
Under review as a conference paper at ICLR 2022

SECOND-ORDER REWARDS FOR SUCCESSOR FEA-
TURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Current Reinforcement Learning algorithms have reached new heights in perfor-
mance. However, such algorithms often require hundreds of millions of samples,
often resulting in policies that are unable to transfer between tasks without full
retraining. Successor features aim to improve this situation by decomposing the
policy into two components: one capturing environmental dynamics and the other
modelling reward. Where the reward function is formulated as the linear combi-
nation of learned state features and a learned parameter vector. Under this form,
transfer between related tasks now only requires training the reward component.
In this paper, we propose a novel extension to the successor feature framework
resulting in a natural second-order variant. After derivation of the new state-action
value function, a second additive term emerges, this term predicts reward as a
non-linear combination of state features while providing additional benefits. Exper-
imentally, we show that this term explicitly models the environment’s stochasticity
and can also be used in place of ε-greedy exploration methods during transfer.
The performance of the proposed extension to the successor feature framework is
validated empirically on a 2D navigation task, the control of a simulated robotic
arm, and the Doom environment.

1 INTRODUCTION

Recently, Reinforcement Learning (RL) algorithms have achieved superhuman performance in sev-
eral challenging domains, such as Atari (Mnih et al., 2015), Go (Silver et al., 2016), and Starcraft
II(Vinyals et al., 2019). The main driver of these successes has been the use of deep neural net-
works, which are a class of powerful non-linear function approximators, with RL algorithms(LeCun
et al., 2015). However, this class of Deep Reinforcement Learning (Deep RL) algorithms require
immense amounts of data within an environment, often ranging from tens to hundreds of millions of
samples(Arulkumaran et al., 2017). Furthermore, commonly used algorithms often have difficulty
in transferring a learned policy between related tasks, such as where the environmental dynamics
remain constant, but the goal changes. In this case, the model must either be retrained completely
or fine-tuned on the new task, in both cases requiring millions of additional samples. If the state
dynamics are constant, but the reward structure varies between tasks, it is wasteful to retrain the entire
model.

A more pragmatic approach would be to decompose the RL agent’s policy such that separate functions
can learn the state dynamics and the reward structure; doing so enables reuse of the dynamics model
and only requires learning the reward component. Successor features (Dayan, 1993) do precisely
this; a model-free policy’s action-value function is expressed as the dot product between a vector of
expected discounted future state occupancies, the successor features, and another vector representing
the immediate reward in each of those successor states. The factorization follows from the formulation
of the reward as the dot product between a state representation vector and a learned parameter vector,
that is a linear product. Therefore, transfer to a new task requires relearning only the reward
parameters instead of the entire model and amounts to the supervised learning problem of predicting
the current state’s immediate reward.

As the reward function of the successor feature framework is linear, it is fair to question whether
the model can always accurately predict the reward. As no assumptions are made about the state
representation, theoretically it is possible to enable perfect recovery of any reward function if given

1

Under review as a conference paper at ICLR 2022

predictive state representation Barreto et al. (2017). The state representation, within the successor
feature framework, is learned end-to-end by a state encoder to perform well in state reconstruction
and reward prediction tasks. The state encoder, given a large enough set of parameters, should have
enough representational power to disentangle the factors that are useful for reward prediction by a
linear model. However, because of how the encoder is trained, its parameters are utilized for both
state reconstruction and reward prediction tasks; while the reward model parameters are only used for
reward prediction. If the encoder learns a sub-optimal state representation for reward prediction, say
because of a highly complex environment, the reward model might be unable to compensate with its
limited set of parameters correctly to predict the reward. Eysenbach et al. (2018) and Hansen et al.
(2019) have shown, within the successor feature framework, that there is no strong guarantee that the
state encoder is always able to learn features that enable accurate modelling of the reward.

In this paper, a novel extension to the successor feature framework is proposed, where the rewards
are modelled with a second-order function. The second-order function, which follows naturally from
the original linear variant, gives a stronger guarantee on performance of the model due to both its
representational structure and extra parameters. This is especially true in cases where the encoder
learns state representations that are less than optimal where a linear model does not have enough rep-
resentational power to compensate. While, in cases where the encoder can learn sufficient represents
for both reconstruction and reward tasks, the second-order function still provides many added benefits.
In particular, the additional parameters of the reward model should lessen the representation load
of the encoder with regards to the reward tasks allowing more of its representational capacity to be
dedicated towards modelling the environment in a task agnostic manner. Further benefits, via a new
term emerging after derivation, include a representational form of environmental stochasticity and
the ability to use directed exploration during transfer instead of relying on a purely random approach
for exploration, such as ε-greedy.

Following this, the contributions of this research are as follows:

• A novel formulation of successor features that uses a second-order reward function. This
formulation increases the representational power of the reward function while decreasing
the representational load on the state encoder providing stronger guarantees on performance.

