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Abstract

Lane detection is the cornerstone of autonomous driving. Al-
though existing methods have achieved promising results,
there are still limitations in addressing challenging scenar-
ios such as abnormal weather, occlusion, and curves. These
scenarios with low visibility usually require to rely on the
broad information of the entire scene provided by global se-
mantics and local texture information to predict the precise
position and shape of the lane lines. In this paper, we propose
a Global Semantic Enhancement Network for lane detection,
which involves a complete set of systems for feature extrac-
tion and global features transmission. Traditional methods
for global feature extraction usually require deep convolu-
tion layer stacks. However, this approach of obtaining global
features solely through a larger receptive field not only fails
to capture precise global features but also leads to an overly
deep model, which results in slow inference speed. To ad-
dress these challenges, we propose a novel operation called
the Global feature Extraction Module (GEM). Additionally,
we introduce the Top Layer Auxiliary Module (TLAM) as a
channel for feature distillation, which facilitates a bottom-up
transmission of global features. Furthermore, we introduce
two novel loss functions: the Angle Loss, which account for
the angle between predicted and ground truth lanes, and the
Generalized Line IoU Loss function that considers the sce-
narios where significant deviations occur between the pre-
diction of lanes and ground truth in some harsh conditions.
The experimental results reveal that the proposed method ex-
hibits remarkable superiority over the current state-of-the-
art techniques for lane detection. Our codes are available at:
https://github.com/crystal250/GSENet.

Introduction
The rise of deep neural network (Glorot, Bordes, and Bengio
2011) has led to increased applications in autonomous driv-
ing and advanced driver-assistance systems. Among these,
lane detection is a fundamental task that plays a crucial
role in controlling vehicle maneuvers and identifying lane
boundaries. However, lane detection remains challenging,
especially in complex scenarios.
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Figure 1: Some challenging scenarios for lane detection. (a)
Demonstrates curved lanes, and our Angle Loss significantly
improves the detection results in such scenarios. (b) Illus-
trates lanes under dazzle conditions, where lane detection
heavily relies on global semantics. (c) Represents a no line
scenario. (d) Depicts lanes are occupied by other vehicles,
making lane detection exceptionally challenging.

Most traditional lane detection techniques (Canny 1986;
Hough 1962; Sobel, Feldman et al. 1968) require manual
parameter tuning to adapt to different road conditions and
lighting environments, which can introduce variability and
potential errors, leading to decreased stability and perfor-
mance of the system. In these methods, operators often en-
gage in the extraction of edge features (Canny 1986) or con-
vert the color space of lane from RGB to HSV or HLS.
Subsequent steps include binary thresholding, denoising,
and other color-based processing methods are applied to ac-
quire information on the lanes. Ultimately, the Hough Trans-
form (Hough 1962) and lane fitting techniques, such as the
Least Squares method and Random Sampling Consensus
(RANSAC) (Fischler and Bolles 1981), are utilized to de-
termine the lanes. Therefore, the manual parameter adjust-
ments and feature extraction instability in traditional lane
detection methods have led to inconsistencies and caused
many difficulties in practical applications.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15108



Early neural network models heavily rely on instance
segmentation and anchor-based object detection techniques.
Despite their successes, these methods still face lane detec-
tion challenges, as depicted in Figure 1, such as poor vis-
ibility under adverse conditions and intricate lane configu-
rations. Recent studies (Pan et al. 2018; Zheng et al. 2021,
2022) have aimed to tackle these issues. For instance, UFLD
(Qin, Wang, and Li 2020) effectively utilizes lane coherence
and shape loss to enhance detection speed and identify irreg-
ular lanes. However, its performance remains inadequate in
various scenarios. Similarly (Zheng et al. 2022) introduces a
cross-to-fine mechanism for improved lane detection mod-
els, yet it falls short in fully integrating global semantics and
local features. Furthermore, it lacks comprehensive investi-
gation into real-world challenging scenarios. We believe that
precise lane prediction in complex scenarios necessitates the
fusion of accurate global semantics and local features, along
with a more refined loss function. Accurate prediction re-
lies on comprehensive scene information from global se-
mantics, encompassing visible lanes, road markings, vehicle
and pedestrian positions and directions, to determine lane
features in unseen parts. It also requires combining rich tex-
ture information from local features with targeted loss func-
tion penalties in diverse complex scenarios to precisely de-
termine lane positions and shapes.

