
Under review as a conference paper at ICLR 2022

LINEAR ALGEBRA WITH TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Most applications of transformers to mathematics, from integration to theorem
proving, focus on symbolic computation. In this paper, we show that transformers
can be trained to perform numerical calculations with high accuracy. We consider
problems of linear algebra: matrix transposition, addition, multiplication, eigen-
values and vectors, singular value decomposition, and inversion. Training small
transformers (up to six layers) over datasets of random matrices, we achieve high
accuracies (over 90%) on all problems. We also show that trained models can gen-
eralize out of their training distribution, and that out-of-domain accuracy can be
greatly improved by working from more diverse datasets (in particular, by training
from matrices with non-independent and identically distributed coefficients). Fi-
nally, we show that few-shot learning can be leveraged to re-train models to solve
larger problems.

1 INTRODUCTION

Since their introduction by Vaswani et al. (2017), transformers, originally designed for machine
translation, were applied to various problems, from text generation (Radford et al., 2018; 2019) to
image processing (Carion et al., 2020) and speech recognition (Dong et al., 2018) where they soon
achieved state-of-the-art performance (Dosovitskiy et al., 2021; Wang et al., 2020b). In mathematics,
transformers were used for symbolic integration (Lample & Charton, 2019), theorem proving (Polu
& Sutskever, 2020), formal logic (Hahn et al., 2021), SAT solving (Shi et al., 2021), symbolic regres-
sion (Biggio et al., 2021) and dynamical systems (Charton et al., 2020). All these problems pertain
to symbolic mathematics, or involve a large amount of symbolic computation. When working on
these tasks, transformers manipulate mathematical symbols, just like words in natural language.

But mathematics are not limited to symbol manipulation: many practical applications involve nu-
merical calculations, either exact (e.g. arithmetic) or approximate (e.g. function evaluation, nu-
merical solutions of equations). The use of transformers for numerical computation has been less
studied, and many early experiments with arithmetic have proved disappointing (Nogueira et al.,
2021). This is, nevertheless, an important question: most problems in mathematics and science in-
volve both symbolic and numerical computations. If we want transformers to solve these problems
end-to-end, they need to be able to perform numerical calculations with high accuracy.

In this paper, we train transformers to compute solutions of problems of linear algebra, which serve
as fundamental building blocks in many scientific problems: basic operations on matrices, matrix
inversion, eigenvalue and singular value decompositions. We introduce and discuss four encodings
to represent problems and solutions as sequences that transformers can process, and train small
transformers (up to 6 layers, 10 to 50 million trainable parameters) over generated datasets of random
matrices. Trained models can compute approximate solutions to these problems (to a few percents of
their L1 norm) with over 90% accuracy (99% in most cases). We also show that they can generalize
out of their training distribution, and be retrained to extrapolate to larger problems than the ones they
were trained on. We believe these results pave the way for using transformers as end to end solvers
for problems of mathematics and science.

After introducing the problems of linear algebra we are studying and presenting the encodings we
use to represent them as sequences that can be used by our models, we discuss data generation,
architecture and experimental settings. Then, we present our experiments on nine different problems,
and discuss out-of-distribution generalization and few shot learning for eigenvalue computation.
Finally, we discuss our results and future directions for research, and present related works.

1

Under review as a conference paper at ICLR 2022

2 PROBLEMS AND DATASETS

Let M and N be m× n matrices and V ∈ Rm . We study nine problems of linear algebra:

• matrix transposition: find MT , a n×m matrix,
• matrix addition: find M +N , a m× n matrix,
• matrix-vector multiplication: find MTV , a vector in Rn,
• matrix multiplication: find MTN , a n× n matrix,
• eigenvalues: M symmetric, find its n (real) eigenvalues, sorted in descending order,
• eigenvectors: M symmetric, find D diagonal and Q orthogonal such that M = QTDQ,

set as a (n+ 1)× n matrix, with (sorted) eigenvalues in its first line,
• singular values: find the n eigenvalues of MTM , sorted in descending order,
• singular value decomposition: find orthogonal U, V and diagonal S such that M = USV ,

set as a (m+ n+ 1)×min(m,n) matrix,
• inversion: M square and invertible, find its inverse P , such that MP = PM = Id.

These problems range from basic operations on individual coefficients of the input matrices (trans-
position and addition), to computations involving several arithmetic operations over many coeffi-
cients (multiplication), and complex nonlinear transformations involving the whole matrix, with
cubic complexity (decompositions and inversion). For each problem, we generate datasets of pairs
of matrices (I,O), by sampling random input matrices I (see section 2.2), and computing the output
O with a linear algebra package (NumPy linalg). When a problem has several input or output ma-
trices, they are concatenated into one (for instance, the two m× n operands of the addition task are
concatenated into onem×2nmatrix I). All coefficients in I andO are set in base ten floating-point
representation, and rounded to three significant digits in the mantissa.

2.1 ENCODING MATRICES AS SEQUENCES

The input and output to our problems are matrices. To be processed by transformers, they need to be
converted into sequences of tokens. We encode a m×n matrix by first coding its dimensions as two
symbolic tokens (Vm and Vn), followed by its mn coefficients, encoded as sequences. Through this
paper, we will use four encoding schemes for matrix coefficients: P10, P1000, B1999, and FP15.

In base 10 positional encoding (P10), a number is represented as a sequence of five tokens : one sign
token (+ or -), 3 digits (from 0 to 9) for the mantissa, and a symbolic token (from E-100 to E+100)
for the exponent. For instance 3.14 will be represented as 314.10−2, and encoded as [+, 3, 1,
4, E-2]. P1000 (positional base 1000) provides a more compact representation by encoding the
mantissa as a single token (from 0 to 999), and representing a number as the triplet (sign, mantissa,
exponent). B1999 (balanced base 1999) pushes this one step further by encoding together the sign
and mantissa (from -999 to 999). Finally, FP15 encodes each floating point number x = m10b

as a unique token FPm/b. Table 1 provides examples of these encodings. Additional details and
examples can be found in Appendix A.

Encoding 3.14 −6.02.1023 Tokens / coefficient Vocabulary

P10 [+, 3, 1, 4, E-2] [-, 6, 0, 2, E21] 5 210
P1000 [+, 314, E-2] [-, 602, E21] 3 1100
B1999 [314, E-2] [-602, E21] 2 2000
FP15 [FP314/-2] [FP-602/21] 1 30000

Table 1: Four encodings for matrix coefficients.

Selecting an encoding is a trade-off. Long encodings (P10, P1000) embed knowledge about numbers
that the model can leverage (e.g. numbers can be compared using their signs and exponents, addition
and multiplication can be learned by memorizing small tables). Compact encodings use a larger
vocabulary (harder to learn), but generate shorter sequences that facilitate training with transformers.
In P10, a 20 × 20 matrix is a sequence of 2002 tokens, close to the practical limit of transformer
implementations that use a quadratic attention mechanism. In FP15, it is only 402 tokens long.

2

Under review as a conference paper at ICLR 2022

2.2 RANDOM MATRIX GENERATION

In most of our experiments, we train models over datasets of random matrices with uniformly dis-
tributed coefficients in [−A,A] (with A = 10). Occasionally, we sample gaussian coefficients with
the same standard deviation (σ = A/

√
3). In the symmetric case, these matrices are known as

Wigner matrices. Their eigenvalues have a centered distribution with standard deviation σ =
√
ns,

where s is the standard deviation of the coefficients (Mehta, 2004). As n increases, this distribu-
tion converges to the semi-circle law (p(λ) =

√
4σ2 − λ2/2πσ2) for all coefficient distributions

with bounded variance. If the coefficients are gaussian, the associated eigenvectors are uniformly
distributed over the unit sphere.

When investigating out-of-distribution generalization for the eigenvalue problem, we will need to
generate random symmetric matrices with different distributions of their eigenvalues (corresponding
to random matrices with non iid coefficients). To this effect, we randomly sample symmetric matri-
ces M , with gaussian coefficients, and compute their eigenvalue decomposition M = PDPT , with
P the orthogonal matrix of eigenvectors (uniformly distributed over the unit sphere since the coeffi-
cients are gaussian). We then replace D, the diagonal matrix of eigenvalues of M , with a diagonal
D′ sampled from another distribution. Finally, we recompute M ′ = PD′PT , a symmetric matrix
(because P is orthogonal) with eigenvalues distributed as we choose, and eigenvectors uniformly
distributed over the unit sphere.

3 MODELS AND EXPERIMENTAL SETTINGS

We use the standard transformer architecture introduced in Vaswani et al. (2017), with an encoder
and a decoder connected by a cross-attention mechanism. Most of our models have 512 dimensions,
8 attention heads and up to 6 layers. We experiment with different number of layers and atten-
tion heads in the encoder and decoder. All training is supervised, and minimizes the cross-entropy
between model prediction and the correct solution. We use the Adam optimizer (Kingma & Ba,
2014) with a learning rate of 10−4, an initial warm-up phase of 10,000 steps and cosine scheduling
(Loshchilov & Hutter, 2016). All training data is generated on the fly, in batches of 64 examples.