• Under the new reward formulation, a second term appears that models the future expected
auto-correlation matrix of the state features.

• We provide preliminary results that show the second term can be used for guided exploration
during transfer instead of relying on ε-greedy exploration.

After the introduction of relevant background material in Section 2, we introduce the successor
feature framework with a non-linear reward function in Section 3, Section 4 provides experimental
support and provides an analysis of the new term in the decomposition. The paper concludes with a
final discussion and possible avenues for future work in Section 5.

2 BACKGROUND

2.1 REINFORCEMENT LEARNING

Consider the interaction between an agent and an environment modelled by a Markov decision
process (MDP) (Puterman, 2014). An MDP is defined as a set of states S , a set of actionsA, a reward
function R : S → R, a discount factor γ ∈ [0, 1], and a transition function T : S ×A → [0, 1]. The
transition function gives the next-state distribution upon taking action a in state s and is often referred
to as the dynamics of the MDP.

The objective of the agent in RL is to find a policy π, a mapping from states to actions, which
maximizes the expected discounted sum of rewards within the environment. One solution to this
problem is to rely on learning a value function, where the action-value function of a policy π is
defined as:

Qπ(s, a) = Eπ
[∞∑
t=0

γtR(st)|St = s,At = a

]

2

Under review as a conference paper at ICLR 2022

(a) Model Overview (b) Reward Prediction

Figure 1: Model Overview a) The encoder transforms the raw state into an internal state represen-
tation φt(s). The state representation φt(s) is used by the decoder, Λπ(·, at), and ψπ(·, at). The
decoder tries to reconstruct the raw input st from the state representation φ)t(s). Λπ and ψπ produce
one output per action, with the former predicting matrices and the latter predicting vectors. b) Reward
prediction by dotting the current state φt(s), produced by the encoder, and reward weight w.

where Eπ[. . .] denotes the expected value when following the policy π. The policy is learned using
an alternating process of policy evaluation, given the action-value of a particular policy and policy
improvement, which derives a new policy that is greedy with respect to Qπ(s, a)(Puterman, 2014).

2.2 SUCCESSOR FEATURES

Successor Features (SF) offer a decomposition of the Q-value function and have been mentioned
under various names and interpretations(Dayan, 1993; Kulkarni et al., 2016; Barreto et al., 2017;
Machado et al., 2017). This decomposition follows from the assumption that the reward function
can be approximately represented as a linear combination of learned features φ(s; θφ) extracted by a
neural network with parameters θφ and a reward weight vector w. As such, the expected one-step
reward can be computed as: r(s, a) = φ(s, a; θφ)>w. Following from this, the Q function can be
rewritten as:

Q(s, a) = Eπ
[
rt+1 + γrt+2 + . . . |St = s,At = a

]
= Eπ

[
φ(at+1, st+1; θφ)>w + φ(at+2, st+2; θφ)>w + . . . |St = s,At = a

]
Q(s, a) = ψπ(s, a)> · w

where ψπ(s, a) are referred to as the successor features under policy π. The ith component of ψ(s, a)

provides the expected discounted sum of φ(i)
t when following policy π starting from state s and

action a. It is assumed that the features φ(s; θφ) are representative of the state s, such that ψ(.) can
be turned into a function ψπ(φ(st; θφ), at). For brevity, φ(st; θφ) is referred to simply as φt and
ψπ(s, a) as ψ(s, a).

The decomposition neatly separates the Q-function into two learning problems, for ψπ and w:
estimating the features under the current policy dynamics and estimating the reward given a state.
Because the decomposition still has the same form as the Q-function, the successor features are
computed using a Bellman equation update in which the reward function is replaced by φt:

ψπ(φt, at) = φt + γE
[
ψπ(φt+1, at+1)

]
such that approximate successor features can be learned using an RL method, such as Q-
Learning(Szepesvári, 2009).

Following from this, the approximation of the reward vector w becomes a supervised learning
problem. Often, this weight is learned using ordinary least squares from the sampled environmental
data. One benefit of having a decoupled representation is that only the relevant function must be
relearned when either the dynamics or the reward changes. Therefore, if the task changes, but the
environmental dynamics remain constant, only the reward vector parameters w must be relearned,
which are minimal compared to the total number of parameters in the full model.

3

Under review as a conference paper at ICLR 2022

3 MODEL, ARCHITECTURE, AND TRAINING

A natural extension to the Successor Feature framework begins by adjusting the fundamental structure
of how the reward is represented. In this work, a second-order extension is proposed that improves the
flexibility of the reward function while providing other benefits. This paper shows that by improving
the representational power of the reward component, with a non-linear function of the state, it provides
a stronger guarantee of the framework’s performance in such cases by developing a more robust
reward component.

