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Abstract
Normalizing flows allow us to describe complex
probability distributions, and can be used to per-
form flexible maximum likelihood density estima-
tion (Dinh et al., 2014). Such maximum likeli-
hood density estimation is likely to overfit, partic-
ularly if the number of observations is small. Tra-
ditional Bayesian approaches offer the prospect
of capturing posterior uncertainty, but come at
high computational cost and do not provide an
intuitive way of incorporating prior information.
A nonparametric learning approach (Lyddon et al.,
2018) allows us to combine observed data with
priors on the space of observations. We present a
scalable approximate inference algorithm for non-
parametric posterior normalizing flows, and show
that the resulting distributions can yield improved
generalization and uncertainty quantification.

1. Introduction
Normalizing flows (Tabak and Vanden-Eijnden, 2010; Dinh
et al., 2014; Rezende and Mohamed, 2015) allow us to con-
struct flexible families of probability distributions on Rd
via a change-of-variables approach, where the change-of-
variables transform is modeled using an invertible, differ-
entiable neural network gϕ(z). When used for density esti-
mation, normalized flows are typically trained to maximize
the likelihood of the observations (possibly incorporating
some regularization terms). This means we do not capture
epistemic uncertainty, and are at risk of overfitting, par-
ticularly when working with small datasets. One solution
might be to adopt ideas from Bayesian deep learning to
approximate the Bayesian posterior, by assuming a prior dis-
tribution over the weights of the neural network (MacKay,
1992; Graves, 2011; Neal, 2012; Blundell et al., 2015). This
has two drawbacks. Firstly, posterior Bayesian inference in
neural networks is typically computationally challenging.
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Secondly, we lose one of the key advantages of a Bayesian
approach: the ability to incorporate meaningful prior knowl-
edge. While, for example, a multivariate Gaussian prior
on the weights of a neural network admits a valid posterior
distribution, it is not clear how the parameters of such a
prior can reasonably incorporate our prior beliefs about the
data generating mechanism.

Nonparametric posterior learning (NPL, Lyddon et al., 2018)
has been proposed as an alternative to classical Bayesian
inference. Rather than place a prior on the parameter space,
NPL specifies a distribution on the space of data generat-
ing mechanisms. Inference proceeds by generating sam-
ples from this distribution over distributions, and then de-
terministically optimizing the expection of some function
with respect to the sampled distribution. While conceptu-
ally straightforward and trivially parallelizable, this can be
costly if each optimization is computationally demanding.
Instead, we propose an approximate NPL algorithm that par-
titions the normalizing flow architecture into a shared neural
network (trained once, and used for unlimited posterior sam-
ples), and sample-specific latent distributions (which have
an analytically tractable form, and so can be easily calcu-
lated for a new posterior sample). This allows us to generate
high-quality approximate nonparametric posterior samples
from normalizing flows.

2. Background
2.1. Nonparametric posterior learning

Consider a set of observations x1:n
iid∼ F0, where F0 is

some unknown data generating distribution. We want to
learn about some parameter of interest θ ∈ Θ—for example,
the mean or median of the distribution, or the parameters of
a neural network trained on unlimited data. If θ is a suffi-
cient statistic for a parametric model, a standard Bayesian
approach is to place a prior on θ and use the likelihood un-
der that parametric model to obtain a posterior distribution.
If the parametric family contains the true data generating
mechanism, this posterior will converge to the true value θ0.

Nonparametric posterior learning provides an alternative
notion of a posterior, that does not rely on knowing the
“correct” distributional family, and allows us to describe the
relationship between parameter and data in terms of an arbi-
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trary loss (not necessarily a likelihood). The key intuition
is that, were we to have infinitely many samples from F0,
we would have no uncertainty in θ, and in many cases could
obtain θ0 as the minimizer of some loss Lθ(x) =

∏
i ℓθ(xi),

i.e.,

θ0 := θ(F0) = argmin
θ∈Θ

∫
X
ℓθ(x)dF0(x). (1)

Here, ℓθ(x) could be the log likelihood (analogous to stan-
dard Bayesian inference) or a general loss function (anal-
ogous to generalized Bayesian inference (Bissiri et al.,
2016)).

