

Journal Pre-proof

Energy-based diffusion generator for efficient sampling of Boltzmann
distributions

Yan Wang, Ling Guo, Hao Wu, Tao Zhou

PII: S0893-6080(25)01006-8
DOI: https://doi.org/10.1016/j.neunet.2025.108126
Reference: NN 108126

To appear in: Neural Networks

Received date: 11 September 2024
Revised date: 10 September 2025
Accepted date: 15 September 2025

Please cite this article as: Yan Wang, Ling Guo, Hao Wu, Tao Zhou, Energy-based diffu-
sion generator for efficient sampling of Boltzmann distributions, Neural Networks (2025), doi:
https://doi.org/10.1016/j.neunet.2025.108126

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2025 Published by Elsevier Ltd.

https://doi.org/10.1016/j.neunet.2025.108126
https://doi.org/10.1016/j.neunet.2025.108126

Energy-based diffusion generator for efficient sampling
of Boltzmann distributions

Yan Wanga, Ling Guob, Hao Wu*c, Tao Zhoud

School of Mathematical Sciences, Tongji University, Shanghai, China

Department of Mathematics, Shanghai Normal University, Shanghai, China

School of Mathematical Sciences, Institute of Natural Sciences and MOE-LSC,
Shanghai Jiao Tong University, Shanghai, China, *hwu81@sjtu.edu.cn,

LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing,
AMSS, Chinese Academy of Sciences, Beijing, China

Abstract
Sampling from Boltzmann distributions, particularly those tied to high di-
mensional and complex energy functions, poses a significant challenge in
many fields. In this work, we present the Energy-Based Diffusion Generator
(EDG), a novel approach that integrates ideas from variational autoencoders
and diffusion models. EDG uses a decoder to generate Boltzmann-distributed
samples from simple latent variables, and a diffusion-based encoder to esti-
mate the Kullback-Leibler divergence to the target distribution. Notably,
EDG is simulation-free, eliminating the need to solve ordinary or stochastic
differential equations during training. Furthermore, by removing constraints
such as bijectivity in the decoder, EDG allows for flexible network design.
Through empirical evaluation, we demonstrate the superior performance of
EDG across a variety of sampling tasks with complex target distributions,
outperforming existing methods.
Keywords: Boltzmann distribution, Energy-based model, Generative
model, Diffusion model, Variational autoencoder

Preprint submitted to Neural Networks September 17, 2025

1. Introduction

In various fields such as computational chemistry, statistical physics, and
machine learning, the challenge of sampling from a Boltzmann distribution
corresponding to a high-dimensional and complex energy function is ubiq-
uitous [1]. Unlike training tasks for data-driven generative models, where
pre-sampled data can be utilized to learn complex distributions, sampling
from Boltzmann distributions presents a unique and significant challenge
due to the lack of readily available data [2, 3]. For example, simulating the
phase transition of the Ising model can be framed as a sampling problem
given the energy function, which presents a complex and difficult problem
that has yet not to be effectively addressed [4, 5].

Markov Chain Monte Carlo (MCMC) methods [6], along with Brownian
and Hamiltonian dynamics [7–10], have offered a pivotal solution to the chal-
lenge of sampling from high-dimensional distributions. These methods op-
erate by iteratively generating candidates and updating samples, ultimately
achieving asymptotic unbiasedness at the limit of infinite sampling steps.
Meanwhile, some enhanced sampling methods [11, 12] developed for rare
event problems accelerate sampling efficiency while significantly reducing rel-
ative statistical errors, even for low-probability regions.

In recent years, researchers have proposed adaptive MCMC as a strat-
egy for generating candidate samples, showcasing notable advancements in
augmenting the efficiency and effectiveness of the sampling process [13–15].
However, designing optimal loss functions is always challenging for the sam-
pling problems. Many distributional discrepancies used in generative mod-
els, such as Jensen-Shannon divergence, maximum mean discrepancy and
Wasserstein distance, require access to samples from the true distribution,
which are unavailable in our setting. Stein discrepancy derived from Stein’s
identity [16], and the Kullback-Leibler (KL) divergence, between the distri-
bution of the generated samples and the target distribution, may serve as
potential alternatives for sampling.

Variational inference (VI) is a widely used approach to sampling prob-
lems. It employs a generator that efficiently produces samples to approxi-
mate the target Boltzmann distribution, and optimizes the generator’s pa-
rameters using the KL divergence, without requiring true samples from the
target distribution. Due to its ability to model complex distributions and
provide explicit probability density functions, normalizing flow (NF) [17–20]
has been extensively applied to construct generators for VI methods [21, 22].

2

Furthermore, a growing body of research has expanded their applicability
across diverse domains [23–28]. However, the bijective nature of NFs im-
poses a constraint on their effective capacity, often rendering it insufficient
for certain sampling tasks. Continuous normalizing flows [29–32] represent
a specific subclass of NF in which the invertible transformation is defined
through an ordinary differential equation. For more relevant studies, please
refer to the Related Work in Sec. 2.1.

With the prosperity of diffusion based generative models [33–36], they
have been applied to address challenges in the sampling problem. By training
time-dependent score matching neural networks, methods proposed in [37–
39] shape the Gaussian distribution into complex target densities, employing
the KL divergence as the loss function. [40] also explores multiple connec-
tions between diffusion and other VI methods. To mitigate mode-seeking
issues, [41] introduces the log-variance loss, showcasing favorable properties.
Additionally, an alternative training objective is outlined in [42], relying on
flexible interpolations of the energy function and demonstrating substantial
improvements for multi-modal targets. However, a common drawback of
these methods is their reliance on numerical differential equation solvers for
computing time integrals, which can lead to substantial computational costs.

In this research endeavor, we present a novel approach termed the energy-
based diffusion generator (EDG), drawing inspiration from both the varia-
tional autoencoder (VAE) technique [43] and the diffusion model. The ar-
chitecture of EDG closely resembles that of VAE, comprising a decoder and
an encoder. The decoder is flexible in mapping latent variables distributed
according to tractable distributions to samples, without the imposition of
constraints such as bijectivity, and we design in this work a decoder based on
generalized Hamiltonian dynamics to enhance sampling efficiency. The en-
coder utilizes a diffusion process, enabling the application of score matching
techniques for precise and efficient modeling of the conditional distribution
of latent variables given samples. Unlike existing diffusion-based sampling
methods, the loss function of EDG facilitates the convenient computation of
unbiased estimates in a random mini-batch manner, removing the need for
numerical solutions to ordinary differential equations (ODEs) or stochastic
differential equations (SDEs) during training. Numerical experiments con-
clusively demonstrate the effectiveness of EDG.

3

2. Related work and preliminaries

2.1. Related work
Variational inference-based sampling algorithms: The Boltzmann

generator (BG) [22, 44] is one of the most representative sampling methods
based on VI. It leverages NFs to parameterize a trainable and analytically
tractable density, with parameter optimization carried out by minimizing the
KL divergence between the surrogate and target distributions. Here, NFs
are composed of stacked bijective transformations, allowing the density to
be computed in closed form. In addition, the combination of MCMC and VI
methods stands as a current focal point in research [45–49]. This combination
seeks to harness the strengths of both approaches, offering a promising avenue
for addressing the challenges associated with sampling from high-dimensional
distributions and enhancing the efficiency of probabilistic modeling.

Adaptive MCMC: Recent work has augmented MCMC sampling with
nonlocal transition kernels parameterized by neural networks, including the
NF-based method proposed by Vanden-Eijnden et al. [50] and the diffusion
model-based method [51]. This synergistic approach enables neural networks
to accelerate MCMC sampling while the model are trained in a data-driven
mode from samples of MCMC.

Stein-based models: Designing optimal loss functions for sampling
problems is always challenging for the sampling problems. Stein discrep-
ancy has emerged as a promising candidate [16, 52–54], as it allows direct
evaluation of the discrepancy between generated samples and the target dis-
tribution, without requiring real samples from the target or access to the
density of the generated distribution. In particular, the kernelized Stein dis-
crepancy [16] offers a practical and convenient criterion, which can test the
goodness of fit easily. The trainable Stein Discrepancy [53, 54] further lever-
ages neural networks to parameterize a class of functions based on the Stein’s
Identity, using the learned discrepancy to enhance its capability.

Latent diffusion models: Latent diffusion models, which are primar-
ily designed to address generative modeling in data-driven scenarios, have
recently gained significant attention [55–57]. Their main idea to use a pre-
trained encoder and decoder to obtain a latent space that both effectively
represents the data and facilitates efficient sampling, with the diffusion model
learning the distribution of latent variables. However, its integration with
sampling problems remains to be explored.

4

2.2. Preliminaries and Setup
In this work, we delve into the task of crafting generative models for the

purpose of sampling from the Boltzmann distribution driven by a predefined
energy U : Rd → R:

π(x) = 1
Z

exp(−U(x)),

where the normalizing constant Z =
∫

exp(−U(x))dx is usually computation-
ally intractable. To tackle this challenge, the BG [21], along with its various
extensions [44, 58, 59], has emerged as a prominent technique in recent years.
In this work, we aim to overcome the limitations of BG by employing a gen-
erator with fewer structural constraints (e.g., without requiring bijection),
and design a flexible model tailored for sampling tasks.

Our focus now shifts to a generator akin to the VAE. This generator
produces samples by a decoder as

x|z0 ∼ pD(x|z0; ϕ),

where z0 ∼ pD(z0) is a latent variable drawn from a known prior distribu-
tion, typically a standard multivariate normal distribution. The parameter
ϕ characterizes the decoder, and we define pD(x|z0; ϕ) as a Gaussian distri-
bution N (x|µ(z0; ϕ), Σ(z0; ϕ)), with both µ and Σ parameterized by neural
networks (NNs). Similar to the VAE, we aim to train the networks µ and
Σ such that the marginal distribution pD(x) of the generated samples aligns
with the target distribution.

It is important to note that, unlike conventional data-driven VAEs, we
do not have access to samples from the target distribution π(x). In fact,
obtaining such samples is precisely the goal of the generator. As a result, the
variational approximation of the KL divergence DKL (π(x)||pD(x)) cannot be
used to train the model. Instead, in this work, we consider the divergence
DKL (pD(x)||π(x)) and its upper bound:

DKL (pD(x)||π(x)) ≤ DKL (pD(z0)pD(x|z0; ϕ)||π(x)pE(z0|x; θ))

= EpD(z0)pD(x|z0;ϕ)

[
log pD(z0)pD(x|z0; ϕ)

pE(z0|x; θ) + U(x)
]

+ log Z. (1)

Here, the parametric distribution pE(z0|x; θ) defines an encoder that maps
from x to the latent variable z0, and the equality is achieved if pE(z0|x; θ)

5

matches the conditional distribution of z for a given x, deduced from the
decoder. The detailed proof is provided in Appendix A.