This section discusses our change to the successor feature framework, which adjusts the reward
function, from a linear function, to a non-linear function. First, a discussion of the new decomposition
is given with the full derivation provided in Appendix A. Then experimental support for this change
will be presented and analyzed to examine what the new term in the decomposition learns.

3.1 NON-LINEAR REWARD FUNCTION

The successor feature framework builds upon functional representation of the current reward rt as
a linear combination of the current state representation φt(s) ∈ Rz and a learned reward vector
w ∈ Rz , such that rt = φt(s)

>w. In this paper we extend the reward model by changing this linear
reward model to one with the following form:

rt = φt(s)
>o + φt(s)

>Aφt(s) (1)

where {φt(s),o} ∈ Rz , and A ∈ Rz×z . Both o and A are learnable parameters modelling the
reward structure of the environment. Equation 1 shows that the formulation introduces a non-linear
transformation with respect to φt(s). From here on, we use φt instead of φt(s) for brevity. With
a slight abuse of notation, we can see the original formulation leads to this if w is replaced with
o+Aφ: rt = φ>(o+Aφ). The state-action value function Q(s, a), under this new reward structure,
can be derived to yield:

Qπ(st, a) = ψπ(st, a)>o + βtr(AΛπ(st, a)) (2)

where β ∈ {0, 1} controls the inclusion of Λ and tr is the trace operator. It can now be shown that ψ
and Λ satisfy the Bellman equation(Bellman, 1966):

ψπ(st, a) = Eπ[φt+1 + γψ(st+1, π(st+1))|St = s,At = a] (3)

Λπ(st, a) = Eπ[φt+1φ
>
t+1 + γΛ(st+1, π(st+1))|St = s,At = a] (4)

where for ψ and Λ, φ and φφ> respectively play the role of rewards. In addition to ψ, it is now
necessary to model Λ, which outputs an Rz×z matrix per action. The quantity φtφ>t can be interpreted
as an auto-correlation matrix of the state features. We can see that this form allows the Λ term to
model some form of future expected stochasticity of the environment. For example, the diagonal of
Λ will model a second order moment capturing each feature’s change with respect to itself φ1. We
provide analysis and further discussion of Λ in Section 4.5.

3.2 MODEL STRUCTURE AND TRAINING

The proposed model, shown in Figure 1a, uses an encoder to produce a state embedding φt consumed
by downstream modelling tasks. Figure 1b shows how the current reward rt is predicted using w,
with w = o + Aφ, and current state representation φt; this process is defined in Equation 1. Similar
to previous work with successor features, the structure includes pathways for an encode-decode task
and successor feature prediction ψ(Machado et al., 2017; Kulkarni et al., 2016; Zhang et al., 2017).
The decoder network ensures that the features learned by the encoder, which produces φ, contain
useful information for prediction. Furthermore, only the gradients from the state-dependent and
reward prediction tasks modify the encoder parameters, and therefore φ. An additional branch is
added, by way of the non-linear reward function, to model the quantity Λ(s, a). This branch’s output
is a matrix, which differs from the vector predicting branches ψ and φ.

1A quantity close to the variance, but not zero mean.

4

Under review as a conference paper at ICLR 2022

The encode-decode task is trained by minimizing the mean squared difference between the input st
and the decoder’s reconstructed version x̂t from φ:

Ld(st; θφ, θ̂φ) = [st − g(φt; θ̂
φ)]2 (5)

where φ is the output of the encoder with parameters θφ and g(·; θ̂φ) produces the output of the
decoder with parameters θ̂φ. As mentioned previously, we train ψ and Λ, parameterized with θψ and
θΛ respectively, using the Bellman equations to minimize the following losses:

Lψ(st, at; θ
ψ) = E[(φ−t + γψ(st+1, a

∗; θ−ψ)− ψ(st, at; θ
ψ))2] (6)

LΛ(st, at; θ
Λ) = E[(φ−t φ

−>
t + γΛ(st+1, a

∗; θ−Λ)− Λ(st, at; θ
Λ))2] (7)

where a∗ = maxa∗ Q(s, a∗). To help stabilize learning, we use lagged versions of θφ, θψ , and θΛ as
done by Mnih et al. (2015); the lagged version is signified with the − symbol in the exponent.