Rather than place a prior on θ, NPL specifies a distribution
πF directly on F0 (alternatively, on xn+1:∞, see Fong et al.
(2021)). Under this specification, the appropriate poste-
rior distribution—which we refer to as the nonparametric
posterior—over θ is given by

π̃(θ|x1:n) =
∫
M
δθ(F )πF (dF |x1:n), (2)

whereM is the space of distributions over probability mea-
sures on Rd. Species sampling priors provide a natural
choice for πF , since they have unbounded support and the
conditional distribution has positive mass at x1:n. In this
paper, we use a Dirichlet process with base measure Ω and
concentration parameter α, following Fong et al. (2019). Ω
can be seen as a prior guess at the empirical distribution,
and α as the relative importance assigned to this distribu-
tion. While the nonparametric posterior in Eq. 2 is not
analytically tractable, we can sample from it by repeatedly
sampling F (b) ∼ πF (dF |x1:n) and calculating θ(F (b)) fol-
lowing Eq. 1. In practice, sampling an infinite-dimensional
probability distribution is not feasible; instead we use a
finite approximation (see App. A.1).

2.2. Normalizing flows

If Z is a continuous random variable on Rd with known
probability density function (pdf) h(z), and g : Rd → Rd
is an invertible function, then we can use the change of
variables formula to obtain the pdf of X = g(Z), as

p(x) = h
(
g−1(x)

) ∣∣∣∣det(∂g−1(x)

∂x

)∣∣∣∣ .
Normalizing flows (NFs, Dinh et al., 2014; Rezende and
Mohamed, 2015) seek to learn an appropriate invertible
mapping gϕ between h(z) and p(x). Typically, gϕ is
parametrized by an invertible, differentiable neural net-
work designed to have a tractable Jacobian. If we find
argmaxϕ p(x;ϕ, h) we can then sample from, and evaluate
probabilities under, the associated maximum likelihood data
generating process (Dinh et al., 2014). NFs are also fre-
quently used to learn the latent distribution in a variational

autoencoder, allowing for more flexible latent representa-
tions than the typical Gaussian distribution (Rezende and
Mohamed, 2015).

3. Nonparametric posterior normalizing flows
As discussed in Sec. 2.2, NFs can be used to estimate the
probability distribution underlying a given dataset. However,
this distribution is learned in a maximum likelihood manner,
with no room for uncertainty in identifying the distribution
and no mechanism for incorporating prior information.

A standard Bayesian approach would be to place a prior
on the flow parameters ϕ, and update our uncertainty about
these parameters based on the data. In practice, this can
be computationally challenging. Moreover, it is not clear
how we should specify these priors, since there is not an
interpretable relationship between the distribution of the
weights in the neural network and the behavior of the over-
all NF. In particular, it is hard to imagine an informative
prior, that incorporates prior knowledge about the data. An
NPL approach allows us to distill our prior knowledge into
a distribution over datasets, rather than over parameters. For
example, we might describe our prior beliefs about the data
generating mechanism in terms of a user-specified distribu-
tion, an empirical distribution from a related dataset, or a
pre-trained generative model.

3.1. A naïve posterior normalizing flow

Let GΦ = {gϕ, ϕ ∈ Φ} be a family of differentiable, in-
vertible functions gϕ : Rd → Rd, and let h = N(0, I) be
a standard multivariate normal distribution on Rd. Com-
bined, these specify a family FΦ = {fϕ(x), ϕ ∈ Φ} of
distributions of the form

fϕ(x) = h
(
g−1
ϕ (x)

) ∣∣∣∣∣det
(
∂g−1

ϕ (x)

∂x

)∣∣∣∣∣ .
Let ℓϕ(x) be the negative log likelihood of x under fϕ (or
some related loss), and assume x1, . . . , xn are iid samples
from some true distribution F0, so our “parameter of inter-
est” is ϕ0(F0) = argminϕ

∫
ℓϕ(x)dF0(x). We can directly

apply the approach of Sec. 2.1 to obtain a distribution over
ϕ, by training B independent NFs on B weighted datasets
sampled from the posterior given x1, . . . , xn of an (approx-
imate) Dirichlet process, with concentration parameter α
and base measure Ω; see App. 2 for more details.

