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Abstract

Pre-trained medical foundation models are large, and they require significant com-
putational resources for training. Visual Prompt Tuning (VPT) allows foundation
models to efficiently adapt to new tasks with minimal changes to the model’s
architecture, reducing the need for extensive fine-tuning. Here, we explore demo-
graphic (race) adaptation of foundation models (MAE and MoCoV3) for disease
classification in medical imaging using naturally imbalanced data. We compare
three adaptation strategies: linear probing, full fine-tuning, and VPT. We find that
VPT obtains a clear boost in performance, starting with prompt length 5 over linear
probing. In the case of race demographics (e.g. Asian with 5.7% of the full dataset),
a VPT model trained on a demographic (Asian) performed similarly to a fully
fine-tuned model trained on same dateset. A fully fine-tuned foundation model
on a diverse and large dataset performs better than a model adapted only for a
specific subset of data. However, it needs large data and computing resources,
which may not always be available. These findings show that VPT can efficiently
adapt foundation models for small datasets, achieving performance comparable to
full fine-tuning.

1 Introduction

Foundation models are large pre-trained models using self-supervised learning that can be fine-tuned
for various tasks. They are increasingly used in medical imaging Sellergren et al. [2022], but their
re-training or fine-tuning demands significant computation time. The most common approach to
adapting foundation models includes full fine-tuning and linear probing, with a recent addition of
Visual Prompt Tuning (VPT) Jia et al. [2022]. VPT offers a more efficient approach by enabling
quick adaptation to new tasks with minimal changes to the model’s architecture, reducing the need
for extensive fine-tuning and making the process computationally efficient.

Concurrently, there are numerous challenges facing AI in medical imaging, with one of the most
novel being fairness. Fairness is the disparate outcome of AI models across different sub-populations,
which often leads to the discrimination of AI models against vulnerable sub-populations Gichoya
et al. [2023], Banerjee et al. [2023], Seyyed-Kalantari et al. [2021a]. In particular, in medical imaging,
it has been shown that AI models can predict the demographic features of the patients Gichoya et. al.
[2022], Abbasi Bavil et al. [2024] from medical images and under-diagnose historically undeserved
patients (e.g female or Black) patients Seyyed-Kalantari et al. [2021b].

While the accuracy of models upon training on all datasets regardless of patient demographics is
constantly improving, it has been shown that unfairness toward subgroups persists. This brings our
attention to the point that we need a model trained on all patients regardless of demographics. Can
we do a demographic adaption of foundation models, which are inherently trained on large amounts
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of data, to perform better for individual demographics rather than all? Such adaptation may be
challenging for minority demographics (e.g. Asian), and we may not have a large amount of data
from them, which may lead to more unfairness. As a result, efficient adaption techniques such as
VPT may resolve the need for extensive fine-tuning or retraining, making it computationally efficient,
even for minority demographics. At the same time, using VPT can preserve the pre-trained weights
and mitigate the risk of catastrophic forgetting of the foundation models if fine-tuned per subgroups.

In this work, we examine the three different foundation model adaptability strategies in the medical
imaging domain. In particular, we focus on models trained on Chest X-rays, CheXpert Irvin et al.
[2019] and MIMIC-CXR Johnson et al. [2019]. The first adaptation strategy is the widely used
method of linear probing, which uses a single linear layer classification head. The second method
is full fine-tuning, which updates the whole backbone along with a single-layer classification head.
The last method is Visual Prompt Tuning (VPT), which appends a tuning prompt to the input of the
model, which is trained alongside a single linear layer classification head. We utilize the mentioned
methods to design a personalized demographics-tuned model for disease multi-label classification of
different demographics instead of using a single model for all. Therefore, the models are expected to
do better on personalized demographic models for individuals (biased model) rather than general
models. However, we observed that a large, diverse dataset performed better than intentionally biased
models.