Unfortunately, as the dimensionality of z grows, the number of parameters needed by Λ grows
quadratically. However, by identifying the φtφ>t term in Λ(s, a) as a symmetric matrix, it is possible
to model only the upper triangular portion of the matrix2, requiring about half the number of
parameters. To further reduce parameters, each ψ and Λ pathways have two hidden layers before
their outputs, reflected in Figure 1a. In this way, the parameters are shared amongst pathways, which
contrasts with other works with multiple sets of layers per action a ∈ A (Kulkarni et al., 2016; Zhang
et al., 2017). To learn the reward parameters A and o, which are the parameters of the approximated
non-linear reward function, the following squared loss function is used:

Lr(st;o,A) = [rt − φ>t o− βφ>t Aφt]2 (8)

It does not adjust the feature parameters involved in the prediction of φt. We factorize matrix A to
reduce its parameters, details are provided in Appendix B. Combining our losses, the composite loss
function is the sum of the four losses given above:

L(θφ, θ̂φ, θψ, θΛ,o, A) = Ld + Lψ + βLΛ + Lr (9)

In practice, to optimize Equation 9 with respect to its parameters, (θψ, θΛ) and (θφ, θ̂φ, o,A) are
iteratively updated. Doing so increases the stability of the approximations learned by the model and
ensures that the branches modelling ψ and Λ do not backpropagate gradients to affect θφ(Machado
et al., 2017; Zhang et al., 2017; Kulkarni et al., 2016). Additionally, by training in this way, the
state representation φ can learn features that are both a good predictor of the reward rt and useful in
discriminating between states (Kulkarni et al., 2016).

4 EXPERIMENTS

This section examines the properties of the proposed approach on Axes, a navigation task, on Reacher,
a robotic control task built using the MuJoCo engine (Todorov et al., 2012), and a 3D maze using
the Doom game engine. The environments are shown in Figure 2; they each contain tasks specified
by goal location and are split between training and test distributions, with the exception of Doom.
The environments were chosen as both are similar to tasks in previous work on Successor Features
(Barreto et al., 2017) making comparison easier. The Axes and Reacher environments act as a test-bed
for our method, allowing us to clearly show that the second-order function provides additional
representation capacity to the reward model. To do so, we purposely use a weak encoder, represented
by a single hidden layer, that can only learn a sub-optimal state representation.

Within the Axes and Reacher environments, two variants exist, easy and hard, where each refers
to the difficulty of using the state for reward prediction. In both environments the reward function

takes the form −
√∑C

k (gk − ak)2 where g is the current goal, a is the agent’s perceived location,
and C is the co-ordinate system. For Axes C ∈ {x, y} and C ∈ {x, y, z} for Reacher. In the easy
variant, the state is represented as the distance between the agent and each possible goal within the

2It would still be necessary to manipulate this matrix so that it forms a full matrix.

5

Under review as a conference paper at ICLR 2022

(a) Axes Environment. (b) Reacher Environment. (c) Doom Map. (d) Doom Environment.

Figure 2: Environments a) A graphical representation of the Axes environment. The agent, shown
as a red square, must traverse to various goal locations marked with the letter "G". The eight goal
locations are split between training, shown as blue boxes, and testing, shown as green boxes. b) A
rendering of the Reacher task. The agent controls the robotic Sawyer arm to move the end-effector to
a 3D point in space. The eight goal locations are shown as balls. Training goals as green, and test
goals as red. c) The map layout of the Doom environment. The agent moves between rooms looking
for a goal point. d) Images of the Doom environment.

environment, making reward prediction easily accomplished by using a 1-hot reward vector. The
easy variant is commonly used within other successor feature work Barreto et al. (2017). While, in
the hard variant, the state is simply the location of the agent and the location of the current goal.
Therefore, as the reward involves non-linear functions, a square root and square powers, and the
linear variant will have trouble modelling the reward of the hard environments with a sub-optimal
state representation. The Axes and Reacher environments act as a test-bed to examine the various
properties of the second-order function and to show its utility in a controlled environment while
examining the properties the second-order extension offers.

To demonstrate the general applicability of our proposed model to complex environments, we evaluate
it on a 3D navigation task in the Doom environment from raw pixels3. This task is challenging as
the model must learn a state representation that is adequate for both reward prediction and use in the
successor feature branch from raw pixels.

The primary set of experiments examined the performance between the proposed model and baselines
over the training distribution tasks. As transfer to related tasks is a core benefit of the Successor
Feature framework, we also evaluate how well the models transfer to unseen tasks from the test
distribution on the Axes and Reacher environments. Next, we move to understand the new Λ term
that appears after derivation of our proposed model. We examine the learned Λ function to understand
if it captures environmental stochasticity and evaluate different guided exploration strategies using
the Λ term on new tasks.

4.1 ENVIRONMENTS

Additional details of each environment are provided in Appendix C.

Axes: In this environment, shown in Figure 2a, the agent, shown by the red square, must traverse the
map to reach a goal location using four actions: up, down, left, and right. The agent receives a reward
equal to the negative distance between itself and the target goal at each step. In the easy variant the
state st is a set of distance between the agent and all available goals, such that st ∈ R8. While in
the hard variant, the state st is the agent’s and the current active goal’s 2D coordinates, such that
st ∈ R4.