In this paper, we introduce the novel GSENet frame-
work, recognizing that lanes in complex scenarios heavily
rely on global semantics. To address this, we propose a
new global feature extraction system comprising GEM and
TLAM. Initially, feature maps from the top of the backbone
are processed by GEM to obtain accurate and comprehen-
sive global features. These features are then utilized in the
upper structure and directly distilled to classification and re-
gression heads via the TLAM pipeline in an auxiliary head
form. Moreover, we introduce the Angle Loss to align pre-
dicted and GT lanes’ shapes by considering their angles.
Additionally, our GLIoU Loss extends predicted points into
rectangles, enhancing performance compared to LIoU Loss
(Zheng et al. 2022) and leading to smoother lane predictions.
Our primary contributions are as follows:
• We have substantially improved lane detection capabili-

ties by introducing GSENet.
• We have developed an innovative global semantic en-

hancement module, composed of GEM and TLAM, to
fully leverage the global semantics within the network.

• We address the highly challenging task of lane detection
in demanding scenarios by introducing the Angle Loss
and GLIoU Loss.

• The performance of our proposed GSENet has been
validated across multiple benchmark datasets, achieving
state-of-the-art results.

Related Work
According to the strategy of lane status description, apart
from the traditional lane detection methods mentioned ear-
lier, the current mainstream lane detection methods are pre-
dominantly based on CNNs (LeCun et al. 1989). CNN-based
Generally can be divided four categories:

Segementation-Based Methods
Segmentation methods are the earliest and most commonly
used approaches in lane detection based on CNN methods.
They involve pixel-level classification, resulting in high ac-
curacy but slower processing due to per-pixel calculations.
Early methods (Pan et al. 2018) treat lane detection as a
multi-category instance segmentation problem and propose
a spatial CNN to learn the prior knowledge of shape. To re-
duce the computational burden, RESA(Zheng et al. 2021)
has been introduced after each OPS Stride. Despite these ad-
vancements, other segmentation methods (Wang, Ren, and
Qiu 2018; Xu et al. 2020) still suffer from slow speed and
perform poorly under occlusion or extreme conditions.

Row-Wise-Based Methods
Row-wise lane detection methods prioritize speed enhance-
ment and lane shape prediction. UFLD (Qin, Wang, and Li
2020) transforms the problem by meshing, converting it into
a classification challenge. CondLaneNet (Liu et al. 2021a)
introduces conditional convolution for refined lane detec-
tion, and a recurrent instance module tackles lane bifurca-
tion. UFLDv2 (Qin, Zhang, and Li 2022) recently proposes a
hybrid anchor system to reduce positioning errors, building
on UFLD. Despite introducing a novel classification loss,
lateral lanes are excluded due to grid settings, necessitating
post-processing.

Anchor-Based Methods
Anchor-based lane detection resembles object detection al-
gorithms like YOLO (Redmon et al. 2016; Redmon and
Farhadi 2018; Bochkovskiy, Wang, and Liao 2020; Wang,
Bochkovskiy, and Liao 2023). It employs pre-set multi-ray
anchors, pinpointing lanes through Non-Maximum Suppres-
sion (NMS) (Felzenszwalb et al. 2009) based on Intersection
over Union (IoU). This method offers an end-to-end model
with high accuracy.

In the realm of two-stage anchor-based lane detection,
Line-CNN (Li et al. 2019) employs Faster R-CNN (Gir-
shick 2015) as the lane detector, while LaneATT (Tabelini
et al. 2021a) uses a versatile one-stage detection algorithm.
CLRNet (Zheng et al. 2022) is a comprehensive model that
partitions anchors into 72 points for balanced performance
and speed. It introduces a coarse-to-fine mechanism and
ROIGather for global information capture.

However, the anchor-based approach’s reliance on prede-
fined anchors limits adaptability, posing challenges in di-
verse extreme scenarios.

Polynomial-Regression-Based Methods
Unlike the approaches mentioned earlier, polynomial regres-
sion methods directly generate polynomial equations to rep-
resent lanes. These methods involve regressing coefficients
and other parameters (e.g., eta for confidence scores). An in-
fluential approach in this category is PolyLaneNet (Tabelini
et al. 2021b), which made significant contributions.

