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Abstract

Understanding cognitive processes in multi-agent
interactions is a primary goal in cognitive science.
It can guide the direction of artificial intelligence
(AI) research toward social decision-making in
heterogeneous multi-agent systems. In this paper,
we introduce episodic future thinking (EFT) mech-
anism of a reinforcement learning (RL) agent by
benchmarking the cognitive process of animals.
To achieve future thinking functionality, we first
train a multi-character policy that reflects hetero-
geneous characters with an ensemble of heteroge-
neous policies. An agent’s character is defined
as a different weight combination on reward com-
ponents, thus explaining the agent’s behavioral
preference. The future thinking agent collects
observation-action trajectories of the target agents
and uses the pre-trained multi-character policy to
infer their characters. Once the character is in-
ferred, the agent predicts the upcoming actions
of the targets and simulates the future. This ca-
pability allows the agent to adaptively select the
optimal action, considering the upcoming behav-
ior of others in multi-agent scenarios. To evaluate
the proposed mechanism, we consider the multi-
agent autonomous driving scenario in which au-
tonomous vehicles with different driving traits
are on the road. Simulation results demonstrate
that the EFT mechanism with accurate character
inference leads to a higher reward than existing
multi-agent solutions. We also confirm that the ef-
fect of reward improvement remains valid across
societies with different levels of character diver-
sity.
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1. Introduction
Understanding how humans make decisions under multi-
agent interactions is a significant research topic in cognitive
science. It becomes a critical clue to designing the inter-
actions between heterogeneous AI agents in multi-agent
systems. Several studies have demonstrated that humans
learn from past experiences and also imagine counterfactual
or future scenarios to make better decisions (Lynch et al.,
1991; Redish & Mizumori, 2015; Jern et al., 2017). The
counterfactual thinking, i.e., the ability to simulate alterna-
tive consequences of the last episode, is widely studied in
multi-agent RL (MARL) (Oberst & Sontag, 2019; Foerster
et al., 2018; Byrne, 2019). However, the episodic future
thinking (Schacter et al., 2015), i.e., the ability to anticipate
future episodes, is rarely considered in the literature despite
its essential for handling multi-agent interactions.

We, as human beings, strive to avoid costly mistakes by
contemplating the upcoming situation. To incorporate this
functionality into AI, a naive solution would be leveraging
a single-step prediction based on model-based RL (Janner
et al., 2019; Lai et al., 2020; Mehta et al., 2022; Sutton, 1991;
Lin et al., 2022; Xu et al., 2021). However, the model-based
RL approaches assume that the state transition model is
known or easily learnable. Such an assumption is untenable
in the multi-agent system. This limitation originates from
the fact that the state transition model relies not only on the
agent’s state-action pairing but also on other agents’ action
combinations. The subsequent state could considerably vary
depending on the action combinations of others, even for a
given state-action pair of the agent. As the number of agents
increases, the number of possible action combinations of
all agents grows exponentially, making it infeasible to learn
the state transition model in a sizeable multi-agent system.
Therefore, it would be more appropriate to use model-free
RL in multi-agent systems such that the agent learns the
policy without explicit knowledge of the state transition
model.

We aim to build the EFT mechanism for model-free RL
agents to make optimal decisions in a heterogeneous society
where agents exhibit diverse characteristics. We formal-
ize this task as a Multi-agent Partially Observable Markov
Decision Process (MA-POMDP), a framework to address
the RL problem that multiple agents behave under partial
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observation (Oliehoek, 2012; Sutton & Barto, 2018). In this
study, we define the character by reflecting the behavioral
preferences of the RL agent. In a driving scenario, for exam-
ple, some drivers pursue safety as a top priority, but others
prioritize their speed. These behavioral preferences can be
parameterized by assigning weights to reward components
(e.g., high weight on the safety component and low weight
on the speed component of the reward function versus high
weight on the speed and low weight on the safety). There-
fore, each character has a different reward function, leading
to heterogeneous policies and behavior patterns in society.

Creating the EFT-based decision-making agent necessitates
two functional modules: a multi-character policy and a char-
acter inference module. The initial step is constructing a
multi-character policy embedding behavioral patterns cor-
responding to the characters. To facilitate practicality, we
permit the agent to observe continuous state information
partially. We also train the policy to handle a hybrid action
space consisting of discrete and continuous, which cannot
be tackled with a naive deployment of existing RL algo-
rithms. The character inference module is built leveraging
the core idea of the inverse rational control (IRC) (Kwon
et al., 2020). This module infers the target agent’s characters
by maximizing the log-likelihood of the target’s observation-
action trajectories. This work extends the accessibility of
the IRC from the continuous to the hybrid action space. The
agent is finally equipped with the EFT functionality that
can predict the upcoming actions of the surrounding agents,
combining two modules.

To perform the EFT mechanism, the agent first plays the role
of an observer, i.e., it collects observation-action trajectories
of target agents. Using the character inference module and
the collected trajectories, the agent infers the target agents’
characters. Subsequently, the agent predicts the actions
of the others leveraging the inferred characters and multi-
character policy, then simulating its future observation. In
this mental simulation, the agent’s action is fixed as ‘no
action.’ Only target agents take the predicted actions. This
allows the agent to estimate the observation at the time point
when all target agents have taken actions, but the agent still
needs to (i.e., has yet to). Finally, the agent selects the best
action corresponding to the estimated future observation.
To sum up, the EFT mechanism allows the agent to behave
proactively under heterogeneous multi-agent interactions.

