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ABSTRACT

Improving the reasoning capabilities of diffusion-based large language models
(dLLMs) through reinforcement learning (RL) remains an open problem. The
intractability of dLLMs likelihood function necessitates approximating the current,
old, and reference policy likelihoods at each policy optimization step. This reliance
introduces additional computational overhead, and can lead to large variance
and estimation error in RL objective – particularly in computing the policy ratio
for importance sampling. To mitigate these issues, we introduce wd1, a novel
ratio-free policy optimization approach that reformulates the RL objective as a
weighted log-likelihood, requiring only a single approximation for the current
parametrized policy likelihood. We formally show that our proposed method can
be interpreted as energy-guided discrete diffusion training combined with negative
sample unlearning, thereby confirming its theoretical soundness. In experiments on
LLaDA-8B model, wd1 outperforms diffusion-based GRPO (d1) while requiring
lower computational cost, achieving up to a +59% improvement in accuracy.
Furthermore, we extend wd1 to denoising-stepwise weighted policy optimization
(wd1++), achieving state-of-the-art math performance of 44.2% on MATH500 and
84.5% on GSM8K with only 20 RL training steps.

1 INTRODUCTION

Diffusion-based large language models (dLLMs) have recently gained attention as promising
alternatives to autoregressive (AR) models for language modelling tasks (Nie et al., 2025b; Ou
et al., 2025; Yang et al., 2025). Unlike AR models, which generate tokens sequentially, dLLMs
iteratively refine entire response sequences through a denoising process. A primary advantage of
this approach is the significantly improved inference efficiency. Notably, recent closed models such
as Mercury (Labs et al., 2025) and Gemini Diffusion achieve over an order of magnitude speed-up in
generation compared to AR models, while maintaining comparable generation quality. Furthermore,
open-weight dLLMs demonstrate competitive performance on standard language benchmarks, with
smaller models (Lou et al., 2024; Ou et al., 2025; Nie et al., 2024) achieving parity with equivalently
sized AR baselines, and larger-scale models such as LLaDA-8B (Zhu et al., 2025a) and Dream-7B
(Ye et al., 2025) extending this trend at scale. While dLLMs demonstrate strong performance in
text generation, it remains an open and important question how best to fine-tune dLLMs using RL
– a paradigm that has proven highly effective in alignment and improving reasoning capabilities of
AR models (Ouyang et al., 2022; Shao et al., 2024).

A key challenge in applying reinforcement learning (RL) to dLLMs is the intractability of their
likelihood functions (Zhao et al., 2025; Yang et al., 2025), which necessitates approximation for
policy optimization. Applying approximated log-likelihood for diffusion-based GRPO (Shao et al.,
2024; Zhao et al., 2025) can exponentially amplify the approximation error and lead to large variance
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when computing the policy ratio for importance sampling. Moreover, GRPO requires the estimated
likelihoods of the current, old, and reference policies at every training step, leading to significant
computational overhead. These issues can be further exacerbated as the completion length and the
number of diffusion steps increase.

To address these challenges, we propose wd1, a policy optimization approach with weighted log-
likelihood objective for dLLMs. Crucially, this objective dispenses with explicit policy ratios and
relies on a single likelihood approximation, thereby avoiding the potentially large bias and variance
in policy ratio, and reducing the computational overhead. Our principal contributions are:

• We propose a novel reinforcement learning method for dLLMs, termed wd1, which formulates the
objective as a weighted log-likelihood of outcome sequence, derived from reverse-KL regularized
policy optimization. The weight, defined as (−w+ + w−) and dependent on the advantage A,
balances two terms: w+ ∝ exp(A) increases the probability of higher-advantage completions,
whilew− ∝ exp(−A) decreases the probability of lower-advantage ones. Together, this mechanism
amplifies beneficial outcomes meanwhile actively reducing detrimental ones.

• We prove that our proposed RL method for dLLMs can be interpreted as jointly training an energy-
guided discrete diffusion model—guided by the advantage function—and unlearning low-advantage
data, thereby steering generation toward higher-advantage completions.

• We conduct experiment with LLaDA-8B-Instruct model (Nie et al., 2025a). Compared to the
baseline method d1 (Zhao et al., 2025), our method wd1 achieves 76.4% on Sudoku (Arel, 2025)
(+58.8% over d1) and 51.2% on Countdown (Pan et al., 2025) (+16% over d1), without requiring
supervised fine-tuning (SFT), and with significantly less computational burden in RL training.

• We further extend our method to leverage intermediate completions generated in the decoding
process, which we call wd1++. The extended method surpasses several concurrent RL for dLLMs
methods, achieving state-of-the-art performance 44.2% on MATH500 and 84.5% on GSM8K
with only 20 training steps, and 10× fewer rollouts compared to the baseline methods.

2 PRELIMINARIES

We denote the generation policy of diffusion-based Large Language Models (dLLMs) by πθ. Denote
prompt q ∈ D, and completions o ∈ O. Notably, the reward function denoted by R(q, o) in this work
is not limited to verifiers. We use superscript k to indicate the k-th token of completion: ok or xk0 .

2.1 DIFFUSION LARGE LANGUAGE MODELS

The most promising discrete diffusion for language modeling is masked diffusion, which gradually
corrupts the text sequence with a mask token (Sahoo et al., 2024; Ou et al., 2025; Shi et al., 2025;
Lou et al., 2024). Let t ∈ [0, 1] denote the diffusion timestep, and xt as the masked sequence at
step t. The fully denoised sequence (i.e., the completion o) is represented by x0, and the forward
process (pt|0(xt | x0)) is formulated as a continuous-time Markov chain. The transition kernel Qt

is absorbing (Austin et al., 2023; Campbell et al., 2022), meaning that at time t, Qt = σ(t)Qabsorb,
where σ is a decreasing scalar noise schedule and Qabsorb is a constant matrix (See Definition 2).

This work aims to apply reinforcement learning to fine-tune masked discrete diffusion models such
as LLaDA (Ou et al., 2025; Zhu et al., 2025a), which models the clean data distribution conditional
on masked sequence as πθ(xk0 | xt). The negative Evidence Lower Bound (ELBO) is reduced to a
simple objective called Denoising Cross Entropy (DCE) (Ou et al., 2025): ∀x0 ∼ pdata,

LDCE(x0) = −Et∼U [0,1], xt∼pt|0(xt|x0)

[
1

t

K∑
k=1

1(xkt = [mask]) log πθ(x
k
0 | xt)

]
, (1)

where K is the length of the sequence and xk0 is the k-th token of x0. Specifically, intermediate steps
t are sampled from uniform distribution, and masked sequence is sampled following the predefined
forward process pt|0(xt | x0). DCE can be used to approximate the marginal likelihood log πθ(x0)
for supervised fine-tuning and reinforcement learning (Nie et al., 2025a; Yang et al., 2025).
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2.2 EXISTING POLICY OPTIMIZATION METHODS

The base method of current prevailing RL fine-tuning algorithms is Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015), in which forward KL divergence is applied to restrict the update:

max
θ

Eq∼D, o∼πθ(·|q)

[
Aπold(q, o)− λDKL( πold(·|q) ∥ πθ(·|q) )

]
, (2)

where Aπold is the advantage function, q and o are denoted as the prompt and (clean) response,
respectively. Proposition 1 (Appendix A) demonstrates the monotonic policy improvement of TRPO.

PPO then extends the soft constraint (KL penalty) to clipping policy ratio πθ(·|q)/πold(·|q) and
employing pessimism for policy update, further employed in fine-tuning (Ouyang et al., 2022)
with additional reverse-KL regularization w.r.t. the reference policy πref. Group Relative Policy
Optimization (GRPO) (Shao et al., 2024) simplifies PPO by sampling a group of completions {oi}Gi=1
and approximating their advantage with their normalized rewards. This advantage is corrected by
subtracting the mean reward across the group (Liu et al., 2025): Âi = R(q, oi)−mean

(
R(q, o1:G)

)
,

which we refer to as the group-relative advantage.

2.3 POLICY OPTIMIZATION FOR DLLMS

Adapting GRPO to diffusion-based large language models (dLLMs) presents notable challenges,
since dLLMs generate outputs via a non-autoregressive, iterative denoising process, making the
computation of log πθ(o|q) intractable and necessitating approximation for policy optimization.

Existing works by Nie et al. (2025a); Yang et al. (2025) employ ELBO for per-token log-likelihood
approximation following DCE: ϕπ(xk0) = Et∈U [0,1][w · 1[xkt = mask] log π(xk0 |xt, q)], where w =
1/t in DCE and w = 1 in UniGRPO (Yang et al., 2025). However, an accurate estimation requires
a large sample size of t, resulting in inefficiency for online RL. A biased but efficient method is
introduced in d1 (Zhao et al., 2025), requiring only sample at t = 1: ϕπ(xk0) = log π(xk0 |x1, q′),
where prompt q′ is randomly masked, x1 is fully masked response.

In diffusion-based GRPO (Zhao et al., 2025; Yang et al., 2025), policy ratio is then computed
using the approximated log-likelihoods: rki (θ) = πθ(o

k
i )/πold(o

k
i ) ≈ exp

(
ϕπθ (oki )− ϕπold(oki )

)
for

importance sampling in estimating the objective of GRPO:

E q∼D,
o1:G∼πold(·|q)

[
1

GK

G∑
i=1

K∑
k=1

min
(
rki (θ)Âi, clip(rki (θ), 1± ϵ)Âi

)
− βDKL

(
πθ(·) ∥πref(·)

)]
. (3)
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Figure 1: Example policy ratio value
rki computed using ELBO and approxi-
mated likelihood in d1 on GSM8K after
a policy update. Ratio’s unclipped in-
terval is [1 − ϵ, 1 + ϵ], where ϵ = 0.5.
ELBO-based likelihood approximation
yields high-variance ratio estimates; d1
induces a biased ratio that can deviate
substantially from ELBO. Both meth-
ods suffer from efficiently and accurately
compute ratios.

