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ABSTRACT

Recent studies have shown that vector representations of embeddings learned by
pre-trained large language models (LLMs) are effective in various downstream
tasks in numerical domains. Despite their significant benefits, the tendency of
LLMs to hallucinate in such domains can have severe consequences in applica-
tions like finance, energy, retail, climate science, wireless networks, synthetic tab-
ular generation, among others. To guarantee prediction reliability and accuracy
in numerical domains, it is necessary to have performance guarantees through ex-
plainability. However, there is little theoretical understanding of when pre-trained
language models help solve numeric downstream tasks. This paper seeks to bridge
this gap by understanding when the next-word prediction capability of LLMs can
be adapted to numerical domains through the lens of isotropy. Specifically, we first
provide a general numeric data generation process that captures the core charac-
teristics of numeric data across various numerical domains. Then, we consider
a log-linear model for LLMs in which numeric data can be predicted from its
context through a network with softmax as its last layer. We demonstrate that,
in order to achieve state-of-the-art performance in numerical domains, the hidden
representations of the LLM embeddings must possess a structure that accounts
for the shift-invariance of the softmax function. We show how the isotropic prop-
erty of LLM embeddings preserves the underlying structure of representations,
thereby resolving the shift-invariance problem problem of softmax function. In
other words, isotropy allows numeric downstream tasks to effectively leverage
pre-trained representations, thus providing performance guarantees in the numeri-
cal domain. Experiments show that different characteristics of numeric data could
have different impacts on isotropy.

1 INTRODUCTION

Large language models (LLMs) have demonstrated broad success in adapting to various downstream
tasks in numerical domains, such as finance Garza & Mergenthaler-Canseco (2023); Yu et al. (2023),
energy Gao et al. (2024), retail, climate science Jin et al. (2024), wireless communications Xu et al.
(2024), synthetic tabular generation Dinh et al. (2022); Borisov et al. (2023); Xu et al. (2024), among
others. For many of these numeric downstream tasks, training a linear classifier on top of the hidden-
layer representations generated by the pre-trained models have already shown near state-of-the-art
performance Jin et al. (2024); Ansari et al. (2024). Despite their significant benefits in the numerical
domains, the LLMs’ tendency to hallucinate can have serious consequences in numeric applications.
To ensure prediction reliability and accuracy in numerical domains, a promising approach would
be to instill performance guarantees through explainability. Although recent empirical studies Jin
et al. (2024); Nie et al. (2023); Liu et al. (2024) demonstrate the benefits of vector representations
of embedding learned by LLMs in various numeric downstream tasks, there is little theoretical
understanding of their empirical success. Thus, a fundamental question arises: “when the next-word
prediction capability of LLMs can be effectively adapted to numerical domains?”

The main contribution of this paper is to answer this question through the lense of isotropy. Isotropy
refers to the geometric property where vector representations in the embedding space are uniformly
distributed in all directions, a characteristic critical for maintaining the expressiveness of the embed-
ding space Arora et al. (2016); Mu & Viswanath (2018). In particular, we first introduce a general
data generation process for numerical domains and consider a log-linear model of LLMs for nu-
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Figure 1: High-level illustration on when pre-trained language models help solve numeric down-
stream tasks: the hidden representations of LLM embeddings must exhibit structure to address the
shift-invariance problem of the softmax function. The isotropic property of LLM embeddings pre-
serves the underlying structure of the representations by approximating the partition function with
a constant for different samples, thereby resolving the shift-invariance problem of softmax function
and providing a performance guarantee.

meric downstream tasks. To achieve state-of-the-art performance in numerical domains, we show
that the hidden representations of LLMs must exhibit a structured form that accounts for the shift-
invariance of the softmax function (i.e., the softmax output remains unchanged when all logits are
shifted by a constant). Without such structure, the model can shift the logits while keeping the train-
ing loss unchanged thereby rendering the logits ineffective for downstream tasks. In the worst case,
the model can rapidly shift the logits for unseen numeric data, thus resulting in poor performance.
We further show that, when isotropy preserves the structure in LLM representations, it resolves the
shift-invariance problem, and thus ensuring that the logits are useful for numerical downstream tasks
(see Figure 1 for a high-level illustration on when pre-trained language models help solve numeric
downstream tasks). In summary, our key contributions include:

• We first provide a general numeric data generation process that captures the core charac-
teristics of numeric data across various domains. Then, we consider a log-linear model for
LLMs where numeric data are predicted from contexts through a network with softmax as
the final layer, along with the cross-entropy-based loss function.

• We then showcase the role of isotropy in adapting LLMs to numerical data. In particular,
we derive a theorem to investigate why hidden representations must exhibit structure to
address the shift-invariance problem of the softmax function. The theorem indicates that
without structural constraints, the log-linear model can shift the logits for any numeric data
sample without affecting the pre-training loss.