Summary of contributions:

• We introduce character diversity in a multi-agent sys-
tem by parameterizing the reward function. We pro-
pose to build the multi-character policy and allow the
agent to be equipped with it to infer the character of
the target agent (Section 3).

• We propose the EFT mechanism as a model-free predic-

tion approach in that the agent with the multi-character
policy predicts the future actions of others, simulates
the corresponding future observation, and performs
foresighted action selection. This mechanism enables
the agent to consider the multi-agent interactions in the
decision-making process (Section 4).

• We verify the proposed mechanism by increasing char-
acter diversity in society. Extensive experiments con-
firm that the proposed mechanism enhances group re-
wards no matter how high a character diversity level
exists in society. (Section 5).

2. Related Works
Episodic Future Thinking. Cognitive neuroscience aims
to understand how humans use memory in decision-making.
Interestingly, the trend of the brain’s regional neural acti-
vation regarding counterfactual reasoning (i.e., simulating
alternative consequences of the last episode) and future
thinking (i.e., simulating episodes that may occur in the fu-
ture) is similar (Schacter et al., 2015). In (Thorstad & Wolff,
2018), the authors study the relationship between future
thinking and decision-making and confirm that humans per-
form future-oriented decision-making. The decision-making
abilities, such as strategy formulation, are also significant
in scenarios that require multi-agent interactions, e.g., so-
cial decision-making. Several prior studies have proposed
methods to anticipate the action of other agents and the
next state (Yasdi, 1999; Pan et al., 2013; Yang et al., 2021).
In (Yasdi, 1999) and (Pan et al., 2013), the authors fore-
cast the next state, not the behavior of each agent, from a
macroscopic standpoint. In (Yang et al., 2021), the authors
predict the behavior of an agent through a deep Bayesian net-
work considering the dynamics and the previous surround-
ing environment information. Even though these studies
can infer future information, no strategy formulation is sug-
gested. Similarly, interactive POMDP-based research (Han
& Gmytrasiewicz, 2019; Doshi et al., 2020; Schwartz et al.,
2022) predict the action of other agents and make a decision
adaptively. Still, it does not contemplate the future state
or is addressed by model-based RL and dynamic program-
ming, which requires a known dynamic model. All these
approaches naively establish the strategy without consider-
ation of the surrounding agents’ upcoming actions and the
next state. In this study, we propose the ETF mechanism can
predict future observations based on the current state and
predicted actions of surrounding agents. Consequently, the
agent equipped with this mechanism can select a foresighted
action corresponding to the anticipated future observation.

False Consensus Effect. The psychologist found that hu-
mans have a cognitive bias to assume their character, belief,
and actions are relatively widespread throughout the gen-
eral population (Folli & Wolff, 2022; Engelmann & Strobel,
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2000; 2012). This is referred to as the False Consensus
Effect (FCE) (Dawes, 1989; Marks & Miller, 1987; Ross
et al., 1977). Recent research suggests that AI may adopt
false beliefs (Rabinowitz et al., 2018). To highlight the im-
portance of character inference in heterogeneous scenarios,
in this paper, we compare the performance of the EFT mech-
anism with two types of agents; one is the proposed agent
which is equipped with the character inference module. The
other one is the FCE-based agent which assumes that target
agents have the same character as the agent.

Machine Theory of Mind. Human beings make decisions
in the social context by considering multiple perspectives
of others, including emotions and personalities. This ca-
pacity is known as the Theory of Mind (ToM) in cognitive
science (Premack & Woodruff, 1978; Baron-Cohen, 1997;
Langley et al., 2022). The ToM is primarily related to de-
ducing internal models of others and secondarily predicting
the future action of others. Research to provide AI with this
capability, which can impact its stability and performance,
gets the spotlight, e.g., machine ToM (Rabinowitz et al.,
2018), inverse learning (Ng et al., 2000; Ratliff et al., 2006;
Dvijotham & Todorov, 2010), and Bayesian ToM (Lucas
et al., 2014). All these approaches aim to reconstruct the
target agent’s belief, reward function, or dynamic model by
leveraging its trajectories. To elaborate, the machine ToM is
a meta-learning strategy for learning the reasoning method
explicitly and can be used for prediction and AI-human col-
laboration. However, these methods have a general purpose
problem regarding the target setting and application space.
The IRC has mitigated the former, but the regulation of ac-
tion space still needs to be resolved. In this work, we adopt
the IRC and extend the action space from the continuous to
the hybrid.