However, existing approaches are hampered by their re-
liance on extensive likelihood approximation to compute
the policy ratio. In current diffusion-based GRPO methods,
the ratio is computed as rki ≈ exp

(
ϕπθ (oki )− ϕπold(oki )

)
so approximation errors in likelihood can be exponentially
amplified. As formally shown in Appendix A.1, the re-
sulting error in the estimated RL objective becomes more
severe when less accurate log-likelihood approximations
are used, such as in d1, or ELBO used in DCE and Uni-
GRPO when the Monte Carlo sample size t is small.

Although increasing t in the ELBO estimator can reduce
approximation error, the induced ratio estimates can still
exhibit high variance, as illustrated in Figure 1. Although
alternative approximator such as that in d1 can improve
efficiency, but yields a biased ratio that can differ substan-
tially from the ELBO-based ratio, thereby introducing a
systematic bias into the RL training objective. Finally,
GRPO requires applying the approximation function ϕ
separately to three policies—πθ, πold, and πref—which
further increases computational overhead.
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3 wd1: WEIGHTED POLICY OPTIMIZATION FOR DLLMS

In this section, we introduce wd1, a novel RL algorithm that eliminates the need for approximating
the likelihood (policy) ratios for importance sampling, aiming to reduce the computational burden,
and the variance and approximation error in computing the RL objective. We further extend our
method to wd1++ by applying denoising-stepwise policy optimization.

3.1 REINFORCEMENT LEARNING AS WEIGHTED LOG-LIKELIHOOD MAXIMIZATION

Prevailing RL methods are based on constrained policy optimization (Belousov & Peters, 2017),
penalizing the deviation of current policy πθ(·|q) from the old policy πold(·|q). TRPO objective
(Equation (2)) applies a forward-KL penalty. We instead adopt reverse-KL penalty augmented with
the reference policy regularization DKL(πθ(·|q) ∥πref(·|q)):

max
θ

Eq∈D,o∼πθ(·|q)

[
Aπold(q, o)− λDKL

(
πθ(·|q) ∥ πold(·|q)

)
− βDKL

(
πθ(·|q) ∥πref(·|q)

)]
.

(4)

Note that the monotonic improvement guarantee still holds when using reverse-KL penalty, as we
show in Theorem 2. From the method of Lagrange multipliers, the solution to Equation (4) has the
following form (Peng et al., 2019; Rafailov et al., 2023):

π∗(·|q) ∝ πold(·|q)λ/(λ+β) · πref(·|q)β/(λ+β) · exp
(
Aπold(q, ·)
λ+ β

)
. (5)

As the analytic form of the optimal policy π∗ is known, we can train our policy by directly minimizing
DKL(π

∗(·|q) ∥πθ(·|q)). This minimization can be expressed as the following weighted log-likelihood
(WLL) loss, where the weights ∝ exp

(
ψAπold

)
, ψ = 1

λ+η and the samples are obtained from the
geometric mixture policy πref

old(·|q) ∝ πold(·|q)λ/(λ+β) ·πref(·|q)β/(λ+β) (See Proposition 2): ∀q ∼ D,

LWLL(θ) = Eo∼πref
old(·|q)

[
− exp

(
ψAπold(q, o)

)
· log πθ(o|q)

]
(6)

≈ E{oi}Gi=1∼πref
old(·|q)

[
1

G

G∑
i=1

−
exp

(
ψÂi

)∑G
j=1 exp

(
ψÂj

) log πθ(oi|q)] . (7)

As shown in Equation (7), we approximate the advantage function using the group-relative advan-
tage Â and normalize the weights, thereby limiting their magnitude and reducing variance in loss
computation. Notably, dividing by the normalization constant does not affect the solution, since it
is independent of the completions. The resulting objective does not involve ratio πθ(·|q)/πold(·|q)
for importance sampling or πθ(·|q)/πref(·|q) for regularization, successfully avoiding the potential
amplification of log-likelihood approximation error and large variance in diffusion GRPO.

Although the objective LWLL(θ) in Equation (7) avoids the likelihood ratio estimation, it has two
limitations. First, the algorithm is not fully utilizing all the completions. Due to the exponential form
of the weighting, completions with relatively low advantage – referred to as negative samples – may
receive vanishingly small weights, and do not contribute to learning. Second, due to the likelihood-
maximization property of WLL, the likelihoods of all sampled completions are increased, even for
negative samples. This issue is exacerbated in scenarios where all completions attain identical but
low rewards (e.g. 0), thus all weights become equal and the likelihoods of these suboptimal samples
are nonetheless reinforced.

3.2 wd1: FULLY UTILIZING COMPLETIONS

We propose wd1, an improved weighted log-likelihood objective that explicitly reinforces positive
samples and penalizes negative samples:

Lwd1(θ) = Eq∼D,{oi}Gi=1∼πref
old(·|q)

[ 1
G

G∑
i=1

(
− w+(q, oi) + w−(q, oi)

)
· log πθ(oi|q)

]
, (8)
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where the weights are based on group-relative (GRPO) advantage and are further normalized to avoid
overly imbalanced weight Âi = R(q, oi)− mean(R(q, o1:G)):

w+(q, oi) =
exp

(
ψÂi

)∑G
j=1 exp

(
ψÂj

) , w−(q, oi) =
exp

(
− ψÂi

)∑G
j=1 exp

(
− ψÂj

) . (9)

wd1 objective balances positive and negative samples through a complementary penalty term,
w−(q, oi) log πθ(oi|q), which minimizes the likelihood of low-advantage completions. This penalty
induces negative gradients, thereby accelerating divergence from undesirable completions. Moreover,
in the extreme case where all completions exhibit identical advantages, the optimization naturally
halts since w+ = w−, thereby addressing the concern on increasing likelihood of negative samples
proposed in Sec 3.1. We demonstrate the effectiveness of this combination via ablations in C.2.

Our method wd1, a simple ratio-free policy optimization based on weighted log-likelihood objective
for dLLMs, is formally presented in Algorithm 1. We first obtain G completions {o}Gi=1 sampled
from geometric mixture πref

old(·|q) ∝ πold(·|q)λ/(λ+β) · πref(·|q)β/(λ+β) (line 5). Since the base
model LLaDA parametrizes the clean token prediction πref

old(x
k
0 |xt, q) for denoising, we approximate

log πref
old(x

k
0 |xt, q) ≈ λ log πold(x

k
0 |xt, q) + β log πref(x

k
0 |xt, q) as the logits of the denoising distribu-

tion at each step t. We then use the samples to compute weights in Equation (9) (line 6). In weights
computing, we leverage completions from all groups to estimate the normalization constant, in order
to restrict the the gradient norm and stabilize the training. Finally in line 8, we approximate the
log-likelihood of completions, and compute objectives for policy update. Likelihood approximation
in d1 (Zhao et al., 2025) is directly applicable to wd1: log πθ(x0|q) ≈

∑
k log πθ(x

k
0 |x1, q′), where

q′ is randomly masked from prompt q at every gradient step.

3.3 wd1++: STEPWISE WEIGHTED POLICY OPTIMIZATION

The decoding process in dLLMs relies on confidence-based remasking (Wang et al., 2025b). At each
denoising step l ∈ {1, · · · , L} in decoding, clean data is predicted conditional on the masked sequence
xl and then tokens with low-confidence are re-masked for further denoising, which construct a refine-
ment process. Since current diffusion RL methods only use the final predicted clean completion for
training, there are bunch of clean completions in the intermediate denoising steps remaining unused.

To leverage intermediate clean completions, we extend our weighted log-likelihood objective to
a step-wise formulation based on DCE, which we term wd1++. In wd1 (as well as in GRPO), a
group of completions {oi}Gi=1 is sampled for policy optimization. In wd1++, we expand this group
to {Oi}Gi=1, where Oi = {x0|l | x0|l ∼ πref

old(· | xt, q), x0|L = oi, l = 1, . . . , L}, which contains
all generated completions during the decoding process, including intermediate ones. The expanded
group of completions is then used to estimate both the advantage function and the corresponding
weights. The resulting loss objective is defined as:

Lwd1++(θ) = E q∼D,
{Oi}Gi=1∼π

ref
old(·|q)

l∈Unif{1,··· ,L}

[
L
Gl

G∑
i=1

∑
x0|l∈Oi

(
− w+(q, x0|l) + w−(q, x0|l)

)
· log πθ(x0|l|xl, q)

]
.

(10)

4 THEORETICAL INSIGHTS: ENERGY-GUIDED DIFFUSION SAMPLING

In this section, we present a novel theoretical interpretation of policy optimization for dLLMs. We
prove that the advantage-weighted log-likelihood objective (wd1) for dLLMs can be viewed as
energy-guided discrete diffusion training combined with negative sample unlearning.

Sampling from the solution policy of the reverse-KL policy optimization, as described in Equation (5),
can be interpreted as energy-guided sampling, where the energy function E(q, ·) = −Aπold(q, ·).
Equation (5) defines the marginal distribution of the clean data (x0 = o) which we denote as p∗0(x0)

1.
To obtain the guidance at intermediate time steps t > 0, we define the forward diffusion process for
the target diffusion policy π∗ as following.
Definition 1. The forward diffusion process of the target policy (π∗) satisfies p∗t|0(xt|x0) =

pt|0(xt|x0), where pt|0 is the forward process of old diffusion policy πold.