This approach is appealing for several reasons. It allows
us to specify a base measure Ω directly on the observation
space, which is more intuitive than a prior on parameter
space in the case of “black box” models. Our distribution
πF captures the intuition that F0 will be somewhere in
between this base measure Ω and our observed empirical
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distribution. Following Fong et al. (2019), the resulting
nonparametric posterior is consistent at θ0 and (if α = 0)
its posterior predictive will asymptotically dominate the
standard Bayesian posterior predictive. However, this naïve
approach is computationally demanding, since we must train
an independent flow for each bootstrapped sample. While
these can be trained in parallel, this is still a significant
investment of resources; as a result we only explore this
approach on toy data with limited sample size.

3.2. Jointly learning multiple flows

To reduce computational cost, we elect to train a single
NF architecture to learn all B posterior samples. To do
so, we augment the flow model described above by re-
placing the fixed latent distribution h with a parametrized
distribution hµ = N(µ, I), such that we have a family
FΘ,Φ = {fµ,ϕ(x);µ ∈M,ϕ ∈ Φ}, with

fµ,ϕ(x) = hµ

(
g−1
ϕ (x)

) ∣∣∣∣∣det
(
∂g−1

ϕ (x)

∂x

)∣∣∣∣∣ .
We then learn a nonparametric posterior of the form

π̃ϕ̂(µ|x1:n) =
∫
M δµϕ̂(F )πF (dF |x1:n)

µϕ(F ) = argminµ∈M
∫
Rd ℓµ,ϕ(x)dF (x)

ϕ̂ =argmaxϕ π̃ϕ(µ|x1:n).

In other words, we globally optimize the parameters of the
neural network, while locally optimizing the mean µ of the
latent distribution. This type of approach—optimizing some
parameters; inferring others—is often used in Bayesian
inference, where we infer a posterior distribution over local
parameters and optimize with respect to global parameters.

Alg. 3 in App. A.1 describes how we might achieve this.
First, we jointly optimize our flow parameters ϕ by repeat-
edly sampling F ∼ πF (F |x1:n); setting the latent mean µ
to the maximum likelihood values given F and the current
ϕ; and performing gradient descent on ϕ holding F constant.
This allows us to construct a single flow that can, in theory,
map any point in the support of πF (F |x) to the latent space,
implying a distribution over the latent space for any distribu-
tion in observation space. Since, in training, the distributions
in latent space are encouraged to be Gaussian, and since
we train on a wide variety of samples from πF (F |x1:n),
this encourages learning a flow that maps arbitrary distribu-
tions in the support of πF (F |x1:n) to Gaussians in the latent
space. We then fix the flow parameters ϕ = ϕ̂ and gener-
ate samples from the nonparametric posterior by repeatedly
sampling F (b) ∼ πF (F |x1:n); mapping the sample back
to the latent space; and obtaining the maximum likelihood
parameters µ(b) of the latent distribution. We note that given

F (b) =
∑
i wiδψi

, conditioned on the flow parameters ϕ̂,
µ(b) is simply the weighted mean

∑
i wig

−1

ϕ̂
(ψi).

4. Related work
Several works have applied a classical Bayesian approach
to learning neural networks, placing priors on the weights
and updating them via Laplace approximations (MacKay,
1992; Daxberger et al., 2021), variational inference (Graves,
2011; Blundell et al., 2015), or assumed density filtering
(Hernández-Lobato and Adams, 2015). Of particular rele-
vance to this paper, Trippe and Turner (2018) uses a varia-
tional inference approach to learn conditional normalizing
flows. However, these Bayesian methods tend to be slower
than non-Bayesian approaches, and do not allow us to eas-
ily incorporate domain knowledge. Gal and Ghahramani
(2016) shows that Monte Carlo dropout can be interpreted as
approximate Bayesian inference in a neural network, provid-
ing a lightweight alternative to the aforementioned Bayesian
approaches; however, again, we cannot incorporate domain-
specific knowledge and have minimal ability to adjust the
priors on the weights. Less attention has been given to incor-
porating meaningful prior information while training neural
networks. Osband et al. (2018) obtains samples from a prior
data generating mechanism, and used a bootstrapping-like
approach to model the difference between the prior sample
and the data. While the mechanism for incorporating a prior
is different from that proposed in this paper, it shares the
fact that the “prior” is specified in the function space, rather
than the parameter space.