It seems that we have only increased the complexity of the problem, as we
are still required to approximate a conditional distribution. However, in the
upcoming section, we demonstrate that we can effectively construct the en-
coder using the diffusion model [34, 40] and optimize all parameters without
the need to numerically solve ordinary or stochastic differential equations.

3. Energy-based diffusion generator

The diffusion model [34, 35] has emerged in recent years as a highly effec-
tive approach for estimating data distributions. Its core idea is to construct a
diffusion process that progressively transforms data into simple white noise,
and learn the reverse process to recover the data distribution from noise. In
this work, we apply the principles of the diffusion model by incorporating a
diffusion process into the latent space, enabling us to efficiently overcome the
challenges arising from the variational framework for the sampling problem
defined by Eq. (1). We refer to the model produced by this method as the
energy-based diffusion generator (EDG).

3.1. Model architecture
In the EDG framework, we initiate a diffusion process from the latent

variable z0 and combine it with the decoder, resulting in what we term the
“decoding process” pD

z0 ∈ Rd ∼ pD(z0) ≜ N (x|0, I), x|z0 ∼ pD(x|z0; ϕ)
dzt = f(zt, t)dt + g(t)dWt, t ∈ [0, T] (2)

where Wt is the standard Wiener process, f(·, t) : Rd → Rd acts as the drift
coefficient, and g(·) : R→ R serves as the diffusion coefficient. To streamline
notation, we denote the probability distribution defined by the decoding pro-
cess as pD, and represent the variables defined by the SDE as z[·] = {zt}t∈[0,T].
In typical SDEs applied in diffusion models, two critical conditions hold: (a)
the transition density pD(zt|z0) can be analytically computed without nu-
merically solving the Fokker-Planck equation, and (b) zT is approximately
uninformative with pD(zT) ≈ pD(zT |z0).

6

If we only consider the statistical properties of the latent diffusion process,
it is uninformative and only describes a transition from one simple noise to
another. However, when we account for the conditional distribution of zt

given a sample x, the process z[·] represents the gradual transformation of
the complex conditional distribution pD(z0|x) ∝ pD(z0) · pD(x|z0) into the
tractable distribution pD(zT |x) = pD(zT), where the independence between
zT and x results from the independence between z0 and zT (see Appendix B).
This implies that, starting from zT ∼ pD(zT), we can obtain samples from
pD(z0|x) by simulating the following reverse-time diffusion equation [60]:

dzt̃ = −
(
f(zt̃, t̃)− g(t̃)2∇zt̃

log pD(zt̃|x)
)

dt̃ + g(t̃)dW̃t̃, (3)

where t̃ = T−t denotes the reverse time. The process W̃ is a distinct standard
Wiener process, whose non-trivial relationship with W is formally discussed
in [60]. As in conventional diffusion models, practical implementation of
this simulation is challenging due to the intractability of the score function
∇zt̃

log pD(zt̃|x), and we therefore also use a neural network to approximate
the score function, denoted as s(zt̃, x, t̃; θ). This approximation leads to what
we refer to as the “encoding process”, achieved by integrating the parametric
reverse-time diffusion process and the target distribution of x:

x ∼ π(x), zT ∼ pE(zT) ≜ pD(zT)
dzt̃ = −

(
f(zt̃, t̃)− g(t̃)2s(zt̃, x, t̃; θ)

)
dt̃ + g(t̃)dW̃t̃, t̃ = T − t. (4)

For simplicity of notation, we refer to the distribution defined by the encoding
process as pE in this paper.

Fig. 1 provides a schematic overview of the decoding and encoding pro-
cesses in EDG. The decoding process formulated in Eq. (2) can be readily
simulated. In contrast, the encoding process defined by Eq. (4) is not di-
rectly simulatable, as no samples from the target distribution are available
prior to training. However, as will be discussed in Sec. 3.2, by optimizing the
parameters of the encoding process, we can leverage samples from the de-
coding process and the probabilistic model induced by the encoding process
to obtain an accurate variational estimate of the KL divergence between the
marginal distribution of x produced by the decoder and the target distribu-
tion π(x). Based on this estimate, we can jointly train both the decoder and
the conditional score network in the encoding process, thereby enabling the
generation of high-quality samples that closely match the target distribution.

7

Prior: 𝑝𝐷(𝑧0)

Target: 𝜋(𝑥)

Decoding process

Encoding process

𝑧0
𝑥

𝑧𝑇

𝑥

Marginal: 𝑝𝐷(𝑥)

𝑧0 𝑧𝑇

. . .
𝑧𝑡

. . .

𝑧 ሚ𝑡

Forward SDE
d𝑧𝑡 = 𝑓 𝑧𝑡, 𝑡 d𝑡 + 𝑔 𝑡 d𝑊𝑡

Reverse SDE

d𝑧 ሚ𝑡 = − 𝑓 𝑧 ሚ𝑡, ǁ𝑡 − 𝑔 ǁ𝑡 2𝑠 𝑧 ሚ𝑡, 𝑥, ǁ𝑡; 𝜽 d ǁ𝑡 + 𝑔 ǁ𝑡 d ෩𝑊 ሚ𝑡
Prior: 𝑝𝐸(𝑧𝑇)

Decoder
𝑝𝐷(𝑥|𝑧0; 𝝓)

Decoding distributions: 𝑧0 ∼ 𝑝𝐷 𝑧0 , 𝑥|𝑧0 ∼ 𝑝𝐷 𝑥|𝑧0, 𝜙 , 𝑧[·]|𝑥, 𝑧0 ∼ Forward SDE (Eq. (2))

Encoding distributions: 𝑥 ∼ 𝜋 𝑥 , 𝑧𝑇 ∼ 𝑝𝐸 𝑧𝑇 , 𝑧[·]|𝑥, 𝑧𝑇 ∼ Reverse SDE (Eq. (4))

Training loss: 𝐷𝐾𝐿(𝑝𝐷(𝑥, 𝑧[·]) || 𝑝𝐸(𝑥, 𝑧 ·)) = ℒ(𝜃, 𝜙) + const. (Theorem 1)

Trainable parameters: 𝜽, 𝝓

probabilistic dependency for sampling

probabilistic dependency only for loss computation

Figure 1: Illustration of the decoding and encoding processes in EDG. In
the decoding process, the latent variable z0 is drawn from a tractable
prior pD(z0), and a sample x is generated via the decoder distribution
pD(x|z0) (modeled as Gaussian in this work). Simultaneously, a latent path
z[·] = {zt}t∈[0,T] is generated by a forward SDE. In the encoding process,
x ∼ π(x) and zT ∼ pE(zT) are assumed to be independently distributed,
and a reverse-time SDE models the conditional distribution of the latent
path given x and zT , where s(zt̃, x, t̃; θ) approximates the score function
∇zt̃

log pD(zt̃|x; ϕ). Given that training samples of x and zt are generated
exclusively by the decoding process, while the encoding process is used solely
for loss computation (not for actual sampling), we use solid arrows to indi-
cate probabilistic dependencies in the decoding process and dashed arrows
for those in the encoding process. Both the decoder parameters (mean and
covariance) and the score model are parameterized by neural networks and
jointly optimized via the loss function L(θ, ϕ).

8

Accordingly, the encoding process in EDG functions as a powerful encoder,
replacing the conventional parametric encoder typically used in variational
methods (see pE(z0 | x; θ) in Eq. (1)).

3.2. Loss function
Based on the architecture of the EDG, we establish the following theorem

that provides a theoretical foundation for model training. It shows that the
KL divergence between the joint distributions of (x, z[·]) induced by the two
processes provides an upper bound for DKL(pD(x)||π(x)). For a fixed decoder
pD(x|z0; ϕ), minimizing the joint divergence with respect to the score model
parameters θ tightens this upper bound. Moreover, jointly optimizing both
ϕ and θ based on the joint divergence can effectively reduce the gap between
the generated and target distributions of x.
Theorem 1. For the decoding and encoding processes defined by Eq. (2) and
Eq. (4), we have

DKL (pD(x) ∥ π(x)) ≤ DKL
(
pD(x, z[·]) ∥ pE(x, z[·])

)
(5)

= L(θ, ϕ) +
∫ T

0

g(t)2

2 EpD

[
∥∇zt log pD(zt)∥2

]
dt

+ log Z, (6)

where L(θ, ϕ) is given by

L(θ, ϕ) = EpD
[log pD(x|z0; ϕ) + U(x)]

+
∫ T

0

g(t)2

2 EpD


 ∥s (zt, x, t; θ)∥2 + 2∇zt · s (zt, x, t; θ)


dt. (7)

Moreover, the equality in Eq. (5) holds if z0 is independent of zT in the
decoding process, and s(z, x, t; θ) ≡ ∇zt log pD(zt|x; ϕ).

Proof. See Appendix C. □

Since the last two terms in Eq. (6) are independent of the model parame-
ters θ and ϕ, we can adopt L(θ, ϕ) in Eq. (7) as the training loss. To improve
computational efficiency, we estimate the divergence term using the Hutchin-
son estimator and evaluate the time integral via Monte Carlo sampling. This

9

leads to an equivalent expression of L(θ, ϕ) that allows efficient and unbiased
estimation:

L(θ, ϕ) = EpD
[log pD(x|z0; ϕ) + U(x)]

+Et∼U [0,T],ϵ∼p(ϵ),(x,zt)∼pD(x,zt) [Lt(x, zt, ϵ; θ)] , (8)

where

Lt(x, zt, ϵ; θ) = Tg(t)2

2


∥s (zt, x, t; θ)∥2 + 2

∂
[
ϵ⊤s (zt, x, t; θ)

]

∂zt

ϵ


 , (9)

U [0, T] denotes a uniform distribution over [0, T], and p(ϵ) ∼ Rademacherd

denotes a random vector in Rd with i.i.d. Rademacher entries, satisfying
E[ϵ] = 0 and Cov(ϵ) = I. This expression enables the use of stochastic gra-
dient descent for parameter optimization. (See Appendix D for the proof of
equivalence between Eq. (8) and Eq. (7).) The training procedure is outlined
in Algorithm 1. It is worth noting that when the SDE in the decoding pro-
cess follows a standard formulation used in diffusion models (see Eq. (2)),
the conditional distribution pD(zt|z0) can be sampled exactly, and numerical
integration of SDEs is not required during training.