Model-based Reinforcement Learning. The model-based
RL uses the system dynamic model, and model-free RL does
not explicitly consider it. Model-based RL can be again
classified into two approaches. One approach is to assume
that the agent knows the dynamic model, and the other is
for the agent to learn the dynamic model in the training
process (Janner et al., 2019; Lai et al., 2020; Moerland
et al., 2023). In model-based RL, the agent can predict
future states based on an understanding of dynamic models
and use it for single and multiple-step prediction (Sutton,
1991; Lin et al., 2022; Xu et al., 2021). These tasks can
work on the single agent scenario, assuming the agent can
observe complete state information. However, if the agent
can only observe partial noisy information on the state, it is
challenging to ascertain the dynamic model. Additionally,
building the dynamic model in a multi-agent scenario is
extremely complicated because the state transition depends
not only on the state-action pair of the agent but also on the
action combinations of others. The prediction-based MARL
studies (Marinescu et al., 2017), a representative example of

Figure 1. A block diagram of an agent i with a multi-character
policy. The agent can infer the character of others by using the
maximum likelihood estimation.

model-free prediction, do not consider the behavior of other
agents but only predict sequential changes of the state in a
non-stationary environment. To overcome the limitations,
this work introduces the single-step prediction for model-
free RL.

3. Character Inference Using Multi-character
Policy

We aim to build an agent to make optimal decisions un-
der multi-agent interactions. It requires the agent to be
able to anticipate the near future by predicting other agents’
actions. The agent should possess the ability to infer the
others’ characters, leveraging observation of their behaviors.
Accurate character inference is a prerequisite for the EFT
mechanism since the character is a crucial clue to predicting
future action. Therefore, this section proposes two func-
tional modules for character inference: a multi-character
policy and character inference. An illustrative explanation
of these functionalities is presented in Figure 1.

3.1. Problem formulations for multi-agent
decision-making

We consider multi-agent scenarios where RL agents adap-
tively behave to each other. All agents have to make
decisions and execute actions simultaneously, unlike the
extensive-form game (Roth & Erev, 1995; Owen, 2013) in
which the agents alternate executing the actions.

The multi-agent decision-making problem
can be formalized as a MA-POMDP M =
hE,S, {Oi}, {Ai}, T , {⌦i}, {Ri}, �ii2E that includes
an index set of agents E = {1, 2, · · · , N}, continuous
states st 2 S, continuous observations ot,i 2 Oi,
hybrid actions at,i = {a

c
t,i, a

d
t,i} 2 Ai, where

continuous action a
c
t,i 2 A

c
i and a discrete action

a
d
t,i 2 A

d
i = {w : |w|  W, w 2 Z, W 2 N}, where

the size of discrete action space is |A
d
i | = 2W + 1,

Z denotes the set of integers, and N denotes the set
of natural numbers. Let A := A1 ⇥ A2 ⇥ · · · ⇥ AN .
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Subsequently, T : S ⇥ A ! S is the state transition
probability; ⌦i : S ! Oi is the observation probability;
Ri : S ⇥ Ai ⇥ S ! R denotes the reward function that
evaluates the agent’s action at,i for a given state st and the
outcome state st+1; � 2 [0, 1) is the temporal discount
factor.

An unordered set of the actions of all agents at time t is
denoted as

at = hat,iii2E (1)
= hat,1, · · · , at,i, · · · , at,N i = hat,i,at,�ii

where subscript �i represents the indices of all agents in E

except i. Thus, at,�i = hat,1, · · · , at,i�1, at,i+1 · · · , at,N i

represents a set of all agents’ actions at time t without
at,i. The state transition probability denotes T (st+1|st,at).
Note that state transition is based on the action combination
of all agents at, and not on the action of a single agent at,i.

Next, ci = {ci,1, ci,2, · · · , ci,K} 2 C 2 RK denotes
a K-dimensional character vector for the agent i. Char-
acter ci can parameterize the reward function of the
agent i, i.e., Rt,i = Ri(st, at,i, st+1; ci). The agent
aims to learn the optimal policy that returns the opti-
mal action a

⇤
t,i ⇠ ⇡

⇤(·|ot,i; ci) given observation and
character. Specifically, the objective of the agent aims
to maximize the expected discounted cumulative reward
J (⇡) = E⇡

hP
t �

t
Ri(st, at,i, st+1; ci)

i
by building the

best policy ⇡. This defines the state-action value func-
tion Q

⇡(s, a; ci) = E⇡

hP
t �

t
Ri(st, at,i, st+1; ci)|s0 =

s, a0 = a

i
. In the next section, we discuss the details of

the multi-character policy in terms of neural network design
and its training.

3.2. Training a multi-character policy

The multi-character policy includes inputs in continuous
space (e.g., observation ot,i and character ci) and outputs in
hybrid space (e.g., action at,i). To build the policy gen-
eralized over continuous space, actor-critic architecture
is used. It approximates the policy ⇡�(·|ot,i; ci) and Q-
function Q✓(ot,i, at,i; ci), where � denotes parameters of
the actor network and ✓ denotes the parameters of the critic
network.

The loss functions used to train the actor and critic net-
works are L(�) = �

P
Q✓(ot,i, ⇡�(·|ot,i; ci)), and L(✓) =P

(y �Q✓(ot,i, ⇡�(·|ot,i; ci)))2, respectively. Herein, y =
Rt,i + Q✓0(ot+1,i, ⇡�0(·|ot+1,i; ci)) represents the Tempo-
ral Difference (TD) target, where ✓

0 and �
0 denote the target

networks.