5. Experimental evaluation
We begin with some qualitative experiments to show how
our nonparametric posterior normalizing flows (NPL-NFs)
behave in a low-dimensional, easily-visualized setting, be-
fore applying our method to real-world datasets. Through-
out, we use M = 10 pseudo-samples in our NPL boot-
strapped samples F (b) (see Alg. 2). For the NPL methods,
we use 100 bootstrapped samples F (b)

eval (that were not part
of the samples used during training) to estimate the posterior
distribution and generate posterior samples.

5.1. Qualitative evaluation

We begin by considering sawtooth-shaped synthetic data,
shown in the first row of Fig. 1. We train a NF on this data,
plus jointly-learned NPL-NFs with varying concentration
parameters; see App. A.2.1 for further details. Fig. 1 shows
the mean posterior pdf for each flow (for standard NFs, we
obtain a single estimate, which we show in place of the
mean), using a standard normal base measure Ω. Fig. 2
shows the standard deviation of the posterior. Samples
from this distribution, plus corresponding results using a
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Figure 1: Mean pdfs for our model. Top row: Training
samples of varying sample size. Subsequent rows: corre-
sponding mean pdf for standard NFs, and NPL-NFs with
various values of concentration parameter α and Gaussian
base measure Ω. Values are truncated to 10; this only affects
standard NFs with n = 8, 16, 32, and α = 0 NPL-NFs with
n = 8, 16.

Gaussian process base measure, are shown in App. A.2.2.
We see that that the NPL-NFs capture uncertainty in the
estimated pdf; as n increases, the uncertainty decreases. As
expected, increasing α pushes our posterior closer to the
base measure Ω. For larger training sizes, results are more
similar across the models, since the posterior uncertainty is
reduced. However, for smaller training sizes, we see that
the standard NF overfits to the data.

In Fig. 3, we repeat this analysis, using the “naïve” approach
where a separate NF is trained for each bootstrap sample.
The computational cost here is dramatically higher; for this
reason, only ten samples were used in each case, resulting in
a less smooth posterior estimate. The general performance
trend is similar to that seen in Fig. 1, suggesting our ap-
proximate NPL-NF method is a reasonable, cost-efficient
alternative to exact NPL in normalizing flows.

5.2. Evaluation on tabular data

Next, we explore how NPL-NFs perform on real-world
tabular datasets, as the size of the dataset increases. We
consider five datasets from the UCI repository (Dua and
Graff, 2017). We construct training sets of different sizes
by selecting the first n training examples from each dataset,
for n ∈ {500, 1000, 5000}. For each dataset, we train four
models (repeating each with five random seeds): a standard

Figure 2: Standard deviation of pdfs for our model. Top row:
Training samples of varying sample size. Subsequent rows:
standard deviation of the posterior pdf of NPL-NFs with
various values of α and Gaussian base measure Ω. Values
are truncated to 0.5; this truncation only affects α = 0 NPL-
NFs with n = 8, 16.

Figure 3: Mean pdfs for naïve NPL-NFs. Top row: Training
samples of varying sample size. Subsequent rows: corre-
sponding mean pdf for standard NFs, and independently
trained NPL-NFs (i.e., one flow trained per bootstrap sam-
ple) with various values of α and Gaussian base measure Ω.
Values are truncated to 10; this truncation only affects stan-
dard NFs with n = 8, 16, 32, and NPL-NFs with n = 8, 16
(for all values of α).

NF, and approximate NPL-NF with concentration parameter
α ∈ {0, 10, 100}. For further details, see App. A.3.1.

Fig. 4 shows how the average test set log likelihood varies as
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Figure 4: Test set log likelihood on five tabular datasets, using various sized training datasets.

we move from a standard NF, to an NPL flow with increasing
concentration parameter α. For small datasets (n = 500
and n = 1000), we see that increasing α leads to improved
test set performance, by reducing the tendency of the NF to
overfit. When we consider a larger dataset (n = 5000), we
see less of a benefit: we already have a significant amount
of information from the data, and the risk of overfitting is
reduced. As in Section 5.1, we see limited evidence for the
NPL model with α = 0 leading to improved performance
over the standard model: while it tends to perform better
when n = 1000, performance is mixed at n = 500. We
hypothesise that this is because the NF is still able to overfit
to the data under reweighting.