Algorithm 1 Training procedure
for each minibatch do

for i = 1, . . . , batch size do
Sample zi

0 ∼ pD(zi
0) and xi ∼ pD(xi|zi

0; ϕ);
Sample t ∼ U [0, T], ϵi ∼ Rademacherd and zi

t ∼ pD(zi
t|zi

0);
Evaluate Lt(xi, zi

t, ϵi; θ) using Eq. (9);
Compute Li = log pD(xi|zi

0; ϕ) + U(xi) + Lt(xi, zi
t, ϵi; θ);

end for
Compute minibatch loss: L̂(θ, ϕ) = average of {L1, L2, . . .};
Update parameters: ϕ, θ ← Update(∇ϕ,θL̂(θ, ϕ));

end for

3.3. Sample reweighting
After training, we can use the decoder pD(x|z0) to generate samples and

compute various statistics of the target distribution π(x). For example, for
a quantity of interest O : Rd → R, we can draw N augmented samples

10

{(xn, zn
0)}N

n=1 from pD(z0)pD(x|z0) and estimate the expectation Eπ(x)[O(x)]
as follows:

Eπ(x)[O(x)] ≈ 1
N

∑

n

O(xn).

However, due to model errors, this estimation can be systematically bi-
ased. To address this, we can apply importance sampling, using pD(x, z0) =
pD(z0)pD(x|z0) as the proposal distribution and pE(x, z0) = π(x)pE(z0|x) as
the augmented target distribution. We can then assign each sample (x, z0)
generated by the decoder an unnormalized weight:

w(x, z0) = exp(−U(x))pE(z0|x)
pD(z0)pD(x|z0)

∝ π(x)pE(z0|x)
pD(z0)pD(x|z0)

(10)

and obtain a consistent estimate of Eπ(x)[O(x)] as:

Eπ(x)[O(x)] ≈
∑

n w(xn, zn
0)O(xn)

∑
n w(xn, zn

0) , (11)

where the estimation error approaches zero as N →∞ [61].
The main difficulty in above computations lies in the intractability of the

marginal encoder density pE(z0|x) when calculating the weight function. To
overcome this, following the conclusion from Sec. 4.3 in [34], we construct
the following probability flow ODE:

dzt =
(

f(zt, t)− 1
2g(t)2s(zt, x, t; θ)

)
dt, (12)

with the boundary condition zT ∼ pE(zT). If s(zt, x, t; θ) accurately ap-
proximates the score function ∇zt log pD(zt|x) after training, the conditional
distribution of zt|x given by the ODE will match that of the encoding process
for each t ∈ [0, T]. Consequently, we can employ the neural ODE method
[62] to efficiently compute pE(z0|x) as

log pE(z0|x) = log pE(zT) +
∫ T

0
∇ ·

(
f(zt, t)− 1

2g(t)2s(zt, x, t; θ)
)

dt. (13)

See Appendix E for details of the probability flow ODE calculation, and the
reweighting algorithm is summarized in Algorithm 2.

In addition, the weight function w can also be used to estimate the nor-
malizing constant Z, which is a crucial task in many applications, such as

11

Bayesian model selection in statistics and free energy estimation in statistical
physics. Based on Eq. (1), we have:

log Z ≥ EpD(x,z0) [log w(x, z0)] . (14)

Here, the lower bound can also be estimated using samples from the decoder,
and the tightness of this bound is achieved when pD(x, z0) = pE(x, z0). In
practice, the estimate of log Z given by the above inequality can serve as
an indicator of training quality. A larger value suggests a more accurate
approximation and, consequently, better model performance. More detailed
analysis is provided in Appendix F.

3.4. Network design
Below, we present the construction details of modules in EDG used in

our experiments. In practical applications, more effective neural networks
can be designed as needed.

3.4.1. Boundary condition-guided score function model
Considering that the true score function satisfies the following boundary

conditions for t = 0 and T :

∇z0 log pD(z0|x) = ∇z0 [log pD(z0|x) + log pD(x)]
= ∇z0 log pD(x, z0)
= ∇z0 [log pD(x|z0) + log pD(z0)]

Algorithm 2 Sampling and reweighting procedure
Input: Initial density: pD(z0); Decoder: pD(·|z0; ϕ∗); Score: s (·; θ∗); Ob-
servation: O(·).
for i = 1, ..., sample size do

Sample zi
0 ∼ pD(zi

0) and xi ∼ pD(xi|zi
0; ϕ∗);

Compute Oi = O(xi);
Compute pE(zi

0|xi; θ∗) by Eqs. (12, 13);
Compute wi = exp(−U(xi))pE(zi

0|xi;θ∗)
pD(zi

0)pD(xi|zi
0;ϕ∗) ;

end for
Estimate Eπ[Ô(x)] =

∑
i

wiOi∑
i

wi
;

Output: {xi}, Eπ[Ô(x)]

12

and
∇zT

log pD(zT |x) = ∇zT
log pD(zT),

we propose to express s(z, x, t; θ) as

s(z, x, t; θ) =
(

1− t

T

)
· ∇z0 [log pD(x|z0 = z) + log pD(z0 = z)]

+ t

T
· ∇zT

log pD(zT = z) + t

T

(
1− t

T

)
s′(z, x, t; θ),

where s′(z, x, t; θ) is the neural network to be trained. This formulation
ensures that the error of s is zero for both t = 0 and t = T .

3.4.2. Generalized Hamiltonian dynamics-based decoder
Inspired by generalized Hamiltonian dynamics (GHD) [13, 14], the de-

coder generates the output x using the following process. First, an initial
sample and velocity (y, v) are generated according to the latent variable z0.
Then, (y, v) is iteratively updated as follows:

v := v − ϵ0e
ϵ0ϵ(l;ϕ)

2
(
∇U(y)⊙ e

ϵ0
2 Qv(y,∇U(y),l;ϕ) + Tv(y,∇U(y), l; ϕ)

)
,

y := y + ϵ0e
ϵ0ϵ(l;ϕ)

(
vk ⊙ eϵ0Qy(vk,l;ϕ) + Ty(vk, l; ϕ)

)
,

v := v − ϵ0e
ϵ0ϵ(l;ϕ)

2
(
∇U(y)⊙ e

ϵ0
2 Qv(y,∇U(y),l;ϕ) + Tv(y,∇U(y), l; ϕ)

)
.

Finally, the decoder output x is given by:

x = y − ϵ0e
ϵ0η(y;ϕ)∇U(y) +

√
2ϵ0eϵ0η(y;ϕ)ξ,

where ξ is distributed according to the standard Gaussian distribution. The
equation can be interpreted as a finite-step approximation of Brownian dy-
namics dy = −∇U(y) dt + dWt. The decoder density is then defined as

pD(x|z0; ϕ) = N
(
x | y − ϵ0e

ϵ0η(y;ϕ)∇U(y), 2ϵ0e
ϵ0η(y;ϕ)I

)
,

where I denotes the identity matrix. Since this density can be tractably
evaluated given x, z0, and ϕ, all decoder parameters ϕ involved in the GHD
module can be jointly optimized with the encoder parameters θ by minimiz-
ing the loss function L(θ, ϕ). In the above procedure, Qv, Tv, Qy, Ty are all

13

trainable neural networks. To mitigate the impact of step sizes on model per-
formance, we parameterize them as trainable positive functions of the form
ϵ0 exp(ϵ0ϵ(l; ϕ)) and ϵ0 exp(ϵ0η(y; ϕ)), where ϵ0 is a small positive constant
that controls the initial scale and prevents instability during training caused
by large step sizes. The choice of ϵ0 in practice is discussed in Appendix J.

The key advantages of the GHD-based decoder are twofold. First, it
effectively leverages the gradient information of the energy function, and our
experiments show that it can enhance the sampling performance for multi-
modal distributions. Second, by incorporating trainable correction terms
and steps into the classical Hamiltonian dynamics, it achieves a good decoder
density with only a few iterations. The complete configurations can be found
in Appendix G.

4. Experiments

We conduct an empirical evaluation of EDG across a diverse range of
energy functions. We begin with experiments on a set of two-dimensional
distributions, followed by results on Bayesian logistic regression. We then
assess EDG’s performance on two Lennard-Jones tasks, and finally apply it
to the Ising model. All the experimental details are provided in Appendix H.
Additionally, we perform an ablation study to verify the effectiveness of each
module in EDG. Please refer to Appendix J for more information.

In order to demonstrate the superiority of our model, we compare EDG
with the following sampling methods:

• Vanilla Hamiltonian Monte Carlo method [7], denoted as V-HMC.

• L2HMC [14], a GHD-based MCMC method with a trainable proposal
distribution model.

• Boltzmann Generator (BG) [21], a VI method that generates samples
solely based on a prescribed energy function, without relying on any
real data. The surrogate distribution is modeled using RealNVP [63].

• Neural Renormalization Group (NeuralRG) [25], a method similar to
BG and designed specifically for the Ising model. In this section, Neu-
ralRG is only used for experiments of the Ising model.

• Path Integral Sampler (PIS) [37], a diffusion-based sampling model via
numerical simulation of an SDE.

14

We now present the experimental results for each sampling task in detail.
An analysis of the computational cost is provided in Appendix I.

2D energy function Firstly, we compare our model with the other mod-
els on several synthetic 2D energy functions: MoG2 (Mixture of two isotropic
Gaussians with equal variance σ2 = 0.5, centers 10 apart), MoG2(i) (Mixture
of two isotropic Gaussians with unequal variance σ2

1 = 1.5, σ2
2 = 0.3, centers

10 apart), MoG6 (Mixture of six isotropic Gaussians with variance σ2 = 0.1),
MoG9 (Mixture of nine isotropic Gaussians with variance σ2 = 0.3), Ring,
Ring5 (energy functions can be seen in [13]). We present the histogram of
samples for visual inspection in Fig. 2, and Table 1 summarizes the sam-
pling errors. As shown, EDG delivers higher-quality samples compared to
the other methods. To further clarify the contribution of each component in
EDG, we compare it with a vanilla VAE in Appendix J. The effectiveness of
the reweighting scheme is also evaluated in Appendix H.