Reacher: The second environment is a control task defined in the MuJoCo physics engine (Todorov
et al., 2012), shown in Figure 2b. This environment was chosen to show that the proposed method
can scale to difficult control tasks. In this environment, the agent must move a simulated robotic arm
to a specific 3D point in space by activating four torque controlled motors. In the easy variant the
state st is a set of distance between the agent and all available goals, such that st ∈ R8. While in the
hard variant, the state st is the agent’s and the current active goal’s 2d coordinates, such that st ∈ R4.

3Figures used with permission from the author Kulkarni et al. (2016)

6

Under review as a conference paper at ICLR 2022

Axes Reacher
Easy Hard Easy Hard

Model Train Transfer Train Transfer Train Transfer Train Transfer
Random -3.43 -3.43 -3.43 -3.43 -78.48 -78.48 -78.48 -78.48

Linear SF -1.28 -1.29 -1.58 -1.6 -6.29 -6.25 -10.25 -10.15
Second-Order SF -1.3 -1.45 -1.33 -1.31 -6.31 -6.33 -6.87 -7.29

Figure 3: Performance in the Axes and Reacher environments during training and transfer over
the last 1000 steps. Both variants are able to solve the easy environment with essentially equal
performance. In the hard environment the second-order model has higher performance than the linear
model, and is much closer to the easy variants score.

Doom: In this environment, shown in Figure 2 (right), the agent must navigate between 4 rooms
trying to collect an item from one of the rooms after which the episode ends. We use the same map
as (Kulkarni et al., 2016) but with a slightly different environmental setup, which is detailed in the
Appendix. The agent receives a small negative reward per step and a large reward when it picks up
the goal item.

4.2 EXPERIMENTAL SETUP

The agent is trained on a randomly sampled training tasks; then, during testing, we change to a
unseen task. A single policy π is trained over all tasks. During transfer to unseen tasks, the model
re-learns only the reward parameters, with the remainder of the model frozen (Zhang et al., 2017;
Kulkarni et al., 2016). The newly learned policy will vary from the original but is able to exploit
previously learned environment knowledge for the new tasks. The training and testing methodology
is identical to those used in previous studies (Barreto et al., 2017). A uniform random action baseline
was considered in all environments to act as a floor.

Within the Doom environment, we are simply interested in the performance between the second-order
model and that of the linear baseline. Therefore, we do not use a train and test split in this environment
but instead rely on the randomness of the item and agent spawn locations.

Our method is compared against the successor feature framework with a linear reward model; the
architecture is similar to that of Kulkarni et al. (2016). This baseline is identical in all ways to the
second-order model except for the exclusion of terms containing Λ, specifically Equations 2 and 9,
which can be obtained by setting β = 0. More exactly, the linear baseline and our proposed model
use the exact same code with only the β and z hyperparameters adjusted.

In all environments we adjust the dimension of the latent representation of φt to ensure that the
second-order variant has less than or equal parameters to that of the linear variant. This ensure that
the performance from the second-order variant is not from the additional parameters alone. In both
the Axes and Reacher environments, the linear variant uses a hidden dimensionality of 24 while the
second-order variant has 8. In the Axes, the linear model has 5, 704 parameters and the second-order
model has 2, 100 parameters. While, within the Reacher environment this led to 16, 710 and 7, 318
total parameters for the linear and second-order variants, respectively.

In the case of the Doom environment, to again ensure that the performance of the second-order
variant is not due to additional parameters, the linear model uses a large three layer convolutional
encoder and the second-order model uses a much smaller two layer encoder. This leads to a total
of 343M and 276M parameters for the linear and second-order models, respectively. Each model’s
mean performance is reported on all plots as the average over three runs with varied seeds. Each plot
includes the standard deviation over all runs as a shaded area. Additional details can be found in
Appendix D.

4.3 ENVIRONMENT PERFORMANCE

The primary point of comparison was between the proposed method and the original formulation of
the successor feature framework, which can be recovered exactly by setting β = 0 in Equations 2
and 9 of the proposed model. The result of these experiments are shown in Table 3 for both Axes and

7

Under review as a conference paper at ICLR 2022

Reacher. In both environments, we see that the easy task is solved by both the linear and second-order
variants. This is expected as the reward, in the case of the linear variant, can be exactly recovered by
using a 1-hot encoded reward vector and even with a weaker state representation the linear reward
model has enough capacity to compensate. However, we see this is not true in the hard task, as the
linear variant has weaker performance when compared to the second-order model.

Figure 4: Performance of the baseline linear vari-
ant and our proposed second-order model in the
Doom environment.

Clearly, the second-order variant provides extra
representational capacity to the reward model
such that it can compensate on its own for a
non-ideal state representation – which is shown
by the greater performance on the hard tasks.
The linear variant, is not able to appropriately
model the environments reward structure as the
reward is a non-linear function of the state; in
this case, the agent’s coordinates and the current
goal location.