5.3. Evaluation on image data

Next, we explore the use of NPL-NFs on images of hand-
written digits from the MNIST dataset1. We train our models
on the first 1000 training examples, to simulate a scenario
with high model uncertainty, and evaluate on the full test set.
We train a standard NF, plus approximate NPL-NF models.
For the NPL-NF models, we consider two base measures Ω:
a) a mixture of 10 Gaussians with class-specific parameters,
and b) an empirical distribution based on the USPS dataset,
showing how we might use empirical “prior information”.
See App. A.4 for further details.

In Fig. 5, we see how test set bits per dimension (BPD)
varies across the models. We see for low and moderate
values of α, both NPL-NF methods outperform the standard

1http://yann.lecun.com/exdb/mnist/

NF. For the mixture of Gaussian variant, performance begins
to degrade for high α. This is not surprising, as our base
measure is a poor approximation for the true distribution.
Conversely, the empirical base measure – presumably a
more realistic model – continues to perform well at higher
values of α.

Figure 5: Test set BDP on MNIST.

6. Discussion
Nonparametric posterior learning is a new and interesting
alternative to classical Bayesian inference; however it can
scale poorly when applied to complex, highly parametrized
models such as normalizing flows. We present an approx-
imate inference algorithm that allows us to construct non-
parametric posterior normalizing flows, and show that the
resulting posterior distributions offer improved generaliza-
tion, particularly when working with small datasets.

http://yann.lecun.com/exdb/mnist/
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A. Appendix
A.1. Summary of algorithms used in the main paper

We begin by sharing algorithms for NPL in a general context. Alg. 1 shows how one might, in theory, perform nonparametric
posterior inference an arbitrary distribution πF with countable support.

Algorithm 1 Exact sampling from a nonparametric posterior (Lyddon et al., 2018; Fong et al., 2019)

Require: Observations x1:n, distribution πF , desired number of samples B.
for b = 1, . . . , B do

Sample F (b) =
∑∞
i=1 wiδψi ∼ πF (F |x1:n).

θ(b) = argminθ
∑∞
i=1 wiℓθ(ϕi).

end for
return {θ(b)}Bb=1.

In practice, if πF has countably infinite support we cannot sample from the full conditional distribution. Instead we must
resort to approximations. Alg. 2 shows how we can obtain approximate samples from the NPL posterior, where πF is a
Dirichlet process, approximated using a weak limit approximation.

Algorithm 2 Approximate NPL, using a Dirichlet process data generating mechanism (Fong et al., 2019)

Require: Observations x1:n, concentration parameter α, base measure Ω, desired number of samples B, approximation
level K ≥ n.
m = K − n.
for b = 1, . . . , B do

Sample m pseudo-observations x̃j ∼ Ω
Sample weights

(w1:n, w̃1:m) ∼ Dir
(
1, . . . , 1, αm , . . . ,

α
m

)
.

F (b) =
∑n
i=1 wiδxi +

∑m
j=1 w̃jδx̃j

θ(b) = argminθ
∑n
i=1 wiℓθ(xi) +

∑m
j=1 w̃jℓθ(x̃j).

end for
return {θ(b)}Bb=1 .

The naïve algorithm described in Sec. 3.1 is a direct application of Alg. 2, where θ are the parameters of the normalizing
flow.

Finally, Alg. 3 describes our method for jointly learning multiple flows, as described in Sec. 3.2.

Algorithm 3 Sampling from an approximate NPL normalizing flow

Require: Observations x1:n, prior distribution πF , required number of samples B, approximation level K ≥ n, initial flow
parameters ϕ, learning rate τ .
m = K − n
while Not converged do

Sample F (b) =
∑
i wiδψi

∼ πF (F |x1:n) (or an approximation thereof, see Alg. 2).
µ =

∑
i wig

−1
ϕ (ψi).

ϕ← ϕ+ τ∇ϕ
∑
i wiℓµ,ϕ(ψi).

end while
ϕ̂← ϕ.
for b = 1, . . . , B do

Sample F (b) =
∑
i wiδψi

∼ πF (F |x1:n) (or an approximation thereof).
µ(b) =

∑
i wig

−1

ϕ̂
(ψi).

end for
return {µ(b)}Bb=1, ϕ̂.
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Given a set of latent means {µ(b)}Bb=1 and the shared flow parameters ϕ (obtained via Alg. 3) we can sample from the
posterior predictive distribution by sampling

b ∼Uniform{1, . . . , B}
z∗|b ∼N(µ(b), I)
x∗ =gϕ(z

∗).