Bayesian Logistic Regression In the subsequent experiments, we
highlight the efficacy of EDG in the context of Bayesian logistic regression,
particularly when dealing with a posterior distribution residing in a higher-
dimensional space. In this scenario, we tackle a binary classification problem
with labels L = {0, 1} and high-dimensional features D. The classifier’s
output is defined as

p(L = 1|D, x) = softmax(w⊤D + b),

where x = (w, b). We aim to draw samples x1, . . . , xN from the posterior
distribution

π(x) ∝ p(x)
∏

(L,D)∈Dtrain

p(L|D, x)

Table 1: The Maximum Mean Discrepancy (MMD) between the samples
generated by each generator and the reference samples. Details on the cal-
culation of discrepancy can be found in Appendix H.

Mog2 Mog2(i) Mog6 Mog9 Ring Ring5

V-HMC 0.01 1.56 0.02 0.04 0.01 0.01
L2HMC 0.04 0.94 0.01 0.03 0.02 0.01

BG 1.90 1.63 2.64 0.07 0.05 0.18
PIS 0.01 1.66 0.01 0.42 0.01 0.78

EDG 0.01 0.50 0.01 0.02 0.01 0.02

15

MoG2 MoG2(i) MoG6 MoG9 Ring Ring5

R
ef

V
-H

M
C

L
2H

M
C

B
G

P
IS

E
D

G

Figure 2: Density plots for 2D energy function. For the generation of refer-
ence samples, please refer to Appendix H. We generate 500, 000 samples for
each method and plot the histogram.

based on the training set Dtrain, where the prior distribution p(x) is a stan-
dard Gaussian distribution. Then, for a given D, the conditional distribution
p(L|D,Dtrain) can be approximated as 1

N

∑
n p(L|D, xn). We conduct exper-

iments on three datasets: Australian (AU, 15 covariates), German (GE, 25
covariates), and Heart (HE, 14 covariates) [64], evaluating accuracy rate
(ACC) and Area Under the Curve (AUC) on the test subset. Remarkably,
as illustrated in Table 2, EDG consistently achieves the highest accuracy and
AUC performance.

We extend our analysis to the binary Covertype dataset comprising 581,012
data points and 54 features. The posterior of the classifier parameters fol-
lows a hierarchical Bayesian model (see Sec. 5 of [52]), with x denoting the
combination of classifier parameters and the hyperparameter in the hierarchi-
cal Bayesian model. To enhance computational efficiency, in BG and EDG,

16

Table 2: Classification accuracy and AUC results for Bayesian logistic re-
gression tasks. The experiments utilize consistent training and test data
partitions, where the HMC step size is set to 0.01. Average accuracy and
AUC values, accompanied by their respective standard deviations, are com-
puted across 32 independent experiments for all datasets.

AU GE HE

Acc Auc Acc Auc Acc Auc

V-HMC 82.97 ± 1.94 90.88 ± 0.83 78.52 ± 0.48 77.67 ± 0.28 86.75 ± 1.63 93.35 ± 0.76

L2HMC 73.26 ± 1.56 79.69 ± 3.65 62.02 ± 4.19 60.23 ± 5.10 82.23 ± 2.81 90.48 ± 0.51

BG 82.99 ± 1.18 91.23 ± 0.67 78.14 ± 1.44 77.59 ± 0.73 86.75 ± 1.99 93.44 ± 0.39

PIS 81.64 ± 2.63 91.23 ± 0.67 71.90 ± 3.17 71.67 ± 4.52 83.24 ± 3.95 91.68 ± 2.78

EDG 84.96 ± 1.67 92.82 ± 0.69 79.40 ± 1.74 82.79 ± 1.46 88.02 ± 3.90 95.10 ± 1.23

Table 3: Classification accuracy on the test dataset of Covertype. The re-
ported values represent averages and standard deviations of accuracy over 32
independent experiments.

V-HMC L2HMC BG PIS EDG

Acc 49.88 ± 3.32 51.51 ± 3.46 50.75 ± 3.78 50.59 ± 2.94 70.13 ± 2.13

log π(x) is unbiasedly approximated during training as

log π(x) ≈ log p(x) + |Dtrain|
|B|

∑

(L,D)∈B
log p(L|D, x),

where B is a random mini-batch. For V-HMC and L2HMC, the exact pos-
terior density is calculated. As indicated by the results in Table 3, EDG
consistently outperforms alternative methods.

Lennard-Jones We further evaluate the performance of EDG on two
Lennard–Jones (LJ) systems with non-periodic boundary conditions, con-
sisting of 13 and 55 particles (LJ13 and LJ55), as described in [65]. The LJ
potential is a commonly used interaction model that captures both repulsive
and attractive forces between non-bonded particles. The potential energy
depends on the pairwise distances between particles, and its explicit form is
provided in Appendix H. In this task, we temporarily disregard the issue of
model equivariance, which we leave for future investigation.

LJ13 refers to the system of 13 particles, x = {x1, ..., x13} with 3 dimen-
sions each, resulting in a task with dimensionality d = 39. LJ55 meanwhile

17

refers to a system of 55 particles, x = {x1, ..., x55} with 3 dimensions each,
resulting in a high dimensional task with dimensionality d = 165. For the
experimental results, we evaluate the generated sample with the test data
from [65] obtained by MCMC. A visualization of the interatomic distances
is presented in Fig. 3. In Appendix H, we test the effectiveness of sample
reweighting introduced in Sec. 3.3, by using the relative Effective Sample
Size (see Eq. (H.1) and Table H.6).

Figure 3: Comparison of the test data interatomic distance of LJ13 (left),
LJ55 (right) with samples generated from BG and EDG. The results for
L2HMC and PIS are provided separately in Appendix H due to significant
deviations from the test data.

Ising model Finally, we verify the performance of EDG on the 2-
dimensional Ising model [25], a mathematical model of ferromagnetism in
statistical mechanics. To ensure the continuity of physical variables, we em-
ploy a continuous relaxations trick [66] to transform discrete variables into
continuous auxiliary variables with the target distribution:

π(x) = exp
(
−1

2xT (K(T) + αI)−1 x
)
×

N∏

i=1
cosh (xi) ,

T=. T=. T=. T=. T=. T=. T=. T=.

Figure 4: The generated states at different temperatures from T = 2.0 to
T = 2.7 by EDG with a dimensionality of 256 (16 × 16), where the latent
variable z0 remains fixed. As the temperature rises, the model’s state tends
progressively toward disorder.

18

Table 4: The estimation of log ZIsing in 2D ising model with a dimension of
256 (16 × 16) is obtained by the method described in Sec. 3.3. We utilize
a batch size of n = 256 to estimate the mean and applies the central limit
theorem to calculate the standard deviation of the mean of the statistic as
std/
√

n.

log ZIsing NeuralRG PIS EDG

T = 2.0 260.24± 0.13 210.17± 0.43 270.32± 0.18
T = 2.1 250.57± 0.14 208.48± 0.41 260.34± 0.19
T = 2.2 239.43± 0.16 210.57± 0.39 252.11± 0.17
T = 2.3 231.25± 0.15 214.64± 0.37 233.46± 0.17
T = 2.4 225.69± 0.17 212.43± 0.37 225.02± 0.15
T = 2.5 219.26± 0.17 202.92± 0.37 220.03± 0.14
T = 2.6 216.69± 0.18 181.83± 0.40 214.78± 0.14
T = 2.7 212.42± 0.18 189.16± 0.36 212.57± 0.14

where K is an N × N symmetric matrix depending on the temperature T ,
α is a constant guaranteeing K + αI to be positive. For the correspond-
ing discrete Ising variables s = {1,−1}⊗N , one can directly obtain discrete
samples according to π(s|x) = ∏

i (1 + e−2sixi)−1. When there is no external
magnetic field and each spin can only interact with its neighboring spins, K
is defined as ∑<ij> sisj/T , with the nears neighboring sum < ij >. Con-
sequently, the normalizing constant of the continuous relaxations system is
given by log Z = log ZIsing + 1

2 ln det(K + αI) − N
2 [ln(2/π) − α] [25]. Ad-

ditionally, using the method described in Sec. 3.3, we provide the estimates
of log ZIsing at different temperatures for samples generated by NeuralRG,
PIS and EDG. Since these are lower bound estimates, larger values indicate
more accurate results. As seen in Table 4, EDG provides the most accurate
estimates of log Z across most temperature ranges. The generated states at
different temperatures are displayed in Fig. 4.

5. Conclusion
Our work introduces the EDG as an innovative and effective sampling ap-

proach by combining principles from VI and diffusion based methods. Draw-
ing inspiration from VAEs, EDG excels in efficiently generating samples from
intricate Boltzmann distributions. Leveraging the expressive power of the dif-
fusion model, our method accurately estimates the KL divergence without

19

the need for numerical solutions to ordinary or stochastic differential equa-
tions. Empirical experiments validate the superior sampling performance of
EDG.

In consideration of its powerful generation ability and unrestrained net-
work design theoretically, there is still room for further exploration. We can
design specific network architectures for different tasks. Regarding many-
body particle systems, we plan to leverage equivariant graph neural net-
works (EGNN) [30, 65] to design all trainable components within the GHD
module of the decoder to ensure the invariance. Moreover, we aim to con-
struct equivariant score function models within the encoding process with
respect to both x and zt, which is expected to guarantee the invariance of
the weight function. Furthermore, theoretical convergence guarantees can
be strengthened by investigating error bounds and convergence rates under
finite training time and limited model capacity.

In summary, our future work will extend the application of EDG to con-
struct generative models for large-scale physical and chemical systems, such
as proteins [67, 68], while simultaneously refining the theoretical foundations
of our model.

20

Acknowledgements

The first and third authors are supported by the NSF of China (under
grant number 12171367). The second author is supported by the NSF of
China (under grant numbers 92270115, 12071301) and the Shanghai Munic-
ipal Science and Technology Commission (No. 20JC1412500), and Henan
Academy of Sciences. The last author was supported by the NSF of China
(No. 12288201), the Strategic Priority Research Program of Chinese Academy
of Sciences (Grant No. XDA25010404), the National Key R&D Program
of China (2020YFA0712000), the Youth Innovation Promotion Association,
CAS, and Henan Academy of Sciences.

Declaration of interests

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

References

[1] D. C. Rapaport, The art of molecular dynamics simulation, Cambridge
university press, 2004.

[2] L. Martino, J. Read, On the flexibility of the design of multiple try
metropolis schemes, Computational Statistics 28 (2013) 2797–2823.

[3] R. Y. Rubinstein, D. P. Kroese, Simulation and the Monte Carlo
method, John Wiley & Sons, 2016.

[4] K. Binder, E. Luijten, Monte carlo tests of renormalization-group pre-
dictions for critical phenomena in ising models, Physics Reports 344
(2001) 179–253.