Every 300,000 examples, 10,000 random problems are generated and used to evaluate the model.
When evaluating, we consider that a predicted sequence seqP is a correct solution to the problem
(I,O) (I and O the input and output matrices) if it can be decoded as a valid matrix P (several
matrices for singular and eigen decomposition) that approximates the correct solution to a given
tolerance τ (τ ∈ {5, 2, 1, 0.5%}) . For addition, transposition, multiplication, eigen and singular
values we check that P verifies ‖P − O‖ < τ‖O‖ (with ‖A‖ =

∑
i,j |ai,j |, for A = (ai,j), i.e.

L1 norm). For eigenvalue decomposition, we check that the solution (Q,D) predicted by the model
can reconstruct the input matrix, i.e. ‖QTDQ− I‖ < τ‖I‖. For singular value decomposition, we
check that ‖USV − I‖ < τ‖I‖. For matrix inversion, we check that ‖PI − Id‖ < τ‖Id‖ = τ .
The choice of the L1 norm is important: norms like L2 and L∞ will favor models that correctly
predict the largest coefficients in the solution. For eigen and singular value problems, this amounts
to predicting the largest values, an easier problem than the one we want to solve.

We consider different tolerances for different problems. Since we round numbers to three significant
digits, 0.5% is the best we can hope. In fact, a number xwith mantissa 1.00 is subjected to a maximal
rounding error of 0.5% (x ∈]1.005, 0.995]), which may accumulate when several (rounded) num-
bers are summed, and increase again when nonlinear operations are considered. When discussing
results, we consider tolerances of 0% for transposition, which involves no arithmetic, 1% for basic
matrix operations (addition, multiplication), and 2 or 5% for non linear operations (decomposition,
inversion), but we usually provide results for all tolerance levels.

Most of our experiments focus on 5× 5 square matrices, or rectangular matrices with as many coef-
ficients (e.g. 6× 4, 2× 13). This helps when comparing encodings: for larger dimensions, varying
sequence lengths make comparisons difficult. We also study scaled-up versions of the problems
(from 8 × 8 to 15 × 15), and datasets with matrices of variable dimensions (5-10 or 5-15). In this
paper, we limit ourselves to problem that can be solved using small models (with up to 6 layers).
Scaling to larger problems, and leveraging deeper architectures is left for future research.

3

Under review as a conference paper at ICLR 2022

4 EXPERIMENTS AND RESULTS

4.1 TRANSPOSITION

Learning to transpose a matrix amounts to learning a permutation of its elements. For a square
matrix, the permutation is composed of cycles of two elements. Permutations for rectangular ma-
trices involve longer cycles. This task involves no arithmetic operations: tokens from the input
sequence are merely copied to the output, in different positions. We investigate two formulations of
this problem: a fixed-size case, where all matrices in the dataset have the same dimension and only
one permutation is to be learned, and a variable-size case, where the dataset includes matrices of
different dimensions, with as many permutations to learn. We train transformers with one layer, 256
dimensions and 8 attention heads in the encoder and decoder, over datasets using our four encoding
schemes. All models learn to predict the exact solution (with 0% tolerance) in more than 99% of
test cases, for fixed-size matrices, square or rectangular, with dimensions up to 30× 30. This holds
for all encodings, and for input or output sequences up to 2000 tokens long. Similar accuracies are
achieved for variable-size datasets: (over 99% for 5− 15 and 96% for 5− 20), with the rectangular
cases proving slightly more difficult to train. Table 2 summarizes our results.

Fixed dimensions Variable dimensions
Square Rectangular

5x5 10x10 20x20 30x30 5x6 7x8 9x11 5-15 5-20 5-15 5-20

P10 100 100 100 - 100 100 100 100 - 97.0 -
P1000 100 100 99.9 - 100 100 100 99.9 - 98.4 -
B1999 100 100 99.9 100 100 100 100 100 96.6 99.6 91.4
FP15 99.8 99.5 99.4 99.8 99.8 99.5 99.3 99.8 99.6 99.4 96.1

Table 2: Exact prediction of matrix transposition for different matrix dimensions. Transformers with 1
layer, 256 dimensions and 8 attention heads.

4.2 ADDITION

Learning to add two m× n matrices amounts to learning the correspondence between the positions
of input and output (as in the transposition task) and the algorithm for adding two numbers in floating
point representation, which will be performed on mn pairs of elements. We train transformers with
1 or 2 layers, 8 attention heads and 512 dimensions. Sum of fixed-size matrices with dimensions up
to 10, both square and rectangular, are predicted with over 99% accuracy within 1% tolerance (and
over 98% within 0.5%), with all four encodings. As dimensions increase, models using the P10
and P1000 encodings become more difficult to train as input sequences grow longer: adding two
15 × 15 matrices involves 450 input coefficients: a sequence of 1352 tokens in P1000 and 2252 in
P10. Nevertheless, FP15 models achieve 99.5% accuracy within 0.5% tolerance for 15×15 matrices
and B1999 models 89.7% accuracy with 1% tolerance on 20 × 20 matrices. Variable-size matrices
with dimensions up to 10 are predicted by 2-layer transformers using the B1999 encoding with over
99.5% accuracy within 1% tolerance. Over matrices with larger dimensions (5-15), shallow models
with 1 or 2 layers struggle, and their accuracy drops to 48 and 37% in the square and rectangular
case. This can be mitigated by using deeper decoders: models with one layer in the encoder and 6
in the decoder achieve 77 and 87% accuracy on the same datasets. Table 3 summarizes our results.

Fixed dimensions Variable dimensions
Square Rectangular

Size 5x5 6x4 3x8 10x10 15x15 20x20 5-10 5-15 5-15 5-10 5-15 5-15
Layers 2/2 2/2 2/2 2/2 2/2 1/1 2/2 1/1 1/6 2/2 2/2 1/6

5% 100 99.9 99.9 100 100 98.8 100 63.1 99.3 100 72.4 99.4
2% 100 99.5 99.8 100 100 98.4 99.8 53.3 88.1 99.8 50.8 94.9
1% 100 99.3 99.7 100 99.9 87.9 99.5 47.9 77.2 99.6 36.9 86.8
0.5% 100 98.1 98.9 100 99.5 48.8 98.9 42.6 72.7 99.1 29.7 80.1

Table 3: Accuracies of matrix sums, for different tolerances. B1999 encoding, 512 dimension and 8
attention heads.

4

Under review as a conference paper at ICLR 2022

4.3 MULTIPLICATION

Multiplication of a matrix M of dimension m × n by a vector V ∈ Rn amounts to computing the
m dot products between V and the lines of M . Each calculation features n multiplications and
n − 1 additions, and involve one row in the matrix and all coefficients in the vector. The model
must now learn the position of the 2n elements in the computation, and two operations (add and
multiply). Experimenting with models with 1 or 2 layers, over 5× 5 matrices, we observe that only
models using the P10 and P1000 encoding can be trained to high accuracy. The P1000 encoding
performs best, with little difference between two and one layer models. Accuracies over 99.9%, at
1% tolerance, are achieved by 2-layer transformers using the P1000 encoding for 5× 5 and 10× 10
square matrices. Comparable accuracies are achieved when multiplying rectangular matrices by
vectors with the same overall number of coefficients (30). Experiments with datasets of matrices
with variable size (from 5 to 10) achieve non-trivial performance (from 48% with 1% tolerance, to
72% with 5% tolerance, for square matrices). Results are sumarized in table 4.

P10 P1000 P1000 Variable 5-10 (P1000)
Tolerance 5x5 5x5 10x10 14x2 9x3 4x6 2x10 Square Rectangular

5% 100 100 100 99.3 99.9 100 100 72.4 41.7
2% 99.9 100 100 99.0 99.7 100 99.8 68.4 35.0
1% 98.5 99.9 99.9 98.7 99.5 99.9 99.2 60.1 20.1
0.5% 81.6 99.5 98.4 98.1 99.0 98.6 94.5 30.8 4.4

Table 4: Accuracies of matrix-vector products, for different tolerances. Fixed-size models have 1 or 2
layers, variable-size have 2 or 4. All model have 512 dimensions and 8 attention heads.

Multiplication of matricesM and P is a scaled-up version of the matrix-vector multiplication, which
is now performed for every column in matrixP . As previously, only models using the P10 and P1000
encoding can be trained to predict to high accuracy. Over 5×5 matrices and rectangular matrices of
similar size, trained model accuracy is the same as vector-multiplication (over 99% at 1% tolerance,
see table 5), but deeper decoders (with 4 to 6 layers) are needed.

Square matrices Rectangular matrices
5x5 5x5 2x13 2x12 3x8 4x6 6x4 8x3 12x2 13x2

Tolerance P10 2/2 layers 1/4 4/4 4/4 2/6 1/4 1/6 1/6 1/6 1/4

5% 100 100 100 100 100 100 100 100 100 99.9
2% 100 100 100 100 100 100 100 100 99.7 99.8
1% 99.8 100 99.9 100 100 99.9 100 99.9 99.3 99.8
0.5% 64.5 99.9 97.1 98.5 99.6 99.7 99.5 99.5 99.0 99.8

Table 5: Accuracy of matrix multiplication, for different tolerances. Fixed-size matrices with 24-26 coef-
ficients. All encodings are P1000 unless specified. Models have 512 dimensions and 8 attention heads

4.4 EIGENVALUES

We now turn to non-linear problems that are usually solved by iterative algorithms. We train models
with 4 or 6 layers in the encoder or the decoder to predict the eigenvalues of symmetric matrices.
Over samples of 5×5 random matrices, we reach 100% accuracy at 5% tolerance, and 98.5% at
1% for all four encodings. For 8×8 matrices, we achieve accuracies of 100 and 85% at 5 and 1%
tolerance. Larger problems, however, prove difficult to learn: on 10×10 matrices, 25% accuracy
at 5% tolerance is reached after 360 million examples. As a comparison, 5×5 models train to
maximum accuracy in about 40 million examples, and 8×8 models in about 60 million.

