we instantiate the multihead attention, (1), as123

Op = A(Z̄p + Êl
p + Es

p, B + Eb, B), (2)

where Eb ∈ RN×D are learnable memory positional embeddings. Thus, we perform multiscale124

processing while maintaining the spatiotemporal dimension for the output, Op ∈ RTHpWp×D, as125

illustrated in the MMC transformer block of Fig. 2. This mode of operation ensures cross-scale126

communcation with the detailed feature maps and maintains the spatiotemporal dimension output127

from our decoder. For every scale level p, applying A will learn to attend among the different set of128

learnable memory features based on their relevance to the support-target query correlation features. It129

then aggregates the learned memory based on these attention maps to better separate the novel class130

and the background. Since we want to allow for information exchange across scales, we use131
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Z̄p′ = Z̄p′ + Ip′p Op, (3)

where Ip′p performs bilinear interpolation to match the size from level p′. The cross attention132

operations, (2), are performed consecutively on all P levels and are repeated Nl times, with Nl a133

hyperparameter denoting the number of decoder layers for each level. The final output from our134

multiscale comparator is OP that will be used later for the final segmentation prediction. Since our135

design does not collapse the spatiotemporal dimension, the output, Op, for every level, p, maintains136

detailed information necessary for the final segmentation task, unlike previous work used in a137

non-meta-learning framework for panoptic segmentation [6].138

Typically, previous work has focused on multiscale processing in the transformer decoder with139

multiscale query learning that contextualizes a set of learnable features, Q ∈ RN×D [7, 6]. The140

multiscale query learning output can be seen as,141

Oquery
p = A(Q+ Eb, Z̄p + Êl

p + Es
p, Z̄p), (4)

where Oquery
p ∈ RN×D are a set of compressed learnable queries that are exchanged across scales.142

This formulation uses learnable features, Q, as queries and the multiscale feature maps, Z̄p, as keys143

and values resulting in outputs per scale of dimension, N × D. In contrast, our formulation of144

multiscale processing with a memory module uses the learnable features, B, as keys and values;145

hence, the queries are the detailed feature maps, Z̄p, which yields per-scale output of dimension,146

THpWp × D. Thus, the detailed feature maps necessary for segmentation are lost during the147

communication across scales in the former, but are preserved in ours. We empirically validate this148

distinction in Sec. 4.2.149

2.2 Multiscale multigrid attention (MMA)150

Now that we have presented a means to leverage multiscale processing in the transformer com-151

parator, we further explore the different forms of information transfer across different scales.152

Late/Coarse

Mid/Mid

Early/Fine

Stacked Bidirectional
(Multigrid)

Figure 3: Two variants of information exchange across scales with dif-
ferent feature abstraction/resolution levels: stacked vs. multigrid. Fea-
ture abstraction levels indicate early-to-late stage features and different
resolution levels indicate coarse-to-fine levels. Ip denotes multihead
attention, (1), for level p followed by bilinear interpolation, (3). In the
stacked variant, Ij

p is for the jth iteration.

Communication across153

scales can be conducted in154

(i) coarse-to-fine process-155

ing that is performed in a156

stacked manner for multiple157

layers, as shown in Fig. 3158

(left) or (ii) a multigrid159

formulation that allows for160

bidirectional information161

transfer between the coarse162

and fine scales, as shown in163

Fig. 3 (right). Bidirectional164

exchange ensures that the165

coarse-grained smoothed166

correlation features with167

high level semantics can168

modulate information169

in the fine-grained ones,170

while allowing fine-grained171

detailed information to affect the coarse-grained.172

Inspired by classical multigrid methods, we present a multiscale, multigrid attention module that173

allows for bidirectional information transfer across different scales, as shown in Fig. 3 (right), similar174

to the V-cycle correction scheme [3]. In our case, since the multiscale, multigrid attention operates on175

correlation tensors from different scales, it ensures smooth solutions through bidirectional information176

exchange between coarse and fine scales. It thereby avoids erroneous correlations that might exist at177

the different scales, where the fine scale can exhibit erroneous correlations as it only captures low178

level semantics and the coarse scale can exhibit noisy correlations from being a subsampled signal.179