A.2. Experimental details and additional experimental results for the qualitative evaluation

A.2.1. SYNTHETIC DATA DETAILS

We generated sawtooth-shaped synthetic data generated according to

xi ∼N(0, 1)

ϵi ∼N(0, 0.22)

yi =
3

π

(
xi mod

2π

3

)
+ ϵi − 1.

We model this using a Real NVP flow (Dinh et al., 2016). We use four coupling layers, with the first dimension masked at
each layer (i.e., the flow only changes the distribution of y, not x). For each layer, the scale and location were modeled using
a two-layer FFNN, with 16-dimensional hidden layers. We trained each flow for 5000 epochs, with a learning rate of 10−3.

For our NPL version of Real NVP, we explored two choices of base measure Ω. First, we used a multivariate Gaussian, with
mean and covariance given by the mean and covariance of the training data. Second, we used a two-stage Gaussian process
model, where x is modeled using a moment-matched Gaussian, and y|x is modeled using a Gaussian process with squared
exponential kernel, trained on the training data. The Gaussian processes were trained and sampled using the gpytorch
package (Gardner et al., 2018).For the NPL flows, we explored α ∈ {0, 1, 10, 100}. Note that NPL with α = 0 does not
make use of the base measure Ω.

A.2.2. RESULTS

In Figures 1, 2 and 6, we show the mean and standard deviation of the posterior pdfs obtained using a Gaussian base
measure, plus samples from the posterior predictive. In Figures 7, 8 and 9, we show analogous results using a Gaussian
process base measure. As we see from these figures, behavior is consistent with our expectations. We see that the posterior
flows capture uncertainty in the estimated pdf; as n increases, the uncertainty decreases. For larger training sizes, results are
similar across the models, since the posterior uncertainty is reduced. However, for smaller training sizes, we see that the
standard normalizing flow overfits to the data. The “Bayesian bootstrap” version of our algorithm, with α = 0, captures
some uncertainty, but still overfits. We note that other works on NPL have found this setting to work well (Fong et al., 2019;
2021); however, these papers focus on simpler models. We hypothesise that in our case, the α = 0 version does not perform
well due to the increased model capacity: the flows have the capacity to almost perfectly replicate the empirical pdf, and
therefore simply reweighting the data does little to change the distribution far from the observations.

Conversely, as we increase α—i.e., increase the weight assigned to the Gaussian base measure Ω—we see our inferred
pdfs and samples become closer to this base measure. The figures match reasonable intuitions of how a posterior should
extrapolate between “prior” and data.

We see that the posteriors obtained using a Gaussian process base measure (Figures 7, 8 and 9), with a more informative
base measure, we have more plausible estimates with lower values of n, compared with the standard Gaussian base measure
(Figures 1, 2 and 6). This is an example of how we can make use of existing domain information, such as the output of a
weaker model trained on the data.

Fig. 10 shows samples from the “naive” NPL normalizing flow, corresponding to the mean pdf shown in Fig. 3.
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Figure 6: Samples from our model with Gaussian base measure. Top row: Training samples from sawtooth data, for varying
sample size. Subsequent rows: samples from standard normalizing flows, and NPL normalizing flows with various values of
α and Gaussian base measure Ω.

A.3. Additional experimental details for the experiments on tabular data

A.3.1. IMPLEMENTATION DETAILS FOR TABULAR DATASETS

For all experiments, we used a neural spline flow architecture (Durkan et al., 2019) with 10 autoregressive rational-quadratic
splines, each with one hidden layer with 64 units. We used 8 bins. We chose these parameters to be between the parameter
values used in Durkan et al. (2019) on the MINIBOONE and HEPMASS datasets, since these were the two smallest datasets
considered in that paper. For all experiments, we used dropout with dropout probability 0.5, and trained for 10,000 epochs
with a learning rate of 5× 10−4. For the NPL models with α > 0, we used a spherical Gaussian as our base measure Ω,
noting that the datasets have been pre-processed to have zero mean and unit standard deviation along each dimension. All
experiments were repeated using 5 different random seeds.