Another noteworthy method is LSTR (Liu et al. 2021b)
which employs a transformative approach to predict DETR-
based polynomials and achieves a remarkable processing
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Figure 2: Overview of the proposed GSENet, the image is processed through the backbone, producing feature maps using FPN
(Lin et al. 2017) and the Global Feature Extraction Module. Lane classification and regression are performed using features from
FPN and refined global semantics from the Top Layer Auxiliary Module. In TLAM, we employ DropKey (Li et al. 2023) as an
alternative to conventional dropout. The introduced Angle Loss and GLIoU Loss further improve the model’s performance.

speed of 420 FPS. However, its accuracy performance is un-
satisfactory.

Method
Our lane detection method builds upon the State-of-the-Art
CLRNet (Zheng et al. 2022) as the baseline, integrating mul-
tiple enhancements and innovations.

Global Feature Extraction Module (GEM)
Motivation. In some CNN-based lane detection methods
(Zheng et al. 2021, 2022; Qin, Wang, and Li 2020; Liu et al.
2021a; Qin, Zhang, and Li 2022) the integration of global
semantic information poses notable challenges. However,
in some complex scenarios, predicting the invisible lanes
caused by circumstances such as occlusions or low-light
conditions necessitates reliance on the integrated informa-
tion provided by global semantics. These difficulties signif-
icantly impact the detection accuracy in such complex sce-
narios. Therefore, a neural network with an enhanced ability
to acquire global semantics is necessary. Traditional meth-
ods for global feature extraction usually require deep convo-
lution layer stacks. Thus, in pursuit of a more efficient and
systematic global feature extraction module, we introduce a
novel structure named GEM. GEM is designed to provide
superior global features to the upper-level structures.
GEM Structure. The GEM is composed of two branches
that complement each other to achieve more accurate global
features, as can be seen in Figure 3. In lower branch, the
top layer feature map from the backbone is fed into the
MLP-mixer (Rumelhart, Hinton, and Williams 1986) net-
work after undergoing a simple channel scaling and normal-
ization process. The MLP-mixer network establishes prelim-
inary global feature relationships and spatial relationships
through the interaction of spatial feature information and
channel feature information. However, this network has lim-
itations in capturing fine-grained global features, and it can
only extract coarse global features. To address this issue,

we propose another branch. In upper branch, we first pass
the feature map through a dilated convolution, enabling it
to analyze more context information through a larger recep-
tive field. Subsequently, the feature map is partitioned into
P sub-blocks and distributed among h heads for process-
ing. In each head, we calculate the similarity between each
pixel in the P regions and the pixels in other regions, and
take a weighted sum operation. By dividing it into multiple
sub-blocks and using a multi-head mechanism for similar-
ity computation, we not only obtain more accurate global
features through the high-granularity calculation method of
sub-blocks, but the multi-head mechanism can also simul-
taneously focus on multiple spatial positions, better captur-
ing long-distance dependencies. Additionally, we introduce
a SimAm (Yang et al. 2021) block to compensate for the ab-
sence of 3D spatial attention in the network’s final stages. It
is a parameter-free 3D attention module, aiming at improv-
ing the representation ability of the global semantic infor-
mation. Finally, the distinct granular-level global semantic
features derived from both branches are fused. This fusion
compensates for the individual shortcomings of each branch
and leverages their strengths, culminating in a comprehen-
sive and precise global feature representation.