Unlike classical multigrid methods our multiscale input exhibits both different levels of resolution as180

well as different feature abstraction levels (i.e. early, mid and late stage features), instead of solely181

using different sampling rates on the same information as classical multigrid. Another perspective182
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that motivates the coarse-to-fine and fine-to-coarse communication is inspired from earlier work that183

has shown convolutional layers mainly act as a band pass filtering [12], which indicates that features184

from every layer capture a certain set of frequency components. Thus, the bidirectional information185

transfer can enrich the features through exchanging information across the different set of frequencies186

captured at each layer.187

Consider the stacked multihead attention, which takes as input multiscale pyramids. It is composed188

of a series of multihead cross attention (2), followed by merging the two consecutive levels and189

using bilinear interpolation to match the scale, (3). The combined aforementioned operations are190

denoted as, Ip for level p ∈ {1, 2, . . . , P}. Thus, we formulate stacked multihead attention (SMA)191

in a coarse-to-fine processing per iteration as192

SMA = Ij
1 ◦ Ij

2 ◦ · · · ◦ Ij
P , (5)

where ◦ denotes function composition and Ij
p corresponds to the jth iteration as the operations in193

the stacked multihead attention are repeated Nl times. In comparison, multigrid multihead attention194

(MMA) processing is defined as195

MMA = I1 ◦ I2 ◦ · · · ◦ IP ◦ IP−1 ◦ · · · ◦ I1 ◦ I2 ◦ · · · ◦ IP . (6)

It is seen that the multigrid approach, (6), encompasses bidirectional information exchange across196

scales similar to classical recursive methods [3], whereas the stacked approach is strictly coarse-to-fine.197

Sec. 4.2 provides empirical support for the superiority of the multigrid formulation.198

3 Learning scheme199

In this section, we summarize the few-shot video setup, and our scheme for meta-learning the200

multiscale comparator with multigrid, multiscale attention for an improved few-shot video tasks.201

Then we describe two case studies for few-shot video object and actor/action segmentation.202

Few-shot setup. We formulate the few-shot video object or actor/action segmentation task as203

follows [5, 29]. Let Dtrain and Dtest be training and testing data, resp. For every dataset, we204

split the C categories into O folds, each fold will have C
O novel categories, Ctest, and C − C

O as205

base classes, Ctrain. Both the training and test classes do not intersect, Ctrain ∩ Ctest = ∅. In the206

meta-training phase, we sample Ne tasks from the corresponding dataset with support and target207

query set pairs {Si,Qi}Ne
i=1 for classes in Ctrain. Similarly in meta-testing we sample support and208

target query sets but for classes in Ctest. The target query set contains video frames Q = {X(q)
t }Nv

t=1,209

where Nv is the number of frames and superscript _(q) denotes the target query set. In the case210

of video object segmentation, the support set in a one-way K-shot task has K image-label pairs211

S = {X(s)
k ,Mk

(s)}Kk=1 for a class to be separated from the background. The superscript _(s) denotes212

support set and Mk
(s) is a binary segmentation mask for the class considered. The image-label pairs213

Xk ∈ RH×W×3 and Mk ∈ RH×W , with H×W spatial dimensions. In the case of video actor/action214

segmentation the one-way K-shot task has K trimmed video-label pairs S = {X(s)
k ,Mk

(s)}Kk=1.215

The binary segmentation mask Mk
(s) is for one frame in the trimmed video for an actor/action class.216

Thus, the video-label pairs are Xk ∈ RT×H×W×3 and Mk ∈ RH×W .217

Meta-learning a multiscale comparator. We start with introducing an overview of the full218

architecture of our multiscale comparator, as shown in Fig. 2. We initially assume a one-shot setting,219

then discuss the K-shot extension later. We use a pretrained convolutional backbone with fixed220

weights, F , that are not updated during the meta-training process, to compute the support and target221

query set features. The features for the one-shot support and target query sets are extracted for222

layer, l, as, f (s)
l = Fl(X

(s)), f
(q)
l = Fl(X

(q)), resp., for the set of L layers. Let ϕ(·, ·) denote223

the (hyper)correlation encompassing the comparisons between its arguments, both of which are224

tensors, and
⊕

be concatenation on the channel dimension for m consecutive layers with the225

same spatial dimensions. Then, we define a 4D hypercorrelation tensors pyramid with P levels as226