Table 1 shows the number of features, and the test set sizes, of the datasets used in Sec. 5.2.

GAS POWER HEPMASS MINIBOONE BSDS300

# features 6 8 21 43 63
Test set size 105,206 204,928 174,987 3,648 250,000

Table 1: Properties of datasets used in Sec. 5.2.
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Figure 7: Mean pdf for our model with Gaussian process base measure. Top row: Training samples from sawtooth data, for
varying sample size. Subsequent rows: corresponding mean pdf for standard normalizing flows, and NPL normalizing flows
with various values of α and Gaussian process base measure Ω. Values of the mean pdf are truncated to 10; this truncation
only affects standard NFs with n = 8, 16, 32, and α = 0 NPL-NFs with n = 8, 16.

These datasets were all used by Papamakarios et al. (2017) and Durkan et al. (2019), and we used the splits and preprocessing
from those papers2.

A.3.2. COMPARISON WITH MONTE CARLO DROPOUT

In Sec. 3.2, we optimized the neural network parameters ϕ while performing nonparametric posterior inference on latent
distribution parameter µ. While this is much more computationally efficient than a naïve NPL approach where B models are
learned independently, it will underestimate uncertainty due to optimizing ϕ.

Fong et al. (2019) uses multiple, random restarts to avoid getting stuck in local optima. We could similarly learn multiple
estimates of ϕ following random reinitializations of our flow, although this would increase the computational cost. An
alternative that we explore is to use dropout (Srivastava et al., 2014). Under dropout, nodes in the neural network are
randomly excluded from the overall function during training. This can be loosely interpreted as constructing an ensemble
of neural networks (Baldi and Sadowski, 2013). If we use dropout during evaluation—a practice known as Monte Carlo
dropout (Gal and Ghahramani, 2016)—we can think of this as selecting a single element from the ensemble.

2https://zenodo.org/record/1161203#.Y0hy5ezML6Y

https://zenodo.org/record/1161203#.Y0hy5ezML6Y
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Figure 8: Standard deviation of pdfs for our model with Gaussian process base measure. Top row: Training samples from
sawtooth data, for varying sample size. Subsequent rows: standard deviation of the posterior pdf of NPL normalizing flows
with various values of α and Gaussian process base measure Ω. Values of the standard deviation are truncated to 0.5; this
truncation only affects α = 0 NPL-NFs with n = 8, 16.

We note that this does not directly correspond to exact nonparametric learning. The “dropped out” ϕ(b) almost certainly has
not appeared during training, and so will not correspond to the maximum likelihood parameters for ϕ conditioned on the
selected pattern of zeros and the bootstrap sample F (b).

In Table 2, we show the numeric results from Fig. 4 alongside the results obtained using Monte Carlo dropout. For the
standard normalizing flow (NF + MC dropout), we generated 100 MC dropout samples. For the NPL normalizing flows
(NPL-NF + MC dropout), we used separate MC dropout samples for each of the 100 bootstrapped samples.

We see that, in each case, the results with Monte Carlo dropout appear similar to those without Monte Carlo dropout. This
indicates two things. First, that the ability of the nonparametric posterior to incorporate meaningful prior knowledge leads
to better generalization performance than approximate Bayesian inference via Monte Carlo dropout (NF + MC dropout).
Second, there does not seem to be an advantage to using Monte Carlo dropout in conjunction with our nonparametric
learning approach, versus learning a single global ϕ̂.

A.4. Additional experimental details for the experiments on image data

For our NF architecture, we used a modified RealNVP flow (Dinh et al., 2016) with variational dequantization on the input.
Our architecture follows the example given in https://uvadlc-notebooks.readthedocs.io/en/latest/
tutorial_notebooks/tutorial11/NF_image_modeling.html.

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial11/NF_image_modeling.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial11/NF_image_modeling.html
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Figure 9: Samples from our model with Gaussian process base measure. Top row: Training samples from sawtooth data, for
varying sample size. Subsequent rows: samples from standard normalizing flows, and NPL normalizing flows with various
values of α and Gaussian process base measure Ω.

