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ABSTRACT

RNA editing is a critical regulatory process that diversifies the transcriptome
by altering nucleotide sequences in messenger RNA molecules. We propose a
novel framework for predicting adenosine-to-inosine (A-to-I) RNA editing sites
by leveraging a specialized fine-tuned GPT-4o-mini model and a tissue-specific
liver dataset. Grounding our approach in the high expression levels of ADAR1
in liver tissue, we avoid confounding factors from other ADAR isoforms and
complex multi-tissue data. We categorize editing levels into progressively nar-
rower thresholds (1%, 5%, 10%, and 15%) and introduce continual fine-tuning
(CFT) to guide the model step-by-step from low-editing (1%) to high-editing
(15%) scenarios. Compared to static fine-tuning (SFT) on a single threshold,
our multi-stage method incrementally refines the model’s ability to distinguish
editing features and demonstrates superior performance over base GPT-3.5/4o-
mini models across various configurations. We further show that employing strict,
non-overlapping threshold bins facilitates clearer distinctions between edited and
non-edited sites, consequently improves performance. In contrast, reducing the
distinction between edited and non-edited classes significantly degrades classifi-
cation accuracy. These findings underscore the importance of biologically appro-
priate data partitioning and continual, threshold-based fine-tuning in enhancing
the predictive power of generative language models for RNA editing. Our study
paves the way for future work on building more nuanced models that incorporate
tissue-specific constraints, ultimately broadening the applicability of generative
AI in post-transcriptional regulation analysis. 1

1 INTRODUCTION

RNA editing is one of the post-transcriptional mechanisms that modify pre-RNA sequences en-
coded in the genome. Editing events can lead to changes in amino acids, alternative splicing, gene
silencing, and alterations in RNA stability and localization Brennicke et al. (1999); Gott & Eme-
son (2000). The most common type of RNA editing in animals is adenosine-to-inosine (A-to-I)
deamination, catalyzed by the enzyme adenosine deaminase acting on RNA (ADAR) family of pro-
teins Bass (2002); Levanon et al. (2004). ADARs bind to double-stranded RNA structures and have
the ability to change specific adenosines (A) to inosines (I), which are recognized during transla-
tion as guanosines (G). ADAR has two major structural motifs: the double-stranded RNA-binding
domains (dsRBD), which binds to double-stranded RNA, and the deaminase domain, which cat-
alyzes the hydrolytic deamination Nishikura (2010). ADAR enzymes can efficiently modify RNA

1The sources of this work are available at our repository: https://github.com/
Scientific-Computing-Lab/CFT-RNA-Editing-Detection-using-GPT.
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sequences at specific positions. The vast majority of mRNA editing in humans occurs within Alu
repetitive elements. These ∼300bp long elements are abundant with over a million copies and make
up approximately 10% of the human genome. Binding of neighboring, reversely aligned, Alu el-
ements results in stable intramolecular secondary structures, which are targeted by ADARs Bazak
et al. (2014); Kim et al. (2004); Athanasiadis et al. (2004). The specificity and efficiency of edit-
ing are influenced by the structural and sequence characteristics of double-stranded RNA. However,
the underlying mechanisms by which ADAR efficiently targets specific adenosine (A) are not well
characterized.

Figure 1: Data Collection, Preprocessing, and Model Training Approaches for RNA Editing Prediction. (A)
Extraction of double-stranded RNA structures from Alu pairs, annotation of editing levels from GTEx liver
samples, and grouping of adenosines by editing level. (B) Framing RNA editing prediction as a classification
task, determining whether a given adenosine is edited. (C) Comparison of static fine-tuning (training on a single
threshold) vs. continual fine-tuning (progressively refining thresholds), highlighting improved classification
performance.

Beyond its natural regulatory role, A-to-I RNA editing is increasingly recognized as a promising
tool for therapeutic applications Reautschnig et al. (2024); Pfeiffer & Stafforst (2023); Katrekar
et al. (2022); Montiel-Gonzalez et al. (2019). Unlike permanent genomic DNA modifications, RNA
editing enables reversible and programmable sequence alterations, making it a safer alternative for
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gene therapy. One emerging strategy for harnessing endogenous ADAR activity involves the design
of guide RNAs (gRNAs) that hybridize with target transcripts, forming dsRNA structures that recruit
ADAR enzymes to catalyze site-specific A-to-I conversions Merkle et al. (2019). This approach
allows precise RNA modifications while minimizing off-target effects, thereby offering a potential
strategy for correcting pathogenic mutations and treating genetic disorders. Currently, much of the
effort in this field is focused on designing guide RNAs that will generate the most optimal dsRNA
structure to maximize ADAR enzyme activity at the desired editing site.