Hp =
⊕l+m

l ϕ(f
(s)
l , f

(q)
l ), cf . [19]. We use the hypercorrelation squeeze network [19], Dhypercorr,227

which represents one form of performing efficient 4D convolution and generates a 2D feature pyramid228

that is further flattened, {Zp}Pp=1 = Dhypercorr({Hp}Pp=1).229

Our multiscale comparator transformer uses the features extracted on different levels by perform-230

ing cross attention to a learnable memory, B, to yield the final output feature maps, OP =231
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Dmultiscale({Zp}Pp=1, B). The cross attention re-weights the memory features to enhance the query232

feature maps and separate the background from the novel class based on their correlation to the233

support set. Attention and feature aggregation subsequently is computed in a pixel-wise manner234

across all levels to produce the final output features, OP . Our multiscale multigrid transformer235

decoder enriches the features and allows bidirectional exchange of information across scales. The236

output features, OP , from the multiscale comparator are used in a segmentation decoder, Dseg, to237

compute the final predictions M̂ = Dseg(OP ). The predictions, M̂ , are for Nc classes that include238

the background class. The hypercorrelation squeeze network, Dhypercorr, our multiscale comparator,239

Dmultiscale, and segmentation decoder, Dseg, are meta-trained with a simple binary cross entropy that240

encourages the model to segment the class of interest guided by the support set. During few-shot241

inference when operating with K-shot support set, we follow the setup from [19] which infers the242

target query prediction with every example in the support set separately, sums all predictions and243

divides by the maximum score.244

Static/Dynamic comparator transformer. In this section, we introduce two related tasks (i.e.245

few-shot video object segmentation and few-shot video actor/action segmentation) and show how246

our multiscale multigrid comparator operates on both. The term static factor indicates information247

learned from a single frame (e.g. texture and colour), while the dynamic factor indicates information248

extracted from a consecutive set of frames (e.g. motion). We meta-learn a static comparator in the case249

of few-shot video object segmentation, while in the case of few-shot video actor/action segmentation250

we find it beneficial to meta-learn both a static/dynamic comparator, as shown in Fig. 2. We describe251

each setting in turn next.252

In the case of few-shot video object segmentation, which is a simpler task, the goal is to segment the253

novel class per target query frame in the video. Since dynamics might not have a significant effect on254

identifying the semantic categories (e.g. person moving or standing is class person) we design a static255

comparator. We use per-frame features extracted from a 2D backbone (e.g. ResNets [13]). The support256

set in this setup is a set of single images that can already describe the semantic category. Thus, the fea-257

tures extracted for support and target query are f
(s)
l ∈ RHl×Wl×Cl and f

(q)
l ∈ RT×Hl×Wl×Cl , resp.258

The corresponding hypercorrelation pyramid is computed as the set of correlation tensors for each259

target query frame in the video and the support set features, {Hp ∈ RT×Hp×Wp×Hp×Wp×Cp}Pp=1.260

Consequently, the extracted features from the hypercorrelation squeeze network that is applied in-261

dividually per frame and flattened, {Zp ∈ RTHpWp×Cp}Pp=1, are used in our MMC transformer to262

generate enhanced query features, OP ∈ RTHPWP×D. Finally, the segmentation predictions from263

the decoder is given by M̂ ∈ RT×H×W×Nc .264

In the case of few-shot actor/action segmentation, the dynamic factor is important in identifying the265

action while the static factor delineates the object/actor boundaries. Correspondingly, we meta-learn266

a static/dynamic comparator that fuses the information from both. Toward this end we use a 3D267

backbone (e.g. X3D [11]) to extract spatiotemporal features that we refer to as dynamic features. In268

complement, we use a 2D backbone to extract the first frame features from the current input clip, we269

refer to these as static features. We use superscript .(dy), .(st) to denote the corresponding dynamic270

and static tensors, resp. Additionally, the support sets are trimmed videos instead of a single image.271