2 Related Works

In Saeed et al. [2023], the adaptation of a foundation model trained on an original dataset, and
validated on a dataset that is gathered in another medical center, has been evaluated for Head and
Neck Cancer segmentation using VPT. They demonstrated that prompt tuning could adapt models
trained on original data to data from new clinics in medical image segmentation tasks. The paper
compares various tuning approaches, including no tuning, partial fine-tuning, full fine-tuning, and
prompt tuning. Results show that while the no-tuning model performs well on the original dataset,
it struggled with the data from a new clinic. A fully fine-tuned model on the new clinic dataset
performed well on new data but poorly on the original dataset, meaning full fine-tuning suffers from
catastrophic forgetting. However, prompt tuning did not exhibit this weakness as the backbone model
trained on original data kept frozen, and only prompts are fine-tuned. VPT models retain good
accuracy for the old dataset and achieve similar results to fully fine-tuned models on the new datasets.

There are some studies that have not directly used prompt tuning, but their approach has similar
impact. Fairness triggers append a border or patch within the input image and optimizes their values
in training to reach more overall fairness Zhang et al. [2022]. They have done this using ConvNets
(ResNet-18) on CelebA dataset Liu et al. [2015]. FairVPT has been also introduced Park and Byun
[2024] where they have proposed a variant of VPT with the goal of increasing fairness, and it was
evaluated on natural images. FairVPT demonstrates higher generalization performance in terms of
balanced accuracy and equality of odds. However, the overall accuracy of the model does decrease.

For foundation models comparison, there have been a number of papers comparing MAE He et al.
[2021] and MoCoV3 Chen et al. [2021] on CheXpert and MIMIC datasets; the most notable works
are Khan et al. [2023], Xiao et al. [2023], Gupta et al. [2024], Sowrirajan et al. [2021]. These works
evaluate the foundation models using linear probing and full fine-tuning. Our work explores VPT
on merged CheXpert and MIMIC-CXR datasets and examines the adaptation of demographics as
downstream tasks.

3 Method

Datasets Our foundation model adaptation evaluation (training and inference) is performed on the
CheXpert and MIMIC-CXR Chest X-ray datasets. CheXpert was generated at Stanford University
Medical Center between October 2002 and July 2017, consisting of 223’648 Chest X-rays associated
with 65,240 patients Irvin et al. [2019]. The MIMIC-CXR dataset contains 227,835 Chest C-ray
imaging studies with 377,110 corresponding images obtained from Beth Israel Deaconess Medical
Center between 2011 and 2016 Johnson et al. [2019]. The CheXpert and MIMIC-CXR datasets
were combined to create a single Chest X-Ray dataset. The dataset was further analyzed based on
race, three most sizable races remained (Asian, Black, and White), while others were grouped under
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other. The dataset split followed an 80% training, 10% validation, and 10% testing distribution, and
stratified on Race. Table 2 shows the race breakdown, per dataset and combined.

SSL-Pretraining For foundation models, we chose the momentum contrastive learning model
MoCoV3 Chen et al. [2021] and a masked autoencoder MAE He et al. [2021] to cover a variety
of self-supervised learning methods. Both models were pre-trained without labels. MAE, was
pre-trained using the approach described in Xiao et al. [2023], taking 4 RTX 6000 GPUs and 15 days.
For MoCoV3, we performed a hyper-parameter search through different optimizers, learning rates,
weight decays, and batch sizes. We used adamw optimizer, learning rate of 0.00005, weight decay of
0.1, and batch size 4096. As MoCoV3 does not retain a dictionary look up as proposed in original
MoCo model Chen et al. [2021], we chose to go for a large batch size. The pretraining was done
using 64 RTX 6000 GPUs in approximately 3 days. The table in the appendix Table 3 shows the
results of the hyper-parameters search for pretraining and adaptation methods.

Downstream Tasks To adapt the pre-trained foundation models, we utilize three methods: linear
probing, Deep VPT Jia et al. [2022], and full fine-tuning. Deep VPT refers to adding prompts at each
layer. Onwards, we refer to Deep VPT as VPT. Linear probing and full fine-tuning were adapted
using the entire dataset. Linear probing, VPT, and full fine-tuning were additionally used to adapt to
demographic-specific data subsets. For each foundation model and adaptation method, we performed
a wide hyper-parameter search on the Asian data subset and a more narrow search on the rest of the
data subsets. Then, we chose the optimal learning rate and weight decay. The models with the same
hyper-parameters across all demographics were used for evaluation.