There has been extensive research into modeling RNA sequences and their various modifications
using artificial intelligence, leveraging different computational techniques to understand and pre-
dict RNA behavior (see section 2). Predicting RNA editing sites, particularly A-to-I modifications,
is a challenging task due to the complexity of RNA secondary structures and the nuanced activity
of the ADAR family of proteins. Over the years, various AI techniques have been employed to
tackle this problem, including support vector machines, random forests, convolutional neural net-
works, and recurrent neural networks. These methods have shown potential but often suffer from
limitations such as low success rates, limited data specificity, and inadequate generalization across
different tissue types and RNA contexts. Recently, transformer-based models and generative AI
approaches using large language models (LLMs) like GPT-3.5 have been explored, with methods
treating RNA sequences as natural language and capturing long-range dependencies without exten-
sive feature engineering. However, previous efforts primarily employed static fine-tuning, which
restricts the models’ ability to dynamically adapt to new patterns in RNA editing data. For these
reasons, improving the predictive accuracy and versatility of models in this domain remains a sig-
nificant research challenge.

Contribution:

In this paper, we introduce a novel framework for predicting A-to-I RNA editing sites within Alu
elements by leveraging advanced LLMs, specifically using the GPT-4o-mini model (Figure 1). We
enhance existing approaches that frame RNA editing site prediction as a classification task, where a
model determines whether a highlighted potential editing site has undergone editing based on RNA
secondary structure information in the Vienna format, a standard notation for representing RNA
secondary structures using base-pairing symbols, which GPT models are familiar with Rosenwasser
et al. (2024). In this work, we enhance this approach by employing continual fine-tuning (CFT) of
GPT-4o-mini and introducing hierarchical editing thresholds, allowing the model to progressively
learn from different editing levels. Additionally, we adapt the model specifically for liver tissue,
where ADAR1 is the dominant enzyme, enabling a more accurate representation of tissue-dependent
RNA editing patterns. These advancements lead to a significant improvement in prediction accuracy
and provide deeper insights into the mechanistic factors influencing RNA editing specificity.

Specifically, we ask and answer the following research questions:

• RQ1: Is there an alternative dataset that can better explain the enzymatic activity in the RNA
editing site prediction problem than previously devised?

• RQ2: Does using a more advanced GPT model (GPT-4o-mini) further improve performance?
• RQ3: Does distinguishing between different levels of RNA editing (1%, 5%, 10%, 15%) and

using continual fine-tuning (CFT) improve insights?
• RQ4: How does reducing the difference between edited and non-edited sites affect model perfor-

mance?

The remainder of this paper is organized as follows: In section 2, we provide a detailed literature
review, highlighting key advancements in RNA editing prediction and the application of generative
AI models in this domain. section 3 describes our methodology, including data collection, prepro-
cessing, and model training approaches. Experimental results and a discussion of our findings are
presented in section 4, structured in the form of answers to the RQs. We conclude in section 5 by
summarizing our contributions and discussing potential avenues for future research.

2 PREVIOUS WORK

RNA can be conceptualized as a language, with its nucleotide sequences forming a code that car-
ries biological information (see Appendix A). Generative AI models have demonstrated significant
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potential in analyzing, predicting, and even generating biologically relevant RNA sequences. Since
RNA consists of both a sequence and a secondary structure, it is well-suited for models capable of
learning and generating linguistic patterns.

Specifically, A-to-I RNA editing, mediated by ADAR enzymes, has been extensively studied
through both experimental and computational approaches. In experimental studies, large-scale syn-
thesis of RNA sequences has been used to probe the specificity of the ADAR substrate systemat-
ically Uzonyi et al. (2021); Zambrano-Mila et al. (2023). In parallel, computational frameworks
have been developed to predict A-to-I editing sites, utilizing distinct methodologies such as tradi-
tional machine learning, deep learning architectures, and more recently, transformer-based models.