1To adapt to the setting of diffusion, we use xt to denote the (masked) completions, and omit the prompt q.
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Algorithm 1 wd1: Weighted Policy Optimization for dLLMs
Require: Reference model πref, prompt distribution D, group size G, reward function R, dLLM πθ,
regularization hyperparameters λ and β

1: Initialize πθ ← πref
2: while not converged do
3: πold ← πθ
4: Sample prompt q ∼ D and G completions oi ∼ πold(· | q),∀i ∈ [G]

5: Compute advantage Âi = R(q, oi)− mean(R(q, o1:G)), ∀i ∈ [G]
6: Compute weights w+ and w− in Equation (9), ∀i ∈ [G]
7: for gradient update iterations n = 1, 2, . . . , µ do
8: Compute approximated log-likelihood log πθ(oi|q)
9: Compute objective Lwd1(θ) in Equation (8) or Equation (10) and update θ

10: end for
11: end while
12: return πθ

Since the reference diffusion policy is the initial policy, three policies have identical forward diffusion
process, being p∗t|0(xt|x0) = pt|0(xt|x0) = pref

t|0(xt|x0), and thus, p∗t|0(xt|x0) = p′t|0(xt|x0), where
p′ is the geometric mixture diffusion p′t|0(xt|x0) ∝ pt|0(xt|x0)λpref

t|0(xt|x0)
β . We can then obtain

the energy guidance at all time step t.
Lemma 1 (Intermediate Energy Guidance on Discrete Diffusion). The marginal probability distribu-
tion of the masked responses (xt) in the diffusion process satisfies p∗t (xt) = p′t(xt) ·exp

(
At(xt)

)
/Zt,

which induces an energy-guided discrete diffusion:

p∗0|t(x0|xt) ∝ p
′
0|t(x0|xt) · exp(A(x0)−At(xt)), (11)

where −At(xt) = − logEx0∼p′0|t(·|xt)[exp
(
A(x0)

)
] is intermediate energy function for t > 0, and

A(·) is advantage function (Proof in Appendix A.3).

The guidance provided in Lemma 1 demonstrates that it directs the sampling process toward
generating completions that exhibit higher advantage values. However, conducting training-free
guided sampling following Equation (11) requires estimating the posterior mean of the exponential
of advantage (Lu et al., 2023). Rather than relying on such estimation, we instead aim to find the
training objective to directly approximate the target guided diffusion model.

Since existing masked dLLMs parametrize the concrete score (Meng et al., 2022), to apply the energy
guidance, we aim to directly approximate target guided concrete score. Denote xt = (x1t , · · · , xdt )
and x̂t is identical to xt except the i-th token is unmasked (i.e. xit = [M ] and x̂it ̸= [M ]). Concrete
score is defined as the marginal probability ratio between x̂t and xt:

s(xt, t)
def
=
p(x1t , · · · , x̂it, · · · , xdt )
p(x1t , · · · , xit, · · · , xdt )

. (12)

We prove that the training objective to approximate the guided concrete score can be simplified as a
weighted Denoising Concrete Score Matching (D-CSM) (Meng et al., 2022):
Theorem 1. The model sθ approximates the concrete score of the energy-guided discrete diffusion
p∗ when the following loss objective is minimized. This objective is in a form of advantage-weighted
Denoising Concrete Score Matching, which we call AW-D-CSM:

LAW-D-CSM =Ex0∼p′0(·)

[
exp

(
A(x0)

)︸ ︷︷ ︸
Advantage Weight

·Et∼[0,T ],p′
t|0(xt|x0)[∥sθ(xt, t)−

p′0(x̂t|x0)
p′0(xt|x0)

∥22]︸ ︷︷ ︸
LD-CSM(x0)

]
. (13)

We provide the proof in Appendix A.3. Additionally, D-CSM is an approximation of CSM (Meng
et al., 2022), which is equivalent to Denoising score entropy (DSE) (Lou et al., 2024). For all x0,
it is satisfied up to multiplying a constant that LD-CSM(x0)⇔ LCSM(x0)⇔ LDSE(x0)⇔ LDCE(x0)
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(Ou et al., 2025). Therefore, AW-D-CSM can then be applied for both SEDD (Lou et al., 2024) and
RADD (Ou et al., 2025) model such as LLaDA. Denote pθ as the concrete score reparametrized
model, AW-D-CSM can be converted to a weighted denoising cross-entropy loss (AW-DCE):

LAW-DCE =Ex0∼p′0(·)

[
exp

(
A(x0)

)
· Et∼[0,T ],p′

t|0(xt|x0)

[ ∑
xit=[mask]

−1

t
log pθ(x

i
0|xUM

t )
]]
. (14)

DSE and DCE objectives both can be used for likelihood approximation in fine-tuning (Ou et al.,
2025; Nie et al., 2025a; Yang et al., 2025) since they can serve as negative ELBO (Lou et al., 2024;
Shi et al., 2025). Thus, the advantage-weighted objective AW-DCE (or AW-DSE) used to learn
energy-guided score is in a weighted log-likelihood form as in wd1 with only w+ (i.e. WLL loss in
Equation (6)), which contributes to our main theoretical findings:

Remark 1. In the context of applying RL to masked discrete diffusion, the advantage-weighted log-
likelihood (WLL) objective (Equation (6)) induced by reverse-KL policy optimization, is equivalent to
the objective of training energy-guided diffusion models, where the energy function is the negative
advantage. Formally, LWLL ⇔ LAW-DCE when DCE is used for likelihood approximation.

Remark 2. Additionally, based on DCE likelihood, the additional penalty term on negative samples
used to extend WLL to wd1 loss can be viewed as applying data unlearning by minimizing the
ELBO (Alberti et al., 2025), where the data {x−0 } (negative samples) has probability distribution
pdata(x

−
0 ) ∝ p′0(x

−
0 ) exp(−A(q, x

−
0 )), which corresponds to a Boltzmann distribution that places

higher probability mass on regions with lower advantage values (more details in Appendix D.1).

5 EXPERIMENTS

In this section, we empirically validate the following key advantages of our approach:

i) Improved reasoning capabilities than existing methods on popular reasoning benchmarks;
ii) reduced computational burden, as reflected by decreased runtime, lower FLOPs and numbers of

function evaluations (NFEs) per training step, number of training steps and rollouts; and
iii) marked performance gains attributable to the incorporation of samples with low-advantage.

To evaluate our approach, we next detail the experimental setup and implementation.

Experimental Setup. We perform reinforcement learning (RL) fine-tuning on the LLaDA-8B-Instruct
model (Nie et al., 2025a) with Low-Rank Adaptation (LoRA) on: GSM8k (Cobbe et al., 2021), MATH
(Lightman et al., 2023), Sudoku (Arel, 2025), and Countdown (Pan et al., 2025). As for decoding,
we follow the default strategy Mounier & Idehpour (2025); Arriola et al. (2025); Wang et al. (2025b).
Our main baseline is d1 (Zhao et al., 2025), the first RL method developed for masked diffusion LLMs
(dLLMs). We reproduce the baseline methods Diffu-GRPO, which applies diffusion-based GRPO
training directly to the LLaDA base model, and d1, which performs SFT before applying Diffu-GRPO.
We use s1K (Muennighoff et al., 2025) data for SFT in d1. We also compare with SDPO (Han et al.,
2025), TCR (Wang et al., 2025d), and MDPO (He et al., 2025) on benchmarks GSM8K and MATH500.
MDPO is reproduced based on the official implementation and the training dataset (He et al., 2025).

Implementation. As for wd1, we conduct training on the same dataset as in d1 (Zhao et al., 2025):
training splits on GSM8k and MATH, and the dataset splits provided by Zhao et al. (2025) on Sudoku
and Countdown. In our implementation of wd1, we apply the same likelihood approximation method
as d1. The hyperparameters used in our method and our reproduction of d1 are listed in Table 6 and
Table 5. As for wd1++, we train on dataset provided by (He et al., 2025), which is sampled from
OpenR1 dataset (Face, 2025). Since previous works (Yu et al., 2025) have demonstrated that the
reference policy is empirically unnecessary, we set β = 0 and λ = 1 to eliminate πref in practice. We
report results using zero-shot and pass@1 evaluation on sequence lengths of 256 and 512 tokens.

5.1 MAIN RESULTS

Superior Reasoning Ability. In Table 1, we observe that wd1, even without supervised fine-tuning or
using any supervised data, consistently outperforms our reproduced implementation of d1. Notably,

2In the technical report version of this work, our method achieved scores of 25.2 and 24.2 on Sudoku after
5K training steps. In this paper, we extend the training to 12.5K steps, and wd1 results in improved performance.
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Table 1: Test Accuracy (%) of wd1 and d1. We reproduce d1 and vary completion length. Our
approach without SFT, demonstrates particularly higher accuracy on Sudoku2and Countdown.

Model / Gen Len
Sudoku Countdown GSM8K MATH500

256 512 256 512 256 512 256 512

LLaDA-8B-Instruct 6.7 5.5 19.5 16.0 76.7 78.2 32.4 36.2
+ diffu-GRPO 16.1 11.7 27.0 34.0 80.7 79.1 34.4 39.0
+ SFT + diffu-GRPO (d1) 17.6 16.2 25.8 35.2 78.2 82.0 34.4 38.0

+ wd1 76.4 62.8 51.2 46.1 80.8 82.3 34.4 39.0

Table 2: Comparison of Training Cost on 4×A100. We show SFT cost, average training time, FLOPs
evaluated by DeepSpeed Flops Profiler, and theoretical NFEs per training step which includes µ = 8
gradient steps. wd1 removes SFT and has less cost per-step in RL than d1.