For downstream task performance evaluation, we used AUC instead of accuracy due to disease label
imbalance. All models performed multi-label classification on 14 available labels as part of both
CheXpert and MIMIC-CXR. AUC was computed for each class and then averaged. The combined
Asian, Black and White output was concatenated, the AUC was computed for each class and then
averaged across all labels.

4 Results

4.1 Prompt Size analysis

Figure 1: Visualization of adaptation strategies

(a) Full Fine-Tuning (Left)

(b) Linear Probing (Middle)

(c) VPT (Right)

Figure 2: The mean AUC across all labels on
Asian dataset subset by changing the prompt
length

The main hyper-parameter for VPT is prompt length, therefore in this section we investigate the
impact of prompt lengths in VPT on Asian subset of the Chest X-ray datasets. This was done to look
at the prompt length impact on the most disadvantageous demographic as the optimal prompt length
depends on the task Jia et al. [2022]. We also note that we start to observe an increase in performance
with even a single prompt over a simple linear probing. In plot Figure 2 we see that the optimal
length for this task is prompt length 100. This optimal prompt length is used for all VPT tasks in the
next section.
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Table 1: Summary of evaluation on foundation models using various adaptability methods. FT refers
to a fine-tuned backbone. Combined column refers to Asian, Black and White subsets evaluated
together

# Backbone Head FT VPT Strategy Test set, Mean AUC
Asian Black White Combined

1

MAE

All

x

x Figure 1b

0.783 0.797 0.783 0.792

2 Asian 0.78 x x
0.793 Black x 0.793 x

4 White x x 0.783

5 Asian Asian Figure 1c 0.81 x x
0.8166 Black Black Figure 1c x 0.812 x

7 White White Figure 1c x x 0.818

8

MoCoV3

All

x Figure 1b

0.766 0.775 0.759 0.765

9 Asian 0.769 x x
0.78910 Black x 0.786 x

11 White x x 0.788

12 Asian Asian Figure 1c 0.788 x x
0.80813 Black Black Figure 1c x 0.811 x

14 White White Figure 1c x x 0.809

15

MAE

All All

x Figure 1a

0.834 0.843 0.828 0.833

16 Asian Asian 0.809 x x
0.82417 Black Black x 0.82 x

18 White White x x 0.823

19 Asian
All

Asian Figure 1c 0.834 x x
0.83520 Black Black Figure 1c x 0.845 x

21 White White Figure 1c x x 0.831

22

MoCoV3

All All

x Figure 1a

0.826 0.842 0.829 0.833

23 Asian Asian 0.797 x x
0.82324 Black Black x 0.813 x

25 White White x x 0.824

26 Asian
All

Asian Figure 1c 0.823 x x
0.83627 Black Black Figure 1c x 0.836 x

28 White White Figure 1c x x 0.828
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4.2 Evaluation of Adaptation Strategies

After pre-training a MoCoV3 and an MAE backbone, we first utilized linear probing on the entire
dataset, then linear probing on individual (Asian, Black and White) demographics, and VPT on
individual demographics to create intentionally biased models per demographics. The first half of the
table Table 1 summarizes the mean AUC results on the same pre-trained backbone. Here, we observe
that using a biased linear probing does not guarantee a performance increase; comparing biased linear
model (rows 2-4) to linear mode trained on all data (row 1). Similarly for MoCoV3 the demographic
biased model is only 0.03%-0.29% higher, which is negligible. In the case of MoCoV3, only the
White demographic sees an improvement (0.788 vs 0.759), while other demographics observe a
similar pattern to MAE. VPT has the highest performance (rows 5-7, 12-14) of both backbones by
utilizing them to a greater extent.

Next, we fully fine-tune the model on the entire dataset, and additionally on the individual demo-
graphics to train biased models. Similarly, as with linear probing, the biased models fully fine-tuned
on their respective demographics (rows 16-18 compared to corresponding each in row 15 for MAE
and rows 23-25 vs 22 in MoCoV3) do not see any increase in performance, and instead, we see
degradation in some scenarios specially where the dataset subset (Asian, Black) size is much smaller.
The combined results for biased models, rows 16-18 is larger than the average between the AUC of
each demographic because the AUC for combined was computed by concatenating all results, then
computing AUC of each class, and taking the average of all labels.