Next, we propose a post-processor g(·) to handle hybrid
action space. Let a proto-action ā

d
t,i be the output of the

actor-network. The post-processor g(·) performs quantiza-

Algorithm 1 Multi-character policy training
Initialization: Actor-network �, critic network ✓

Require: Total episode K, total time steps per episode
T , discrete action space parameter W , agent i

for episode k = 1, K do
Reset s1 and get o1,i ⇠ ⌦i(·|s1)
Sample character ci ⇠ C

for timestep t = 1, T do
Get proto-action {a

c
t,i, ā

d
t,i} ⇠ ⇡�(·|ot,i; ci)

Get post-action
a

d
t,i  g(ād

t,i, W )

Execute at,i = {a
c
t,i, a

d
t,i}, Update st+1

Receive Rt,i, Get ot+1,i ⇠ ⌦i(·|st+1)
Calculate L(�),L(✓), Update �, ✓

end for
end for
return �, ✓

Algorithm 2 Character inference module
Require: Trained actor network �, length of trajectories
T , observation-action trajectories o1:T,j , {a

c
1:T,j , a

d
1:T,j},

and initial c ⇠ C, target agent j

repeat
Reset U(c) = 0
for t = 1, T do
U(c) U(c)+ln ⇡(ac

t,j |ot,j ; c)+ln ⇡(ad
t,j |ot,j ; c)

end for
Update c c + ↵rcU(c)

until c converges
return ĉj  c

tion process by discretizing the continuous proto-action ā
d
t,i

into discrete post-action a
d
t,i, i.e.,

a
d
t,i = g(ād

t,i, W )

= min
⇣j2W + 1

2W

✓
ā

d
t,i +

W

2W + 1

◆k
, W

⌘
, (2)

where b·c denotes a floor function. The derivation of (2) is
presented in Appendix D.

We summarize the multi-character policy training process
in Algorithm 1. In the next subsection, we introduce the
character inference module that infers the characters of other
agents.

3.3. Inferring character of target agent

After completing the training on the multi-character policy,
our next objective is to infer the character cj of the target
agent j 2 E. The agent first collects observation-action tra-
jectories of the target for character inference. Subsequently,
it utilizes the multi-character policy to identify the charac-



How To Make Social Decisions in a Heterogeneous Society?

Figure 2. Diagram of POMDP with EFT mechanism. The future
thinking and action selection modules are included to obtain action
from the observation. The solid line and circles represent the
actual event in the real world. The dashed line and circles depict
the virtual event in the simulated world of the agent i.

ter cj that best explains the collected data. To elaborate,
cj can be estimated by maximizing the log-likelihood of
observation-action trajectories ln P (o1:T,j , a1:T,j |cj). This
can be formulated as follows.

ĉj = arg max
c

ln P (o1:T,j , a1:T,j |c)

= arg max
c

TX

t=1

⇥
ln ⇡(ac

t,j |ot,j ; c) + ln ⇡(ad
t,j |ot,j ; c)

⇤

(3)

The derivation of (3) can be found in Appendix E.

To efficiently perform the inference task, we use the gra-
dient ascent method. It runs the iteration by changing c
toward the direction to increase U(c) = ln ⇡(ac

t,j |ot,j ; c) +

ln ⇡(ad
t,j |ot,j ; c), which is summarized in Algorithm 2.1

4. Foresight Action Selection Based on
Episodic Future Thinking Mechanism

This section presents the proposed EFT mechanism that en-
ables the agent to simulate the subsequent observations and
select a foresighted action. The proposed EFT mechanism
comprises a future thinking module and an action selection
module as described in Figure 2.

The future thinking module includes two steps: action pre-
diction and the next observation simulation. With these
two steps, the agent can foresee the next observation. This
process is illustrated in Figure 3. Subsequently, the action
selection module enables the agent to decide the current

1By specifying the distribution of ⇡, (3) can be reformulated. In
Appendix F, an example of the Gaussian distribution of continuous
action ⇡(ac

t,j |ot,j ; c) and the Dirac delta distribution of discrete
action ⇡(ad

t,j |ot,j ; c) is provided.
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ôt+2,i

Figure 3. Illustrative example of the EFT mechanism of the agent
i. The gray area with a dashed line indicates the mental simulation
of the agent about the future step. The brighter area with a solid
line indicates the real-world transitions from the perspective of the
agent i.

action corresponding to the simulated next observation.

4.1. Future thinking: step I - action prediction

In this step, the agent with the multi-character policy pre-
dicts the actions of the neighbor agents by using pre-inferred
characters and observations. The agent can predict the ac-
tion of the target agent j (2 E, j 6= i)2 using the trained
multi-character policy ⇡� and inferred character ĉj , i.e.,
ât,j ⇠ ⇡�(·|ot,j ; ĉj). Therefore, the predicted action set of
others ât,�i is as follows.