Early machine learning approaches utilized algorithms such as Random Forests, Support Vector
Machines, and probabilistic models to predict editing sites based on sequence and structural charac-
teristics Tac et al. (2021); Ouyang et al. (2018). Recent studies employing XGBoost, an advanced
tree-based ensemble method, have shown promise in predicting RNA editing efficiency but struggled
with generalization across different substrates Liu et al. (2021); Jiang et al. (2024). Generally, while
these methods improved upon earlier sequence motif-based approaches, they still faced accuracy
limitations due to the complexity of editing site determination.

The advent of deep learning brought significant advancements to the field. Convolutional Neu-
ral Networks trained on large datasets of confident editing sites demonstrated good performance
in predicting A-to-I editing events. EditPredict, for instance, employed CNN models to predict
RNA editing in both Alu and non-Alu regions Wang et al. (2021). Another notable contribution
was DeepAdar, a convolutional and recurrent neural network-based model, which was designed
with a more structured feature extraction approach Jung et al. (2024). It incorporated predefined
sequence motifs, secondary structure predictions, and base-pairing probabilities as input features.
While DeepAdar demonstrated strong performance on curated RNA-seq datasets, its reliance on ex-
plicit feature engineering constrained its adaptability to novel sequence contexts. Additionally, its
static feature representation limited its ability to dynamically learn from new data without retraining
the entire model.

More recently, transformer-based models have emerged as promising tools for this task, treating
RNA sequences akin to natural language, thereby improving the capture of complex sequence inter-
actions. One of the first applications of large language models (LLMs) to this problem was a GPT-
3.5-based approach, which treated RNA sequences as natural language and leveraged transformer-
based sequence modeling Rosenwasser et al. (2024). Unlike previous deep learning methods, this
approach captured long-range dependencies in RNA sequences without relying on handcrafted fea-
tures. By framing the prediction task within a generative modeling context, it learned implicit se-
quence patterns and improved upon traditional classification-based models. Additionally, dynamic
thresholding mechanisms and data augmentation techniques were incorporated to enhance model
robustness. However, the model was trained on a generalized dataset that aggregated editing in-
formation across multiple tissues, which introduced inter-tissue variability and limited specificity.
Moreover, it lacked continual learning capabilities, making it challenging to systematically adapt to
new data distributions.

Building upon the strengths and addressing the limitations of these prior approaches, our current
study introduces a new framework based on GPT-4o-mini. This model enhances RNA editing pre-
diction through two key strategies (see section 3): (1) CFT across progressively refined datasets and
(2) tissue-specific training focused on liver RNA editing sites.

Focusing on liver tissue provides a controlled biological context for analyzing ADAR1-mediated
editing with minimal interference from other ADAR isoforms. The choice of liver tissue is mo-
tivated by its relatively high expression of ADAR1 compared to other tissues, while ADAR2 and
ADAR3 levels remain particularly low. This distinction allows us to isolate ADAR1 activity and re-
duce confounding effects from other isoforms. Since RNA-binding protein expression varies across
different tissues, selecting a single tissue for analysis helps neutralize variability in their expression
levels across multiple tissues. By concentrating on a well-defined biological system, we improve
both the specificity and interpretability of RNA editing site predictions.

Compared to DeepAdar, which requires manual feature extraction and has limited adaptability, GPT-
4o-mini dynamically learns from raw RNA sequences and secondary structures. This flexibility
makes it a more scalable solution. Relative to the previous GPT-3.5-based model, this study achieves

4



Machine Learning for Genomics Explorations workshop at ICLR 2025

enhanced predictive accuracy and efficiency by leveraging dataset specificity and continual learning.
As a result, our approach not only surpasses prior models in predictive performance but also provides
a more interpretable and biologically grounded understanding of A-to-I RNA editing patterns.

3 DATA CURATION AND TRAINING METHODOLOGY

3.1 DATA COLLECTION AND PREPROCESSING – LIVER GTEX DATASET

To ensure high-confidence structure determination, we applied strict selection criteria: for each
UTR containing Alu elements, we selected the closest oppositely oriented Alu pair, maximizing
the likelihood of dsRNA formation. This resulted in a dataset of 905 Alu pairs, whose secondary
structures were predicted using RNAfold from the ViennaRNA package Lorenz et al. (2011).