Top Layer Auxiliary Module (TLAM)
Motivation. Our motivation is to leverage the rich global
semantic information present in the top layer feature map to
further assist the neural network in classification and regres-
sion heads. Based on the (Vaswani et al. 2017) and its appli-
cations in the field of computer vision (Carion et al. 2020;
Dosovitskiy et al. 2020), it is believed that the network’s
ability to detect challenging samples can be significantly im-
proved by using transformer to further enhance the semantic
representation. Therefore, we propose TLAM, a novel aux-
iliary head for distilling top layer global features from GEM
to the final classification and regression stage.
TLAM Structure. In TLAM, the top layer feature maps
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Method Backbone mF1 F1@50 F1@75 Normal Crowded Dazzle Shadow No line Arrow Cross Night
SCNN VGG16 38.84 71.60 39.84 90.60 69.70 58.50 66.90 43.40 84.10 1990 66.10
RESA ResNet50 47.86 75.30 53.39 92.10 73.10 69.20 72.80 47.70 88.30 1503 69.90
E2E ERFNet - 74.00 - 91.00 73.10 64.50 74.10 46.60 85.80 2022 67.90
UFLD ResNet18 38.94 68.40 40.01 87.70 66.00 58.40 62.80 40.20 81.00 1743 62.10
UFLD ResNet34 - 72.30 - 90.70 70.20 59.50 69.30 44.40 85.70 2037 66.70
PINet Hourglass 46.81 74.40 51.33 90.30 72.30 66.30 68.40 49.80 83.70 1427 67.70
LaneATT ResNet34 49.57 76.68 54.34 92.14 75.03 66.47 78.15 49.39 88.38 1330 70.72
LaneATT ResNet122 51.48 77.02 57.50 91.74 76.16 69.47 76.31 50.46 86.29 1264 70.81
UFLDv2 ResNet34 - 76.0 - 92.50 74.80 65.50 75.50 49.20 88.80 1910 70.80
LaneAF DLA34 50.42 77.41 56.79 91.80 75.61 71.78 79.12 51.38 86.88 1360 73.03
SGNet ResNet34 - 77.67 - 92.07 75.41 67.75 74.31 50.90 87.97 1373 72.69
FOLOLane ERFNet - 78.80 - 92.70 77.80 75.20 79.30 52.10 89.00 1569 74.50
CondLane ResNet34 53.11 78.74 59.39 93.38 77.14 71.17 79.93 51.85 89.89 1387 73.92
CondLane ResNet101 54.83 79.48 61.23 93.47 77.44 70.93 80.91 54.13 90.16 1201 74.80
CANet ResNet34 - 79.16 - 93.58 77.88 73.11 75.06 51.68 90.09 1176 73.92
CANet ResNet101 - 79.86 - 93.60 78.74 70.07 79.35 52.88 90.18 1196 74.91
CLRNet ResNet18 55.23 79.58 62.21 93.30 78.33 73.31 79.66 53.14 90.25 1321 75.11
CLRNet ResNet34 55.14 79.73 62.11 93.49 78.06 74.57 79.92 54.01 90.59 1216 75.02
CLRNet ResNet101 55.55 80.13 62.96 93.85 78.78 72.49 82.33 54.50 89.79 1262 75.51
CLRNet DLA34 55.64 80.47 62.78 93.73 79.59 75.30 82.51 54.58 90.62 1155 75.37

GSENet(ours) ResNet18 55.93 80.42 63.50 93.66 79.14 74.80 81.91 54.30 89.99 1045 75.80
GSENet(ours) ResNet34 56.04 80.58 63.37 93.80 79.42 75.34 82.27 54.83 90.67 1072 76.07
GSENet(ours) ResNet101 56.53 80.84 64.23 94.05 79.90 74.94 82.21 55.63 90.78 1164 76.08
GSENet(ours) DLA34 56.45 81.13 64.08 93.91 80.30 76.36 83.41 56.25 90.36 1036 76.26

Table 1: State-of-the-art results on CULane. As we can see, we have attained the highest performance in challenging scenarios
encompassing Crowded, Dazzle, Shadow, No line, Arrow, Cross, and Night.

from GEM will perform two different types of self-attention
(Vaswani et al. 2017) computations to enhance the repre-
sentation of global semantic features, so that global features
can more effectively act on the classification and regression
heads separately. Before performing self-attention computa-
tions, a simple residual network is employed to further ex-
tract global semantic information from the top layer feature
map. The top layer feature map generated by the backbone
is denoted as L0.

Ftop = ϕ(ϕ(L0)), (1)

S1, S2 = Auxihead1(Ftop), Auxihead2(Ftop), (2)

where ϕ is a simple residual network, Auxihead1 first di-
vides the Ftop

B×C×H×W into patches (Dosovitskiy et al.
2020), then the obtained Ftop

B×N×H×W is flattened and re-
shaped into Ftop

B×(H×W )×N , self-attention computations
are applied to Ftop

B×(H×W )×N , consequently S1 is ob-
tained. After undergoing Dropkey (Li et al. 2023) process-
ing, S1 is concatenated to the classification heads Fcls. The
Auxihead2 simply flattens and reshapes Ftop

B×C×H×W

into Ftop
B×(H×W )×N , then we compute the self-attention

of the Ftop
B×(H×W )×N to obtain S2, After undergoing

Dropkey processing, then S2 is concatenated to the regres-
sion heads Freg .