ât,�i = h⇡�(ot,1; ĉ1), · · · , ⇡�(ot,i�1; ĉi�1),

⇡�(ot,i+1; ĉi+1), · · · , ⇡�(ot,N ; ĉN )i (4)

4.2. Future thinking: step II - next observation
simulation

In this step, we introduce how the agent simulates its next
observation by using the predicted action ât,�i. Note that
this prediction is the result of the mental simulation of agent
i, when at,i = ; is satisfied. Herein, ; denotes null action,
meaning that no action is performed. This is to simulate the
observation of the time point when all target agents have
performed the action but the agent has not yet.

The simulated next observation ôt+1,i can be determined
based on the predicted action set ât,�i and the current obser-
vation ot,i. The function of the next observation simulation
D(·) is defined as follows:

ôt+1,i = D(ot,i, ât,�i, at,i = ;).

The action selection using the simulated next observation
ôt+1,i allows the agent to ignore the influence of the others’

2If the agent i cannot observe the entire set of agents, a subset
of the agent can be the targets of agent i, i.e., EOi ⇢ E.
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Algorithm 3 Episodic future thinking mechanism
Require: Trained actor-network �, discrete action space
parameter W , set of inferred characters ĉ�i, character of
agent ci, initial state s1

for t = 1, T do
Get observation ot,i ⇠ ⌦i(st)

// Start future simulation //
for j = 1, N(j 6= i) do

Get observation o1,j ⇠ ⌦j(st)
Predict action of agents j

ât,j ⇠ ⇡�(·|ot,j ; cj)
Store ât,j in predicted action set ât,�i

end for
Simulate future observation of agent i

ôt+1,i = D(ot, ât,�i, at,i = ;)
// End simulation //

Get proto-action {a
c
t,i, ā

d
t,i} ⇠ ⇡�(·|ôt+1,i; ci)

Get post-action a
d
t,i  g(ād

t,i, W )

Execute at,i = {a
c
t,i, a

d
t,i}, Update st+1

end for

actions. This is because the next state is determined solely
by its own action at,i in the agent’s mental simulation, as
ôt+1,i has already applied the other agents’ actions ât,�i.

4.3. Action selection

Once the agent has simulated the next observation ôt+1,i,
the agent can make a foresighted decision. The agent uses
the multi-character policy ⇡� with the input of the simu-
lated next observation ôt+1,i and its own character ci, and
finally gets the action at,i = {a

c
t,i, ā

d
t,i} = ⇡�(·|ôt+1,i; ci).

In other words, the agent can select an adaptive action with
consideration for other agents’ upcoming behaviors. The
decision-making procedure with the proposed EFT mecha-
nism is summarized in Algorithm 3.

5. Experiments
To select a suitable task that can verify the effectiveness of
the proposed solution, we consider the following require-
ments. There should be multiple approaches to achieving
character diversity, as well as interactions between agents.
The agent should have only partial observations of the state,
and the action space should be both continuous and discrete.

We chose the autonomous driving task, which has numerous
automated vehicles on the road. The task can consider the
driving character of the agent based on driving preferences
(e.g., one agent prioritizes safety and the other prioritizes
speed) (Rosbach et al., 2019; Eboli et al., 2017; Cooper
et al., 2002). Additionally, it is realistic for a driver to
behave under the partial observation of the road state, and

BA

Figure 4. The performance of the character inference module. A.
L1-norm between estimated and true characters over the number
of iterations (T = 1000). B. The number of required iterations for
convergence over the length of the observation-action trajectory T .

the driver makes a decision in a hybrid action space. To
implement this task, we use the FLOW framework (Vinitsky
et al., 2018).

The scenario includes multiple automated vehicles on
the multi-lane roundabout road. The number of agents
|E| = 21, and each agent decides on acceleration and lane
change control given their observation. Here we express
the driving character using weights of three reward terms.
Thus, the dimension of the character vector is three, i.e.,
ci = [ci,1, ci,2, ci,3].3 The target agent j is limited to the ve-
hicles located in the observable area of the agent. All results
in this section are averaged results of over 10 independent
experiments. The markers indicate the average value, and
the shaded area represents the confidence interval within
one standard deviation.

5.1. Performance evaluation: character inference

To make the EFT mechanism more effective, an accurate
character inference should be preceded. In this subsection,
we investigate the character inference module with two ques-
tions:

• How many iterations does it require to achieve an accu-
rate inference (in terms of repetition in Algorithm 2)?

• How long should the agent collect the observation-
action trajectories of target agents (in terms of trajec-
tory length T in Algorithm 2)?

In Figure 4, the performance of the character inference
module is presented. To ignore the effect of the initial
point in convergence, the initial point of the character is
randomly selected. More results regarding the initial point
are provided in Appendix I.

Figure 4A illustrates the convergence of the estimated char-
acter to the true one. The inaccuracy of inference is evalu-

3Details regarding the experiments are presented in Ap-
pendix G.
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ated based on the L1-norm between the estimated character
and the true one. Thus, a lower L1-norm implies higher in-
ference accuracy. As the number of iterations increases, the
L1-norm quickly decreases to approximately zero, meaning
that the estimated value quickly converges to the true one.
Specifically, if the number of iterations is set to over 500,
high accuracy of the character inference can be achieved.