From the result within the Doom environment,
shown in Figure 4, we can see that our proposed
model is clearly able to out perform the base-
line successor feature implementation. Not only
does our proposed method is near the ceiling
performance of the environment, it converges
rapidly. In comparison, the baseline method
fails to achieve similar performance and also
converges at a much slower rate. From the dif-
ference in learning curves we can conclude that
the extra representational power of the reward model has a drastic impact on performance. As both
variants have roughly equal parameters, with the linear variant containing more, it can be conclude
that the extra representational power is of better use in the reward component of the model instead of
the encoder.

4.4 TASK TRANSFER

An important property of the successor feature framework is the ability to adapt rapidly to new tasks
within the same environment. Adaption, or transfer, is accomplished by freezing the model’s state-
dependent components, such as ψ, and quickly learning just the reward parameters w. Specifically,
we minimize Lr(st;o,A) = [rt − φ>t o + βφ>t Aφt]

2, of Equation 8, with respect to the parameters
o and A only. Similarly, after training the models to convergence, we change the task distribution
within the environment. During transfer, we scaled the learning rate by a fixed factor, randomly
initialize the learned weights, and re-decay the ε value so the method has a chance to explore. Full
details are provided in Appendix E. The results during transfer on both environments are provided in
Table 3.

(a) Half-random Axes. (b) Visualization Of Λ.

Figure 5: Visualization of Lambda Function on half-random Axes. a) The half-random variant of
Axes. b) The learned expected future correlation of one feature with itself along Λ’s diagonal is
visualized over the entire state space. The first column is the max value of Λ over the actions. The
remaining columns, from left to right, correspond to each action: left, up, right, and down. Red and
blue correspond to maximal and minimal values.

8

Under review as a conference paper at ICLR 2022

4.5 MODELLING ENVIRONMENTAL STOCHASTICITY

This section examines the Λ function to determine whether it can capture stochasticity in the environ-
ment in the Axes environment. We use a modified version, referred to as half-random and shown in
Figure 5a, which is identical in all aspects to the base version except for a location-based conditional
that affects the agent’s actions. If the agent is within the positive x quadrant of the map, x > 0,
then actions are randomly perturbed with a fixed probability. Otherwise, they are fully deterministic.
After training to convergence on the half-random variant, we examine the Λ function that the model
has learned. Because the Λ function is modelling the auto-correlation matrix, the future expected
correlation of each feature with itself is found by looking along the diagonal. Figure 5b shows the
result of plotting a diagonal value, in this case, feature (1, 1), of the Λ-matrix over the entire state
space. We can see that one of the diagonal components of Λ did indeed learn to approximately model
the conditional random field within the environment.

4.6 GUIDED EXPLORATION WITH Λ

Here we examine whether it is possible to use the Λ-function for guided exploration during transfer
within the Axes and Reacher environments.

The Successor Features, given in Equation 2, can be interpreted as predicting the future expected
path taken by the policy π in an environment. Under this interpretation, ψ can be seen as capturing
the expected features of the states and Λ the expected variance between state features along these
pathways. Adding noise to the Λ component would then perturb around the expected path. Therefore,
instead of using ε-greedy exploration, it is possible to add noise to Λ during transfer, such that
Λ̂(s, a) = Λ(s, a) + εΛ(s, a), where ε is sampled from some distribution. During learning, the
variance of the sampling distribution, controlled by α, can be annealed to some final value. The actions
are then sampled from the model at time t as: at = argmaxa∗

{
ψ(st, a

∗)>o+ tr(AΛ̂(st, a
∗))
}

.

From Figure 6, we see that using Λ for guided exploration is indeed a possible alternative to ε-greedy.
Additionally, we found that using a scalar value sampled from uniform noise, that is ε ∼ U(−α, α)
where ε ∈ [−α, α], provides the best performance.

(a) Axes Environment. (b) Reacher Environment.

Figure 6: Guided Exploration: The Λ component of the proposed model is used to guide exploration
during transfer. By using Λ the agent explores in directions with large variance in the state space.

5 CONCLUSION & FUTURE WORK

In this paper, we have derived a novel formulation of successor features with a non-linear reward. We
have shown that the agent can perform well with a second-order reward structure, providing extra
flexibility to the reward model. Further, we have shown the utility of the Λ term that appears in the
derivation of the new state-action function. Experimentally, we have shown that the Λ term is able
to capture the stochastic nature of an environment and can be used for directed exploration during
transfer. In future work, we aim to explore the Λ function deeply and if a formulation exists that
learns the future expected variance.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. A brief
survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in neural
information processing systems, pp. 4055–4065, 2017.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural Computation, 5(4):613–624, 1993.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus Rohrbach.
Multimodal compact bilinear pooling for visual question answering and visual grounding. arXiv
preprint arXiv:1606.01847, 2016.

Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and
Volodymyr Mnih. Fast task inference with variational intrinsic successor features. arXiv preprint
arXiv:1906.05030, 2019.

Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep successor
reinforcement learning. arXiv preprint arXiv:1606.02396, 2016.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. arXiv preprint
arXiv:1710.11089, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Csaba Szepesvári. Algorithms for reinforcement learning. 2009.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
arXiv preprint arXiv:1910.10897, 2019.

Zhou Yu, Jun Yu, Jianping Fan, and Dacheng Tao. Multi-modal factorized bilinear pooling with
co-attention learning for visual question answering. In Proceedings of the IEEE international
conference on computer vision, pp. 1821–1830, 2017.

10

Under review as a conference paper at ICLR 2022

Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker, and Wolfram Burgard. Deep rein-
forcement learning with successor features for navigation across similar environments. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2371–2378.
IEEE, 2017.

11

Under review as a conference paper at ICLR 2022

APPENDIX

A NON-LINEAR REWARD DERIVATION

Here we provide the derivation for the non-linear reward in the successor framework. First, we start
by assuming the reward rt has the following form:

rt = φ>t o + φ>t Aφt (10)

where {φt,o} ∈ Rz×1, and A ∈ Rz×z and both o and A are learnable parameters. Following
from the definition of the state-action value function Q(s, a), the adjusted reward function can be
substituted to yield:

Qπ(s, a) = Eπ[rt+1 + γrt+2 + . . . |St = s,At = a] (11)

= Eπ[φ>t+1o + φ>t+1Aφt+1 + γφ>t+2o + γφ>t+2Aφt+2 + . . . |St = s,At = a] (12)

Dropping the conditional portion of the expectation for brevity, linearity of expectation can be used
to split apart the terms containing A and o. Then o is pulled out from the first term:

= Eπ[φ>t+1o + γφ>t+2o + . . .] + Eπ[φ>t+1Aφt+1 + γφTt+2Aφt+2 + . . .] (13)

= Eπ[φt+1 + γφt+2 + . . .]>o + Eπ[φ>t+1Aφt+1 + γφ>t+2Aφt+2 + . . .] (14)

By recognizing the first expectation term as the successor features ψ(s, a), Equation 14 can be
rewritten as

= ψπ(s, a)>o + Eπ[φ>t+1Aφt+1 + γφ>t+2Aφt+2 + . . .] (15)

Because φ>Aφ results in a scalar, the trace function tr(·) can be used inside the right-hand term:

= ψπ(s, a)>o + Eπ[tr(φ>t+1Aφt+1) + tr(γφ>t+2Aφt+2) + . . .] (16)

By exploiting the fact that tr(AB) = tr(BA), the terms inside the trace function can be swapped to
yield:

= ψπ(s, a)>o + Eπ[tr(Aφt+1φ
>
t+1) + tr(γAφt+2φ

>
t+2) + . . .] (17)

Because both tr(·) and A are linear, they can be pulled out of the expectation, giving:

= ψπ(s, a)>o + tr(Eπ[Aφt+1φ
>
t+1 + γAφt+2φ

>
t+2 + . . .]) (18)

= ψπ(s, a)>o + tr(AEπ[φt+1φ
>
t+1 + γφt+2φ

>
t+2 + . . .]) (19)

Finally, the remaining expectation can be expressed as a function:

Qπ(s, a) = ψπ(s, a)>o + βtr(AΛπ(s, a)) (20)

β ∈ {0, 1} is a hyperparameter that controls the inclusion of the non-linear component. We define
ψπ and Λπ as:

ψπ(s, a) = Eπ[φt+1 + γψ(st+1, π(st+1))|St = s,At = a] (21)

Λπ(s, a) = Eπ[φt+1φ
>
t+1 + γΛ(st+1, π(st+1))|St = s,At = a] (22)

12

Under review as a conference paper at ICLR 2022

B A MATRIX FACTORIZATION

Similar to Λ, as the dimensionality of z increases, so does the number of parameters needed for
modelling matrix A ∈ Rz×z . Therefore, in the interest of reducing the number of parameters we
use a factorization that splits the matrix A ∈ Rz×z into two parts with a smaller inner dimension
f , A = L ·R>, where {L,R} ∈ Rz×f . By factoring the matrix in this way, we require 2× z × f
parameters instead of z × z. If we use values for f smaller than z

2 , we reduce the number of
parameters required by matrix A. A similar factorization was suggested in the context of visual
question answering (Yu et al., 2017; Fukui et al., 2016). The factorization of A was primarily done
to reduce the total number of parameters in our model.