Thus, the dynamic features extracted are given as f (s)
l , f

(q)
l ∈ RT×Hl×Wl×Cl . The corresponding272

dynamic hypercorrelation pyramid is computed after averaging along the temporal dimension in each273

layer, then computing the correlation tensors, {H(dy)
p ∈ RHp×Wp×Hp×Wp×C(dy)

p }Pp=1. Similarly,274

the static hypercorrelation pyramid is built on top of the features extracted for the first frame in275

the current clip as {H(st)
p ∈ RHp×Wp×Hp×Wp×C(st)

p }Pp=1. Then, we combine the correlations276

from both static and dynamic features to yield our final pyramid, {Hp = H
(dy)
p ⊕ H

(st)
p , Hp ∈277

RHp×Wp×Hp×Wp×C(st)
p +C(dy)

p }Pp=1. The extracted features from the hypercorrelation squeeze are278

flattened as {Zp ∈ RHpWp×Cp}Pp=1 and are used as inputs by our MMC transformer to generate the279

final features, OP ∈ RHPWP×D. Finally, the segmentation prediction for an input clip from the280

decoder is given by M̂ ∈ RH×W×Nc . We use a temporal sliding window over the untrimmed target281

query video and generate clips that are used to predict the segmentation.282
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4 Experimental results283

4.1 Experiment design284

Datasets and evaluation protocol. We evaluate on two standard benchmarks, YouTube-VIS FS-285

VOS [5] and Common A2D [29], to facilitate comparison to the state of the art in few-shot video286

object and action segmentation. We follow their standard evaluation protocol and describe the details287

in the supplement.288

Implementation details. For few-shot video object segmentation we follow the same architectural289

choices as state-of-the-art approaches [5] to facilitate comparison, where we build on a ResNet-290

50 [13] backbone pretrained on ImageNet [9]. For few-shot actor/action segmentation, we use both291

ResNet-50 pretrained on ImageNet [9] and X3D [11] pretrained on Kinetics [4] following [29] for292

the static and dynamic backbones, resp. In our MMC transformer, the number of decoder layers per293

scale is set to Nl = 3 and the number of entries in our learned memory is N = 20. We meta-train294

our model and baseline [19] on the base classes for a given fold using cross entropy, with 50 epochs295

on YouTube-VIS, while we use 70 epochs for A2D. We use the same hyperparameters for both our296

approach and the baseline, where we use AdamW [17] with a learning rate of 1× 10−3 and weight297

decay of 1× 10−4. Random rotations and flipping data augmentation is used for both. Additional298

implementation details are provided in the supplement.299

4.2 Ablation study300

We start an ablation study on our two main contributions: multigrid (i.e. bidirectional) information301

exchange across scales and multiscale memory learning which preserves the spatiotemporal dimension302

during multiscale processing. In Table 1, we compare four variants: (i) our baseline without303

a transformer decoder [19], (ii) the multiscale transformer with learnable queries that pools the304

spatiotemporal dimension following (4), which we call Query, (iii) our multiscale transformer that305

preserves the spatiotemporal dimensions, (2), and follows a stacked information flow across scales306

as shown in Fig. 3 (left), which we call Stacked and (iv) our MMC transformer with bidirectional307

information flow as in Fig. 3 (right), which we call Multigrid. We can see that across all folds308

the mIoU for Query is lower than any of the variants (i.e. Stacked and Multigrid) and is even309

lower than the baseline on average. It shows our approach of multiscale memory learning to310

preserve the spatiotemporal dimension in the multiscale transformer comparator yields more accurate311

segmentations. Additionally, we ablate both forms of information flow across scales, Stacked,312

following (5) and Multigrid following (6). Here, it is seen that the bidirectional information flow in313

the multigrid approach improves over the stacked coarse-to-fine across three of the four folds. It is314

also seen that our multigrid approach improves over the baseline [19] on average and especially on the315

first two folds. We hypothesize that the failures in the last two folds were due to under-segmentation316

exhibited by our comparator that made the model more restrictive on what is considered part of the317

novel class, qualitative examples presented in the supplement. For example, in split two class Hand,318

although the target query video should have the entire arm segmented the support set mainly has the319

hand without the arm.320

In Table 3, we compare our baseline [19], the improved baseline (i.e. baseline++) that combines321

correlation tensors from static and dynamic factors and our full approach MMC transformer with static322

and dynamic features on Common A2D. A greater improvement is seen with respect to the baseline323