Unlike previous work, which analyzed editing across multiple tissues Rosenwasser et al. (2024), we
specifically focused on 131 liver samples from the GTEx database Lonsdale et al. (2013), extracting
editing levels for each adenosine within the selected dsRNA structures. This resulted in a dataset
with annotated editing levels for all adenosines within these regions.

To handle data complexity and improve model performance, we employed two data manipulation
strategies (Figure 1-A):

• Overlapping Sites: This subset included 16,752 training samples and 4,188 validation samples,
totaling 20,940 samples. Editing sites were allowed to fall into multiple predefined editing level
categories (e.g., sites with 1-5%, 5-10%, 10-15%, and above 15% editing).

• Non-overlapping Sites: This subset included 5,201 training samples and 1,301 validation sam-
ples, making a total of 6,502 samples. Each editing site was uniquely categorized into a single
editing level range to prevent overlap between editing levels (e.g., the 1% group contained only
sites with 1-5% editing).

To systematically analyze RNA editing patterns, we framed the problem as a classification task,
determining whether a given site had been edited (Figure 1-B), similarly to Rosenwasser et al.
(2024).

3.2 MODEL TRAINING APPROACHES — CONTINUAL FINE-TUNING (CFT)

CFT represents an advanced training methodology, progressively refining models through sequen-
tial tasks that mirror an evolving data distribution. In contrast to static fine-tuning (SFT) – which
optimizes for a specific task at a single instance – CFT promotes continuous adaptation to new data
and tasks while mitigating the forgetting of previously learned information Ke & Liu (2022). This
approach is particularly beneficial in the era of LLMs, where constant updates and evolving datasets
are the norm. CFT simplifies optimization objectives by focusing on better adaptation and less for-
getting McCloskey & Cohen (1989), enhancing the model’s resilience to the introduction of new
data Shi et al. (2024).

CFT technique aligns perfectly with the needs of RNA editing site prediction, where the evolv-
ing biological data can benefit from continual model updates to capture new patterns and improve
predictive accuracy over time. Initially, our CFT model (Figure 1-C) was trained on GPT-4o-
mini2 using a dataset representing lower editing thresholds (e.g., 1%

FT→ GPT editing). Sub-
sequently, the model underwent progressive fine-tuning across increasingly strict thresholds (i.e.,
5%

FT→ 1%
FT→ GPT, 10%

FT→ 5%
FT→ 1%

FT→ GPT, 15%
FT→ 10%

FT→ 5%
FT→ 1%

FT→ GPT ),
allowing it to retain prior knowledge while refining its classification decisions. This is in contrast to
the SFT model, which was trained separately on a single threshold subset (e.g., only ≥ 15% editing,
or 15% FT→ GPT ) for GPT-4o-mini and GPT-3.5 (mainly for comparison with previous results).
Training and evaluation specifics, including loss and mean token accuracy, are in Appendix B.

2Azure OpenAI GPT-4o-mini fine-tuning: https://github.com/MicrosoftDocs/
azure-ai-docs/blob/main/articles/ai-services/openai/tutorials/fine-tune.
md
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4 RESULTS AND ANALYSIS

RQ1: Is there an alternative dataset that can better explain the enzymatic activity in the RNA
editing site prediction problem than previously devised?

To evaluate whether the liver-specific dataset provides a more informative representation of enzy-
matic activity in RNA editing, we adopted an empirical testing approach. Specifically, we used
GPT-3.5 as a benchmark model, following the methodology applied in a previous study ( Rosen-
wasser et al. (2024)), which utilized a dataset derived from multiple tissues. By fine-tuning GPT-3.5
on our liver-specific dataset and comparing the performance metrics to those obtained in the pre-
vious research (which also used GPT-3.5 SFT), we aimed to determine whether this dataset indeed
offers superior predictive features.

The results, presented in Table 1, indicate that the liver dataset led to a substantial improvement in
predictive performance across multiple evaluation metrics. Notably, accuracy increased from 64.8%
to 71.5%, and the F1 score improved from 64.8% to 69.4%. These improvements suggest that the
liver-specific dataset, where ADAR1 is the predominant enzyme, captures more relevant biologi-
cal features that influence RNA editing. The fact that GPT-3.5 performed better on this dataset –
without any change in model architecture or training methodology – supports the conclusion that
the alternative dataset provides a clearer and more biologically relevant signal for predicting RNA
editing sites.