C ENVIRONMENTS

C.1 AXES

Within this environment eight separate goal locations exist split between train and test distributions.
We used a modified version of the robotic model provided by Metaworld (Yu et al., 2019). An
episode ends when either the agent reaches the goal or more than 25 steps have elapsed. The agent’s
starting location is randomly sampled from a grid of 3× 3 step units, centered at (0, 0).

With this state space the agent must learn a reward function that can approximate the distance between
itself and the goal location, d(a, b) =

√
(bx − ax)2 + (by − ay)2, a non-linear function.

C.2 REACHER

Similarly to Axes, the environment has predefined tasks split between training and test distributions,
with the eight goals shown in Figure 2b as green and red balls, respectively. In the Reacher environ-
ment, an episode ends when 150 steps have elapsed or the agent is within 7cm of the goal. The agent
receives a reward equal to the negative distance between the end-effector and the current target goal
at each step.

We discretize the actions such that the agent has nine discrete actions that control the arms movements.
Because the models can be used only with discrete actions, it was necessary to transform the
environmental actions. Therefore, the four-dimensional continuous action space A was discretized
using two values per dimension: the maximum positive and maximum negative torque for each
actuator. An all-zero option was included that applies zero torque along all actuators, resulting in a
total of nine discrete actions.

C.3 DOOM

In the Doom environment the agent must traverse between four rooms looking for a goal. The rooms
are separated by doors that the agent must manually open. At each step the agent receives a small
negative reward of -0.01 and upon finding the goal it receives +50. The agent perceives the state and
the 4 stacked frames of RGB frames of shape (3, 84, 84), corresponding to color channels, width,
and height. The agent has 4 actions available: forward, rotate left, rotate right, and activate door. We
use an action repeat of 5 across all actions, which differs from the original implementation that used
selective action repeat.

D EXPERIMENTS

Within both the Axes and Reacher environment, ε-greedy was annealed from 1.0 to a final over the
first 250k steps.

In the Axes and Reacher environments the encoder and decoder each respectively contain one and
two hidden layers with an embedding size equal to the double the raw state size. Initially, on the
Axes environment, the models all used the raw features with no encoder such that φt = I(st). We

13

Under review as a conference paper at ICLR 2022

found this led to worse performance for the linear model as it now had no chance to learn a suitable
encoding of the features for reward prediction. Both ψ and Λ increase the hidden dimension z by a
fixed factor before output. This factor zfactor depends on the environment. All environments used a
discount factor of γ = 0.99, λ = 0.1, and updated the parameters every 25k steps.

D.1 AXES

An embedding size of z = 8 was used for the second-order model and z = 24 for the linear model in
the Axes environment. The final value used in ε-greedy was 0.1 with a learning rate of α = 2.5e− 4
was used. The encoder and decoder in this environment were a single fully connected layer with the
same embedding size z.

D.2 REACHER

An embedding size of z = 8 was used for the second-order model and z = 24 for the linear model in
the Reacher environment. The final value used in ε-greedy was 0.05 with a learning rate of α = 5e−4
was used. The encoder and decoder in this environment were a single fully connected layer with the
same embedding size z.

D.3 DOOM

An embedding size of z = 512 was used for the linear model and z = 256 for the second-order
model. A encoder network with 3 layers of convolutional layers with hyperparameters (3c, 32o, 8s),
(32c, 64o, 4s), and (64c, 64o, 3s) where c is the number of incoming "channels", o is the number of
filters, and s is the filter size. The corresponding decoder had 5 layers of transposed convolutional
layers: (64c, 256o, 4s), (256c, 128o, 4s), (128c, 64o, 4s), (64c, 32o, 4s), and (32c, 3o, 3s).

While the second-order variant used 2 layer convolutional encoder with: (3c, 16o, 8s), (16c, 32o, 4s).
And a corresponding convolutional decoder with 2 layers: (32c, 16o, 4s) and (16c, 3o, 8s).

E TRANSFER

During transfer we reinitialize the reward specific parameters A and o to constant values of 0.1. All
other model parameters are held frozen and do not change. The learning rate is increased by a factor
of 2× on the Axes and Reacher environments. We anneal the exploration parameter from 1 to 0.1 in
Axes and to 0.05 on the Reacher environments over the first 200k steps.

14

	Introduction
	Background
	Reinforcement Learning
	Successor Features

	Model, Architecture, and Training
	Non-linear Reward Function
	Model Structure and Training

	Experiments
	Environments
	Experimental Setup
	Environment Performance
	Task Transfer
	Modelling Environmental Stochasticity
	Guided Exploration With L

	Conclusion & Future Work
	Non-linear Reward Derivation
	A Matrix Factorization
	Environments
	Axes
	Reacher
	Doom

	Experiments
	Axes
	Reacher
	Doom

	Transfer