Angle Loss
Motivation. In the lines formed by connecting the predicted
points with the ground truth points, noticeable angles exist

between adjacent short line segments. The presence of these
angles often results in disparities between the predicted and
GT lane shapes. If we can minimize these angles, the shape
of the predicted lane can closely approximate the GT lane’s
shape. We have derived a straightforward and efficient algo-
rithm to compute the Angle Loss.
Formula. Firstly, the coordinates of a predicted lane point
are defined as (xP

i , y
P
i ), and the corresponding GT point is

(xG
i , y

G
i ), and the angle θi between them is expressed as fol-

lows:

θi = arctan

∣∣∣∣∣∣∣
(
yP
i −yP

i−1

xP
i −xP

i−1
)− (

yG
i −yG

i−1

xG
i −xG

i−1
)

1− (
yP
i −yP

i−1

xP
i −xP

i−1
)× (

yG
i −yG

i−1

xG
i −xG

i−1
)

∣∣∣∣∣∣∣ , (3)

where the overall angle θ between the entire predicted lane
and the GT lane is defined as the average of the angles be-
tween the individual short lines. It is calculated as follows:

θ =

∑N
i=2 θi

N − 1
, (4)

the final angle loss is quantified using the cosine function as
follows:

Langle = 1− cosθ. (5)

Our Angle Loss offers the following advantages: (1) It
enhances the model’s sensitivity to variations in lane direc-
tions, resulting in predicted lane shapes that closely resem-
ble the GT lanes. (2) The Angle Loss involves convenient
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Figure 3: The feature maps are derived from the top layer of the backbone and then propagated into two branches.

Method Backbone F1(%) Acc(%) FP(%)
SCNN VGG16 95.97 96.53 6.17
RESA ResNet34 96.93 96.82 3.63
PolyLaneNet EfficientNetB0 90.62 93.36 9.42
UFLD ResNet34 88.02 95.86 18.91
LaneATT ResNet34 96.77 95.63 3.53
LaneATT ResNet122 96.06 96.10 5.64
UFLDv2 ResNet34 96.22 95.56 3.18
CondLaneNet ResNet34 96.98 95.37 2.20
CondLaneNet ResNet101 97.24 96.54 2.01
FOLOLane ERFNet 96.59 96.92 4.47
CANet ResNet34 97.44 96.66 2.32
CANet ResNet101 97.77 96.76 1.92
CLRNet ResNet18 97.89 96.84 2.28
CLRNet ResNet34 97.82 96.87 2.27
CLRNet ResNet101 97.62 96.83 2.37

GSENet ResNet18 97.98 96.82 1.79
GSENet ResNet34 97.94 96.88 2.04
GSENet ResNet101 97.90 96.81 2.15

Table 2: State-of-the-art results on TuSimple. Additionally,
F1 was computed using the official source code.

computation and straightforward gradient calculations, lead-
ing to minimal complexity overhead while significantly im-
proving the overall model performance.

Generalized Line IoU Loss (GLIoU Loss)
Motivation. Drawing inspiration from the Line IoU Loss
(Zheng et al. 2022), it’s evident that computing the loss via
discrete points as independent variables yields suboptimal
results. Through a clever approach, we extend each pre-
dicted point and its corresponding GT point into a rectan-
gle. By transforming points into geometric shapes, we ex-
ploit the inherent geometric relationships between consecu-
tive points, which greatly facilitates achieving smoother pre-
dicted lane shapes. Moreover, the model enforces an addi-
tional penalty to facilitate enhanced regression accuracy. We
have developed a computationally efficient algorithm that is
amenable to parallel computation for calculating the Gener-

alized Line IoU Loss (GLIoU Loss).
Formula. We consider a predicted point (xP

i , y
P
i ) and its

corresponding GT point (xG
i , y

G
i ). Two adjacent points be-

low them are (xP
i−1, y

P
i−1) and (xG

i−1, y
G
i−1). We connect

these two points to form a line, treating it as the rect-
angle’s length. Extending this point perpendicularly along
the line to both sides for a length of e allows us to cre-
ate rectangles, the value of e is set to 15. Specifically,
the area of the two rectangles can be calculated as fol-

lows: SP
rec = 2× e×

√
(xP

i − xP
i−1)