Table 1: Comparison of model performance metrics for RNA editing site prediction using datasets from com-
bined tissues versus liver tissue. ACC: Accuracy, PRE: Precision, REC: Recall, F1: F1-score.

Data Fine-tuning Base model ACC PRE REC F1

Combined Tissues SFT GPT-3.5 64.8% 64.7% 65.0% 64.8%
Liver Tissue SFT GPT-3.5 71.5% 74.2% 65.1% 69.4%

RQ2: Does using a more advanced GPT model (GPT-4o-mini) further improve performance?

To assess whether a more advanced model improves RNA editing site prediction, we designed two
dataset configurations, while each group contained 6,502 sites, equally distributed between the ”Yes”
and ”No” classes:

• Overlapping Editing Sites — where sites were classified based on whether their editing level was
above or below a fixed threshold (e.g., 15%), ensuring an equal number of ”Yes” and ”No” labels.
We tested multiple thresholds (1%, 5%, 10%, and 15%) to evaluate model robustness.

• Non-Overlapping Editing Sites — where sites were strictly separated into four distinct groups,
preventing overlap between editing levels (e.g., the 1% group contained only sites with 1–5%
editing, and so on). This partitioning allowed us to test whether a model could better generalize
when given more clearly defined editing categories.

Using these datasets, we compared GPT-4o-mini against GPT-3.5. For the overlapping dataset,
GPT-4o-mini achieved 71% accuracy, 73% precision, 65% recall, and a 77% F1-score (Figure 2-
15% S[FT]), while GPT-3.5 had nearly identical results (72% accuracy, 74% precision, 65% recall,
and a 69% F1-score) (Figure 2-15% S[FT] GPT-3.5). This indicates that the model’s complexity
had little effect in this setting, likely because the overlapping nature of the data limited its ability to
learn distinct patterns.

However, for the non-overlapping dataset, GPT-4o-mini significantly outperformed GPT-3.5. It
achieved 90% accuracy, 93% precision, 85% recall, and an 89% F1-score (Figure 3-15% S[FT]),
compared to GPT-3.5’s 85% accuracy, 95% precision, 73% recall, and an 83% F1-score (Figure 3-
15% S[FT] GPT-3.5). The primary gain was in recall (+12%), demonstrating that the advanced
model was better at identifying true editing sites when provided with well-separated categories.
This suggests that while model improvements alone may not help in complex, overlapping cases, a
well-structured dataset enables a more advanced model to extract clearer biological signals, leading
to significant performance gains.
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RQ3: Does distinguishing between different levels of RNA editing (1%, 5%, 10%, 15%) and
using a continual fine-tuning (CFT) improve insights?

To answer this question, we examined whether a gradual, structured learning approach using CFT
improves the model’s ability to identify RNA editing patterns. We designed two training strategies:
(i) CFT, where the model is iteratively trained on datasets with increasing editing thresholds (1%,
5%, 10%, and 15%), progressively refining its understanding, and (ii) static fine-tuning, where the
model is trained directly on the 15% dataset without prior exposure to lower-threshold datasets.

For non-overlapping editing sites, CFT on GPT-4o-mini achieved superior performance on the 15%
dataset with an accuracy of 91%, precision of 97%, recall of 84%, specificity of 98%, and an F1-
score of 90%. Notably, the peak performance occurred at the 10% threshold with an F1-score
of 96%, accuracy of 96%, precision of 99%, recall of 93%, and specificity of 99% (Figure 3-
15%

FT→ 10%
FT→ 5%

FT→ 1%). In contrast, static fine-tuning resulted in lower performance (ac-
curacy: 90%, precision: 93%, recall: 85%, specificity: 94%, F1-score: 89%) (Figure 3-15% S[FT]).
For overlapping editing sites, CFT also outperformed static fine-tuning, achieving an accuracy of
79%, precision of 82%, recall of 74%, specificity of 84%, and an F1-score of 77% (Figure 2-
15%

FT→ 10%
FT→ 5%

FT→ 1%). Static fine-tuning, by comparison, yielded an accuracy of 71%,
precision of 73%, recall of 65%, specificity of 77%, and an F1-score of 69% (Figure 2-15% S[FT]).