We can overcome this limitation by training models on variable-size datasets. On samples of ma-
trices with 5-10, 5-15 and 5-20 dimensions, we achieve 100% accuracy at 5% tolerance, and 88, 94
and 45% at 1%. Using the 5-15 model, the eigenvalues of 10×10 matrices can be predicted with
100% accuracy at 2% tolerance, and 73% at 1%. Table 6 summarizes our results.

5

Under review as a conference paper at ICLR 2022

Fixed dimensions Variable dimensions
5x5 5x5 5x5 5x5 8x8 8x8 10x10 5-10 5-15 5-20

Encoding P10 P1000 B1999 FP15 P1000 FP15 FP15 FP15 FP15 FP15
Layers 6/6 4/1 6/6 6/1 6/1 1/6 1/6 4/4 6/6 4/4

5% 100 100 100 100 100 100 25.3 100 100 100
2% 100 99.9 100 100 99.2 97.7 0.4 99.8 100 75.5
1% 99.8 98.5 98.6 99.7 84.7 77.9 0 87.5 94.3 45.3
0.5% 93.7 88.5 73.0 91.8 31.1 23.9 0 37.2 40.6 22.5

Table 6: Accuracy of eigenvalues for different tolerances and dimensions. All models have 512 dimensions
and 8 attention heads, except the 10x10 model, which has 12.

4.5 EIGENVECTORS

This is an expanded version of the previous task: together with the eigenvalues, we predict the
orthogonal matrix of eigenvectors. Over 5× 5 matrices, models using the P10 and P1000 encoding
achieve 97.0 and 94.0% accuracy with 5% tolerance. FP15 models fare less well, with an accuracy
of 51.6%, but asymmetric models, with 6-layer FP15 encoder and 1-layer P1000 decoder, achieve
93.5% accuracy at 5% and 67.5% at 1% tolerance. The eigenvectors of 6 × 6 matrices can be
predicted by P1000 models with an accuracy of 81.5%. Table 7 summarizes our results.

5x5 6x6

P10 P1000 FP15 FP15/P1000 P1000
Tolerance 4/4 layers 6/6 1/6 6/1 6/1

5% 97.0 94.0 51.6 93.5 81.5
2% 83.4 77.9 12.6 87.4 67.2
1% 31.2 41.5 0.6 67.5 11.0
0.5% 0.6 2.9 0 11.8 0.1

Table 7: Accuracies of eigenvectors, for different tolerances and depths. All models have 512 dimensions
and 8 attention heads

4.6 INVERSION

Inversion of 5×5 matrices proves more difficult than previous tasks, with accuracies of 73.6% for
P10 models, and 80.4 for P1000 models (5% tolerance, 6-layer encoders and 1-layer decoders).
Increasing the number of attention heads to 10 and 12 brings little improvement in accuracy, but
allows for faster training: 8 head models are trained to 75% accuracy in about 250 million examples,
10 and 12 head models in only 120. The highest accuracies (90.0%) are achieved by asymmetric
models: a 6-layer FP15 encoder with 12 attention heads, and a 1-layer P1000 decoder with 8 heads.

P10 P1000 FP15/P1000
Tolerance 8/8 heads 8/8 heads 10/8 heads 12/8 heads 10/4 heads 12/8 heads

5% 73.6 80.4 78.8 76.9 88.5 90.0
2% 46.9 61.0 61.7 52.5 78.4 81.8
1% 15.0 30.1 34.2 16.2 55.5 60.0
0.5% 0.2 3.1 5.9 0.1 20.9 24.7

Table 8: 5x5 matrix inversion. All models have 6/1 layers, except P1000 10 heads, which has 6/6 (and 512
dimensions).

4.7 SINGULAR VALUE DECOMPOSITION

Whereas this task is related to eigen decomposition (the singular values of a symmetric matrix are
the absolute values of its eigenvalues), it proves more difficult to learn: transformers with up to 6
layers, using the P10 or P1000 encoding, can predict the singular decomposition of 4×4, but not

6

Under review as a conference paper at ICLR 2022

5×5 matrices. Accuracies remain high, 100 and 86.7% for singular values (5 and 1% tolerance),
and 98.9 and 75.3% for the full decomposition.

Singular values Singular vectors
P10 2/2 layers P1000 4/4 layers P10 1/6 layers P1000 6/6 layers

5% 100 100 71.5 98.9
2% 98.5 99.8 15.6 95.7
1% 84.5 86.7 0.4 75.3
0.5% 41.1 39.8 0 6.3

Table 9: Accuracies of SVD for 4x4 matrices.All models have 512 dimensions and 8 attention heads

5 OUT-OF-DOMAIN GENERALIZATION AND RETRAINING

In this section, we focus on the prediction of eigenvalues of symmetric matrices. To train our models,
we generate random n×n matrices with independent and identically distributed (iid) coefficients,
sampled from a uniform distribution over [−A,A]. They belong to a common class of random
matrices, known as Wigner matrices. Their eigenvalues have a centered distribution with standard
deviation σ =

√
ns, where s is the standard deviation of the coefficients (s = A/

√
3 when uniform).

As n increases, this distribution converges to the semi-circle law (Mehta (2004)). Whereas Wigner
matrices are very common in science, random matrices with different eigenvalue distributions (and
non iid coefficients) appear in many practical cases. For instance, statistical covariance matrices
have all their eigenvalues positive, and the adjacency matrices of scale-free and other non-Erdos-
Renyi graphs have centered but non semi-circle distributions of eigenvalues (Preciado & Rahimian,
2017). It is, therefore, important to understand how models trained on Wigner matrices perform on
matrices with different distributions of eigenvalues.

To this effect, we create test sets of 10,000 matrices with different distributions than the training
set. First, we generate matrices with uniform iid coefficients (as in the training set), but different
standard deviation: σtest ∈ [0.1σtrain, 1.5σtrain]. Over these test sets, our trained models achieve
over 96% accuracy (with 2% tolerance) for σtest ∈ [0.6σtrain, σtrain]. However, model accuracy
drops when σtest is out of this range: 54% for 0.4σtrain, 0% for 0.2σtrain, 26% for 1.1σtrain and
2% for 1.3σtrain. Out-of-distribution generalization only takes place when test set variance is lower,
and not too far from (over 25% of) training set variance.

Then, we generate test sets of matrices with different eigenvalue distributions: positive eigenvalues
(Wigner matrices with eigenvalues replaced by their absolute values), and eigenvalues distributions
according to the uniform, gaussian or Laplace law (see section 2.2), with standard deviation σtrain
and 0.6σtrain. Over test sets with σtest = σtrain, accuracies are 26% for Laplace, 25 for gaussian,
19 for uniform, and 0% for positive. Results are slightly better for test sets with lower standard
deviation (0.6σtrain): 28, 44, 60 and 0% for Laplace, gaussian, uniform and positive, but out-of-
distribution accuracies are low, and matrices with positive eigenvalues cannot be predicted at all.

To improve out-of-distribution accuracy, we train new models on datasets with different distributions
of eigenvalues, and evaluate them on the test sets previously created. First, we generate matrices
with uniform coefficients but variable standard deviation (by randomly selecting A ∈ [1, 100] for
each matrix). Unsurprisingly, models trained on this dataset achieve high accuracies on test sets
of Wigner matrices with high or low variance. Performances also increase over the gaussian, uni-
form and Laplace-distributed test sets (from 25 − 60% to 53 − 68%). Yet, matrices with positive
eigenvalues cannot be predicted. Training models over a mixture of (Wigner) matrices with uni-
form iid coefficients and matrices with positive eigenvalues results in better prediction of positive
eigenvalues, but degrades performances over all other tests sets.

However, models trained on a mixture of matrices with uniform coefficients and matrices with gaus-
sian eigenvalues, or uniform iid and Laplace eigenvalues, achieve high accuracies over all test sets,
as do models trained on matrices with Laplace eigenvalues only, or a mixture of uniform, gaussian
and Laplace eigenvalues (all non-Wigner matrices). These experiments are presented in table 10.

This is an important result: it suggests that Wigner matrices, often considered as the default model
for random matrices, might not be the best choice for training transformers. Models trained on

7

Under review as a conference paper at ICLR 2022

non-Wigner matrices (non-iid coefficients, limit distribution of eigenvalues not a semi-circle) gen-
eralize to matrices with iid coefficients, whereas the reverse is not true. This confirms that out-of-
distribution generalization requires that particular attention is paid to training data generation.