Method SFT RL Training
Time Cost Time Cost FLOPs NFEs for Likelihood

d1 2.01 hrs 103.5 sec/step 9.922× 1015/step (µ+ 2)/step
wd1 0 hrs 81.16 sec/step 8.887× 1015/step µ/step

wd1 surpasses d1 by 43% in test accuracy on the Sudoku task, and achieves up to a 25% improvement
on Countdown with maximum length 256. Relative to the base LLaDA model, the performance gain
reaches as high as 54% on Sudoku and 42% on Countdown. On math problem-solving benchmarks
GSM8K and MATH500, wd1 attains slightly higher accuracy. Nevertheless, the extended method
wd1++ obtains significantly better accuracy. In Table 3 (left), we further compare with concurrent
baselines released in recent months. wd1++ outperforms the baselines including strong one MDPO.

Reduced Training Cost. Table 2 demonstrates that the training cost required by wd1 is substantially
lower than that of d1. Unlike d1, wd1 does not require a SFT stage, which alone accounts for
approximately two hours of training in d1. wd1 achieves additional speedup during the RL phase,
where runtime is measured by averaging over µ = 8 inner gradient steps per global step. Notably, the
time efficiency gap is expected to widen further under settings with larger maximum sequence lengths
and more diffusion steps. This efficiency gain is further supported by a reduced FLOPs and number
of function evaluations (NFEs) per step, as wd1 bypasses the need to approximate the likelihood
of the old policy. We exclude NFEs associated with sampling, since both methods share identical
sampling costs as wd1 removes the reference policy regularization.

In Table 3 (right), we report the training cost required to obtain the best post-trained models on
GSM8K and MATH500, measured in terms of the number of training steps and rollouts. wd1++
requires 10× fewer rollouts to achieve superior performance, clearly demonstrating the efficiency of
our method. This rapid convergence arises primarily from the exponential advantage weights applied
to the log-likelihood in wd1. In contrast, standard RL methods such as GRPO and PPO weight the
log-likelihood (or policy ratio) terms directly by the advantage function.

5.2 ABLATION STUDY

We present an ablation study in Figure 4. Notably, we observe that supervised fine-tuning (SFT)
yields only marginal improvements within our approach, with a slight gain in the Sudoku task. This
contrasts with d1, where SFT plays a significant role in improving performance. These findings
indicate that wd1 can eliminate the need for an SFT phase, thereby simplifying the training pipeline
and substantially reducing computational cost. Additionally, we evaluate the impact of removing the
negative-weighted term by setting w− = 0, thus relying solely on the positive advantage weights w+.
We provide further ablation on the combined method between w+ and w− in Table 9. The results
highlight the importance of explicitly penalizing the likelihood of low-advantage completions, thereby
reinforcing the role of negative samples, and emphasize the critical balance between the two weights.

3To facilitate efficient ablation studies, we restrict our comparisons to checkpoints saved prior to 5000 steps.
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Table 3: Left: Extended method wd1++ compared to concurrent RL methods to fine-tune LLaDA-
8B-Instruct. Methods denoted by “(full)” perform full fine-tuning. Right: Training cost to obtain the
best model on GSM8K and MATH500. We count the total number of steps of policy iteration (model
weights update), and the number of rollouts used for training (see Table 8 for details on counting).

Model GSM8K MATH500
LLaDA-8B-Instruct 78.2 36.2
+ diffu-GRPO (Zhao et al., 2025) 80.7 39.0
+ d1 (Zhao et al., 2025) 82.0 38.0
+ SDPO (Han et al., 2025) (full) 81.2 -
+ TCR (Wang et al., 2025d) 83.0 41.4
+ MDPO (He et al., 2025) (full) 83.4 43.4

+ wd1 82.3 39.0
+ wd1 (full) 82.7 43.6
+ wd1++ (full) 84.5 44.2

wd1++ MDPO d1
20 150

7500

1280

19200

30000

Training Cost
# of Steps
# of Rollouts

Table 4: Ablation on SFT and Negative Samples Weight (w−). We conduct wd1 training after SFT
(wd1-SFT) and with only w+ (namely wd1-P or WLL defined in Equation (6))3. Results show
that wd1 performs better without SFT on planning and math tasks. Removing negative sample
reinforcement (w−) significantly hurts performance, highlighting its importance.

Model / Gen Len
Sudoku Countdown GSM8K MATH500

256 512 256 512 256 512 256 512

wd1-P (WLL) 6.69 6.84 13.67 4.69 65.66 78.17 29.40 22.80
wd1-SFT 26.5 24.2 43.4 43.4 80.7 82.0 36.4 39.0
wd1 25.2 24.2 51.2 46.1 80.8 82.3 34.4 39.0
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Figure 2: Training rewards of wd1 under differ-
ent combined weights on Sudoku.

We further assess sensitivity to the relative weight-
ing of positive and negative samples. The com-
bined weight (cw) corresponds to λ in the mix-
ture −λw+ + (1 − λ)w−, which scales the log-
likelihood term in wd1. Training on negative sam-
ples alone (cw= 0.0) yields a pronounced dete-
rioration in performance relative to our default
setting (cw= 0.5). The results reinforce our argu-
ment that a balanced contribution of positive and
negative weights is most effective. In the absence
of positive samples, the reinforcement-learning
signal collapses and optimisation becomes largely
ineffective. A large emphasis on positive samples
(cw= 0.8) causes performance to deteriorate more
rapidly, highlighting the critical role of negative samples in weighted log-likelihood methods.

6 RELATED WORK

RL for Diffusion-based LLM. RL for discrete diffusion models has been explored through several
approaches. One line of work, exemplified by DRAKES (Wang et al., 2024), leverages reward back-
propagation along the denoising trajectory. This approach requires computing a critic and propagating
gradients through each denoising step, which is computationally intensive and prone to vanishing
gradients. Alternatively, methods such as MMaDA (Yang et al., 2025) and d1 (Zhao et al., 2025) adopt
direct RL formulations like GRPO, approximating missing diffusion components—such as per-token
likelihoods—for policy optimization. Zhu et al. (2025a) applies Direct Preference Optimization (DPO)
to fine-tune the LLaDA base model (Nie et al., 2025a), achieving notable gains in reasoning tasks.
However, these approaches all depend on likelihood ratios, which can introduce bias and instability
due to likelihood approximation errors. In contrast, our method derives a weighted policy optimiza-
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tion approach that eliminates the need for explicit policy ratios. Importantly, similar to prior works,
our method directly optimizes the predictive distribution over clean data. A complementary line of
research formulates policy optimization in terms of concrete scores (Lou et al., 2024; Meng et al.,
2022). SEPO (Zekri & Boullé, 2025), for instance, introduces a policy optimization objective that only
depends on concrete score estimation, thereby circumventing likelihood approximation altogether.

RL for AR Models. The connection between GRPO and weighted regression has recently been
explored in the context of RL with verifier reward (Mroueh, 2025), where binary rewards simplify
policy optimization into likelihood-based objectives. Other closely related approaches are Rejection
Sampling Fine-Tuning (RAFT), which maximizes the likelihood of positive-reward samples (Xiong
et al., 2025). Extensions of this idea incorporate negative samples to actively penalize the likelihood
of negative-reward completions while enhancing that of high-reward ones (Zhu et al., 2025b; Chen
et al., 2025). Other works introduce negative penalization through contrastive methods, such as
Noise Contrastive Estimation (NCE) (Gutmann & Hyvärinen, 2012; van den Oord et al., 2019; Chen
et al., 2024). Beyond binary rewards, preference-based learning has been widely studied using the
Bradley–Terry model (Bradley & Terry, 1952; Ouyang et al., 2022; Rafailov et al., 2024; Azar et al.,
2023; Ethayarajh et al., 2024; Wang et al., 2023; Hong et al., 2024). In contrast to these approaches,
our method accommodates general reward signals and can be interpreted as a form of soft rejection
sampling, enabling efficient and stable policy optimization for dLLMs.

RL via Weighted Regression. RL via weighted regression has been explored in earlier works
advantage-weighted regression (AWR) (Peng et al., 2019; Peters et al., 2010), and more recently in the
context of continuous control with diffusion policies (Ding et al., 2024; Zhang et al., 2025). Weighted
likelihood-based approaches have also been proposed for fine-tuning autoregressive (AR) language
models using general reward functions (Du et al., 2025; Baheti et al., 2024; Zhu et al., 2023). However,
for AR models, where likelihoods are tractable, the necessity of such approaches remains unclear.
In contrast, dLLMs suffer from intractable likelihoods, making weighted likelihood formulations
particularly advantageous by reducing the number of required likelihood approximations. As such,
RL via weighted likelihood provides a natural and efficient fit for optimizing dLLMs. In addition,
we demonstrate in ablation study that merely optimizing policy with AWR (wd1-P) is ineffective.

"Ratio-Free" Policy Optimization. If a policy optimization objective requires neither importance
sampling nor regularization with respect to a reference model, then the objective is ratio-free.
Consequently, on-policy algorithms such as vanilla policy gradient methods (e.g., REINFORCE
(Williams, 1992)) and their variants (e.g., RLOO (Kool et al., 2019)) are inherently ratio-free. This
property is particularly valuable for dLLMs, where errors in log-likelihood approximation can
accumulate and propagate through ratio-based computations. Concurrent work, such as SPG (Wang
et al., 2025a), adopts a policy-gradient formulation and develops an objective tailored specifically
for diffusion language models. Another on-policy optimization approach, d2 (Wang et al., 2025c),
removes both the ratios and the likelihood terms from the RL objective for dLLMs, offering a more
fundamental solution. However, our method wd1, similar to AWR (Peng et al., 2019), is inherently
an off-policy loss, which is more general.