2 + (yPi − yPi−1)
2 and

SG
rec = 2 × e ×

√
(xG

i − xG
i−1)

2 + (yGi − yGi−1)
2. We can

determine angles θPi and θGi between the predicted line and
the GT line concerning the vertical direction. Then, the area
of the bounding rectangle can be computed using these co-
ordinates:

ytop = yi +max(e× sinθPi , e× sinθGi ), (6)

ybottom = yi−1 −max(e× sinθPi , e× sinθGi ), (7)

xleft = min(xP
i − e× cosθPi , x

P
i−1 − e× cosθPi ,

xG
i − e× cosθGi , x

G
i−1 − e× cosθGi ),

(8)

xright = max(xP
i + e× cosθPi , x

P
i−1 + e× cosθPi ,

xG
i + e× cosθGi , x

G
i−1 + e× cosθGi ),

(9)

then we can calculate Sbound = (ytop−ybottom)×(xright−
xleft), based on CLRNet (Zheng et al. 2022), we define the
IoU for points as follows:

IoU =
min(xP

i + e, xG
i + e)−max(xP

i − e, xG
i − e)

max(xP
i + e, xG

i + e)−min(xP
i − e, xG

i − e)
,

(10)
furthermore, the GIoU for points can be expressed as:

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15112



Figure 4: Illustration of Angle Loss and GLIoU Loss, (a) Angle Loss computes the average of the angles between predicted
points and their corresponding GT points on each lane. (b) If a predicted point is distant from its GT point, their extended
rectangles won’t intersect, resulting in an additional penalty through GLIoU.

G =
Sbound −min(Sbound, S

P
rec + SG

rec)

Sbound
, (11)

GIoU =
dGI
i

dGU
i

=

{
IoU −G, (2 ≤ i ≤ N)

IoU, i = 1
, (12)

exactly, GLIoU can be viewed as a combination of GIoU for
a finite set of points, then the GLIoU loss can be calculated
as:

GLIoU =

∑N
i=1 d

GI
i∑N

i=1 d
GU
i

, (13)

then, the GLIoU loss can be calculated as:

LGLIoU = 1−GLIoU. (14)
GLIoU offers the following advantages: (1) Treating iso-

lated points of the predicted lane as a cohesive unit for re-
gression enhances the overall model performance. (2) Uti-
lizing the geometric relationships between adjacent points
facilitates smoother predictions for the lane, optimizing its
continuity.

Experiment
Datasets
Our experiments were conducted on two widely recognized
and extensively used lane detection datasets in the industry:
CULane (Pan et al. 2018) and Tusimple (TuSimple 2020).
CULane is a large-scale lane detection data set consists of
88.9k training data, 9.7k verification data, and 34.7k test set
data. The pixel value of all its pictures is 1640×590, cover-
ing various autonomous driving scenarios and a large num-
ber of challenging scenes such as urban roads, country roads,

crowded, abnormal weather environments, lighting condi-
tions, etc.
TuSimple is another large-scale lane detection dataset de-
veloped by the self-driving company Tucson. The data set
consists of 3.3k training set, 0.4k validation set and 2.8k
validation set, the pixel values of all pictures are 1280×720.
The most distinctive feature of TuSimple is that it has a more
detailed lane change model, such as the width and shape of
the lane.

Evaluation Metric
In the CULane (Pan et al. 2018) dataset, we use F1-measure.
Calculate the errors of predictions and ground truth through
IoU. The calculation formula is as follows:

F1 =
2× precision× recall

precision+ recall
. (15)

If the IoU of predicted lanes with the ground truth lanes is
greater than the specified threshold, the prediction is consid-
ered True Positive(TP). Otherwise, it is classified as False
Positive(FP). In addition, this paper also uses mF1 (Zheng
et al. 2022) proposed by CLRNet as one of the metrics. The
mF1 is defined as:

mF1 =

∑19
i=10 F1@(i× 5)

10
. (16)