Test set eigenvalue distribution
Semicircle Positive Uniform Gaussian Laplace

σtest/σtrain 0.3 1.0 1.2 0.6 1 0.6 1 0.6 1 0.6 1

iid coeff. A=10 (baseline) 12 100 7 0 0 60 19 44 25 28 26

iid coeff. A ∈ [1, 100] 99 98 97 0 0 68 60 65 59 57 53
Semicircle-Positive 1 99 14 88 99 45 23 31 23 17 20
Semicircle-Gaussian 88 100 100 99 99 96 98 93 97 84 90
Semicircle-Laplace 98 100 100 100 100 100 100 99 100 96 99
Laplace 95 99 99 100 100 98 98 97 98 94 96
Gaussian-Uniform-Laplace 99 100 100 100 100 100 100 99 100 97 99

Table 10: Out-of-distribution eigenvalue accuracy (tolerance 2%) for different training distributions.
All models have 512 dimensions and 8 attention heads, and use the P1000 encoding.

Models trained on matrices of a given size do not generalize to different dimensions, but they can be
retrained over samples of matrices of different size. This takes comparatively few examples: a 5× 5
model, that takes 40 million examples to be trained, can learn to predict with high accuracy eigenval-
ues of matrices of dimension 6 and 7 with about 25 million additional examples. Table 11 presents
those results. The capacity of pre-trained large transformers (such as GPT-3) to perform few-shot
learning is well documented, but it is interesting to observe the same phenomenon in smaller models.

Encoding Retrain dimensions Accuracy (5%) Accuracy (2%) Retrain examples

P10 5-6 100 99.9 10M
P10 5-7 100 93.6 25M
P1000 5-6 100 97.7 25M

Table 11: Model accuracy after retraining. Models trained over 5x5 matrices, retrained over 5-6 and 5-7.
Overall performance after retraining (tolerance 5 and 2%), and number of examples needed for retraining. All
models have 512 dimensions and 8 attention heads

6 DISCUSSION AND FUTURE DIRECTIONS

Our experiments demonstrate that transformers can be trained to solve problems of linear algebra,
using randomly generated datasets. However, their accuracy depends on the encodings used to
represent matrix coefficients. We introduce four encoding schemes, and our experiments suggest
that P10 is generally dominated by P1000, which is also more economical, and that B1999 never
really finds its use, as FP15 is more compact and P1000 more efficient. P1000 seems to be a good
choice for problems of moderate size, and FP15 for longer sequences. For advanced problems
like eigenvectors and inversion, asymmetric architectures, with a deep FP15 encoder and a shallow
P1000 decoder, achieve the best performances. Our interpretation is that P1000 in the decoder
facilitates training because the meaningful representation of output as (sign, mantissa, exponent)
triplets allows for better error feedback during training. On the other hand, a FP15 deep encoder can
provide more complex representations of the input matrix, while being easier to train thanks to the
shorter sequences. Such asymmetric architectures also benefit from more attention heads (10 to 12)
in the encoder, while less heads (4) in the decoder improve training stability at no cost in accuracy.
Those asymmetric architectures deserve further study.

Most of our experiments focus on matrices with 5 to 10 lines and columns. Our results on the eigen-
value problem suggest that larger problems can be solved by training over matrices of variable size,
or retraining over larger matrices. In this work, matrices of different dimensions are sampled in
equal proportion and presented for training in random order. Varying their proportions and schedul-
ing (i.e. curriculum learning) should result in better performance. Yet, as dimension increases,
sequence lengths will reach the practical limits of quadratic attention mechanisms. Experimenting
with transformers with linear or log-linear attention (Zaheer et al., 2021; Wang et al., 2020a; Vyas

8

Under review as a conference paper at ICLR 2022

et al., 2020; Child et al., 2019) is a natural extension of our work. In terms of asymptotic complexity,
matrix inversion (and the other non linear tasks) is usually handled by O(n3) algorithms (although
O(n2.37) methods are known). Since our sequence length is O(n2), transformers with quadratic
attention mechanisms are O(n4). Linear attention would reduce this to O(n2).

The out-of-distribution experiments are our most significant results. They prove that models trained
on random data can generalize to a wide range of test distributions. They also confirm the importance
of wisely selecting training data distributions, a process that can be counter-intuitive. In our specific
case, the “obvious” random model (Wigner matrices) is not the best for out-of-domain generaliza-
tion. In fact, we show that sets of “special” matrices (non-iid coefficients with Laplace eigenvalues)
can produce models with better capability for generalization, notably on Wigner matrices. This
matches the intuitive idea that we learn more from edge cases than averages.

7 RELATED WORK

Algorithms using neural networks to compute eigenvalues and eigenvectors have been proposed
since the early 1990s (Samardzija & Waterland, 1991; Cichocki & Unbehauen, 1992; Yi et al., 2004;
Tang & Li, 2010; Oja, 1992), and improvements to the original techniques have been suggested until
recently (Finol et al., 2019). Similar approaches have been proposed for other problems in linear
algebra (Wang, 1993a;b; Zhang et al., 2008). All these methods leverage the Universal Approxi-
mation Theorem (Cybenko, 1989; Hornik, 1991), which states that, under weak conditions on their
activation functions, neural networks can approximate any continuous mapping (in our case, the
mapping between the coefficients of a matrix and their associated eigenvalues and vectors). These
approaches rely on the fact that eigenvalues and vectors appear in the solutions of particular dif-
ferential equations involving the matrix coefficients (e.g. Brockett (1991)). By designing a neural
network that represents this differential equation, with the matrix to decompose as the input, and the
coefficients in the output layer as the solution, and by defining a loss function that measures how
well the output layer approximates the correct solution, the network can be trained to find better and
better approximations to the solution. These techniques have two main limitations: they rely on a
problem-specific network architecture that has to be hand-coded, and computation is done at train
time, which makes them slow and implies retraining the network every time a new matrix is to be
processed. In comparison, the techniques proposed in this paper are trained once, and can compute
at inference for any matrix input.

Techniques have been proposed to train neural networks to compute basic mathematical operations,
and use them as building blocks for larger components. Kaiser & Sutskever (2015) introduced the
Neural GPU, that could learn addition and multiplication over binary representations of integers.
Trask et al. (2018) proposed Neural Arithmetic Logic Units (NALU), that can learn to perform
exact additions, substractions, multiplications and divisions by constraining the weights of a linear
network to remain close to 0, 1 or -1. Both Neural GPU and NALU have been shown to be able to
extrapolate to numbers far larger than those they were trained on. For matrix multiplication, Blalock
& Guttag (2021) use learning techniques to improve on known approximate techniques.

Use of transformers in mathematics has mostly focused on symbolic computations. Lample & Char-
ton (2019) showed that transformers could be trained to integrate functions and solve ordinary dif-
ferential equations and, in a follow-up work (Charton et al., 2020), predict properties of differen-
tial systems. Transformers have also been applied to formal systems, in theorem proving (Polu &
Sutskever, 2020) and temporal logic (Hahn et al., 2021). The use of sequence to sequence models for
arithmetic and the exact solution of mathematical problem has been studied by Saxton et al. (2019).
In a recent paper, Nogueira et al. (2021) point to the limitations of experiments on arithmetic.

8 CONCLUSION

We have shown that transformers can be trained over generated data to solve problems of linear
algebra with high accuracy, and that careful selection of the generative model for their training data
can allow them to generalize out of their training distribution. This demonstrates that applications
of transformers to mathematics are not limited to symbolic calculation, and can cover a wide range
of scientific problems, featuring numerical computations. We believe our results pave the way for
wider applicability of transformers in science.

9

Under review as a conference paper at ICLR 2022

Reproducibility statement

The transformer implementation and the framework for running the experiments were used in sev-
eral prior works, and rely on standard libraries (Pytorch for the models, Numpy for mathematical
calculations). The model source code, data generation code, and parameters for experiments will
be open-sourced and made publicly available. All experiments were run several times (on average
10 times), with multiple random seeds and light modifications of the hyperparameters (e.g. small
changes in model size, weight initialization, activation functions), to guarantee their robustness.

Ethics statement

Given the subject of the paper, and the fact that all data used are randomly generated, we believe
that no potential ethical concerns are raised by this research.

REFERENCES

Anonymous. Adaptive control flow in transformers improves systematic generalization. In Submit-
ted to The Tenth International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=KBQP4A_J1K. under review.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascan-
dolo. Neural symbolic regression that scales. arXiv preprint arXiv:2106.06427, 2021.

Davis Blalock and John Guttag. Multiplying matrices without multiplying. arXiv preprint
arXiv:2106.10860, 2021.

Roger W Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve linear pro-
gramming problems. Linear Algebra and its applications, 146:79–91, 1991.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,
and Sergey Zagoruyko. End-to-end object detection with transformers. arXiv preprint
arXiv:2005.12872, 2020.

François Charton, Amaury Hayat, and Guillaume Lample. Learning advanced mathematical com-
putations from examples. arXiv preprint arXiv:2006.06462, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Andrzej Cichocki and Rolf Unbehauen. Neural networks for computing eigenvalues and eigenvec-
tors. Biological Cybernetics, 68(2):155–164, 1992.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: A no-recurrence sequence-to-sequence
model for speech recognition. In 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5884–5888, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2021.

David Finol, Yan Lu, Vijay Mahadevan, and Ankit Srivastava. Deep convolutional neural networks
for eigenvalue problems in mechanics. International Journal for Numerical Methods in Engineer-
ing, 118(5):258–275, 2019.