7 CONCLUSION

We introduce wd1, a weighted policy optimization method for reasoning with dLLMs. wd1 is designed
to minimize reliance on likelihood approximation, thereby mitigating the potentially substantial bias
that can arise from approximation errors in policy ratios. Our method is grounded in a weighted log-
likelihood objective, derived to approximate the closed-form solution to the reverse-KL-constrained
policy optimization. Empirically, we show that wd1, even without supervised fine-tuning, surpasses
the existing method d1 by up to 16% in accuracy on reasoning benchmarks, while also delivering
notable improvements in computational efficiency during RL training. These results highlight the
effectiveness of wd1 and establish it as a more scalable and efficient approach for fine-tuning dLLMs.

8 ETHICS AND REPRODUCIBILITY STATEMENT

This work raises no question or concern regarding the Code of Ethics. As for reproducibility of our
results, we provide details of implementations in Section 5, in Experimental Setup and Implementation
subsections. Additional details including dataset, reward functions, and hyperparameters are provided
in Appendix B. All the theoretical results are proved in Appendix A.
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A PROOFS AND ADDITIONAL THEORY

A.1 OBJECTIVE ESTIMATION ERROR DUE TO LIKELIHOOD APPROXIMATION

In this section, we aim to show that diffu-GRPO amplify the log-likelihood approximation error. De-
note the approximator by ϕ such that ∥ϕπθ (q, o)−log πθ(o|q)∥ ≤ ϵ and ∥ϕπold(q, o)−log πold(o|q)∥ ≤
ϵ′. Then the objective diffu-GRPO in the worst case suffers from exponential error. We discuss the
case without ratio clipping and omit the regularization for convenience. Denote LGRPO as the ground
truth objective without likelihood approximation:

∥Ldiffu-GRPO − LGRPO∥

=||Eq∼D, o1:G∼πold(·|q)

[
1
G

G∑
i=1

1
|oi|

|oi|∑
k=1

(
expϕπθ (oki )/ expϕ

πold(oki )
)
Âi

]]

−Eq∼D, o1:G∼πold(·|q)

[
1
G

G∑
i=1

1
|oi|

|oi|∑
k=1

(
πθ(o

k
i )/πold(o

k
i )
)
Âi

]
||

=||Eq∼D, o1:G∼πold(·|q)

[
1
G

G∑
i=1

1
|oi|

|oi|∑
k=1

exp
(
ϕπθ (oki )− ϕπold(oki )

)
Âi

]]

−Eq∼D, o1:G∼πold(·|q)

[
1
G

G∑
i=1

1
|oi|

|oi|∑
k=1

(
πθ(o

k
i )/πold(o

k
i )
)
Âi

]]
||

≤||Eq∼D, o1:G∼πold(·|q)

[
1
G

G∑
i=1

1
|oi|

|oi|∑
k=1

exp
(
log πθ(o

k
i )− log πold(o

k
i ) + (ϵ+ ϵ′)

)
Âi

]]

−Eq∼D, o1:G∼πold(·|q)

[
1
G

G∑
i=1

1
|oi|

|oi|∑
k=1

(
πθ(o

k
i )/πold(o

k
i )
)
Âi

]]
||

=||Eq∼D, o1:G∼πold(·|q)

[
1
G

G∑
i=1

1
|oi|

|oi|∑
k=1

exp
(
ϵ+ ϵ′

)
Âi

]]
≤ C exp

(
ϵ+ ϵ′

)
, (15)

where C is a constant independent to ϵ and ϵ′. In contrast wd1 has only linear approximation error.
Denote the objective computed using approximated log-likelihood as Lϕ

∥Lϕ − Lwd1∥ =∥Eq∼D,{oi}Gi=1∼πref
old(·|q)

[ G∑
i=1

(
− w+(q, oi) + w−(q, oi)

)
·
(
ϕ(q, oi)− log πθ(oi|q)

)]
∥

≤C ′ϵ. (16)

A.2 REINFORCEMENT LEARNING

Reinforcement Learning Formulation. We first introduce the reinforcement learning notations and
then extend it to the setting of LLM post-training. Denote τ as a trajectory (τ = (s0, a0, s1, . . . ) ∼ π)
sampled following policy π. Specifically, s0 ∼ µ, at ∼ π(·|st), st+1 ∼ P (·|qt, at). The objective of
Reinforcement Learning aims to find policy π, which maximizes a discounted total return,

η(π) = Eτ∼π
[ ∞∑
t=0

γtr(st, at, st+1)
]
.

Let the discounted return of a trajectory beR(τ) =
∑∞
t=0 γ

tr(st, at, st+1). The advantage function is
defined asAπ(s, a) = Qπ(s, a)−V π(s) , where V π(s) = Eτ∼π[R(τ)|s0 = s] is state value function,
and Qπ(s, a) = Eτ∼π[R(τ)|s0 = s, a0 = a] is state-action value function. Denote ρπold as the
marginal state distribution. Denote the total variation of two discrete probability distributions a, b by
DTV (a, b) :=

1
2

∑
i |ai − bi| and DTV (a, b)

2 ≤ DKL(a ∥ b) (Pollard, 2000; Schulman et al., 2015).
When a and b are conditional probability distribution, denote Dmax

TV (a, b) = maxqDTV(a(·|q)∥b(·|q))
and Dmax

KL (a ∥ b) = maxqDKL(a(·|q)∥b(·|q)).
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We then extend RL for LLM post-training. In this paper we only consider the sequence-level reward
and loss objective, so we directly replace s with q and a with completion o. Then the horizon of the
RL for post-training becomes only 1. The following theorem provides a monotonic (non-decreasing)
guarantee of existing prevailing RL methods.
Proposition 1 (Policy Improvement Bound (Kakade & Langford, 2002; Schulman et al.,
2015)). Let surrogate objective Lπold(π) = η(πold) + Es∼ρπold (·), a∼π(·|s)

[
Aπold(s, a)

]
, and C =

4maxs,a,π |Aπ(s, a)|γ/(1− γ)2, then ∀k ∈ N:

η(π∗) ≥ Lπold(π
∗)− CDmax

TV (πold, π
∗)2.

Remark 3. Based on Proposition 1, due to Dmax
TV (a||b)2 ≤ Dmax

KL (a||b) (Pollard, 2000; Schul-
man et al., 2015), TRPO and PPO with fixed forward KL regularization have the monotonic im-
provement guarantees. In other words, η(π∗) ≥ Lπold(π

∗) − CDmax
TV (πold, π

∗)2 ≥ Lπold(π
∗) −

CE[DKL(πold∥π∗)] ≥ Lπold(πold) = η(πold).
Proposition 2. Minimizing DKL(π

∗(·|q) ∥πθ(·|q)) w.r.t. θ is equivalent to optimize the following
loss objective:

LWLL(θ) =Eq∼D,o∼πref
old(·|q)

[
− exp

(
ψAπold(q, o)

)
· log πθ(oi|q)

]
(17)

≈− E{oi}G
i=1∼π

ref
old(o|q)

[ 1
G

G∑
i=1

exp
(
ψAπold(q, oi)

)∑G
j=1[exp

(
ψAπold(q, oj)

)
]
· log πθ(oi|q)

]
. (18)

Proof. To obtain the practical objective in Equation (18), we first start from the cross-entropy loss,
and obtain the following. ∀q ∈ D:

DKL(π
∗(·|q) ∥πθ(·|q))

= −Eo∼π∗(·|q)

[
log πθ(o|q)

]
(19)

= −
[∑

o

π∗(o|q) · log πθ(o|q)
]

(20)

= −
[∑

o

πref
old(o|q) exp

(
ψAπold(q, o)

)∑
o′ π

ref
old(o

′|q)[exp
(
ψAπold(q, o′)

)
]
· log πθ(o|q)

]
(21)

= −Eo∼πref
old(o|q)

[ exp
(
ψAπold(q, o)

)
Eo′∼πref

old
[exp

(
ψAπold(q, o′)

)
]
· log πθ(o|q)

]
(22)

Since the normalization constant Eo′∼πref
old
[exp

(
ψAπold(q, o′)

)
] is independent to o, we can convert the

objective to a weighted log-likelihood, and approximate it with samples from the group and weight
normalization to obtain:

LWLL(θ) =− Eo∼πref
old(o|q)

[
exp

(
ψAπold(q, o)

)
· log πθ(o|q)

]
(23)

≈− E{oi}G
i=1∼πref

old(o|q)

[ 1
G

G∑
i=1

exp
(
ψAπold(q, oi)

)∑G
j=1[exp

(
ψAπold(q, oj)

)
]
· log πθ(oi|q)

]
. (24)

We derive Equation (21) from Equation (20) by simply using the known form of the optimal policy
π∗(·|q) ∝ πref

old(·|q) · exp
(
ψÂ(q, ·)

)
. We derive Equation (22) from Equation (21) by using the

definition of expectation and from Equation (22) to Equation (24) by approximating through G
samples {oi}Gi=1 ∼ πref

old(o|q).

Theorem 2. Reverse-KL-regularized Policy Optimization defined in the following objective has
monotonic improvement guarantees. Specifically, denote regularized objective η′(π) = η(π) −
Eq∈D

[
βDKL

(
π(·|q) ∥πref(·|q)

)]
and denote

M(π) = L(π)− Eq∈D

[
λDKL(π(·|q)∥πold(·|q)) + βDKL

(
π(·|q) ∥πref(·|q)

)]
, (25)
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where L(π) = η(πold) + Eq∼D, o∼π(·|q)
[
Aπold(q, o)

]
. Let θ∗ be the solution to the objective

maxθM(πθ):

θ∗ = argmax
θ

Eq∈D,o∼πθ(·|q)

[
Aπold(q, o)− λDKL( πθ(·|q) ∥ πold(·|q) )− βDKL

(
πθ(·|q) ∥πref(·|q)

)]
(26)

then η′(π∗) ≥ η′(πold).