[5] N. Walker, K.-M. Tam, M. Jarrell, Deep learning on the 2-dimensional
ising model to extract the crossover region with a variational autoen-
coder, Scientific reports 10 (2020) 13047.

[6] W. K. Hastings, Monte carlo sampling methods using markov chains
and their applications, Biometrika (1970).

21

[7] R. M. Neal, et al., Mcmc using hamiltonian dynamics, Handbook of
markov chain monte carlo 2 (2011) 2.

[8] T. Araki, K. Ikeda, Adaptive markov chain monte carlo for auxiliary
variable method and its application to parallel tempering, Neural Net-
works 43 (2013) 33–40.

[9] T. Araki, K. Ikeda, S. Akaho, An efficient sampling algorithm with
adaptations for bayesian variable selection, Neural Networks 61 (2015)
22–31.

[10] X. Cheng, N. S. Chatterji, P. L. Bartlett, M. I. Jordan, Underdamped
langevin mcmc: A non-asymptotic analysis, in: Conference on learning
theory, PMLR, 2018, pp. 300–323.

[11] E. Vanden-Eijnden, J. Weare, Rare event simulation of small noise
diffusions, Communications on Pure and Applied Mathematics 65 (2012)
1770–1803.

[12] A. Martinsson, J. Lu, B. Leimkuhler, E. Vanden-Eijnden, The simu-
lated tempering method in the infinite switch limit with adaptive weight
learning, Journal of Statistical Mechanics: Theory and Experiment 2019
(2019) 013207.

[13] J. Song, S. Zhao, S. Ermon, A-nice-mc: Adversarial training for mcmc,
Advances in Neural Information Processing Systems 30 (2017).

[14] D. Levy, M. D. Hoffman, J. Sohl-Dickstein, Generalizing hamiltonian
monte carlo with neural networks, arXiv preprint arXiv:1711.09268
(2017).

[15] L. Galliano, R. Rende, D. Coslovich, Policy-guided monte carlo on
general state spaces: Application to glass-forming mixtures, The Journal
of Chemical Physics 161 (2024).

[16] Q. Liu, J. Lee, M. Jordan, A kernelized stein discrepancy for goodness-
of-fit tests, in: International conference on machine learning, PMLR,
2016, pp. 276–284.

[17] L. Dinh, D. Krueger, Y. Bengio, Nice: Non-linear independent compo-
nents estimation, arXiv preprint arXiv:1410.8516 (2014).

22

[18] L. Dinh, J. Sohl-Dickstein, S. Bengio, Density estimation using real nvp,
arXiv preprint arXiv:1605.08803 (2016).

[19] C.-H. Chao, W.-F. Sun, Y.-C. Hsu, Z. Kira, C.-Y. Lee, Training energy-
based normalizing flow with score-matching objectives, Advances in
Neural Information Processing Systems 36 (2023) 43826–43851.

[20] E. Nijkamp, R. Gao, P. Sountsov, S. Vasudevan, B. Pang, S.-C. Zhu,
Y. N. Wu, Mcmc should mix: Learning energy-based model with neural
transport latent space mcmc, arXiv preprint arXiv:2006.06897 (2020).

[21] F. Noé, S. Olsson, J. Köhler, H. Wu, Boltzmann generators: Sampling
equilibrium states of many-body systems with deep learning, Science
365 (2019) eaaw1147.

[22] H. Wu, J. Köhler, F. Noé, Stochastic normalizing flows, Advances in
Neural Information Processing Systems 33 (2020) 5933–5944.

[23] M. Dibak, L. Klein, A. Krämer, F. Noé, Temperature steerable flows
and boltzmann generators, Physical Review Research 4 (2022) L042005.

[24] J. Köhler, A. Krämer, F. Noé, Smooth normalizing flows, Advances in
Neural Information Processing Systems 34 (2021) 2796–2809.

[25] S.-H. Li, L. Wang, Neural network renormalization group, Physical
review letters 121 (2018) 260601.

[26] P. Wirnsberger, B. Ibarz, G. Papamakarios, Estimating gibbs free en-
ergies via isobaric-isothermal flows, Machine Learning: Science and
Technology 4 (2023) 035039.

[27] M. Schebek, M. Invernizzi, F. Noé, J. Rogal, Efficient mapping of phase
diagrams with conditional boltzmann generators, Machine Learning:
Science and Technology 5 (2024) 045045.

[28] A. Coretti, S. Falkner, P. L. Geissler, C. Dellago, Learning mappings
between equilibrium states of liquid systems using normalizing flows,
The Journal of Chemical Physics 162 (2025).

[29] L. Klein, F. Noé, Transferable boltzmann generators, arXiv preprint
arXiv:2406.14426 (2024).

23

[30] J. Köhler, L. Klein, F. Noé, Equivariant flows: exact likelihood gener-
ative learning for symmetric densities, in: International conference on
machine learning, PMLR, 2020, pp. 5361–5370.

[31] M. S. Albergo, E. Vanden-Eijnden, Building normalizing flows with
stochastic interpolants, arXiv preprint arXiv:2209.15571 (2022).

[32] G. Jung, G. Biroli, L. Berthier, Normalizing flows as an enhanced sam-
pling method for atomistic supercooled liquids, Machine Learning: Sci-
ence and Technology 5 (2024) 035053.

[33] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models,
Advances in neural information processing systems 33 (2020) 6840–6851.

[34] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon,
B. Poole, Score-based generative modeling through stochastic differ-
ential equations, arXiv preprint arXiv:2011.13456 (2020).

[35] Y. Song, C. Durkan, I. Murray, S. Ermon, Maximum likelihood train-
ing of score-based diffusion models, Advances in Neural Information
Processing Systems 34 (2021) 1415–1428.

[36] N. Bou-Rabee, A. Donev, E. Vanden-Eijnden, Metropolis integration
schemes for self-adjoint diffusions, Multiscale modeling & simulation 12
(2014) 781–831.

[37] Q. Zhang, Y. Chen, Path integral sampler: a stochastic control approach
for sampling, arXiv preprint arXiv:2111.15141 (2021).

[38] J. Berner, L. Richter, K. Ullrich, An optimal control perspective on
diffusion-based generative modeling, arXiv preprint arXiv:2211.01364
(2022).

[39] F. Vargas, W. Grathwohl, A. Doucet, Denoising diffusion samplers,
arXiv preprint arXiv:2302.13834 (2023).

[40] M. S. Albergo, N. M. Boffi, E. Vanden-Eijnden, Stochastic inter-
polants: A unifying framework for flows and diffusions, arXiv preprint
arXiv:2303.08797 (2023).

[41] L. Richter, J. Berner, G.-H. Liu, Improved sampling via learned diffu-
sions, arXiv preprint arXiv:2307.01198 (2023).

24

[42] B. Máté, F. Fleuret, Learning interpolations between boltzmann densi-
ties, Transactions on Machine Learning Research (2023).

[43] D. P. Kingma, M. Welling, et al., An introduction to variational au-
toencoders, Foundations and Trends® in Machine Learning 12 (2019)
307–392.

[44] S. van Leeuwen, A. P. d. A. Ortíz, M. Dijkstra, A boltzmann generator
for the isobaric-isothermal ensemble, arXiv preprint arXiv:2305.08483
(2023).

[45] T. Salimans, D. Kingma, M. Welling, Markov chain monte carlo and
variational inference: Bridging the gap, in: International conference on
machine learning, PMLR, 2015, pp. 1218–1226.

[46] Y. Zhang, J. M. Hernández-Lobato, Ergodic inference: Accelerate con-
vergence by optimisation, arXiv preprint arXiv:1805.10377 (2018).

[47] R. Habib, D. Barber, Auxiliary variational mcmc, in: International
Conference on Learning Representations, 2018.

[48] F. Ruiz, M. Titsias, A contrastive divergence for combining variational
inference and mcmc, in: International Conference on Machine Learning,
PMLR, 2019, pp. 5537–5545.

[49] Z. Shen, M. Heinonen, S. Kaski, De-randomizing mcmc dynamics with
the diffusion stein operator, Advances in Neural Information Processing
Systems 34 (2021) 17507–17517.

[50] M. Gabrié, G. M. Rotskoff, E. Vanden-Eijnden, Adaptive monte
carlo augmented with normalizing flows, Proceedings of the National
Academy of Sciences 119 (2022) e2109420119.

[51] T. Akhound-Sadegh, J. Rector-Brooks, A. J. Bose, S. Mittal, P. Lemos,
C.-H. Liu, M. Sendera, S. Ravanbakhsh, G. Gidel, Y. Bengio, et al., Iter-
ated denoising energy matching for sampling from boltzmann densities,
arXiv preprint arXiv:2402.06121 (2024).

[52] Q. Liu, D. Wang, Stein variational gradient descent: A general purpose
bayesian inference algorithm, Advances in neural information processing
systems 29 (2016).

25

[53] W. Grathwohl, K.-C. Wang, J.-H. Jacobsen, D. Duvenaud, R. Zemel,
Learning the stein discrepancy for training and evaluating energy-based
models without sampling, in: International Conference on Machine
Learning, PMLR, 2020, pp. 3732–3747.

[54] L. L. di Langosco, V. Fortuin, H. Strathmann, Neural variational gra-
dient descent, arXiv preprint arXiv:2107.10731 (2021).

[55] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-
resolution image synthesis with latent diffusion models, in: Proceedings
of the IEEE/CVF conference on computer vision and pattern recogni-
tion, 2022, pp. 10684–10695.

[56] C. Fu, K. Yan, L. Wang, W. Y. Au, M. C. McThrow, T. Komikado,
K. Maruhashi, K. Uchino, X. Qian, S. Ji, A latent diffusion model
for protein structure generation, in: Learning on Graphs Conference,
PMLR, 2024, pp. 29–1.

[57] B. Zheng, G. Sun, L. Dong, S. Wang, Ld-csnet: A latent diffusion-based
architecture for perceptual compressed sensing, Neural Networks (2024)
106541.

[58] L. Felardos, Data-free Generation of Molecular Configurations with Nor-
malizing Flows, Ph.D. thesis, Université Grenoble Alpes, 2022.

[59] M. Plainer, H. Stark, C. Bunne, S. Günnemann, Transition path sam-
pling with boltzmann generator-based mcmc moves, in: NeurIPS 2023
AI for Science Workshop, 2023.

[60] B. D. Anderson, Reverse-time diffusion equation models, Stochastic
Processes and their Applications 12 (1982) 313–326.

[61] R. M. Neal, Annealed importance sampling, Statistics and computing
11 (2001) 125–139.