10

https://openreview.net/forum?id=KBQP4A_J1K
https://openreview.net/forum?id=KBQP4A_J1K

Under review as a conference paper at ICLR 2022

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Christopher Hahn, Frederik Schmitt, Jens U. Kreber, Markus N. Rabe, and Bernd Finkbeiner. Teach-
ing temporal logics to neural networks. arXiv preprint arXiv:2003.04218, 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228,
2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley, third edition, 1997.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412, 2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Madan Lal Mehta. Random Matrices. Academic Press, 3rd edition, 2004.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with
simple arithmetic tasks. arXiv preprint arXiv:2102.13019, 2021.

Erkki Oja. Principal components, minor components, and linear neural networks. Neural networks,
5(6):927–935, 1992.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Victor M. Preciado and M. Amin Rahimian. Moment-based spectral analysis of random graphs with
given expected degrees. arXiv preprint arXiv:1512.03489, 2017.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Nikola Samardzija and RL Waterland. A neural network for computing eigenvectors and eigenval-
ues. Biological Cybernetics, 65(4):211–214, 1991.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

Feng Shi, Chonghan Lee, Mohammad Khairul Bashar, Nikhil Shukla, Song-Chun Zhu, and Vijaykr-
ishnan Narayanan. Transformer-based machine learning for fast sat solvers and logic synthesis.
arXiv preprint arXiv:2107.07116, 2021.

Ying Tang and Jianping Li. Another neural network based approach for computing eigenvalues and
eigenvectors of real skew-symmetric matrices. Computers & Mathematics with Applications, 60
(5):1385–1392, 2010.

Andrew Trask, Felix Hill, Scott Reed, Jack Rae, Chris Dyer, and Phil Blunsom. Neural arithmetic
logic units. arXiv preprint arXiv:1808.00508, 2018.

11

Under review as a conference paper at ICLR 2022

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 6000–6010, 2017.

Apoorv Vyas, Angelos Katharopoulos, and François Fleuret. Fast transformers with clustered atten-
tion. arXiv preprint arXiv:2007.04825, 2020.

Jun Wang. A recurrent neural network for real-time matrix inversion. Applied Mathematics and
Computation, 55(1):89–100, 1993a.

Jun Wang. Recurrent neural networks for solving linear matrix equations. Computers & Mathemat-
ics with Applications, 26(9):23–34, 1993b.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020a.

Yongqiang Wang, Abdelrahman Mohamed, Due Le, Chunxi Liu, Alex Xiao, Jay Mahadeokar,
Hongzhao Huang, Andros Tjandra, Xiaohui Zhang, Frank Zhang, and et al. Transformer-based
acoustic modeling for hybrid speech recognition. 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), May 2020b.

Zhang Yi, Yan Fu, and Hua Jin Tang. Neural networks based approach for computing eigenvectors
and eigenvalues of symmetric matrix. Computers & Mathematics with Applications, 47(8-9):
1155–1164, 2004.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers
for longer sequences. arXiv preprint arXiv:2007.14062, 2021.

Yunong Zhang, Weimu Ma, and Binghuang Cai. From zhang neural network to newton iteration
for matrix inversion. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(7):1405–
1415, 2008.

12

Under review as a conference paper at ICLR 2022

A NUMBER ENCODINGS

Let x be a non-zero real number, it can be represented uniquely as x = s.m.10e, with s ∈
{−1, 1},m ∈ [100, 1000[, e ∈ Z. Rounding m to the nearest integer n, we get the base ten,
floating-point representation of x, with three significant digits:

x ≈ s.n.10e, (s, n, e) ∈ Z3

By convention 0 is encoded as +0.100. All our encodings are possible representations of the triplets
(s, n, e). In this paper, we limit e to the range [−100, 100], and n to the range [100, 999].

In base N positional encoding, we encode s (the sign) and e (the exponent) as unique tokens: +
or - for s, and a token from E-100 to E100 for e. The mantissa, n, is encoded as the represen-
tation of n in base N (e.g. binary representation if N = 2, decimal representation if N = 10), a
sequence of dlogN (1000)e tokens from 0 to N-1. Overall, a number will be encoded as a sequence
of dlogN (1000)e+ 2 tokens, from a vocabulary of 202 +N tokens.

For instance, x = eπ ≈ 23.14069, will be represented by +231.10−1, and encoded in P10
(base 10 positional) as the sequence [+,2,3,1,E-1], and in P1000 (base 1000 positional)
as [+,231,E-1]. x = −0.5 will be represented as −500.10−3, and encoded in P10 as
[-,5,0,0,E-3], and in P1000 as [-,500,E-3]. Other bases N could be considered, as well
as different bases for the exponent, and different sizes of the mantissa. In this paper, we use P10 to
encode numbers with absolute value in [10−100, 10101] as sequences of 5 tokens, using a vocabulary
of 213 tokens (10 digits, 2 signs, and 201 values of the exponent), and P1000 as sequences of 3
tokens, with a vocabulary of 1104.

Balanced base 2a + 1 uses digits between −a and a (Knuth, 1997). For instance, in balanced base
11, digits range from −5 to 5 (an every day example of a balanced base can be found in the way we
state the hour as “twenty to two”, or “twenty past two”). Setting a to 999, we define B1999, and
encode the sign an mantissa as a single token between−999 and 999. Numbers are then encoded on
two tokens with a vocabulary of 2004.

Finally, we encode floating point numbers as unique tokens by rewriting any number x = m10b,
with m ∈ [−999, 999], b ∈ [−(p + 2)/2, (p + 2)/2], p + 2 = 0, [2], and encoding it as the unique
token FPm, b. This allows to represent numbers with 3 significant digits and a dynamic range of
10p+2, using a vocabulary of (18p+2)103 tokens. In this paper, we use p = 16: encoding numbers
as unique tokens, with a vocabulary of 30, 000 (FP15).

B L1, L2 AND L∞ NORMS FOR EVALUATION

We evaluate the accuracy of our trained models by decoding model predictions and verifying that
they approximate the correct solution up to a fixed tolerance τ . In the general case, if the model
predict a sequence seqP , and the solution of the problem is O, we consider that the prediction is
correct if seqP can be decoded into a matrix P and

‖P −O‖ < τ‖O‖ (1)
For eigenvalue decomposition, we check that the solution (Q,D) predicted by the model can recon-
struct the input matrix, i.e. ‖QTDQ− I‖ < τ‖I‖. For singular value decomposition, we check that
‖USV − I‖ < τ‖I‖. For matrix inversion, we check that ‖PI − Id‖ < τ‖Id‖ = τ .

All our published results use the norm L1: ‖A‖ =
∑
i,j |ai,j |, for A = (ai,j). In this section,

we discuss the impact of using different norms, namely L2 (‖A‖ =
∑
i,j a

2
i,j), or L∞ (‖A‖ =

maxi,j |ai,j |).

Using L1 norm in equation 1 amounts to comparing the average absolute errors on the predicted
coefficients (P − O) to the average absolute value of coefficients of O. Using L2 compares the
squared errors, and will biase the estimation towards large absolute errors, and coefficients of O
with large absolute values. L∞ will compare the largest absolute error to the largest coefficient in
|O|. The choice of the norm has different impact for different problems. Figure 1 presents learning
curves using the three norms for our best models on different problems.

For basic arithmetic operations (transposition, addition, multiplication), there is little difference
between L1 and L2 accuracies, and therefore no reason to prefer one over the other for model

13

Under review as a conference paper at ICLR 2022

0 20 40 60 80 100 120 140

0

20

40

60

80

100

Transposition
5-15 rectangular matrices

L1
L2
Max

0 10 20 30 40 50

0

20

40

60

80

100

Addition
10x10 matrices

0 5 10 15 20 25

0

20

40

60

80

100

Matrix vector multiplication
5x5 matrices

0 10 20 30 40 50 60

0

20

40

60

80

100

Eigenvalues
5x5 matrices

0 100 200 300 400 500 600 700 800

0

20

40

60

80

100

Eigenvalues
5-15 matrices

0 200 400 600 800 1000 1200

0

20

40

60

80

100

Eigenvalues
10x10 matrices

0 50 100 150 200 250 300

0

20

40

60

80

100

Singular Values
4x4 matrices

0 25 50 75 100 125 150 175 200

0

20

40

60

80

100

Eigenvectors
6x6 matrices

0 50 100 150 200 250 300 350 400

0

20

40

60

80

100

Matrix Inversion
5x5 matrices

Figure 1: Learning accuracies for different problems measured with norms L1, L2and L∞.

evaluation. For eigen and singular value problems, L2 accuracies reach a high value early during
training, long before the model begins to learn according to the other norms. This is due to the
fact that the eigenvalues of Wigner matrices tend to be regularly spaced over the interval [−2σ, 2σ]
(σ =

√
(n)s with s the standard deviation of coefficients and n the dimension of the matrix). This

means that, in many cases, the model can predict the largest absolute eigenvalues from the bounds
of the interval (which can be estimated from the dataset). For this reason, L2 accuracy is not a
good evaluation metric for the eigenvalue or singular value problem. This is particularly clear in
the 10× 10 case: transformers struggle with such matrices, and L1 and L∞ accuracies remain very
low even after a thousand epochs (300 million examples), but L2 accuracy is close to 100% since
the beginning of training. A similar phenomenon takes place for eigenvector calculations: L2 and
L∞ accuracy rise steeply, long before the model begins to learn (according to the L1 norm). This
justifies the choice of L1 as our evaluation norm.