• We provide a structural analysis of isotropy-aware representations, using cosine similar-
ity as a metric to measure isotropy across different contextualized representations. The
study reveals that when the cosine similarity is closer to zero, strong isotropy is present in
the embedding space which stabilizes the partition function. The stability of the partition
function ensures that logits are solely determined by probabilities, thereby resolving the
shift-invariance problem of the softmax function and providing a performance guarantee.

• Finally, we present two examples that illustrate the conditions under which isotropy is
preserved in LLM representations of numerical data. Our experiments demonstrate that
different characteristics of numeric data could have different impacts on the isotropy.
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1.1 RELATED WORKS

The most relevant works Arora et al. (2016; 2017); Brown et al. (2020); Cai et al. (2021); Gao et al.
(2019); Ethayarajh (2019); Rajaee & Pilehvar (2021) are primarily focused the natural language
processing (NLP) domain and depend on latent variable model. For instance, in Arora et al. (2016),
the latent variable model is employed to explain and unify diverse word embedding algorithms.
This theoretical framework is further extended to justify sentence embedding methods, either by
leveraging the latent variable model Arora et al. (2017) or through the lens of compressed sensing
Arora et al. (2018). Language modeling can also be used to exploit hidden representations, as the
probability of the next word is typically computed as the softmax of the product of the hidden
representation and the dictionary matrix. Consequently, any zero-shot application of pre-trained
autoregressive language models, such as GPT-3 Brown et al. (2020) and T5 Raffel et al. (2020), can
be used as a suitable method of exploiting the hidden representations.

Isotropy, on the other hand, often makes the embedding space more effectively utilized and more ro-
bust to perturbations, i.e., no extreme directions that can cause numerical instability Ji et al. (2023).
In Cai et al. (2021), isotropy is found withing the clusters in the contextual embedding space (i.e.,
local assessment), as opposed to the previous study of anisotropy caused be the misleading isolated
clusters (i.e., global assessment) in Gao et al. (2019); Ethayarajh (2019). Motivated by the local as-
sessment findings in Cai et al. (2021), a local cluster-based method is proposed in Rajaee & Pilehvar
(2021) to address the degeneration problem that makes the embedding space less isotropic. How-
ever, the prior art in Ji et al. (2023); Cai et al. (2021) relies on the isotropy assessment in the NLP
domain only and no assessment has been done so far in numerical domains. Our work is the first to
theoretically analyze the efficacy of pre-trained LLMs on numeric downstream through isotropy.

2 DATA GENERATION AND MODEL

2.1 DATA GENERATION PROCESS

We consider a general data generation process that captures the characteristics of numeric data across
various numerical domains. For instance, the primary characteristics of the numeric data are typ-
ically dynamic, noisy, time-varying, and often subject to interference. Let xt be an observation
of some numeric data (e.g., stock price, financial index, or received signals from sensors) at time
instance t. We can express a general numeric numeric data generation process as follows:

xt = [ht ◦ st] + nt, (1)

where st is the true underlying signal (e.g., true asset price, financial index, or received sensor
signals) that we want to observe, ht represents the environmental or system dynamics that modify
the signal (e.g., market volatility or shock, reverberation), nt is the random disturbance or noise
(e.g., random fluctuations or market noise, environmental noise, measurement errors), and ◦ is the
combination operation, which could be multiplicative, additive or convolution depending on the
specific the numerical domain. Moreover, the components st, ht, and nt in equation 1 are often
time-varying and may follow stochastic processes.

2.2 MODEL

Time series Forecasting. Similar to next-word prediction by LLMs, the next-value prediction in
the numerical domain can be modeled by time series forecasting techniques Jin et al. (2024); Ansari
et al. (2024) which are widely adopted in the machine learning literature. Formally, given a time
series x1:T+L = [x1, . . . , xT , . . . , xT+L], where the first T time instances give the historical context,
the next L time instances constitute the forecast region, and the observation of each time instance
xt ∈ R is given by equation 1, we are interested in predicting the joint distribution of next L
time instances, p(xT+1:T+L|x1:T ). Since, the pre-trained models operate on tokens from a finite
vocabulary, using them for time series data requires mapping the observations to a finite set of
tokens. Depending on the different fields of numeric applications, various tokenization techniques,
e.g., quantization Ansari et al. (2024), patching Jin et al. (2024), among others, can be applied to
tokenize the time series and create a time series vocabulary V ofN time series tokens, i.e., |V| = N .
Then, the realization of the next L time instances can be obtained by autoregressively sampling from
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the predicted distribution p(x̃T+l+1|x̃1:T+l), for l ∈ {1, . . . , L}, where x̃1:T+l is the tokenized time
series. For ease of reading, we express T + l as Tl for the rest of the paper.

Student Model. We consider a general pre-trained model for numeric data and open the black box
of the pre-trained model at the last layer. Specifically, we assume that the observation probability of
x̃Tl+1 given x̃1:Tl

satisfies the log-linear model Arora et al. (2016)

p(x̃Tl+1=j | x̃1:Tl
) ∝ exp(⟨v1:Tl

(x̃1:Tl
), vj⟩), (2)

where vj ∈ RD is a vector that only depends on the time series token j ∈ V , and v1:Tl
(.) is a

function that encodes the tokenized time series sequence x̃1:Tl
into a vector in RD. The log-linear

modeling aligns with the commonly used LLMs networks whose last layer is typically a softmax
layer.