Figure 4B shows the trade-off between the length of
observation-action trajectory T and the number of iterations
required for the convergence. The convergence criterion is
set to L1-norm  5 ⇥ 10�4. The results demonstrate that
the number of iterations for convergence decreases as longer
trajectories are provided. Thus, the length of trajectories
and the number of iterations can be jointly determined by
considering system requirements.

5.2. Ablation study: character inference and EFT
modules

We investigate the impact of two main modules (the charac-
ter inference module and the EFT module) on performance
by increasing character diversity levels of the heterogeneous
society. The following three cases are compared.

• Proposed: the agent enables the EFT with the inferred
character of other agents based on the character infer-
ence module.

• FCE-EFT: the agent experiences the FCE by assum-
ing that all other agents have equal character to itself
(i.e., cj = ci, 8j 2 E). So no character inference
is required. The agent performs the EFT, but action
prediction is performed based on the same character
ci.

• without EFT (Fujimoto et al., 2018): the agent per-
forms neither character inference nor the EFT mech-
anism. It treats the problem as a single agent RL and
selects the best action given observation. The policy is
trained based on the TD3.

In Figure 5, the average rewards of entire agents are pre-
sented over increasing the number of character groups.4
The higher number of character groups means that more
diverse characters coexist in society, and the higher reward
implies better performance. Because the number of agents
is fixed to |E| = 21, the number of members per group is
|E|/n, where n denotes the number of groups. The mem-
bers belonging to the same group have the same character c.
Note that each group character is randomly sampled from
character space C in every independent experiment.

4Each market point is the average value of 10 independent test
experiments. To obtain all results presented in Figure 5, we ran
7⇥ 3⇥ 10 = 210 test experiments.

A

B

Figure 5. A: The average reward of entire agents over an increas-
ing number of character groups. B: The amount of reward enhance-
ment for two EFT approaches by setting without EFT as a baseline
(i.e., reward of other approaches - reward of without EFT).

Figure 5A shows the average reward of entire agents. In a
single group scenario (i.e., the entire agents have the same
characters), the results of both the proposed and the FCE-
EFT solutions are identical. This is because all agents have
homogeneous characters, which allows the FCE agent to
have the accurate characters of others. The reward of with-
out EFT is lower than two solutions in a single group sce-
nario. This confirms that the proposed EFT mechanism can
help the agent to consider multi-agent interactions. Next,
in two or more group scenarios, the proposed solution con-
sistently achieves the highest reward, and the FCE-EFT
consistently achieves the lowest reward.

Figure 5B highlights the amount of reward enhancement or
degradation by equipping the proposed modules. As a base-
line solution, without EFT is used. The proposed approach
consistently outperforms the baseline, and the FCE-EFT
is inferior to the baseline when character diversity exists.
These results verify that the EFT mechanism with accurate
character inference always enhances the reward. However,
the naive employment of the EFT mechanism with the incor-
rect character degrades the reward. This is because incorrect
character inference leads to incorrect action prediction and
next observation simulation, which leads to improper action
selection of the agent, leading to low reward. Therefore, ac-
curate character inference is crucial in the EFT mechanism.
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Figure 6. The performance comparison for the average reward be-
tween algorithms over increasing the number of character groups.

5.3. Performance comparison: multi-agent
reinforcement learning algorithms

We compare the performance of the proposed solution to the
following popular MARL algorithms. In MARL algorithms,
we go through independent policy training regarding the
diversity level of society.5 This is the effort to have a fair
comparison by allowing the best performance of comparing
algorithms. Note that the proposed method does not need
plural training for different heterogeneity settings.

• MADDPG (Lowe et al., 2017): It is a multi-
agent version of Deep Deterministic Policy Gradient
(DDPG) (Lillicrap et al., 2016). In training, it uses
a centralized Q-function that uses observations and
actions of all agents.

• MAPPO (Yu et al., 2022): It is a multi-agent version of
Proximal Policy Optimization (PPO) algorithm (Schul-
man et al., 2017). It considers a centralized critic that
uses the local observations across all agents.

• QMIX (Rashid et al., 2018): It uses a mixer and individ-
ual Q-networks. The mixer network uses the Q-values
(output of individual Q-network) of all agents as inputs
and calculates a global Qtot as an output. Since it can
only handle the discrete action space, we quantize the
continuous actions.

Figure 5B shows the average reward of the entire agents
as the number of character groups increases. This figure
verifies that the proposed solution outperforms all popular
MARL algorithms. Note that the MARL algorithms assume
centralized training, which requires access to the observa-
tions and actions of all agents in policy training. In contrast,
our solution trains the policy with only local observations
and actions, which can be a more practical solution. The
QMIX has the lowest performance since it operates in a
discrete action space, whereas our task is in a hybrid action

5For each algorithm, five independent trainings are performed
since five heterogeneity settings are considered, i.e., n =
[1, 2, 3, 4, 5].