[62] R. T. Chen, Y. Rubanova, J. Bettencourt, D. K. Duvenaud, Neural or-
dinary differential equations, Advances in neural information processing
systems 31 (2018).

[63] L. Dinh, J. Sohl-Dickstein, S. Bengio, Density estimation using real nvp,
arXiv preprint arXiv:1605.08803 (2016).

26

[64] D. Dua, C. Graff, Uci machine learning repository, https://archive.
ics.uci.edu/ml/index.php, 2017. Accessed: 2022-03-13.

[65] L. Klein, A. Krämer, F. Noé, Equivariant flow matching, Advances in
Neural Information Processing Systems 36 (2023) 59886–59910.

[66] Y. Zhang, Z. Ghahramani, A. J. Storkey, C. Sutton, Continuous relax-
ations for discrete hamiltonian monte carlo, Advances in Neural Infor-
mation Processing Systems 25 (2012).

[67] S. Zheng, J. He, C. Liu, Y. Shi, Z. Lu, W. Feng, F. Ju, J. Wang, J. Zhu,
Y. Min, et al., Towards predicting equilibrium distributions for molecu-
lar systems with deep learning, arXiv preprint arXiv:2306.05445 (2023).

[68] B. Jing, E. Erives, P. Pao-Huang, G. Corso, B. Berger, T. Jaakkola,
Eigenfold: Generative protein structure prediction with diffusion mod-
els, arXiv preprint arXiv:2304.02198 (2023).

[69] B. Oksendal, Stochastic differential equations: an introduction with ap-
plications, Springer Science & Business Media, 2013.

[70] M. F. Hutchinson, A stochastic estimator of the trace of the influence
matrix for laplacian smoothing splines, Communications in Statistics-
Simulation and Computation 18 (1989) 1059–1076.

[71] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, A. Smola, A
kernel two-sample test, The Journal of Machine Learning Research 13
(2012) 723–773.

[72] L. C. Freeman, Kish: Survey sampling (book review), Social Forces 45
(1966) 132.

Appendix A. Proof of Eq. (1)

For completeness, here we provide a proof of Eq. (1), which follows a sim-
ilar derivation as the loss function of the standard VAE [43]. For simplicity
of notation, we omit the explicit dependence on the distribution parameters
ϕ and θ.

27

The KL divergence between pD(x, z0) and pE(x, z0) can be written as

DKL (pD(x, z0)||pE(x, z0)) = EpD

[
log pD(x, z0)

pE(x, z0)

]

= EpD

[
log pD(x)

π(x)

]
+ EpD

[
log pD(z0|x)

pE(z0|x)

]

= DKL (pD(x)||π(x))
+DKL (pD(z0|x)||pE(z0|x)) ,

where
DKL (pD(z0|x) ∥ pE(z0|x)) ≜ EpD

[
log pD(z0|x)

pE(z0|x)

]

is the expected KL divergence between the conditional distributions pD(z0|x)
and pE(z0|x) under x ∼ pD(x), and is therefore non-negative.

Consequently, we obtain

DKL (pD(x) ∥ π(x)) ≤ DKL (pD(x, z0) ∥ pE(x, z0))
= DKL (pD(z0)pD(x|z0) ∥ π(x)pE(z0|x)) ,

where the inequality becomes an equality if pD(z0|x) = pE(z0|x) for all x, z0.

Appendix B. Analysis of the independence between zT and x

In the decoding process, if zT is independent of z0 with pD(zT |z0) =
pD(zT), we have

pD(x, zT) =
∫

pD(x, z0, zT)dz0

=
∫

pD(x, z0)pD(zT |z0)dz0

= pD(zT)
∫

pD(x, z0)dz0

= pD(x)pD(zT),

which implies that x is also independent of zT .

28

Appendix C. Proof of Theorem 1

Part 1. Eq. (5) can be proved in a manner similar to the proof of Eq. (1) (see
Appendix A). Thus, here we focus on proving that the equality in Eq. (5)
holds under the conditions that z0 and zT are independent, and s(z, x, t; θ) ≡
∇zt log pD(zt|x).

Under these assumptions, x is also independent of zT in the decoding
process (see Appendix B). Consequently, the conditional distribution of z[·]
given x can be described by the reverse-time process defined by Eq. (3).
Moreover, it shares the same initial distribution pD(zT |x) = pD(zT) = pE(zT)
as the reverse-time process defined by Eq. (4) in the encoding process.

Furthermore, because s(z, x, t; θ) ≡ ∇zt log pD(zt|x), the drift and diffu-
sion terms of the two reverse-time processes exactly match. Therefore, we
have pD(z[·]|x) = pE(z[·]|x), and

DKL
(
pD(z[·], x) ∥ pE(z[·], x)

)
= DKL (pD(x) ∥ π(x))

+DKL
(
pD(z[·]|x) ∥ pE(z[·]|x)

)

= DKL (pD(x) ∥ π(x)) .

Part 2. We now prove Eq. (6). In the decoding process, the distribution of
z[·] can be described by the following reverse-time process:

dzt̃ = −
(
f(zt̃, t̃)− g(t̃)2∇zt̃

log pD(zt̃)
)

dt̃ + g(t̃)dW̃t̃, zT ∼ pD(zT).

Combining this with Eq. (4) and applying Girsanov theorem [69], we obtain

EpD

[
log pD(z[·])

pE(z[·]|x)

]
= EpD

[∫ T

0
g(t) (∇zt log pD(zt)− s(zt, x, t; θ)) dW̃t

]

+1
2EpD

[∫ T

0
g(t)2 ∥∇zt log pD(zt)− s(zt, x, t; θ)∥2 dt

]
.

29

Note that the first term on the right-hand side equals zero due to the mar-
tingale property of Itô integrals. Thus, we have

DKL
(
pD(z[·], x) ∥ pE(z[·], x)

)
= EpD

[
log pD(x|z0)

π(x)

]
+ EpD

[
log

pD(z[·])
pE(z[·]|x)

]

= EpD

[
log pD(x|z0)

π(x)

]

+1
2EpD

[∫ T

0
g(t)2 ∥∇zt log pD(zt)− s(zt, x, t; θ)∥2 dt

]

= EpD

[
log pD(x|z0)

π(x)

]

+1
2EpD

[∫ T

0
g(t)2

(
∥∇zt log pD(zt)∥2 + ∥s(zt, x, t; θ)∥2

)
dt

]

+EpD

[∫ T

0
g(t)2 (s(zt, x, t; θ)⊤∇zt

log pD(zt)
)

dt

]
. (C.1)

Moreover, we consider the following integration by parts:

EpD

[
s (zt, x)⊤∇zt log pD(zt|z0)|x, z0

]
=

∫
pD(zt|z0)s (zt, x)⊤∇zt log pD(zt|z0)dzt

=
∫

s (zt, x)⊤∇zt
pD(zt|z0)dzt

=
∫

divzt (pD(zt|z0)s (zt, x)) dzt

−
∫

pD(zt|z0)tr
(

∂s(zt, x)
∂zt

)
dzt

= −EpD

[
tr
(

∂s(zt, x)
∂zt

)
|z0

]
,

which yields

EpD

[
s (zt, x)⊤∇zt

log pD(zt|z0)
]

= −EpD

[
tr
(

∂s(zt, x)
∂zt

)]
. (C.2)

By substituting Eq. (C.2) into Eq. (C.1), we finally obtain Eq. (6).
It is worth noting that we could also directly design a loss function based on Eq. (C.1).

Such a loss is theoretically equivalent to the one used in this work, but may suffer from
large variance in ∇zt log pD(zt) when t is small.

Appendix D. Proof of equivalence between Eq. (7) and Eq. (8)
First, we prove the Hutchinson estimator in Eq. (8). In Eq. (7), one frequently needs

the divergence ∇ · s(zt, x, t; θ) = tr(∂zt
s) of a vector field s : Rd → Rd. Deep learning

30

frameworks (PyTorch, TensorFlow) do not natively provide an efficient way to form an
entire d×d Jacobian for large d, while Hutchinson estimator replace tr(·) with the unbiased
Monte Carlo estimate without full Jacobians.

Considering a random variable p(ϵ) ∼ Rademacherd with E[ϵ] = 0 and Cov(ϵ) = I, we
can get a stochastic estimation of the trace according to [70]

tr(∂zt
s) = Ep(ϵ)[ϵ⊤∂zt

s ϵ].

By the rules of matrix differential calculus,

d
(
ϵ⊤s(zt, x, t; θ)

)
= ϵ⊤ ds(zt, x, t; θ) = ϵ⊤ (∂zts(zt, x, t; θ)

)
dzt.

Then, it enables the use of automatic differentiation for calculation,

ϵ⊤ (∂zts(zt, x, t; θ)
)

=
∂
[
ϵ⊤s(zt, x, t; θ)

]

∂zt
.

Therefore, we have

∇ · s(zt, x, t; θ) = Ep(ϵ)[
∂
[
ϵ⊤s(zt, x, t; θ)

]

∂zt
ϵ],

where p(ϵ) ∼ Rademacherd denotes a random vector in Rd with i.i.d. Rademacher entries,
satisfying E[ϵ] = 0 and Cov(ϵ) = I.

Then, we prove the expectation of a uniform time distribution t over [0, T] in Eq. (8).
When t ∼ U [0, T], its probability density function (PDF) is

pU [0,T](t) =
{

1
T , 0 ≤ t ≤ T

0, otherwise
.

Then we simplify the integration in Eq. (7)
∫ T

0

g(t)2

2 EpD
[·]dt =

∫ T

0

1
T

Tg(t)2

2 EpD
[·]dt

=
∫ +∞

−∞
pU [0,T](t)

Tg(t)2

2 EpD
[·]dt

= Et∼U [0,T]

[
Tg(t)2

2 EpD
[·]
]

.

Combining two parts above, we can achieve
∫ T

0

g(t)2

2 EpD

[
∥s (zt, x, t; θ)∥2 + 2∇zt

· s (zt, x, t; θ)
]

dt

= Et∼U [0,T],ϵ∼p(ϵ),(x,zt)∼pD(x,zt)

[
Tg(t)2

2

(
∥s (zt, x, t; θ)∥2 + 2

∂
[
ϵ⊤s (zt, x, t; θ)

]

∂zt
ϵ

)]
,

where U [0, T] denotes a uniform distribution over [0, T], and p(ϵ) ∼ Rademacherd denotes
a random vector in Rd with i.i.d. Rademacher entries, satisfying E[ϵ] = 0 and Cov(ϵ) = I.