Proof. Based on Proposition 1, we have

η′(π∗) =η(π∗)− Eq∈D

[
βDKL

(
π∗(·|q) ∥πref(·|q)

)]
≥L(π∗)− CDmax

TV (πold, π
∗)2 − Eq∈D

[
βDKL

(
π∗(·|q) ∥πref(·|q)

)]
(27)

≥L(π∗)− CDmax
KL (π∗∥πold)− Eq∈D

[
βDKL

(
π∗(·|q) ∥πref(·|q)

)]
(28)

≥L(π∗)− Eq∈D

[
λDKL(π

∗(·|q)∥πold(·|q)) + βDKL

(
π∗(·|q) ∥πref(·|q)

)]
(29)

=M(π∗) (30)
≥M(πold) (31)

=L(πold)− Eq∈D

[
λDKL(πold(·|q)∥πold(·|q)) + βDKL

(
πold(·|q) ∥πref(·|q)

)]
(32)

≥L(πold)− Eq∈D

[
βDKL

(
πold(·|q) ∥πref(·|q)

)]
(33)

=η(πold)− Eq∈D

[
βDKL

(
πold(·|q) ∥πref(·|q)

)]
(34)

=η′(πold) (35)

Equation (27) holds due to Proposition 1. Equation (28) holds due toDmax
TV (p||q)2 ≤ Dmax

KL (p||q) (Pol-
lard, 2000). Equation (29) holds due to the definition ofDmax

KL . Equation (30) is according to the defini-
tion ofM(·). The key inequality Equation (31) holds since π∗ is the maximizer of functionL(·). Equa-
tion (32) holds due to the definition of M(·). Equation (33) holds since DKL(πold(·|q)∥πold(·|q)) = 0.
Equation (34) holds since L(πold) = η(πold)+Eq∼D, o∼πold(·|q)

[
Aπold(q, o)

]
= η(πold). Equation (35)

is from the definition of η′.

A.3 MASKED DISCRETE DIFFUSION

In this section, we show how our objective learns a distribution for which all marginals at time t
satisfy intermediate energy guidance as per Lu et al. (2023).
Definition 2. The absorbing transition kernel is defined as Qt = σ(t)Qabsorb, where

Qabsorb =


−1 0 · · · 0 1
0 −1 · · · 0 1
...

...
. . .

...
...

0 0 · · · −1 1
0 0 · · · 0 0

 .

Definition 3 (Concrete Score). Denote xt = (x1t , · · · , xdt ) and x̂t is identical to xt except the i-th
token is unmasked (i.e. xit = [M ] and x̂it ̸= [M ]). Concrete score is defined as the marginal
probability ratio between x̂t and xt:

s(xt, t)
def
=
p(x1t , · · · , x̂it, · · · , xdt )
p(x1t , · · · , xit, · · · , xdt )

. (36)

Proposition 3 (Marginal Distribution (Ou et al., 2025)). Denote {xt} as a continuous time Markov
chain with transition matrix Qt = σ(t)Qabsorb. Assume d1 tokens in xt = (x1t , · · · , xdt ) are masked
tokens [M], and d2 = d− d1 tokens are unmasked, the marginal distribution pt(xt) satisfies

pt(xt) =
[
1− e−σ̄(t)

]d1[
e−σ̄(t)

]d2
p0(x

UM
t ), (37)

where σ̄(t) =
∫ t
0
σ(s)ds, and xUM

t is the set of unmasked tokens in xt.
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The following theorem provides the foundation of directly modeling the clean data distribution.
Proposition 4 (Analytic Concrete Score (Ou et al., 2025)). Denote xt = (x1t , · · · , xdt ) and x̂t is
identical to xt except the i-th token is unmasked (i.e. xit = [M ] and x̂it ̸= [M ]). Then the concrete
score at time t can be expressed by the conditional probability of predicting this unmasked token.

pt(x
1
t . . . x̂

i
t . . . x

d
t )

pt(x1t . . . x
i
t . . . x

d
t )

=
e−σ̄(t)

1− e−σ̄(t)
p0(x̂

i
t | xUM

t )

.
Lemma (1). The marginal probability distribution of the masked responses (xt) in the diffusion
process satisfies p∗t (xt) = p′t(xt) · exp

(
At(xt)

)
/Zt, which induces an energy-guided discrete

diffusion:

p∗0|t(x0|xt) ∝ p
′
0|t(x0|xt) · exp(A(x0)−At(xt)), (38)

where intermediate energy function is defined as At(x0) = logEx0∼p′0|t(·|xt)[exp
(
A(x0)

)
] for t > 0,

and A0(x0) = A(x0), A(·) is advantage function, Zt is the normalization constant.

Proof. The theorem and proof mainly extend from theory developed in continuous setting (Lu et al.,
2023). According to the marginal likelihood of clean data distribution p∗0(x0) = p′0(x0)

eA(x0)

Z , and
identical forward process, we can rewrite the marginal likelihood of masked data:

p∗t (xt) =

∫
p∗t|0(xt|x0)p

∗
0(x0) dx0 =

∫
p∗t|0(xt|x0)p

′
0(x0)

eψA(x0)

Z
dx0

=

∫
p′t|0(xt|x0)p

′
0(x0)

eψA(x0)

Z
dx0.

Applying Bayesian rule we know that p′t|0(xt|x0)p
′
0(x0) = p′0|t(x0|xt)p

′
t(xt), hence we can further

rewrite

p∗t (xt) =

∫
p′t|0(xt|x0)p

′
0(x0)

eψA(x0)

Z
dx0 = p′t(xt)

∫
p′0|t(x0|xt)

eψA(x0)

Z
dx0

=
p′t(xt)Ep′0|t(x0|xt)

[
eψA(x0)

]
Z

=
p′t(xt) e

ψAt(xt)

Zt

Therefore, the marginal likelihood of masked sequence satisfies: p∗t (xt) = p′t(xt) · exp
(
At(xt)

)
/Zt.

Since p∗t|0 = p′t|0, based on the marginal likelihood of clean data distribution satisfies p∗0(x0) =

p′0(x0)
eA(x0)

Z , we can further applying Bayesian rule to obtain the energy-guided discrete diffusion
model:

p∗0|t(x0|xt) =
p∗t|0(xt|x0)p

∗
0(x0)

p∗t (xt)
(39)

=
p′t|0(xt|x0)p

′
0(x0)

eA(x0)

Z

p∗t (xt)
(40)

=
p′t|0(xt|x0)p

′
0(x0)

eA(x0)

Z

p′t(xt) e
ψAt(xt)

Zt

(41)

∝ p′0|t(x0|xt) · exp(A(x0)−At(xt)), (42)

Lemma 2. According to Definition 1, due to the identical forward process

p∗t|0(xt|x0) = p′t|0(xt|x0) = pref
t|0(xt|x0), (43)

based on Lemma 1 and Proposition 3, we have the marginal probability of the unmasked tokens
satisfies that for all step t,

p∗0(x
UM
t |q) =p0(xUM

t |q)λ · p
ref
0 (xUM

t |q)β · Ep′0(x0|xt)[exp
(
A(q, x0)

)
]/Z, (44)

where Z is the normalization constant.

21



Published as a conference paper at ICLR 2026

Proof. According to the identical forward distribution of three diffusion process (new, old, and
reference), based on Equation (37), we have ∀t:

pt(xt|q) =
[
1− e−σ̄(t)

]d1[
e−σ̄(t)

]d2
p0(x

UM
t |q) (45)

p∗t (xt|q) =
[
1− e−σ̄(t)

]d1[
e−σ̄(t)

]d2
p∗0(x

UM
t |q) (46)

pref
t (xt|q) =

[
1− e−σ̄(t)

]d1[
e−σ̄(t)

]d2
pref
0 (xUM

t |q) (47)

Then rewrite Equation (46) in the residual energy-based form defined in Equation (38), we have[
1− e−σ̄(t)

]d1[
e−σ̄(t)

]d2
p∗0(x

UM
t |q) = p∗t (xt|q) =p′t(xt|q) · exp

(
At(q, xt)

)
/Z. (48)

By plugging p′t(xt|q) = pt(xt|q)λ · pref
t (xt|q)β and Equation (45) and Equation (47) into Equa-

tion (48), we have that the clean data distribution of the unmask tokens at diffusion time t satisfies:

p∗0(x
UM
t |q) =p0(xUM

t |q)λ · pref
0 (xUM

t |q)β · exp
(
At(q, xt)

)
/Z (49)

=p0(x
UM
t |q)λ · pref

0 (xUM
t |q)β · Ep′0(x0|xt)[exp

(
A(q, x0)

)
]/Z. (50)

Proposition 5. The marginal likelihood of the target diffusion model p∗ satisfies Equation (38).
Consequently, the concrete score of the target diffusion model, denoted by s∗, can be expressed by the
score of the mixture diffusion p′ and the posterior mean of the advantage:

s∗(xt, t) =s
′(xt, t) ·

Ep′0(x0|x̂t)[exp
(
A(x0)

)
]/Ẑ

Ep′0(x0|xt)[exp
(
A(x0)

)
]/Z

, (51)

and equivalently

p0(x̂
i
t|xUM

t , q)λ · pref
0 (x̂it|xUM

t , q)β ·
Ep′0(x0|x̂t)[exp

(
A(q, x0)

)
]/Ẑ

Ep′0(x0|xt)[exp
(
A(q, x0)

)
]/Z

. (52)

Proof. According to Lemma 2

p∗0(x
UM
t , x̂it|q)

p∗0(x
UM
t |q)

=
p0(x

UM
t , x̂it|q)λ

p0(x
UM
t |q)λ

· p
ref
0 (xUM

t , x̂it|q)β

pref
0 (xUM

t |q)β
·
Ep′0(x0|x̂t)[exp

(
A(q, x0)

)
]/Ẑ

Ep′0(x0|xt)[exp
(
A(q, x0)