14

Under review as a conference paper at ICLR 2022

0 20 40 60 80 100 120 140
50

100

150

200

250

300

350

400

450
Addition (10x10): test loss

P10 2/2 layers
P1000 2/2 layers
B1999 2/2 layers
B1999 1/1 layers
FP15 2/2 layers
FP15 1/1 layers

0 20 40 60 80 100 120 140

0

20

40

60

80

100

Addition (10x10): 5% accuracy

0 20 40 60 80 100 120 140

0

20

40

60

80

100

Addition (10x10): 1% accuracy

0 25 50 75 100 125 150 175 200

10

15

20

25

30
Eigenvalues: test loss

P10 6/6 layers
P10 4/1 layers
P1000 4/1 layers
P1000 2/2 layers
B1999 6/6 layers
FP15 6/1 layers

0 25 50 75 100 125 150 175 200

0

20

40

60

80

100

Eigenvalues: 5% accuracy

0 25 50 75 100 125 150 175 200

0

20

40

60

80

100

Eigenvalues: 1% accuracy

0 100 200 300 400 500

40

60

80

100

120

Eigenvectors: test loss
P10 4/4 layers
P10 6/6 layers
P1000 4/4 layers
P1000 6/1 layers
FP15/P1000 6/1 layers
FP15 6/1 layers

0 100 200 300 400 500

0

20

40

60

80

100

Eigenvectors: 5% accuracy

0 100 200 300 400 500

0

20

40

60

80

100

Eigenvectors: 1% accuracy

0 100 200 300 400 500 600 700

40

60

80

100

120

Inversion: test loss
P10 8/8 heads
P1000 8/8 heads
P1000 10/8 heads
P1000 12/8 heads
FP15/P1000 10/4 heads
FP15/P1000 12/8 heads

0 100 200 300 400 500 600 700

0

20

40

60

80

100

Inversion: 5% accuracy

0 100 200 300 400 500 600 700
Epochs

0

20

40

60

80

100

Inversion: 1% accuracy

Figure 2: Learning curves for different problems. All problems except addition use 5× 5 matrices.
All models have 512 dimensions and 8/8 heads (except when mentioned in the legend). Inversion
models have 6/1 layers. Epochs correspond to 300,000 training examples. Test loss is cross-entropy.

15

Under review as a conference paper at ICLR 2022

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 LEARNING CURVES FOR DIFFERENT ENCODINGS AND ARCHITECTURES

Figure 2 presents learning curves for loss and accuracy (with 5 and 1% tolerance) on different
models, for four problems. These curves indicate the number of training examples needed for each
problem. On average, our best models learn basic operations on matrices in less than 50 epochs (15
million examples). Training size requirement increases with operation complexity : from 30 million
for eigenvalues, to 120 million for eigenvectors, and over 150 million for matrix inversion.

On the inversion problem, we experiment with the number of attention heads in the encoder. In-
creasing the number of head from 8 to 10 and 12 improves learning speed and accuracy. Over 12
heads, this benefit disappears: with 16 heads, our models need 800 epochs to train to 55% accuracy
(with 5% tolerance). We believe that this reflects the trade-off being the number of heads (more
heads catch more dependencies between elements in the input sequeunce) and the downsampling of
attention patterns (when internal model dimension remains fixed).

Finally, we notice that the learning curves for the harder problems (eigenvalues, vectors and inver-
sion) are noisy. This is caused by the learning rates: our models usually need small learning rates
(510−4 before scheduling is typical) and there is a trade-off between low rates that will stabilize the
learning curve, and larger rates that accelerate training.

C.2 MODEL SIZE

The two main factors influencing model size are depth and the number of dimensions (see Ap-
pendix F). In this section we discuss how model size impacts accuracy for addition of 10 × 10
matrices, multiplication of a 5 × 5 matrix by a vector, and computation of the eigenvalues of a
5× 5 matrix. All models in this section are symmetric (same dimension and number of layers in the
encoder and decoder) and have 8 attention heads.

For the addition task, tables 12 and 13 present the accuracy reached after 60 epochs (18 million
examples) and the number of epochs (of 300,000 examples) needed to reach 95% accuracy, for
models using the P1000 and B1999 encoding. Both encodings allow shallow architectures (1/1 and
2/2 layers) to learn addition with high accuracy, but the more compact B1999 support smaller models
(256 dimensions). In terms of speed, with B1999, shallow models are learned very fast, but it takes
a lot of examples to train deeper models. The opposite is true for P1000 models.

B1999 P1000
dimension 64 128 256 512 64 128 256 512

1/1 layers 31 7 82 100 0 0 1 40
2/2 layers 0 0 100 100 0 0 0 99
4/4 layers 0 0 0 14 0 0 0 98
6/6 layers 0 0 0 0 0 0 0 99

Table 12: Accuracy of matrix addition for different model sizes. 10× 10 matrices, 60 epochs (18 millions
examples). 5% tolerance

B1999 P1000
dimension 64 128 256 512 64 128 256 512

1/1 layers - - 76 15 - - - 96
2/2 layers - - 26 6 - - - 37
4/4 layers - - 70 63 - - - 53
6/6 layers - - - - - - - 23

Table 13: Learning speed of matrix addition for different model sizes. Number of epochs needed to reach
95% accuracy (with 5% tolerance). 1 epoch = 300,000 examples.

Table 14 presents the learning speed of models of different sizes for the matrix/vector product and
eigenvalue computation tasks (5× 5 matrices, and P1000 encoding). For each problem, there exist a

16

Under review as a conference paper at ICLR 2022

minimal dimension and depth under which models struggle to learn: one layer and 128 dimensions
for products, one layer or 128 dimensions for eigenvalues. Over that limit, increasing the dimension
accelerates learning. Increasing the depth, on the other hand, bring no clear improvement in speed
or accuracy.

Matrix product Eigenvalues
128 256 512 128 256 512 1024

1/1 layers - 29 18 - - - -
2/2 layers 24 12 7 - 102 36 23
4/4 layers 28 11 5 244 90 24 13
6/6 layers 24 10 6 - - 129 16
8/8 layers 18 12 6 - - 34 24

Table 14: Learning speed of matrix and vector products and eigenvalue calculations for different model
sizes. Number of epochs needed to reach 95% accuracy (with 5% tolerance). 1 epoch = 300,000 examples.
5× 5 matrices, P1000 encoding.

Finally, we experiment with larger models on larger problems. We trained models with 8 to 12
layers and 512 to 2048 dimensions on sets of 10 × 10 matrices, without success. As discussed
in section 4.4, those problems are out of reach of the models we use in this paper (unless we use
curriculum learning and train on mixed-size datasets). Increasing model size does not seem to help
scaling to larger matrices.

C.3 MODEL PERFORMANCE ON DIFFERENT DATASETS

FP15 P1000
4/1 layers 6/1 layers 4/1 layers 6/1 layers

Wigner matrices (iid coefficients)
Uniform iid A=10 99.6 100 99.8 100
Gaussian iid A=10 99.8 100 99.8 100
Uniform iid A=1,100 99.0 99.2 99.8 100
Uniform iid A=1,1000 99.2 99.5 99.7 99.8

Non Wigner
Positive A=10 12.7 100 100 100
Uniform A=10 8.2 10.8 99.9 100
Gaussian A=10 99.6 100 100 100
Laplace A=10 99.4 99.9 99.9 99.9
Gaussian+uniform+Laplace A=10 3.8 99.8 99.6 99.9

Wigner and non Wigner mixtures
iid+gaussian A=10 99.5 99.9 98.0 99.7
iid+positive A=10 99.8 99.9 99.8 99.8
iid+Laplace A=10 99.6 99.8 99.6 99.5
iid+positive+gaussian A=10 99.8 99.9 99.7 99.9
iid+positive+Laplace A=10 99.0 99.8 99.6 99.8

Table 15: In-distribution eigenvalue accuracy (tolerance 2%) for different training distributions. All
models have 512 dimensions, and 8 attention heads, and are trained on 5x5 matrices.

Table 15 sumarizes in-domain performance (i.e. accuracy when the test set is generated with the
same procedure as the training set) for different datasets. On Wigner matrices (i.e. matrices with
independant and identically distributed, iid, coefficients) uniformly or normally distributed, with
fixed-range coefficients (i.e. all matrices in the dataset have coefficients uniformly sampled from
the same interval), or variable-range coefficients (i.e. coefficient range vary from one matrix to
another), all models achieve very high (99+%) accuracy. The eigenvalues of Non-Wigner matrices
with Gaussian or Laplace distributed eigenvalues, are also predicted to high accuracy by all models.
Over matrices with positive or uniformly distributed eigenvalues, smaller models using the FP15
encoding prove difficult to train. Finally, on mixtures of Wigner and non Wigner matrices, all
models predict to high accuracy.

17

Under review as a conference paper at ICLR 2022

D ALTERNATIVE ARCHITECTURES

D.1 OTHER SEQUENCE TO SEQUENCE MODELS : LSTM AND GRU

We experimented with two popular recurrent architectures: long short-term memories (Hochreiter
& Schmidhuber, 1997), and gated recurrent units (Cho et al., 2014), on three tasks : addition of
5 × 5 and 10 × 10 matrices, eigenvalues and matrix inversion of 5 × 5 matrices. We experiment
with sequence to sequence models, featuring an encoder and a decoder (LSTM or GRU), with 2 to 8
layers, and 1024 or 2048 hidden dimensions. The input and output sequences, encoded as in the rest
of the paper, are pre-processed (and decodedà) via an embedding layer with 256 or 512 dimensions.