Among them, F1@50 and F1@75 are the F1 scores under
IoU 0.5 and 0.75 respectively, and in TuSimple (TuSimple
2020), we use the evaluation formula of:

Accuracy =

∑
clip Cclip∑
clip Sclip

, (17)

where Cclip and Sclip are the number of correct points and
the number of ground truth respectively. Whether it is judged
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Angle Loss GLIoU Loss TLAM GEM mF1 F1@50 F1@75
55.23 79.58 62.21

✓ 55.61 79.81 62.76
✓ ✓ 55.61 80.03 63.09
✓ ✓ ✓ 55.87 80.31 63.55
✓ ✓ ✓ ✓ 55.93 80.42 63.51

Table 3: Abalation study of each method. Results were obtained using ResNet18 backbone on the CULane dataset.

as a correct point is based on whether more than 85% of
the pixels in the ground truth are correctly predicted. In
addition to the traditional evaluation metrics, the TuSim-
ple dataset also includes an additional metrics: False Posi-
tives(FP), where FP =

Fpred

Npred
.

Implement Detail
We apply ResNet18, ResNet34, ResNet101 (He et al. 2016),
DLA34 (Yu et al. 2018) as backbones. In terms of data pro-
cessing, for all data sets, we cut the input data to 800×320.
The same data augmentation: random affine transformation
such as translation, rotation and scaling, random horizon-
tal flips. In terms of optimization, the AdamW optimizer
(Kingma and Ba 2014) and cosine decay learning rate strat-
egy are adopted. Similar to (Zheng et al. 2022). In the
CULane and TuiSimple datasets, we set epoch=15, lr=6e-
4, batchsize=24, epoch=70, lr=1.0e-3, batchsize=40, h=8,
P=10, respectively. The angle loss weight in all datasets is
set to 15, and the balance between GLIoU Loss and An-
gle Loss is controlled by a hyperparameter α, adjusting their
proportions. The combined loss incorporating GLIoU Loss
and Angle Loss is formulated as follows:

Lcomb = α× LGLIoU + (1− α)× Langle. (18)

Based on our experiments, we define α as 0.98. In addi-
tion, our network is implemented based on pytorch frame-
work and trained on a single GeForce RTX 4090 GPU.

Comparison With the SOTA Results
CULane Dataset. Our method’s performance on the CU-
Lane dataset is presented here, along with comparisons to
other state-of-the-art techniques. When utilizing DLA34 (Yu
et al. 2018) as the backbone, we achieve an F1 score of
81.13 at F1@50 on the CULane dataset, reaching a state-
of-the-art level. As indicated in Table 1, noteworthy results
emerge when employing ResNet18 (He et al. 2016) as the
backbone. We obtain a score of 80.42 at F1@50, surpass-
ing CLRNet (Zheng et al. 2022) (ResNet18) by 0.84 points.
This even outperforms CLRNet (ResNet101), underscoring
the substantial enhancement our global semantic approach
brings to lane localization and regression accuracy. Simi-
larly, in Table 1, using ResNet101 as the backbone leads
to mF1 (Zheng et al. 2022) and F1@75 scores that surpass
CLRNet (ResNet101) by 0.98 and 1.27 points, respectively.

Figure 5 illustrates the outcomes of lane detection, high-
lighting significant differences. Competing methods en-
counter hurdles in occlusions, curved lanes, and extreme

scenarios, resulting in subpar performance. In contrast, our
method excels, thriving in challenging scenarios. Its robust-
ness shines, effectively addressing difficulties and yielding
dependable, satisfactory lane detection results.
TuSimple Dataset. The performance of our method on the
TuSimple benchmark dataset is presented in Table 2. No-
tably, performance distinctions among various methods are
minimal, suggesting the bottleneck in advancements on this
dataset. Despite its challenging nature, we achieve a note-
worthy F1@50 score of 97.98, outperforming the current
state-of-the-art by 0.09 points. Additionally, we attain state-
of-the-art results in the False Positives (FP) metric, demon-
strating a substantial 6.8% enhancement compared to prior
approaches. These achievements underscore our method’s
effectiveness in addressing lane detection challenges and its
superior performance on the TuSimple dataset.