)
]/Z

(53)

p∗0(x̂
i
t|xUM

t , q) =p0(x̂
i
t|xUM

t , q)λ · pref
0 (x̂it|xUM

t , q)β ·
Ep′0(x0|x̂t)[exp

(
A(q, x0)

)
]/Ẑ

Ep′0(x0|xt)[exp
(
A(q, x0)

)
]/Z

. (54)

Both sides in Equation (52) multiply C(t) = e−· ¯σ(t)

1−e ¯σ(t)
and based on the analytic form of concrete

score introduced in Proposition 4, C(t) · p0(x̂it|xUM
t , q) = s(xit, t). Thus, we have

C(t) · p∗0(x̂it|xUM
t , q) = C(t) · p0(x̂it|xUM

t , q)λ · pref
0 (x̂it|xUM

t , q)β ·
Ep′0(x0|x̂t)[exp

(
A(q, x0)

)
]/Ẑ

Ep′0(x0|xt)[exp
(
A(q, x0)

)
]/Z

(55)

s∗(xt, t) = s′(xt, t) ·
Ep′0(x0|x̂t)[exp

(
A(q, x0)

)
]/Ẑ

Ep′0(x0|xt)[exp
(
A(q, x0)

)
]/Z

. (56)

Lemma 3. The normalization constant Z =
∑
xt
p′(xt|q) · Ex0|xt [expA(q, x0)] is independent to

the masked response xt. In other words, Z = Ẑ :=
∑
x̂t
p′(x̂t|q) · Ex0|x̂t [expA(q, x0)] for any

x̂t ̸= xt.
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Proof.

Z =
∑
xt

p′(xt|q) · Ex0|xt [expA(q, x0)] =
∑
xt

p′(xt|q) ·
∑
x0

p′(x0|xt) · expA(q, x0) (57)

=
∑
xt

∑
x0

p′(x0, xt|q) · expA(q, x0) =
∑
x0

∑
xt

p′(x0, xt|q) · expA(q, x0) (58)

=
∑
x0

p′(x0|q) · expA(q, x0) (59)

Thus Z becomes independent to xt, leading to that

Z = Ẑ :=
∑
x̂t

p′(x̂t|q) · Ex0|x̂t [expA(q, x0)] (60)

Theorem (1). The score model sθ = s∗ defined in Equation (52) is satisfied when the following loss
objective is minimized. This objective is in a form of advantage-weighted Denoising Concrete Score
Matching (D-CSM), which we call AW-D-CSM:

LAW-D-CSM =Ep′0(x0)[exp
(
A(q, x0)

)︸ ︷︷ ︸
Advantage Weight

·Et∼[0,T ],p′
t|0(xt|x0)[∥sθ(xt, t)−

p′0(x̂t|x0)
p′0(xt|x0)

∥22]︸ ︷︷ ︸
LD-CSM(x0)

]. (61)

Proof. Denote sθ(xt, t) = e−σ̄(t)

1−e−σ̄(t) pθ(x̂
i
t | xUM

t ) is the concrete score model induced by pθ. Accord-

ing to Lemma 3, Ẑ = Z. Then according to Proposition 5, Equation (52) is equivalent to

p∗0(x̂
i
t|xUM

t , q) · Ep′0(x0|xt)[exp
(
A(q, x0)

)
]

=p0(x̂
i
t|xUM

t , q)λ · pref
0 (x̂it|xUM

t , q)β · Ep′0(x0|x̂t)[exp
(
A(q, x0)

)
] (62)

We aim to update pθ(x̂it|xUM
t , q)→ p∗0(x̂

i
t|xUM

t , q) to satisfy Equation (62), thus we can construct a
loss function objective by replacing p∗ with pθ and construct a L2 norm loss

Ep′0(x0|xt)[exp
(
A(q, x0)

)
· ∥pθ(x̂it|xUM

t , q)− p′0(x0|x̂t)
p′0(x0|xt)

· p0(x̂it|xUM
t , q)λpref

0 (x̂it|xUM
t , q)β∥22]

(63)

=Ep′0(x0|xt)[exp
(
A(q, x0)

)
· ∥pθ(x̂it|xUM

t , q)− p′0(x0|x̂t)
p′0(x0|xt)

· p′0(x̂it|xUM
t , q)∥22] (64)

=Ep′0(x0|xt)[exp
(
A(q, x0)

)
· ∥pθ(x̂it|xUM

t , q)− p′0(x̂t|x0)p′t(xt)
p′0(xt|x0)p′t(x̂t)

· p′0(x̂it|xUM
t , q)∥22] (65)

=Ep′0(x0|xt)[exp
(
A(q, x0)

)
· ∥sθ(xt, t)−

p′0(x̂t|x0)
p′0(xt|x0)

∥22]. (66)

B ADDITIONAL EXPERIMENT SETUP DETAILS

B.1 DATASET, TRAINING AND EVALUATION PROTOCOL

As for wd1 and d1, we reproduce d1 by running the official code4 without and change, and train
our method wd1 evaluated for accuracy of the test datasets at steps 1000, 2500, 5000, 7500 in both
GSM8k and MATH; at steps 1000, 2500, 4000, 5000, 12500 in Sudoku; and at 1000, 2500, 4000
in Countdown. We evaluate less checkpoints compared to d1. On the GSM8K, we train models on

4https://github.com/dllm-reasoning/d1
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the train split5 and evaluate on the test split. On Countdown, we train on the 3-number subset of the
dataset6 from TinyZero (Pan et al., 2025), and evaluate on 256 synthetic 3-number questions provided
by Zhao et al. (2025). On Sudoku we use the 4×4 dataset7 generated by Arel (2025). We train on 1M
unique puzzles and evaluate on 256 synthetic ones provided by Zhao et al. (2025). On MATH500, we
train models on the train split8.

To train wd1++ for evaluating on MATH500, we use dataset provided by (He et al., 2025), which is
subsampled from OpenR1 dataset Face (2025). To evaluate on GSM8k, we leverage its train split
to conduct wd1++ training. Notably, we leverage a more effective system prompt and Math-Verify
(Kydlíček) to parse the answers for full-parameter fine-tuning of wd1, wd1++ and MDPO.

B.2 REWARD FUNCTION

To train wd1 and reproduce d1, we use the reward function defined in (Zhao et al., 2025). For
completion, we provide the details as following.

GSM8K. Following the Unsloth reward setup9, we apply five addtive components: XML Structure
Reward: +0.125 per correct tag; small penalties for extra content post-tags. Soft Format Reward:
+0.5 for matching the pattern <reasoning>...</reasoning><answer>...</answer>.
Strict Format Reward: +0.5 for exact formatting with correct line breaks. Integer Answer Reward:
+0.5 if the answer is a valid integer. Correctness Reward: +2.0 if the answer matches ground truth.

Countdown. We include three cases: +1.0 if the expression reaches the target using the exact
numbers. +0.1 if numbers are correct but target is missed. 0 otherwise.

Sudoku. The reward is the fraction of correctly filled empty cells, focusing on solving rather than
copying.

MATH500. We include two additive subrewards. Format Reward is +1.00 for <answer> with
\boxed inside; +0.75 for <answer> without \boxed; +0.50 for \boxed only. +0.25 for neither.
Correctness Reward: +2.0 if the correct answer is in \boxed{}.

To train wd1++, we leverage Math-Verify (Kydlíček), constructing a simple verifier reward function
to evalaute on GSM8K and MATH500.

B.3 SAMPLING FROM GEOMETRIC MIXTURE

Although the sampling strategy eliminates the need to approximate the reference policy’s likelihood,
it incurs computational overhead, as generating a full completion requires multiple forward passes
through the dLLM—compared to a single pass for likelihood estimation. An alternative is to sample
from πold and shift the advantage to Âi = Aπold(q, oi) + β log π̂ref/(λ+ β), which reintroduces the
need for reference policy likelihood approximation. However, policy ratio has been removed, and the
reference model can be reused when conducting multiple gradient updates with the same batch of
rollouts (off-policy). The increased computational burden is slight.

B.4 HYPERPARAMETERS

We provide the hyperparameters of SFT in Table 5 and for wd1 in Table 6.

bacth_size max_length learning_rate grad_accum_steps

Value 1 4096 1e-5 4

Table 5: Hyperparameters of SFT in d1 reproduction.

5https://huggingface.co/datasets/openai/gsm8k
6https://huggingface.co/datasets/Jiayi-Pan/Countdown-Tasks-3to4
7https://github.com/Black-Phoenix/4x4-Sudoku-Dataset
8https://huggingface.co/datasets/ankner/math-500
9https://unsloth.ai/blog/r1-reasoning
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Parameter wd1 d1

Model and Precision
use_peft true true
torch_dtype bfloat16 bfloat16
load_in_4bit true true
attn_implementation flash_attention_2 flash_attention_2
lora_r 128 128
lora_alpha 64 64
lora_dropout 0.05 0.05
peft_task_type CAUSAL_LM CAUSAL_LM

Training Configuration
seed 42 42
bf16 true true
sync_ref_model True True
ref_model_sync_steps 64 64
adam_beta1 0.9 0.9
adam_beta2 0.99 0.99
weight_decay 0.1 0.1
ψ (Equation (9)) 1.0
max_grad_norm 0.2 0.2
warmup_ratio 0.0001 0.0001
learning_rate 3e-6 3e-6
lr_scheduler_type constant_with_warmup constant_with_warmup

Batching and Evaluation
per_device_train_batch_size 6 6
per_device_eval_batch_size 1 1
gradient_accumulation_steps 2 2

RL
num_generations 6 6
max_completion_length 256 256
max_prompt_length 200 200
block_length 32 32
diffusion_steps 128 128
generation_batch_size 6 6
remasking low_confidence low_confidence
random_masking True True
p_mask_prompt 0.15 0.15
beta 0.00 0.04
epsilon – 0.5
num_iterations 12 12

Table 6: Comparison of hyperparameters between wd1 and d1.