Addition, a very easy task for transformers (see section 4.2) proves difficult for LSTM and GRU.
None of our models can learn addition of 10×10 matrices. Some models can learn addition of 5×5
matrices, but whereas transformers achieve 100% accuracy for all tolerances, our best LSTM and
GRU only exceed 90% at 1% tolerance. GRU seem to perform better than LSTM on this task, and
2-layer models perform better than 4-layer models, but transformers have a distinct advantage over
LSTM and GRU on addition.

2 layers 4 layers
Hidden dimension 1024 2048 1024 2048
Embedding dimension 256 512 256 512 256 512 256 512

Long short-term memory
5% tolerance 100 0 0 100 0 0 0 0
2% tolerance 98 0 0 100 0 0 0 0
1% tolerance 95 0 0 86 0 0 0 0
0.5% tolerance 34 0 0 1 0 0 0 0
Gated recurrent Units
5% tolerance 100 100 0 100 0 100 0 0
2% tolerance 100 28 0 100 0 99 0 0
1% tolerance 44 0 0 91 0 74 0 0
0.5% tolerance 0 0 0 9 0 4 0 0

Table 16: Matrix addition with LSTM and GRU. 5× 5 matrices.

Both LSTM and GRU can be trained to predict eigenvalues of 5×5 matrices with the same accuracy
as transformers, for the P1000 and FP15 encoding (table 17). Matrix inversion, on the other hand,
cannot be learned. Overall, these experiments show that other sequence to sequence architectures,
LSTM and GRU, can learn tasks like eigenvalues and addition of small matrices. However, they
are less efficient on addition (in terms of precision and scaling to larger matrices) and fail on more
complex tasks, like matrix inversion.

FP15 P1000
Hidden dimension 1024 2048 1024 2048
Layers 4 6 8 4 6 8 4 6 8 4 6 8

LSTM
5% tolerance 100 100 100 100 100 6 100 100 5 100 100 100
2% tolerance 95 100 100 99 100 1 100 100 1 100 99 100
1% tolerance 78 98 99 91 98 0 97 98 0 100 92 99
0.5% tolerance 46 81 83 62 68 0 78 88 0 89 57 76
Gated recurrent Units
5% tolerance 100 100 100 100 100 100 100 100 100 100 5 100
2% tolerance 98 99 100 100 100 100 99 100 100 100 1 100
1% tolerance 86 93 96 98 99 97 94 98 95 97 0 98
0.5% tolerance 53 68 75 78 83 65 65 76 63 75 0 66

Table 17: Eigenvalue computation with LSTM and GRU. 5× 5 matrices.

18

Under review as a conference paper at ICLR 2022

D.2 SHARED-LAYER TRANSFORMERS: UNIVERSAL TRANSFORMERS

In the Universal Transformer (Dehghani et al., 2018), the stacked layers of usual transformer im-
plementations are replaced by one layer that is looped through a fixed number of times (feeding the
output of one iteration into the input of the next). This amounts to sharing the weights of the dif-
ferent layers, therefore greatly reducing the number of parameters in the model. This technique can
be applied to the encoder, the decoder or both. The number of iterations is a fixed hyperparameter,
but the original paper also proposed a halting mechanism inspired by Adaptive Computation Time
(Graves, 2016), to adaptively control loop length at the token level. In this version, a stopping prob-
ability is learned for every position in the input sequence, and once it reaches a certain threshold, the
layer merely copies the input onto the output. The iteration stops when all positions have halted, or a
specific value is reached. A recent paper (Anonymous, 2022) proposed to use a similar copy-gating
mechanism to skip iterations in a fixed-length loop. We experiment with these three variants (fixed
length, adaptive halting, copy gating) on the addition (of 10 × 10 matrices), eigenvalue and matrix
inversion tasks (5× 5 matrices).

For the addition task, we train universal transformers with one layer and in the encoder and decoder,
256 or 512 dimensions and 8 attention heads. We use the B1999 encoding for the data. We exper-
iment with looped encoder, looped decoder, and loop in both, a loop length of 4, copy-gating and
ACT (the 4 loops in then a maximum number of iterations)and copy-gating. Table 18 summarizes
our findings. Only models with encoder loops learn to add, and models with 512 dimensions learn
with over 95% accuracy for all tolerances. Universal Transformers with one layer (looped-encoder
only) perform as well as 2/2 transformers.

5% 2% 1% 0.5%

Looped encoder
256 dimensions, 4 loops 15 1 0 0
512 dimensions, 4 loops 100 100 100 100
256 dimensions, 4 loops, gated 97 66 41 29
512 dimensions, 4 loops, gated 100 100 100 100
256 dimensions, 4 loops, ACT 100 92 76 66
512 dimensions, 4 loops, ACT 100 100 98 96

Looped decoder 0 0 0 0
Looped encoder and decoder 0 0 0 0

2/2 transformer (baseline) 100 100 100 100

Table 18: Accuracy of Universal transformers on matrix addition for different tolerances. 10 × 10
matrices.

On the eigenvalue task, we experiment on the P1000 and FP15 encoding, with encoder-loop only
1/1 Universal Transformers with 4 or 8 loops. Universal transformers using the P1000 encoding
achieve the same performances (with only one layer) than the transformers in our main research 4
loop transformers seem best, with gates not improving perfomance and ACT slightly degrading it.
With the FP15 encoding, universal transformers become very difficult to train: only the 4 loop gated
version achieves significant accuracy (still lower than the 6/1 transformers).

Finally, we experimented with matrix inversion, with FP15/P1000 and P1000/P1000 encodings, and
4 or 8 loops in the encoder. A gated universal transformer using FP15 in the input and P1000 in
the output achieved 73% accuracy, a significant result albeit lower than the best result acieved with
6/1 transformers using the same encodings (90%). With the P1000 encoding, the best universal
transformers reach 55% accuracy, compared to 80% for their 6/1 transformer counterparts. Overall,
Universal Transformers seem to achieve comparable performances with deep transformers (except
on the inversion tasks), using less parameters. This makes shared layer transformers an interesting
direction for future work.

19

Under review as a conference paper at ICLR 2022

5% 2% 1% 0.5%

P1000
4 loops 100 100 97 87
8 loops 100 99 93 69
4 loops, gated 100 100 98 91
8 loops, gated 100 100 99 90
4 loops, ACT 100 97 89 62
8 loops, ACT 100 95 77 42

FP15
4 loops 4 0 0 0
8 loops 0 0 0 0
4 loops, gated 94 84 57 23
8 loops, gated 6 1 0 0
4 loops, ACT 4 0 0 0
8 loops, ACT 4 0 0 0

4/1 transformer (P1000 baseline) 100 100 99 89
6/1 transformer (FP15 baseline) 100 100 100 92

Table 19: Accuracy of Universal transformers on eigenvalue computation for different tolerances. 5× 5
matrices.

E ADDITIONAL EXPERIMENTS

E.1 NOISY DATA

Experimental data is often noisy, and it is interesting to see how our models behave in the presence
of random error. To this effect, we trained models to perform matrix addition and eigenvalue com-
putations on noisy data, by adding a random gaussian error to all coefficients in the input (5 × 5)
matrices. Three levels of noise were tested, with standard deviation equal to 1, 2 and 5% of the
standard deviation of the matrix coefficients (σ = 5.77 for uniform coefficients in [−10, 10]). For
linear operations like addition, we expect the model to predict correct results so long tolerance τ
remains larger than error.

Table 20 demonstrates that models can be trained on noisy data without loss of accuracy, so long
the ratio between the standard deviation of error and that of the coefficients is lower than tolerance.
Accuracy drops to about 40% when error levels are approximately equal to tolerance, and to zero
once error exceed tolerance. It is worth noticing that model size and encoding have no apparent
impact on robustness to noise.

B1999 P1000
2/2 layers 4/4 layers 2/2 layers 4/4 layers

256 512 256 512 256 512 256 512

5% tolerance
0.01σ error 100 100 100 100 100 100 99.4 100
0.02σ 100 100 99.8 100 100 100 100 100
0.05σ 41.5 41.2 41.7 41.6 39.3 41.2 39.4 40.7

2% tolerance
0.01σ error 99.8 99.9 99.8 99.9 99.4 100 98.2 99.9
0.02σ 43.7 44.2 42.1 44.7 39.0 44.9 42.6 45.3
0.05σ 0 0 0 0 0 0 0 0

1% tolerance
0.01σ error 39.8 41.7 39.6 44.0 36.6 44.0 28.9 44.6
0.02σ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.05σ 0 0 0 0 0 0 0 0

Table 20: Accuracy of noisy matrix addition for different error levels and tolerances. 5× 5 matrices.

20

Under review as a conference paper at ICLR 2022

A similar pattern appears in eigenvalue calculations (table 21), but trained models prove more re-
sistant to noise in the data than for addition. For instance, the eigenvectors of matrices with error
standard deviation up to 0.05σ can be learnt to high accuracy within 5% tolerance (vs 0.02σ for
addiition). As before, model size has no impact on robustness. However, FP15 models seem more
difficult to train over noisy data than P1000.