Ablation Study
To ascertain the effectiveness of each component in our
method and ensure that each contributes to the improve-
ment in detection performance, we conduct multiple abla-
tion studies on the CULane (Pan et al. 2018) dataset.
Overall Ablation Study. In Table 3, we present the results
of the comprehensive ablation study. Firstly, we validate the
effectiveness of each individual component, when we add
the Angle Loss to the baseline (Zheng et al. 2022), the score
of F1@50 increases from 79.58 to 79.81. Subsequently,
through experimentations we discover that using a single hy-
perparameter α to control the balance between GLIoU Loss
and Angle Loss is more beneficial for the model. Apply-
ing this approach achieves an improvement of F1@50 from
79.58 to 80.03, and we will elaborate on the choice of hy-
perparameter α in the supplementary materials. Moreover,
we further add the TLAM, which leads to a significant im-
provement of F1@50 score from 80.03 to 80.31, this result
suggests that calculating the self-attention (Vaswani et al.
2017) of the top layer feature map can greatly enhance the
model’s ability to gather global information effectively. Fi-
nally, by adding the GEM on top of the previous improve-
ments, we achieve an F1@50 score of 80.42, which further
demonstrates the effectiveness of the GEM component in
enhancing the overall performance of the model.
Ablation Study on TLAM’s Number of Residual Blocks.
We conduct an ablation study on the number of residual
blocks (He et al. 2016) in TLAM, as shown in Table 4.
TLAM utilizes residual blocks before self-attention calcu-
lations (Vaswani et al. 2017) to boost global semantics in
the feature map. The optimal number of blocks is pivotal for
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Figure 5: Visualization results of LaneATT, CLRNet and our method on CULane testing set.

Res blocks mF1 F1@50 F1@75 Shadow No line
No TLAM 55.23 79.58 62.21 79.66 53.14
0 × blocks 55.20 79.57 62.22 81.21 53.40
1 × blocks 55.32 79.60 62.30 81.10 53.89
2 × blocks 55.28 79.72 62.56 81.51 54.39
3 × blocks 55.19 79.61 62.52 81.82 53.22
4 × blocks 55.14 79.64 62.26 80.54 53.94

Table 4: Abalation studies of the number of residual blocks
of TLAM.

Weight mF1 F1@50 F1@75 Curve Cross

0 55.23 79.58 62.21 71.56 1321
10 55.35 79.75 62.62 72.90 1205
15 55.61 79.81 62.76 73.84 995
20 55.12 79.65 62.42 73.01 1126
25 55.15 79.54 61.95 73.33 1165

Table 5: Abalation studies of the weight of Angle Loss.

model performance. Results indicate that using 0 or 1 blocks
can yield worse performance than the baseline due to insuffi-
cient global semantics enrichment. On the other hand, using
3 or 4 blocks can lead to a decline in performance compared
to using 2 blocks. This suggests that too many blocks may
sacrifice fine details, causing performance degradation. Im-
portantly, TLAM excels in challenging scenarios like Shad-
ows and No line, enhancing global semantics to enable the
model’s success in tough conditions, thereby achieving sub-
stantial performance gains.
Ablation Study on Angle Loss Weight. Table 5 depicts
ablation studies on the weight of Angle Loss. The results
highlight the advantageous impact of Angle Loss when its
weight is small. However, exceeding a weight of 20 shifts
the model’s focus excessively on optimizing this loss, caus-
ing a sharp performance decline even below the baseline.
The optimal Angle Loss weight is determined to be 15, el-
evating the F1@50 score from 79.58 to 79.81. Angle Loss
significantly improves model performance in challenging
scenarios such as Curve and Cross. In the Curve scenario,
the F1@50 score gains 2.28 points, while in the Cross sce-
nario, an impressive 24.7% improvement is observed. These
outcomes vividly underscore the efficacy of our Angle Loss.

Conclusion
In this work, we propose GSENet, a novel lane detection net-
work that detects the lane by enhancing the global seman-
tic and introducing two new loss function, aiming to solve
the lane detection problem in various difficult scenarios. We
propose that GEM and TLAM modules extract rich global
features, moreover, we design Angle Loss and GLIoU Loss
for difficult scenarios. Our method has been thoroughly val-
idated on both the CULane (Pan et al. 2018) and TuSimple
(TuSimple 2020) benchmark datasets. The results demon-
strate that our approach has achieved state-of-the-art perfor-
mance on these datasets.
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