than in object segmentation ablation, with up to 7% gain in the five-shot scenario. Additionally, these324

results demonstrate the flexibility of our multiscale comparator, as it can operate with any backbone325

network (e.g. ResNet-50 [13], X3D [11] or the combination of the two) and is able to operate beyond326

few-shot video object segmentation to actor/action segmentation.327

4.3 Comparison to state-of-the-art approaches328

We provide a comparison with existing approaches on YouTube-VIS FS-VOS in Table 2, where our329

method shows a notable gain of 4.4% with respect to the recently presented many-to-many attention330

comparator [5]. This result demonstrates that our multigrid, multiscale comparator helps separate331

the novel class with respect to the background better than previous approaches. Table 3 shows332

comparisons with the state of the art for few-shot video actor/action segmentation, with focus on the333
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(a) (b) (c)

Figure 4: Qualitative results showing better separation of background vs. novel class for our MMC
transformer. (a) Five-shot support set. (b) Baseline [19]. (c) MMC transformer (ours). The support
groundtruth and query predictions are marked in red. Video results are provided in the supplement.

Method mIoU

1 2 3 4 Mean
Baseline 49.5 69.5 63.8 65.2 62.0
Query 49.4 70.5 62.9 64.3 61.8
Stacked 50.7 69.8 63.2 64.4 62.0
Multigrid 51.5 70.6 63.0 64.6 62.4

Table 1: Ablation study on YouTube-VIS FS-
VOS folds 1, 2, 3 and 4 using our MMC trans-
former with a five shot support set.

Method mIoU

1 2 3 4 Mean
PMMs [28] 32.9 61.1 56.8 55.9 51.7
PFENet [23] 37.8 64.4 56.3 56.4 53.7
PPNet [16] 45.5 63.8 60.4 58.9 57.1
DANet w/o OL [5] 41.5 64.8 61.3 61.4 57.2
DANet [5] 43.2 65.0 62.0 61.8 58.0
MMC transformer 51.5 70.6 63.0 64.6 62.4

Table 2: Comparison of mIoU for few-shot video
object segmentation to the state of the art on YouTube-
VIS folds 1, 2, 3 and 4 with a five-shot support set.
DANet w/o OL indicates the variant without online
learning.

Method Static Dynamic mIoU

1-shot 5-shot
Co-attention [21] - - 43.3 44.8
Single-scale Transformer [29] - - 50.6 52.5
Baseline ✓ ✗ 18.1 21.9
Baseline++ ✓ ✓ 45.2 47.7
MMC transformer (Ours) ✓ ✓ 51.9 54.5

Table 3: Comparisons of mIoU for few-shot actor/action segmentation with respect to the state of the
art on Common A2D and our baselines, with one-shot and five-shot support sets. Static/Dynamic
indicates the use of the corresponding factor, where the static compares ResNet-50 [13] spatial
features and the dynamic compares X3D [11] spatiotemporal features.

segmentation task [29, 21]. It is seen that our approach consistently outperforms the others in both334

the one-shot and five-shot scenarios on Common A2D.335

Fig. 4 shows qualitative results on YouTube-VIS FS-VOS, where our method improves over the336

baseline with better separation of the novel class with respect to the background and better delineated337

boundaries. We provide Common A2D qualitative results in the supplement.338

5 Discussions and Conclusion339

We presented a novel MMC transformer that exchanges bidirectional information across scales for340

comparing between the support and query sets and reducing the impact from erroneous correlations.341

Our transformer decoder is designed to preserve the spatiotemporal dimension in our bidirectional342

multiscale processing, unlike previous methods. We meta-learn our multiscale comparator trans-343

former along with a memory module that better separate the background from the novel class. We344

showcased the MMC transformer in two use cases, few-shot video object segmentation and ac-345

tor/action segmentation. Our method outperforms the state of the art on both tasks. A limitation of346

our method for few-shot video object segmentation is its reliance on 2D backbone features, whereas347

in the video domain 3D spatiotemporal features may improve discriminability. We leave it for future348

work to explore spatiotemporal models as backbones and investigate FSVOS benchmarks that reflect349

the fact that certain semantic categories can exhibit different motion patterns (e.g. four legged vs. two350

legged mammals vs. reptile motion).351
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