These results indicate that CFT allows the model to better capture hierarchical editing patterns,
particularly in the non-overlapping dataset, where structured learning progressively enhances pre-
dictive accuracy. Training dynamics across all experiments (Figure 5) confirm stable convergence,
with mean token accuracy ranging between 0.85-0.95. However, non-overlapping data introduces
higher noise during early iterations, likely due to the sharper distinction between groups, which
initially complicates training but ultimately results in superior performance.
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Figure 2: Overlapping Editing Sites dataset training results using GPT-4o-mini vs. baselines: Metrics
evaluated for models trained using continual fine-tuning across increasing RNA editing thresholds (1%, 5%
C[FT], 10% C[FT], 15% C[FT]), as well as a model trained statically on the 15% dataset (15% S[FT]) and a
GPT-3.5 S[FT] baseline for the overlapping dataset. The figure illustrates the effect of continual fine-tuning
versus static fine-tuning on classification performance.
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Figure 3: Non-Overlapping Editing Sites dataset training results using GPT-4o-mini vs. baselines: Metrics
evaluated for models trained using continual fine-tuning across non-overlapping RNA editing level groups (1%,
5% C[FT], 10% C[FT], 15% C[FT]), as well as a model trained statically on the 15% dataset (15% S[FT]) and
a GPT-3.5 S[FT] baseline. The figure illustrates the impact of training strategy on model performance when
editing thresholds are distinct across groups.
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RQ4: How does reducing the difference between edited and non-edited sites affect model per-
formance?

One possible explanation for the model’s strong performance in the non-overlapping experiments is
the substantial difference between sites labeled as ”Yes” and ”No” in the dataset. In the 15% group,
all ”Yes” sites had editing levels > 15%, whereas most ”No” sites had editing levels well below
1%. This distribution arose because sites with editing levels between 1% and 15% were assigned
to other groups, creating a sharp contrast between edited and non-edited sites that likely facilitated
classification.

To investigate whether reducing this difference affects model performance, we restructured the
dataset into three groups, gradually minimizing the gap between ”Yes” and ”No” classes:

• 1–5% group: ”Yes” for sites with 1% ≤ editing level < 5%, and ”No” for sites with 0% ≤
editing level < 1%.

• 5–10% group: ”Yes” for sites with 5% ≤ editing level < 10%, and ”No” for sites with 1% ≤
editing level < 5%.

• 10–15% group: ”Yes” for sites with > 15%, and ”No” for sites with 5% ≤ editing level < 10%.

Using static fine-tuning on the GPT-4o-mini model for these newly defined groups, we observed
a marked decline in performance compared to previous experiments with clearer distinctions be-
tween edited and non-edited sites. In the prior context, the stark contrast between highly edited sites
(> 15%) and completely unedited sites (< 1%) provided a clear separation, leading to better clas-
sification accuracy. However, in this experiment, the model struggled to distinguish between sites
with closer editing levels, resulting in substantially lower performance (Figure 4).

As the editing thresholds increased, performance further deteriorated, with the most substantial de-
cline occurring in the 10–15% group, where the model failed to generalize effectively (Figure 4).
This suggests that when the editing levels between the ”Yes” and ”No” classes are closer, the distin-
guishing features become less prominent, making pattern recognition more difficult.

From a biological perspective, these findings are consistent with expectations. Sites with high edit-
ing levels (> 15%) likely have distinct sequence and structural properties, making them strong
ADAR substrates and easily separable from unedited sites. Conversely, sites with intermediate edit-
ing levels (e.g., 5–10%) are less optimal ADAR targets, leading to weaker differentiation between
”Yes” and ”No” classes and, consequently, decreased model performance. This insight highlights the
limitations of classification models when the distinction between classes is subtle, suggesting that
predictive performance is strongly influenced by the inherent separability of the biological features
associated with RNA editing levels.
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Figure 4: Performance metrics for classification with minimal editing level differences. Metrics evaluated
for models trained on datasets where the difference between edited and non-edited sites is minimized (1–5%,
5–10%, 10–15%). Significant decline in model performance when distinguishing between sites with similar
editing levels, highlighting the challenge of classification at intermediate editing thresholds.