31

Appendix E. Calculation of the probability flow ODE
Considering the SDE in Eq. (4), there is a corresponding deterministic ODE whose

trajectories share the same marginal probability density

dzt =
{

f(zt, t)− 1
2g(t)2sθ(zt, x, t)

}

︸ ︷︷ ︸
=:Fθ(zt,x,t)

dt.

With the change of variables formula [62], we can compute the log-likelihood of pE(z0|x)
using

log pE(z0|x) = log pE(zT) +
∫ T

0
∇ · Fθ(zt, x, t)dt.

Due to the expensive computational cost of ∇·Fθ(zt, x, t), the Hutchinson trace estimator
technique in Appendix D is used again to calculate

∇ · Fθ(zt, x, t) = Ep(ϵ)

[
∂[ϵ⊤Fθ(zt, x, t)]

∂zt
ϵ

]
,

where p(ϵ) ∼ Rademacherd.
In our experiments, we employ the RK45 ODE solver implemented in scipy.integr

ate.solve_ivp, where the parameters set identical to those in [34] with atol=1e-5 and
rtol=1e-5.

Appendix F. Analysis of Eq. (14)

Based on Eq. (1) and w(x, z0) = exp(−U(x))pE(z0|x)
pD(z0)pD(x|z0) , we have

log Z ≥ DKL(pD(x)∥π(x))− EpD(z0)pD(x|z0;ϕ)

[
log pD(z0)pD(x|z0; ϕ)

exp(−U(x))pE(z0|x; θ)

]

= DKL(pD(x)∥π(x)) + EpD(z0)pD(x|z0;ϕ) [log w(x, z0)] .

Therefore, any Monte Carlo estimator of EpD(z0)pD(x|z0;ϕ) [log w(x, z0)] yields a lower bound
on log Z.

Moreover, according to Appendix A, as the model parameters are optimized during
training, the distribution pE(z0|x; θ) is expected to approximate the true conditional dis-
tribution pD(z0|x) more closely. This improved approximation deduces

EpD(z0)pD(x|z0;ϕ) [log w(x, z0)]→ log Z −DKL(pD(x)∥π(x)).

Consequently, a larger EpD(z0)pD(x|z0;ϕ) [log w(x, z0)] suggests that the model is learning
effectively, as DKL(pD(x)∥π(x)) diminishes and the estimated log Z becomes more accu-
rate.

32

Appendix G. Implementation of decoder
The detailed implementation of the GHD based decoder is summarized in Algorithm

3. Within the algorithm, we initially stochastically generate a sample y using the random
variable ζ (refer to Line 1 of the algorithm). Subsequently, we iteratively update the
sample using random velocities v1, . . . , vK and GHD (see Line 5). Finally, we utilize
discretized Brownian dynamics with a trainable step size to design the decoder density
of x (refer to Line 9). Here, ϵ, Qv, Qy, Tv, Ty and η are all neural networks composed
of three-layer MLPs. ϵ0 serves as an initial hyperparameter of trainable step size ϵ and
η, and our numerical experiments suggest that setting ϵ0 to a small positive value can
improve the stability of the algorithm.

Appendix H. Experimental details
EDG In our experiments, we leverage the subVP SDE proposed in [34] to model the

diffusion process of zt in Eq. (2), defined as

dzt = −1
2β(t)ztdt +

√
β(t)

(
1− e

−2
∫ t

0
β(s)ds

)
dWt

Algorithm 3 GHD based decoder
Require: z0 = (ζ, v1, . . . , vK) drawn from the standard Gaussian distribu-

tion and decoder parameters ϕ
1: Let y := a(ζ; ϕ).
2: for k = 1, . . . , M do
3: for j = 1, . . . , J do
4: Let l := leap frog step of GHD.
5: Update (y, vi) by

vk := vk −
ϵ0e

ϵ0ϵ(l;ϕ)

2
(
∇U(y)⊙ e

ϵ0
2 Qv(y,∇U(y),l;ϕ) + Tv(y,∇U(y), l; ϕ)

)

y := y + ϵ0e
ϵ0ϵ(l;ϕ)

(
vk ⊙ eϵ0Qy(vk,l;ϕ) + Ty(vk, l; ϕ)

)

vk := vk −
ϵ0e

ϵ0ϵ(l;ϕ)

2
(
∇U(y)⊙ e

ϵ0
2 Qv(y,∇U(y),l;ϕ) + Tv(y,∇U(y), l; ϕ)

)

6: end for
7: Let vk := −vk

8: end for
9: Let µ = y − ϵ0e

ϵ0η(y;ϕ)∇U(y) and Σ = 2ϵ0e
ϵ0η(y;ϕ)I.

10: return x ∼ N (µ, Σ), pD(x|z0; ϕ).

33

The model architecture of 2D energy tasks
Decoding process Encoding process

Network a(ζ; ϕ): Score network:
fc 10× 32, ReLU, 2×(fc 32× 32, ReLU), fc 32× 2. fc 13× 16, ReLU,

GHD: fc 16× 16, ReLU,
Qv, Tv: fc 16× 10.

fc 5× 10, Tanh, fc 10× 10, Tanh, fc 10× 2.
Qx, Tx:

fc 3× 10, ReLU, fc 10× 10, ReLU, fc 10× 2.
Final network N (µ, Σ):

fc 2× 10, ReLU, fc 10× 10, ReLU, fc 10× 2.

with T = 1. Here, β(t) = βmin + t (βmax − βmin), and we set βmin = 0.1 and βmin = 20
for experiments. The initial state z0 follows a standard Gaussian distribution. Line 1 of
Algorithm 3 is implemented as

y := µ0(ζ0; ϕ) + Σ0(ζ0; ϕ)ζ1,

where ζ = (ζ0, ζ1), and µ0(ζ0; ϕ), Σ0(ζ0; ϕ) are modeled by MLPs. In the GHD decoder
design, we fix J = 5 while setting M = 2 for 2D energy function tasks, M = 10 for
Bayesian Logistic Regression tasks and Ising models, and M = 100 for Lennard-Jones.

Baseline For V-HMC, we facilitate the generation of samples after a warm-up phase
comprising 1,000 steps, where each step the Metropolis-Hastings acceptance probability
is computed to ensure the convergence. For L2HMC, we use a three-layer fully connected
network, setting the leapfrog step length to 10. For different tasks, we adaptively select
varying step sizes. For PIS, we use the publicly available code on our tasks directly.
Regarding BG, the RealNVP architecture consists of 3 affine blocks, where the scaling
and translation functions are modeled by a three-layer fully connected network, each with
256 units and ReLU activation functions. We would like to highlight that unlike data-
driven energy-based models [19, 20], our baseline BG generates samples solely from a
prescribed energy function without any access to real data. The loss function is the KL
divergence between the generated samples by BG and the target.

2D energy function We use the following model architectures to generate samples
for 2D energy tasks. ‘fc n’ denotes a fully connected layer with n neurons.

Reference samples for Mog2, Mog2(i), Mog6, and Mog9 in Fig. 2 are precisely drawn
from the target distributions, as these distributions are mixtures of Gaussian distribu-
tions. Reference samples for Ring and Ring5 are generated using the Metropolis-Hastings
algorithm, with a large number of iterations. Gaussian distributions with variances of 9
and 25, respectively, are used as the proposal distributions. For the V-HMC, we employ
the use of an HMC run of a total length of 2,000 steps, initiating from a standard normal
distribution. The first 1,000 steps are designated as burn-in steps followed by a subse-
quent 1,000 steps used for sample generation. This procedure is independently executed
500 times for the purpose of creating the visual representation.

34

Figure H.5: Reweighting effect in Mog2(i) task. Left: The energy histograms
of 1000 generated samples under EDG and EDG (reweighted). Right: The
mean value of the reweighted MMD with respect to the sample size. We
report the mean value ± standard deviation over 10 runs.

Given the reference samples X = {xi}m
i=1 with weights wX = {wX

i }m
i=1 = 1

m and
the generated samples Y = {yi}m

i=1 with weights wY = {wY
i }m

i=1, the Maximum Mean
Discrepancy (MMD) [71] measures the difference between the distributions of X and Y as
follows:

MMD2(X, Y) =
∑

i

∑

j

wX
i wX

j k(xi, xj)−2
∑

i

∑

j

wX
i wY

j k(xi, yj)+
∑

i

∑

j

wY
i wY

j k(yi, yj),

where k(·, ·) denotes the kernel function to compute the inner product. RBF kernel is
used in Table 1, and the bandwidth is set as the median distance between corresponding
samples. We conduct 10 independent runs to generate 5,000 samples with uniform density,
and compute the mean MMD against 5,000 reference samples. The standard deviations
are all small, hence we do not report them in the table.

To better illustrate the effectiveness of the reweighting procedure in Sec. 3.3, we use
Mog2(i)—a case with room for further improvement—as an example. Firstly, we display
the energy histograms of the generated samples under EDG and EDG (reweighted) in the
left panel of Fig. H.5. Then, we compute the MMD using generated samples by EDG with
normalized weights, which are calculated according to Sec. 3.3. The mean value across
10 independent runs are reported in Table H.5, each based on 5,000 samples. The stan-
dard deviations are omitted as they are negligibly small. The convergence of the weighted
MMD with respect to the sample size is also presented in the right panel of Fig. H.5.

Bayesian Logistic Regression In all experiments, we employ the same data par-
tition and the datasets are divided into training and test sets at a ratio of 4:1. Before
training, we normalize all datasets to have zero mean and unit variance. For d-dimensional
features, the architectures of neural networks involved in the EDG are as follows:

In the task of covertype, x = (α, w, b) with the prior distribution p(x) = p(α)p(w, b|α),
where p(α) = Gamma(α; 1, 0.01) and p(w, b|α) = N (w, b; 0, α−1).

Lennard-Jones (LJ) The Lennard-Jones (LJ) potential is an intermolecular poten-
tial which models repulsive and attractive interactions of non-bonding atoms or molecules.

35

Table H.5: The mean of the weighted MMD results over 10 rounds for EDG
and EDG (reweighted), each using 5,000 samples. For EDG, all samples
follow a uniform distribution. For EDG (reweighted), generated samples of
EDG are assigned normalized weights, which are calculated according to Sec.
3.3. The standard deviations are omitted as they are negligibly small.