B.5 TRAINING COST ESTIMATION

For the runtime measurements reported in Table 2, we set µ = 8 and train for a total of 6 global
steps, corresponding to 48 gradient update steps. We use a batch size of 4 and the rest of the
hyperparameters are the same as in Table 6. To estimate the number of function evaluations (NFEs)
involved in computing likelihood approximations, we count only the forward passes, as the number
of backward passes remains consistent across methods. The additional NFEs observed in the d1
model arise from evaluating the likelihood under both the old and reference models, which are used
for regularization. These extra evaluations are required only when new samples are drawn, as their
outputs can be cached and reused across all gradient updates for µ. We additionally report the number
of floating-point operations (FLOPs) per global training step, measured using the Flops Profiler from
Rasley et al. (2020).

B.6 COMPUTING RESOURCES

For both wd1 and d1, RL training is conducted on four NVIDIA A100 GPUs (80GB), and SFT
is performed on four A6000 GPUs (48GB). For wd1++ and MDPO, RL training is conducted on
8×A800 (80GB).
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C ADDITIONAL EXPERIMENTS

We additionally report results for comparison to the results of the baseline d1 reported in the paper
(Zhao et al., 2025). As shown in Table 7, our method wd1 evaluated and selected from less
checkpoints, can outperform d1 with a large margin in Sudoku and Countdown, achieving comparable
performance in math problem-solving tasks.

C.1 SUMMARY OF wd1 RESULTS

Table 7: Test accuracy across different tasks. Our method demonstrates higher accuracy, especially
significant in Sudoku and Countdown. The shaded area indicates where our method outperforms.

Model Sudoku Countdown GSM8K MATH500
256 512 256 512 256 512 256 512

LLaDA-8B-Instruct 6.7 5.5 19.5 16.0 76.7 78.2 32.4 36.2
+ diffu-GRPO (reported) 12.9 11.0 31.3 37.1 79.8 81.9 37.2 39.2
+ diffu-GRPO (reproduced) 16.1 11.7 27.0 34.0 80.7 79.1 34.4 39.0
d1 (reported) 16.7 9.5 32.0 42.2 81.1 82.1 38.6 40.2
d1 (reproduced) 17.6 16.2 25.8 35.2 78.2 82.0 34.4 38.0

wd1 76.4 62.8 51.2 46.1 80.8 82.3 34.4 39.0

Table 8: Training cost. The training steps to obtained the best post-trained model of three methods are
20, 150, and 7500. To compute the total rollouts, we need to compute the average rollouts in a single
training step. Gradient steps per rollout batch represents the number of gradient descent conducted
with a single batch of rollouts. In other words, 1 represents it is a pure on-policy RL training, and for
any value > 12, off-policy RL is executed. Total Batch Size is computed by multiplying per-device
batch size, gradient accumulation and the number of gpus. Therefore, the average number of rollouts
used for single step gradient descent should be computed by total batch size divided by gradient steps
per rollout batch.

Hyperparameter wd1++ MDPO d1

Training step of the best checkpoint 20 150 7500

Training Steps per Rollout batch 1 1 12

Per-Device Batch Size 4 1 6
Gradient Accumulation 2 16 2
GPUs used for training 8 8 4
Total Batch Size 64 128 48

Avg. Rollouts per Step 64 128 4
Total Rollouts 1280 19200 30000

We additionally provide reward dynamics in comparison to wd1-SFT in training. In Sudoku and
Countdown, directly training with wd1 without SFT shows significantly more efficient and stable
learning process. In GSM8k and MATH500, the difference is negligible.

C.2 ADDITIONAL ABLATION STUDY

We provide additional ablation study on the combined weight to confirm our analysis that the positive
and negative samples terms in the loss function should be assigned equal proportion, due to the side
case of a batch of all-negative generated responses (see the paragraph below Equation (9)). Assigning
equal proportions to positive and negative weights is not arbitrary but rather the most robust design.
This can be understood through two critical failure modes that arise from imbalanced proportions:
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Figure 3: Reward Dynamics. wd1 without SFT demonstrates better rewards in Sudoku and Count-
down.

Table 9: Ablation on weight λ to combine positive w+ and negative weights w− in wd1 on Sudoku.
Specifically, the final weight assigned to log-likelihood is computed as −λw+ + (1− λ)w−.

Combined Weight Accuracy Effective Tokens
0.5 25.63% 326.97
0.4 11.77% 240.04
0.6 14.11% 220.13

• When positive weight has larger proportion: In scenarios where all sampled completions
have uniformly low rewards, a larger proportion of positive weights would paradoxically
increase the log-likelihood of negative samples during wd1 optimization, which is clearly
undesirable and contradicts the learning objective.

• When negative weight has larger proportion: Conversely, when all generated completions
achieve uniformly high rewards, an insufficient proportion of positive weights would result
in unlearning high-quality samples.

To empirically validate this analysis, we conducted experiments on the Sudoku dataset with varying
mixing proportions. The results, presented in the table below, confirm our theoretical predictions.
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Figure 4: Left: Ablation study on ψ in the weights (Equation (9)) on GSM8K. Right: wd1 training
on MATH with a random seed different from the seed used in our main experiments. The abrupt
decrease of the rewards in the early training (see Figure 3 MATH500) disappears.

In all benchmark evaluations, we fix the hyperparameter ψ = 1, which controls the scale of the
exponential weighting in wd1. To validate this choice, we provide an ablation study on the coefficient
ψ = 1 in the exponential weight of wd1 (Equation 9) below. Larger values ψ leads to more extreme
weight assigned to the samples. According to Figure 4, the training of applying different ψ converges
to similar rewards if ψ is small. Overly large value (e.g. 10) can cause performance drop, implying
that extreme weight assignment is detrimental.
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Figure 5: Completion lengths dynamics of wd1 and d1. In math problem-solving tasks (GSM8K and
MATH500), our method demonstrates smaller completion lengths and better token efficiency.

C.3 CODING BENCHMARKS

We conduct 200 steps of wd1 training on AceCode-87K (Zeng et al., 2025) following the implemen-
tation of Open-R1 (Hugging Face, 2025). Our method achieves consistent improvements over the
base model.

Table 10: Comparative performance of wd1 improvements compared to base model LLaDA-8B-
Instruct. We present the results of wd1 fine-tuned with AceCode dataset (Zeng et al., 2025).

Task Gen Length Steps Block Size wd1 LLaDA

HumanEval 256 128 32 34.76 (+3.66) 31.10
HumanEval 256 256 32 39.02 (+1.82) 37.20
HumanEval 512 512 32 36.59 (+0.61) 35.98

MBPP 128 128 32 39.2 (+2.40) 36.8
MBPP 256 256 32 36.6 (+1.00) 35.6
MBPP 512 512 32 36.8 (+0.40) 36.4

C.4 TRAINING DYNAMICS

Figure 3 presents the reward dynamics over gradient steps during training. wd1 exhibits a notably
faster reward increase compared to d1, highlighting its superior sample efficiency–effectively lever-
aging the reward signal to accelerate policy optimization. In addition, Figure 5 shows the average
length of generated completions during training. On math reasoning benchmarks such as GSM8K and
MATH500, wd1 converges to shorter output sequences than d1, suggesting improved token efficiency
while maintaining or improving performance.

D LIMITATIONS

Similar to other RL-based approaches, wd1 may lose effectiveness when all generations within a
sampled group receive identical rewards. This situation can occur under several conditions—for
example, when the training dataset is either too simple or too challenging for the base model.
Nonetheless, such cases can be mitigated through careful reward design and the incorporation of
curriculum learning strategies.

An additional limitation of this work is that the current wd1 framework is restricted to text-based
reasoning. Extending it to multimodal reasoning or unified diffusion-based models (e.g., (Yang et al.,
2025)) represents a valuable direction for future research.

A final limitation concerns the likelihood approximation used in wd1. Our approach relies on the
d1-based approximation, which is computationally efficient but introduces bias. Although some prior
works employ ELBO-based estimators (e.g., DCE), they require additional computational overhead
(Zhao et al., 2025) often exhibit high variance, as demonstrated in Figure 1. This trade-off highlights
an important area for further exploration.
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D.1 ADDITIONAL ANALYSIS ON UNLEARNING

We provide extended demonstrations for Remark Remark 2, focusing specifically on the theoretical
insights underlying the interpretation of the negative-sample reinforcement term in wd1 as a form of
data unlearning. Under the DCE likelihood approximation, the negative-sample reinforcement term
in wd1 becomes

Eo∼p′0(·)
[
w−(q, o) · log πθ(o|q)

]
= Eo∼p′0(·)

[
exp(−A(x0)) · log πθ(o|q)

]
(67)

=Ex0∼p′0(·)

[
exp

(
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)
· Et∼[0,T ],p′
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−1

t
log pθ(x

i
0|xUM

t )
]
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]
(68)
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0 |xUM
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︸ ︷︷ ︸
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]
, (69)

where pdata(x
−
0 ) = p′0(x

−
0 )

exp(−A(x−
0 ))∑

x
−
0
p′0(x

−
0 ) exp(−A(x−

0 ))
. Equation (69) holds by simply applying impor-

tance sampling.

Since DCE is equivalent to the evidence lower bound (ELBO) of masked discrete diffusion models,
we draw an analogy between the final objective in Equation (69) and data unlearning in diffusion
models (Alberti et al., 2025). Equation (69) can be viewed as a direct masked discrete–diffusion
extension of NegGrad (Golatkar et al., 2020), which aims to minimize the evidence lower bound of
the log-likelihood on samples with lower advantage.
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