Table 1. A summary of numerical results (avg. reward ± 1 std)

Algorithm The number of character groups (n)
1 2 3 4 5

Proposed 2899 3047 2976 2948 3051
±217 ±162 ±196 ±91 ±109

FCE-EFT 2899 2784 2646 2566 2629
±217 ±161 ±196 ±103 ±125

w/o EFT 2653 2861 2856 2855 2726
±158 ±188 ±246 ±119 ±103

MADDPG 2763 3006 2800 2933 2856
±126 ±103 ±106 ±98 ±121

MAPPO 2753 2862 2597 2529 2763
±206 ±201 ±144 ±131 ±190

Q-MIX 2199 2310 2288 2118 1861
±56 ±39 ±118 ±82 ±132

space. A summary of numerical results of Figure 5 are
presented in Table 1.

6. Conclusions
In this paper, we propose the EFT mechanism, which is a
social decision-making approach for a multi-agent scenario.
The EFT mechanism enables the agent to behave by consid-
ering current and near-future observations. To achieve this
functionality, we first build a multi-character policy that is
generalized over character space. Then, the agent with the
multi-character policy can infer others’ characters using the
observation-action trajectory. Next, the agent predicts the
others’ behaviors and simulates its future observation based
on the proposed EFT mechanism. In the simulation result,
we confirm that the proposed solution outperforms existing
solutions across all diversity levels of the heterogeneous
society.

The proposed EFT idea paves the way for research on multi-
agent scenarios. The proposed method enables the agent
to simulate other agents’ upcoming actions, which is analo-
gous to humans’ decision-making. Furthermore, we believe
the proposed method can be broadened by combining coun-
terfactual thinking, current information, and future thinking.

Even though this work shows promising results with a novel
method, there are a few limitations to tackle. In our experi-
ments, there is only one EFT agent, and all other agents do
not have the EFT functionality. This is an inevitable setting
to make the problem tractable. Additionally, the charac-
ter inference module relies on an iterative method, which
hinders the solution from running in a real-time manner.
This can be alleviated by selecting an efficient optimization
solution or a deep learning based inference approach.



How To Make Social Decisions in a Heterogeneous Society?

7. Acknowledge
This research was supported by the MSIT (Ministry of
Science and ICT), Korea, under the ITRC (Information
Technology Research Center) support programs (IITP-2022-
2020-0-01602; No. 2021-0-00739, Development of Dis-
tributed/Cooperative AI based 5G+ Network Data Analytics
Functions and Control Technology) supervised by the IITP
(Institute for Information & Communications Technology
Planning & Evaluation)

References
Baron-Cohen, S. Mindblindness: An essay on autism and

theory of mind. MIT press, 1997.

Byrne, R. M. Counterfactuals in eXplainable Artificial
Intelligence (XAI): Evidence from human reasoning. In
IJCAI, 2019.

Cooper, R. A., Thorman, T., Cooper, R., Dvorznak, M. J.,
Fitzgerald, S. G., Ammer, W., Song-Feng, G., and
Boninger, M. L. Driving characteristics of electric-
powered wheelchair users: how far, fast, and often do
people drive? Archives of Physical Medicine and Reha-
bilitation, 83(2):250–255, 2002.

Dawes, R. M. Statistical criteria for establishing a truly
false consensus effect. Journal of Experimental Social
Psychology, 25(1):1–17, 1989.

Doshi, P., Gmytrasiewicz, P., and Durfee, E. Recursively
modeling other agents for decision making: A research
perspective. Artificial Intelligence, 279:103202, 2020.

Dvijotham, K. and Todorov, E. Inverse optimal control with
linearly-solvable MDPs. In ICML, 2010.

Eboli, L., Mazzulla, G., and Pungillo, G. How drivers’
characteristics can affect driving style. Transportation
Research Procedia, 27:945–952, 2017.

Engelmann, D. and Strobel, M. The false consensus effect
disappears if representative information and monetary
incentives are given. Experimental Economics, 3(3):241–
260, 2000.

Engelmann, D. and Strobel, M. Deconstruction and recon-
struction of an anomaly. Games and Economic Behavior,
76(2):678–689, 2012.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual multi-agent policy gradients.
In AAAI, 2018.

Folli, D. and Wolff, I. Biases in belief reports. Journal of
Economic Psychology, 88:102458, 2022.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In ICML, pp.
1587–1596, 2018.

Han, Y. and Gmytrasiewicz, P. IPOMDP-net: A deep neural
network for partially observable multi-agent planning
using interactive POMDPs. In AAAI, 2019.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to
trust your model: Model-based policy optimization. In
NeurIPS, 2019.

Jern, A., Lucas, C. G., and Kemp, C. People learn other
people’s preferences through inverse decision-making.
Cognition, 168:46–64, 2017.

Kwon, M., Daptardar, S., Schrater, P. R., and Pitkow, Z.
Inverse rational control with partially observable continu-
ous nonlinear dynamics. In NeurIPS, 2020.

Lai, H., Shen, J., Zhang, W., and Yu, Y. Bidirectional
model-based policy optimization. In ICML, 2020.

Langley, C., Cirstea, B. I., Cuzzolin, F., and Sahakian, B. J.
Theory of mind and preference learning at the interface
of cognitive science, neuroscience, and AI: A review.
Frontiers in Artificial Intelligence, pp. 62, 2022.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In ICLR, 2016.

Lin, H., Sun, Y., Zhang, J., and Yu, Y. Model-based rein-
forcement learning with multi-step plan value estimation.
arXiv preprint arXiv:2209.05530, 2022.