EDG EDG (reweighted)
Mean value of the reweighted MMD 0.50 0.09

The model architecture of Bayesian Logistic Regression
Decoding process Encoding process

Network a(ζ; ϕ): Score network:
fc 30× 256, ReLU, 2×(fc 256× 256, ReLU), fc 256× d. fc (d + 31)× 256, ReLU,

GHD: fc 256× 256, ReLU,
Qv, Tv: fc 256× 30.

fc (2d + 1)× 256, Tanh, fc 256× 256, Tanh, fc 256× d.
Qx, Tx:

fc (d + 1)× 256, ReLU, fc 256× 256, ReLU, fc 256× d.
Final network N (µ, Σ):

fc 11d× 256, ReLU, fc 256× 256, ReLU, fc 256× d.

The energy is based on the distance of interacting particles ELJ(·) and a harmonic potential
Eosc(·) like [65]

ELJ(x) = 1
2
∑

ij

((
1

dij

)6
−
(

1
dij

)12
)

,

Eosc(x) = 1
2
∑

i

∥xi − xCOM∥2
,

where dij = ∥xi − xj∥2 is the Euclidean distance between particles i and j and xCOM

The model architecture of Lennard-Jones
Decoding process Encoding process

Network a(ζ; ϕ): Score network:
fc 100× 32, ReLU, 2×(fc 32× 32, ReLU), fc 32× d. fc (d + 101)× 256, ReLU,

GHD: fc 256× 256, ReLU,
Qv, Tv: fc 256× 100.

fc (2d + 1)× 32, ReLU, fc 32× 32, ReLU, fc 32× d.
Qx, Tx:

fc (d + 1)× 32, ReLU, fc 32× 32, ReLU, fc 32× d.
Final network N (µ, Σ):

fc d× 32, ReLU, fc 32× 32, ReLU, fc 32× d.

36

Figure H.6: Comparison of the test data interatomic distance of LJ13 (left),
LJ55 (right) with samples generated from L2HMC and PIS. Results for BG
and EDG is ploted in Fig. 3.

refers to the center of mass of the system. The target energy function has the form
E(·) = ELJ(·) + Eosc(·). The system is performed without periodic boundary conditions,
which means particles are not wrapped across boundaries, no periodic images or minimum-
image convention are used, and interactions are conducted within the finite simulation
domain by harmonic confinement. For the experimental results, we evaluate the generated
sample with the test sample from [65]. The test data were generated with MCMC with
1000 parallel chains, where each chain is run for 10,000 steps after a long burn-in phase
of 200,000 steps starting from a random generated initial state. The density estimation
results of interatomic distances for EDG and BG are plotted in Fig. 3. The results for
L2HMC and PIS are presented here in Fig. due to significant deviations from the test
data.

To evaluate the effectiveness of the sample reweighting strategy described in Sec. 3.3,
we employ the relative Effective Sample Size (rESS), defined as

rESS = 1
N

ESS =

(∑N
n=1 w(xn, zn

0)
)2

N
∑N

n=1 w(xn, zn
0)2

. (H.1)

Here, ESS denotes the Effective Sample Size [72], a widely used metric for evaluating the
quality of weighted samples produced by importance sampling based on NFs (see, e.g., [26–
28, 32]). The rESS value lies in the interval (0, 1] and measures the fraction of effectively
independent samples relative to the total sample size N . A low rESS indicates that the
resulting estimators may suffer from high variance due to poor weight balance.

Table H.6: rESS with mean ± standard deviation over 10 seeds. For each
method, we use 256 samples for estimation.

rESS BG PIS EDG

LJ13 0.006± 0.002 0.005± 0.001 0.132± 0.048
LJ55 0.004± 0.000 0.004± 0.000 0.098± 0.014

37

Ising model The model architecture is shown below, which is similar to that in
NeuralRG [25] without stacking bijectors to form a reversible transformation. It retains
the multiscale entanglement renormalization ansatz structure, while we only use one block
to update the whole dimensions of the variable directly. To evaluate the efficiency of our
proposed architecture, we include a comparative analysis against a standard MLP design
in Appendix J. The normalizing constant log Z is approximated according to Sec. 3.3.

The model architecture of Ising model
Decoding process Encoding process

Network a(ζ; ϕ): Score network:
hierarchy network as shown in [25] hierarchy network.

GHD: Input: zt, x, t, T
Qv, Tv:

Conv2d 2× 10, BatchNorm2d, ReLU, Conv2d 10× 1.
Qx, Tx:

Conv2d 1× 10, BatchNorm2d, ReLU, Conv2d 10× 1.
Final network N (µ, Σ):

fc d× 10, ReLU, fc 10× 10, ReLU, fc 10× d.

Appendix I. Computation cost
To demonstrate the computational efficiency of our model, we have compared the wall-

clock training time and memory usage on the 2D energy (Mog2) task for the following
models: the trainable MCMC model L2HMC [14], the VI-based model BG [21], and the
simulation-based model PIS [37]. For L2HMC and PIS, we adopted the default settings
from their respective original papers. The network architectures for BG and EDG are
detailed in Appendix H. All experiments were conducted on a single NVIDIA RTX 2080
Ti GPU with 11GB of VRAM. The runtime comparison is shown in Fig. I.7, and memory
usage is reported in Table I.7.

The results show that EDG reaches competitive accuracy in less training time and
with lower memory consumption compared to the other methods. Although the per-
epoch training time of BG is shorter than that of EDG, EDG achieves better performance
in fewer epochs.

Additionally, we compared the reweighting time cost of three methods that support
post-hoc sample reweighting: BG, PIS, and our proposed EDG. The results are presented
in Fig. I.8. Among them, BG achieves fast computation of the weight function due to the
efficient evaluation of the Jacobian determinant in each affine coupling layer. In contrast,
PIS and EDG must solve stochastic and ordinary differential equations respectively to
compute weights, resulting in higher computational cost. The reweighting time of EDG
and PIS is of the same order of magnitude, and EDG is slightly slower. This is mainly
because the reweighting in EDG relies on the neural ODE technique, which involves di-
vergence computation that contributes significantly to the time cost. PIS does not require
divergence computation during reweighting. It is worth emphasizing that PIS also requires

38

Figure I.7: Computational time comparison across different methods. Left:
the logarithm of the per-epoch training time for each method under a con-
sistent batch size of 128. Right: the evolution of MMD in the Mog2 task
with respect to cumulative training time, where all evaluation time has been
excluded.
Table I.7: Training memory usage of different methods, measured by
torch.cuda.memory_allocated.

L2HMC BG PIS EDG
Memory (MB) 17.19 22.41 55.83 16.75

Figure I.8: The computational cost of sample reweighting in BG, PIS and
EDG. Both PIS and EDG require temporal integration, for which distinct
numerical schemes are employed to achieve comparable precision. PIS utilizes
torchsde.sdeint with the Stochastic Runge-Kutta (SRK) method and a
fixed step size of T/1000, while EDG adopts scipy.integrate.solve_ivp
using the RK45 method with atol=1e-5, rtol=1e-5.

39

numerical SDE solvers during training, while EDG avoids solving either SDEs or ODEs
during training. As shown in Fig. I.7, this leads to significantly lower training time for
EDG compared to PIS.

Appendix J. Ablation study
GHD in Decoder: To elucidate the function of GHD in EDG, we compare the

following models on the sampling task of 2D energy functions: a VAE with the Gaus-
sian decoder and encoder, where the means and diagonal covariance matrices are both
parameterized by MLPs; a VAE with a GHD-based decoder and MLP-based encoder;
EDG without GHD, where the decoder is modeled by MLPs; and the full EDG model.
For VAE w/o GHD, the network is composed of 3-layer MLPs, each with 32 units and
ReLU activation function. Starting from z ∼ N (0, Id), d = 10, the decoder generates
samples x ∼ pD(x; µ(z; ϕ), Σ(z; ϕ)). The encoder, as an independent network, follows
pE(z|x) = N (z; µ(x; θ), Σ(x; θ)). The objective function is the KL divergence of the joint
distribution of z and x as

DKL(pD(z)pD(x|z; ϕ)||π(x)pE(z|x; θ).

For VAE w/ GHD, the decoder is consistent with the structure in Algorithm 3, and
the encoder is the same as described above. For EDG w/o GHD, we omit the leap-frog
component (refer to Line 2-8 in the algorithm) and the decoder is composed of the network
a(ζ; ϕ) and a final gaussian part N (µ, Σ) (refer to Line 1, 9 in the algorithm).

Table J.8: The MMD between 5,000 samples generated by each generator
and the reference samples.

Mog2 Mog2(i) Mog6 Mog9 Ring Ring5

VAE w/o GHD 1.86 1.62 2.57 2.10 0.12 0.23
VAE w/ GHD 0.01 2.43 0.15 0.59 1.68 0.63

EDG w/o GHD 0.06 1.01 0.04 0.05 0.02 0.04
EDG 0.01 0.50 0.01 0.02 0.01 0.02

The histograms of the samples are shown in Fig. J.9 for visual inspection and the sam-
pling errors is summarized in Tab. J.8. It is evident that EDG with a GHD-based decoder
outperforms the other methods, demonstrating the effectiveness of each component within
the model.

The step size of Decoder: Step sizes will impact the model’s performance for
different tasks, selecting appropriate step sizes is crucial to achieve optimal results. To
mitigate the influence of step size on the model’s effectiveness, we treat them as trainable
parameters with a hyperparameter ϵ0 in Sec. 3.4.2). In our experiments, we systematically
evaluated ϵ0 from 0.005 to 0.1 in increments of 0.005, selecting the optimal value based on
training performance. The optimal value is provided in Tab. J.9.

Network architecture: To evaluate the effectiveness of the hierarchical design, we
compare it with an EDG model using standard fully connected linear layers. As shown

40

MoG2 MoG2(i) MoG6 MoG9 Ring Ring5

V
A

E
w

/o
G

H
D

V
A

E
w

/
G

H
D

E
D

G
w

/o
G

H
D

E
D

G
w

/
G

H
D

Figure J.9: Density plots for 2D energy function. We generate 500, 000
samples for each method and plot the histogram.

Table J.9: Step size hyperparameters across tasks
Task 2d energy except Rings 2d-Rings Bayesian Regression

ϵ0 0.1 0.03 0.05

Task Bayesian Regression-Cover LJ13 LJ15 Ising model

ϵ0 0.005 0.03 0.015 0.1

in Fig. J.10, the hierarchical architecture better captures the underlying structure of the
data and achieves superior performance. In future work, we plan to design specific network
architectures for different tasks.

41

Figure J.10: The log Z estimation curves under different model architectures
in the Ising model task at T = 2.0. Hierarchy denotes the model archi-
tecture in Appendix H and MLP refers to EDG models where all networks
are implemented as 3-layer MLPs with 32 hidden units and ReLU activation
functions.

42