For our base measures Ω, we considered two choices. The first is a mixture of ten Gaussians, with uniform probabilities and
with mean and covariance obtained empirically from the corresponding digit in the training data. The second is an empirical
dataset, generated from the USPS image dataset (Hull, 1994), scaled to be the same dimension as the MNIST images.
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Figure 10: Samples from naïve NPL-NFs with Gaussian base measure. Top row: Training samples from sawtooth data, for
varying sample size. Subsequent rows: samples from standard normalizing flows, and “naïve” NPL normalizing flows with
various values of α and Gaussian base measure Ω.
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GAS POWER MINIBOONE HEPMASS BSDS300

NF -2.31(0.88) -5.50(0.59) -132.58(7.26) -70.25(2.09) -22.00(4.62)
NF + MC dropout -2.58(0.91) -5.66(0.62) -132.93(7.29) -70.72(2.08) -22.21(4.62)
NPL-NF (α = 0) -1.66(0.42) -4.44(0.55) -132.96(14.88) -73.65(1.23) -34.94(1.71)

NPL-NF (α = 0) + MC dropout -1.90(0.42) -4.10(0.47) -133.38(14.97) -74.18(1.26) -35.23(1.73)
NPL-NF (α = 0) -0.54(0.38) -4.75(0.17) -115.15(5.60) -66.76(0.78) 6.57(3.63)

NPL-NF (α = 10) + MC dropout -0.78(0.39) -5.05(0.05) -115.51(5.63) -67.27(0.79) 6.30(3.62)
NPL-NF (α = 100) 1.20(0.29) -4.12(0.02) -101.77(3.25) -53.06(0.61) 83.71(1.50)

NPL-NF (α = 100) + MC dropout 1.01(0.31) -4.24(0.02) -102.51(3.27) -53.33(0.62) 83.36(1.50)

(a) n = 500

GAS POWER MINIBOONE HEPMASS BSDS300

NF 1.23(0.10) -3.63(0.16) -100.12(2.02) -59.03(1.75) 42.97(2.19)
NF + MC dropout 0.94(0.11) -3.81(0.16) -100.65(2.04) -59.62(1.78) 42.71(2.20)
NPL-NF (α = 0) 1.79(0.17) -3.49(0.10) -95.48(2.20) -56.79(1.43) 38.67(2.35)

NPL-NF (α = 0) + MC dropout 1.51(0.18) -3.65(0.10) -95.97(2.22) -57.22(1.44) 38.29(2.35)
NPL-NF (α = 0) 2.46(0.17) -2.99(0.12) -88.02(2.24) -52.81(0.85) 50.68(1.11)

NPL-NF (α = 10) + MC dropout 2.20(0.17) -3.12(0.12) -88.45(2.26) -53.20(0.87) 50.35(1.12)
NPL-NF (α = 100) 4.08(0.08) -2.39(0.15) -76.66(0.49) -49.93(0.39) 89.61(1.75)

NPL-NF (α = 100) + MC dropout 3.84(0.09) -2.50(0.16) -77.02(0.49) -50.19(0.40) 89.34(1.75)

(b) n = 1000

GAS POWER MINIBOONE HEPMASS BSDS300

NF 7.41(0.13) -0.52(0.03) -44.17(0.31) -33.92(0.24) 115.87(0.50)
NF + MC dropout 7.14(0.12) -0.61(0.03) -44.40(0.31) -34.16(0.24) 115.71(0.50)
NPL-NF (α = 0) 7.42(0.07) -0.43(0.02) -42.33(0.51) -33.23(0.12) 116.97(0.83)

NPL-NF (α = 0) + MC dropout 7.18(0.06) -0.51(0.02) -42.54(0.48) -33.44(0.12) 116.74(0.83)
NPL-NF (α = 0) 7.59(0.10) -0.37(0.01) -41.99(0.15) -33.04(0.31) 118.18(0.71)

NPL-NF (α = 10) + MC dropout 7.32(0.11) -0.44(0.02) -42.18(0.16) -33.24(0.32) 117.95(0.72)
NPL-NF (α = 100) 7.70(0.06) -0.32(0.01) -40.14(0.31) -32.26(0.41) 121.62(0.15)

NPL-NF (α = 100) + MC dropout 7.44(0.06) -0.39(0.01) -40.29(0.31) -32.45(0.42) 121.43(0.15)

(c) n = 5000

Table 2: Test set log likelihoods, based on size-n training sets from five UCI datasets. Standard errors shown in parentheses.