Lastly, to see if the model can be improved any further after fine-tuning on all dataset, we applied
additional VPT training on the individual demographics (rows 19-21 vs 15 for MAE and 26-28 vs 22
for MoCoV3). The fully fine-tuned backbone with VPT sees no further improvement instead, the
results are very similar to the fully fine-tuned model.

5 Limitations

The limitation of this work is the lack of multiple runs through each method using the same hyper-
parameters. The training time on a complete dataset takes a couple of weeks, even using a large
number of GPUs, and for that reason we were not able to do that. However, since our datasets
are very large (around half a million images), we expect calculating the confidence interval does
not change the results much as it has been the case in former studies in these large-scale datasets
Seyyed-Kalantari et al. [2021a,b], Gichoya et. al. [2022]. We also have not done the study on the
Chest X-ray downstream tasks for different data scales, which we saved for future work.

6 Discussion & Conclusion

The results demonstrate a performance overview of the foundation models MAE and MoCoV3
pre-trained on Chest X-ray datasets, using linear, full fine-tuning and VPT. First, we can conclude
that VPT at the cost of an increase of 1 percent in parameter count and longer training time Jia et al.
[2022] shows a great improvement over linear probing.

We additionally observe that a VPT model on a demographic with a small amount of data performs
similarly to a fully fine-tuned backbone on the same demographic. Specifically, MAE VPT on Asians
compared to fine-tuned MAE on the same demographic shows similar performance. On the other
hand, in demographics with larger representation, the performance is not far off. This demonstrates
to us that VPT is an efficient adaptation method that allows foundation models to be adapted quickly,
with minimal changes to the model’s architecture. Unlike full fine-tuning, VPT retains the core model
intact, using fewer additional parameters, resulting in a more lightweight adaptation.

On the other hand, we saw that a fully fine-tuned model on a large and diverse dataset leads to better
performance, as was seen with the fully fine-tuned model on all Chest X-ray data. Finally, we see
that a fully fine-tuned model sees no further improvement with the addition of prompts. This is likely
due to model parameters and architecture being utilized to their biggest extent, where squeezing even
a small amount of performance is not feasible.

In summary, VPT provides an efficient, scalable, and lightweight method for adapting foundation
models for specific tasks while preserving general knowledge stored in the pre-trained foundation
model. In our case, it’s ideal for scenarios requiring task-specific tuning with limited data.
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A Dataset Demographic Count

Deeper look at the exact values of each demographic, and there total counts in the dataset.

Table 2: CheXpert and MIMIC-CXR Race counts
Count

Asian Black White Other All

Dataset
CheXpert 23’298 11’970 125’624 62’756 223’648

MIMIC-CXR 10’930 55’837 218’203 92’140 377’110

All 34’228 67’807 343’827 154’896 600’758

B Parameter Search

Table 3: Hyper-parameters used for all stages of training
Backbone Training Stage Optimizer Learning Rate Weight Decay Batch Size Epochs

MAE

Pretraining adamw 0.00015 0.05 128 800

Linear probing adamw 0.00025 0.05 128 75

Full Fine-tuning adamw 0.00025 0.05 128 75

VPT sgd 0.1 0.0001 128 75

VPT
on Full Fine-tuned sgd 0.1 0.01 128 75

MoCoV3

Pretraining adamw 0.00005 0.1 4096 300

Linear probing sgd 0.1 0.0001 128 75

Full Fine-tuning sgd 0.1 0.0 128 75

VPT sgd 0.3 0.0001 128 75

VPT
on Full Fine-tuned sgd 0.1 0.001 128 75

For the hyper-parameter search, if the parameter is not in the Table 3, then a default value was used.
The only exception is for VPT methods, we use prompt length 100. The pretraining of the MAE was
done in similar manner to Xiao et al. [2023], but with our data split. The MAE was pretrained on 4
RTX 6000 24GB GPUs over 15 days. The MoCoV3 pretraining was done using 64 RTX 6000 24GB
GPUs over 3 days. The tuning of the models was done using 8 RTX 6000 24GB GPUs. The duration
for tuning ranged between 10 hours for a smaller subset, to 2 weeks for the entire dataset.
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