FP15 P1000
4/4 layers 6/6 layers 4/4 layers 6/6 layers

512 1024 512 1024 512 1024 512 1024

5% tolerance
0.01σ error 6.1 100 5.1 6.0 100 100 100 100
0.02σ 100 100 6.7 100 100 100 100 100
0.05σ 99.1 99.3 99.3 6.4 99.3 99.0 99.0 98.8

2% tolerance
0.01σ error 0.7 99.8 0.5 0.8 99.3 99.6 99.9 99.8
0.02σ 97.0 97.1 0.8 88.4 97.3 97.9 93.1 95.4
0.05σ 37.9 38.4 40.6 0.5 40.1 37.3 37.5 35.3

1% tolerance
0.01σ error 0.1 82.1 0.1 0.2 79.7 83.8 87.9 83.8
0.02σ 47.8 51.3 0.1 26.1 46.2 47.5 36.4 41.3
0.05σ 3.8 4.2 4.1 0.1 4.1 3.8 3.9 3.4

Table 21: Accuracy of noisy eigenvalue computations, for different error levels and tolerances. 5 × 5
matrices.

E.2 CO-TRAINING

We have shown that transformers can be trained to performed all the tasks mentioned above, training
one specific model for each task. In this section, we experiment with co-training: learning several
tasks at once. We add a token at the beginning of the input and output sequence indicating the task
to be solved (e.g. Transpose or Add), and generate data by randomly selecting a task (with equal
probability for all tasks) and producing the corresponding pairs.

We train transformers with 4 or 6 layers, 512 dimensions and 8 attention heads on eight datasets
corresponding to different co-training tasks:

• Transpose and add (TA)
• Transpose, add and dot product (vector matrix multiplication) (TAD)
• Transpose, add, dot product and matrix multiplication (TADM)
• Transpose, add, dot product, matrix multiplication and eigenvalues (TADME)
• Transpose, add, dot product, matrix multiplication, eigenvalues and eigenvectors (TAD-

MEF)
• Transpose, add, dot product, matrix multiplication, eigenvalues, eigenvectors and matrix

inversion (TADMEFI)
• Eigenvalues, eigenvectors and matrix inversion (EFI)

Table 22 summarizes our findings. Lines correspond to a co-training tasks, columns to the per-
formance achieved on this specific task (with 5% tolerance). Co-training over a mixture of basic
operations (transposition, addition, dot products and multiplication: the TA, TAD and TADM tasks)
learn to predict the results of all operations with almost perfect accuracy. Co-training on the basic
operations and eigenvalue computations (the TADME task) allows the model to predict eigenvalues
with 80% accuracy, in exchange for a loss of performances on the dot product task. In other ex-
periments with this task, the model learned all basic operation to 100% accuracy(as in the TADM
setting), and the eigenvalue to a few percents. Adding more tasks, eigenvectors and inversion, results
in the same performance. Co-training on the advanced tasks only (eigenvalues, vectors and inver-
sion) results in 100% accuracy on eigenvalue computation, 22% on eigenvectors, and 0 on inversion.
These results demonstrate the feasibility of co-training on basic matrix operations, but also suggest
that further research is needed if one wants to extend it to all the tasks considered in this paper.

21

Under review as a conference paper at ICLR 2022

T A D M E F I

TA 100 100
TAD 100 100 100
TADM 100 100 100 100
TADME 100 100 26 100 80
TADMEF 100 100 100 100 3 0
TADMEFI 100 100 100 100 3 0 0
EFI 100 22 0

Table 22: Accuracy of co-training. 5× 5 matrices, 5% tolerance.

F NUMBER OF PARAMETERS

The number of parameters in the sequence to sequence transformer we use in this paper can be
calculated as follows.

• A self-attention mechanism with dimension d has 4d(d+ 1) parameters: it is composed of
four linear layers (K, Q, V and the output layer), with d input, d output and a bias.

• A cross-attention mechanism with de dimensions in the encoder, and d in the decoder has
2d(d+ de + 2) parameters (K and V are de × d layers).

• A FFN with one hidden layer, d input and output, and h hidden units has d(h+1)+h(d+1)
parameters.

• A layer normalization with d dimensions has 2d parameters.
• An encoder layer with dimension d has a self-attention mechanism, a FFN with 4d hidden

units (in our implementation) and two layer normalizations, for a total number of parame-
ters of 12d2 + 13d.

• A decoder layer has a cross-attention layer (encoding dimension de) and a layer normaliza-
tion on top of an encoder, for a total of 14d2 + 19d+ 2ded parameters.

• An embedding of dimension d for a vocabulary of w words will use dw parameters, and 2d
more if it is coupled to a layer normalization.

• The final prediction layer with an output dimension of d and a decoded vocabulary of w
words will use (d + 1)w parameters (but in our case, dw will be shared with the decoder
embedding).

Overall, the number of parameters for a transformer with ne encoding layers with dimension de,
n ∗ d decoding layers with dimension dd, an input vocabulary of wi words, an output vocabulary
of wo words and a positional embedding of wp words (corresponding to the maximum sequence
length) can be computed by the formula:

P = de(wi + wp + 2) + ((wo + wp + 2)dd + wo) + nede(12de + 13) + nddd(14dd + 2de + 19)

the four terms in the sum corresponding to the input embedding, the output embedding, the encoder
and the decoder.

Table 23 provides the number of parameters for some of the models used in this paper. For the
positional embedding, we set the number of words as the longest input and output sequence studied
with that model.

22

Under review as a conference paper at ICLR 2022

Experiment Model Parameters

Transposition 1/1 layers 256 dims P10 2,276,171
1/1 layers 256 dims P1000 2,737,871
1/1 layers 256 dims B1999 3,297,554
1/1 layers 256 dims FP15 17,045,441

Addition 2/2 layers, 512 dims, B1999 17,619,218

Matrix vector multiplication 2/2 layers 512 dimensions P10 15,578,443
2/2 layers 512 dimensions P1000 16,500,943
4/4 layers 512 dimensions P1000 31,213,775

Matrix multiplication 1/4 layers 512 dimensions P1000 21,756,623
1/6 layers 512 dimensions P1000 30,164,687

Eigen decomposition 1/6 layers 512 dimensions FP15 58,751,937
6/1 layers 512 dimensions FP15 53,493,697
6/1 layers 512 dimensions P1000 24,906,447
661 layers 512 dimensions P1000 45,926,607

Matrix inversion 6/1 layers 512 dimensions FP15/P1000 39,186,127

Table 23: Number of parameters of transformers used in the paper.

G EIGENVALUE DISTRIBUTION OF WIGNER MATRICES, AN EMPIRICAL
JUSTIFICATION

Figure 3 provides an empirical confirmation of the property of Wigner matrices mentioned in sec-
tions 2.2 and 5: the standard deviation of their eigenvalues is a function of their dimension and
standard deviation of their coefficients only, and does not depend on the actual dsitribution of the
coefficient. In particular, for coefficients with standard deviation σ = 10/

√
(3) = 5.77, we expect

the standard deviation of their eigenvalue distribution to be σ = 12.91, 18.26, 22.36 and 25.81 for
square matrices of dimension 5, 10, 15 and 20.

For three distributions, uniform, Laplace and gaussian, and four dimensions (5, 10, 15, and 20), we
generated 100 000 random matrices with the same standard deviation of coefficients, and computed
their eigenvalues. Standard deviations are within 0.01 of theoretical values for all distributions
and dimensions. It is interesting to note how the distributions (which correspond to the original
coefficient distribution for n = 1) resemble the semi-circle as dimension increases.

23

Under review as a conference paper at ICLR 2022

0

200

400

600

800

1000

un
ifo

rm

5x5

 = 12.92

10x10

 = 18.25

15x15

 = 22.36

20x20

 = 25.82

0

200

400

600

800

1000

ga
us

sia
n

 = 12.91 = 18.25 = 22.37 = 25.82

60 40 20 0 20 40 60
0

250

500

750

1000

1250

1500

1750

2000

la
pl

ac
e

 = 12.90

75 50 25 0 25 50 75

 = 18.25

75 50 25 0 25 50 75

 = 22.37

75 50 25 0 25 50 75

 = 25.83

Figure 3: Empirical distributions of eigenvalues for Wigner matrices of dimension 5x5 (left) to
20x20 (right), with uniform (top), gaussian (middle) and Laplace (bottom) coefficients. All distri-
butions computed from 100 000 random matrices.

24

	Introduction
	Problems and datasets
	Encoding matrices as sequences
	Random matrix generation

	Models and experimental settings
	Experiments and results
	Transposition
	Addition
	Multiplication
	Eigenvalues
	Eigenvectors
	Inversion
	Singular value decomposition

	Out-of-domain generalization and retraining
	Discussion and future directions
	Related work
	Conclusion
	Number encodings
	L1, L2 and L norms for evaluation
	Additional experimental results
	Learning curves for different encodings and architectures
	Model size
	Model performance on different datasets

	Alternative architectures
	Other sequence to sequence models : LSTM and GRU
	Shared-layer transformers: Universal transformers

	Additional experiments
	Noisy data
	Co-training

	Number of parameters
	Eigenvalue distribution of Wigner matrices, an empirical justification