5 DISCUSSION & CONCLUSION

Our study demonstrates the effectiveness of a liver-specific dataset in improving RNA editing site
prediction, attributed to its high ADAR1 and low ADAR2/ADAR3 expression levels, which provide
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clearer editing patterns. Stratifying editing levels into distinct thresholds (1%, 5%, 10%, 15%) facil-
itated better model training. The CFT approach, starting with lower editing levels and progressing to
higher ones, proved highly effective. Future work will extend this analysis to additional tissues and
across species to assess the model’s generalizability and integrate more advanced reasoning models,
such as GPT-o1-mini.
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A APPENDIX: PREVIOUS WORK — GENERATIVE AI FOR RNA TASKS

RNA can be conceptualized as a language, with its nucleotide sequences forming a code that carries
biological information. Just as natural language models have been able to process and generate
meaningful text, generative AI models have the potential to analyze, predict, and even generate
biologically relevant RNA sequences. The structured nature of RNA, including its sequence, motifs,
and secondary structure, suggests that models capable of learning and generating linguistic patterns
could be leveraged for RNA-related tasks.

Recent advancements in the field have demonstrated the efficacy of generative models in handling
RNA-specific challenges. For instance, GenerRNA Zhao et al. (2024), a Transformer-based model
inspired by large language models, has shown remarkable success in de novo RNA design. This
model, pre-trained on approximately 16-30 million RNA sequences, can generate novel RNA se-
quences with stable secondary structures while ensuring distinctiveness from existing sequences.

The application of fully generative models, such as GPT-like architectures Xiao et al. (2024), to
RNA tasks, has also yielded promising results. RNA-GPT, a multimodal generative system, com-
bines RNA sequence encoders with linear projection layers and state-of-the-art LLMs for precise
representation alignment. This approach enables the processing of user-uploaded RNA sequences
and provides concise, accurate responses to RNA-related queries.

These models have successfully captured the representation of RNA sequences, allowing for their
utilization in various tasks. Some examples of these additional applications include protein bind-
ing prediction, where BERT-RBP Liu et al. (2024) adapts the BERT architecture pre-trained on
a human reference genome to predict RNA-protein interactions. In enhanced mRNA design,
GEMORNA Zhang et al. (2024), a deep generative model, has been developed to optimize mRNA
coding sequences and untranslated regions, improving translation efficiency for therapeutic appli-
cations. In RNA family modeling, Edge Activation Direct Coupling Analysis (eaDCA) Calvanese
et al. (2024) provides a generative framework for understanding RNA sequence variation and struc-
tural constraints. Additionally, Generative Adversarial RNA Design Networks (GARDN) Riley
et al. (2023) have been used to generate realistic and functional RNA molecules, advancing syn-
thetic RNA design. In cancer research, the deep generative model Orion Karimzadeh et al. (2024)
has been applied to analyze circulating orphan non-coding RNAs (oncRNAs) for early cancer de-
tection and tumor classification. These diverse applications highlight the versatility and potential of
generative AI models in advancing RNA research across multiple domains.
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B APPENDIX: TRAINING PERFORMANCES OF FINE-TUNED GPT MODELS

Figure 5: Training and validation performance of fine-tuned GPT-4o-mini and GPT-3.5 models for RNA editing
site prediction. (A) overlapping sites experiments. (B) non-overlapping sites experiments. In each panel, the
left plot shows the training and validation loss across steps for different models, including GPT-4o-mini and
GPT-3.5, trained under various fine-tuning strategies. The right plot presents the train and validation mean
token accuracy for the same models. The trends illustrate the convergence behavior and performance stability
of fine-tuned models across different experimental conditions.

In this study, we intentionally used a small batch size of 6 due to the large instance size, ensuring
that training captured variability in the data while preventing overfitting. The added noise from
smaller batches promotes more generalized learning by preventing the model from converging too
quickly to suboptimal solutions. Additionally, we limited training to only two epochs, as further
iterations did not yield meaningful improvements in loss reduction or token accuracy. The mean
token accuracy remained relatively high throughout training, indicating that the model effectively
learned the underlying patterns early on. This approach balances computational efficiency with
model generalization, avoiding excessive training that could lead to diminishing returns.
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