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel,
O., and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. In NeurIPS, 2017.

Lucas, C. G., Griffiths, T. L., Xu, F., Fawcett, C., Gopnik, A.,
Kushnir, T., Markson, L., and Hu, J. The child as econo-
metrician: A rational model of preference understanding
in children. PloS one, 9(3):e92160, 2014.

Lynch, J. G., Alba, J., and Hutchinson, J. W. Memory and
decision making. Handbook of Consumer Behavior, pp.
1–9, 1991.

Marinescu, A., Dusparic, I., and Clarke, S. Prediction-
based multi-agent reinforcement learning in inherently
non-stationary environments. ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS), 12(2):1–23,
2017.

Marks, G. and Miller, N. Ten years of research on the false-
consensus effect: An empirical and theoretical review.
Psychological Bulletin, 102(1):72, 1987.



How To Make Social Decisions in a Heterogeneous Society?

Mehta, V., Paria, B., Schneider, J., Ermon, S., and
Neiswanger, W. An experimental design perspective on
model-based reinforcement learning. In ICLR, 2022.

Moerland, T. M., Broekens, J., Plaat, A., Jonker, C. M.,
et al. Model-based reinforcement learning: A survey.
Foundations and Trends® in Machine Learning, 16(1):
1–118, 2023.

Ng, A. Y., Russell, S. J., et al. Algorithms for inverse
reinforcement learning. In ICML, 2000.

Oberst, M. and Sontag, D. Counterfactual off-policy eval-
uation with Gumbel-max structural causal models. In
ICML, 2019.

Oliehoek, F. A. Decentralized POMDPs. In Reinforcement
Learning, pp. 471–503. Springer, 2012.

Owen, G. Game theory. Emerald Group Publishing, 2013.

Pan, T., Sumalee, A., Zhong, R.-X., and Indra-Payoong,
N. Short-term traffic state prediction based on temporal–
spatial correlation. IEEE Transactions on Intelligent
Transportation Systems, 14(3):1242–1254, 2013.

Premack, D. and Woodruff, G. Does the chimpanzee have
a theory of mind? Behavioral and Brain Sciences, 1(4):
515–526, 1978.

Rabinowitz, N., Perbet, F., Song, F., Zhang, C., Eslami,
S. A., and Botvinick, M. Machine theory of mind. In
ICML, 2018.

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G.,
Foerster, J., and Whiteson, S. QMIX: Monotonic value
function factorisation for deep multi-agent reinforcement
learning. In ICML, 2018.

Ratliff, N. D., Bagnell, J. A., and Zinkevich, M. A. Maxi-
mum margin planning. In ICML, 2006.

Redish, A. D. and Mizumori, S. J. Memory and decision
making. Neurobiology of Learning and Memory, 117:1,
2015.

Rosbach, S., James, V., Großjohann, S., Homoceanu, S., and
Roth, S. Driving with style: Inverse reinforcement learn-
ing in general-purpose planning for automated driving.
In IROS, pp. 2658–2665, 2019.

Ross, L., Greene, D., and House, P. The false consensus
phenomenon: An attributional bias in self-perception and
social perception processes. Journal of Experimental
Social Psychology, 13(3):279–301, 1977.

Roth, A. E. and Erev, I. Learning in extensive-form games:
Experimental data and simple dynamic models in the
intermediate term. Games and economic behavior, 8(1):
164–212, 1995.

Schacter, D. L., Benoit, R. G., De Brigard, F., and Szpunar,
K. K. Episodic future thinking and episodic counterfac-
tual thinking: Intersections between memory and deci-
sions. Neurobiology of Learning and Memory, 117:14–21,
2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Schwartz, J., Zhou, R., and Kurniawati, H. Online planning
for interactive-POMDPs using nested Monte Carlo tree
search. In IROS, 2022.

Sutton, R. S. Dyna, an integrated architecture for learning,
planning, and reacting. ACM Sigart Bulletin, 2(4):160–
163, 1991.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Thorstad, R. and Wolff, P. A big data analysis of the re-
lationship between future thinking and decision-making.
Proceedings of the National Academy of Sciences, 115
(8):E1740–E1748, 2018.

Vinitsky, E., Kreidieh, A., Le Flem, L., Kheterpal, N., Jang,
K., Wu, C., Wu, F., Liaw, R., Liang, E., and Bayen,
A. M. Benchmarks for reinforcement learning in mixed-
autonomy traffic. In CoRL, 2018.

Xu, X., Lv, K., Dong, X., Han, S., and Lin, Y. Multi-
step prediction for learning invariant representations in
reinforcement learning. In HPBD&IS, 2021.

Yang, L., Zhao, C., Lu, C., Wei, L., and Gong, J. Lateral
and longitudinal driving behavior prediction based on
improved deep belief network. Sensors, 21(24):8498,
2021.

Yasdi, R. Prediction of road traffic using a neural network
approach. Neural Computing & Applications, 8(2):135–
142, 1999.

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen,
A., and Wu, Y. The surprising effectiveness of PPO in
cooperative multi-agent games. In NeurIPS, 2022.