Let zj(x̃, Tl+1):=⟨v1:Tl
(x̃1:Tl

), vj⟩ be the j-th logit andZ(x̃, Tl+1) =
∑N
j=1 exp(zj(x̃, Tl+1)) =∑|V|

j=1 exp(⟨v1:Tl
(x̃1:Tl

), vj⟩) be the partition function Arora et al. (2016), i.e., normalization factor.
In LLMs, the partition function is often used to normalize the output probabilities of the model,
ensuring that they sum to 1. For our case, we use the partition function Z(x̃, Tl + 1) to normalize
the student model in equation 2 and use this normalized model in training. Then, the normalized
student model is given by

∀j ∈ V, p(x̃Tl+1=j | x̃1:Tl
) =

exp(zj(x̃, Tl + 1))

Z(x̃, Tl + 1)
=

exp(⟨v1:Tl
(x̃1:Tl

), vj⟩)∑|V|
j=1 exp(⟨v1:Tl

(x̃1:Tl
), vj⟩)

. (3)

Loss Function. As typical in language models, we use the categorical distribution over the elements
in the time series vocabulary V as the output distribution p(x̃Tl+1|x̃1:Tl

), for l ∈ {1, . . . , L}, where
x̃1:Tl

is the tokenized time series. The student model is trained to minimize the cross entropy between
the distribution of the tokenized ground truth label and the predicted distribution. The loss function
for a single sequence of tokenized time series is given by Ansari et al. (2024); Wu et al. (2023)

ℓ(v1:Tl
) = −

L+1∑
l=1

|V|∑
j=1

1(x̃Tl+1=j) log p(x̃Tl+1=j | x̃1:Tl
)

= −
L+1∑
l=1

|V|∑
j=1

DKL(p
∗(x̃Tl+1=j | x̃1:Tl

) ∥ p(x̃Tl+1=j | x̃1:Tl
))

+H(p(x̃Tl+1=j | x̃1:Tl
)), (4)

where p(x̃Tl+1 = j | x̃1:Tl
) is the categorical distribution predicted by our student model

parametrized by v1:Tl
, p∗(x̃Tl+1 = j | x̃1:Tl

) is the distribution of ground-truth model, DKL is the
KL divergence, i.e., weighted log probability difference between the ground-truth and the student
model, and H(p(x̃Tl+1 = j | x̃1:Tl

)) is the entropy of distribution p(x̃Tl+1 = j | x̃1:Tl
) which is a

constant. Note that our model performs regression via classification Torgo & Gama (1997) through
the categorical entropy loss in equation 4. We assume that our student model achieves a small loss
value so that the KL-divergence term in equation 4 is also small.

Numeric Downstream Task. The numeric downstream task that we are considering is regression
via classification (as described in the previous section). To define the downstream tasks in the
numerical domains, we define the logits of the student model as z(x̃, Tl+1):= {zj(x̃, Tl+1)}|V|

j=1 :=

{⟨v1:Tl
(x̃1:Tl

), vj⟩}|V|
j=1. These logits are just the outputs before the softmax computation and we

assume that the numeric downstream task is determined by a function of the logits. Intuitively, z
is the representation learned during pre-training step. A simple numeric downstream task is one
whose regression (via classification) is linear in v1:Tl

, that is, f(x̃, Tl + 1) = ⟨v1:Tl
(x̃1:Tl

), u∗⟩ =∑|V|
j=1 ajzj(x̃, Tl + 1), where u∗ =

∑|V|
j=1 ajvj ∈ RD and aj denotes the coefficient. This model is

still not sufficient to provide a performance guarantee to generalize to numeric downstream task in
unseen scenarios. This is due to the fact that, for the entries with small ground-truth probabilities,
a large log probability difference does not results in a large KL divergence in the loss function in
equation 4. However, the log probability difference is proportional to the difference in the value
of the perfect model (i.e., ground-truth) f∗(x̃, Tl + 1). This allows the student model to alter the
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signs of f∗(x̃, Tl + 1) without resulting in a large KL divergence Wu et al. (2023). Then, it is more
reasonable to model the numeric downstream task as

f(x̃, Tl + 1) =

|V|∑
j=1

ajσ(zj(x̃, Tl + 1)− bj) =

|V|∑
j=1

ajσ(⟨v1:Tl
(x̃1:Tl

), vj⟩ − bj), (5)

where σ is the ReLU function and bj denotes the threshold for the logits. The numeric downstream
task only considers the logits that are above the threshold, and thus ignores all the entries with very
small probabilities. However, as we will show in Section 3, the student model in equation 5 still
needs to exhibit a structure in LLM hidden representations to provide a performance guarantee for
the numeric downstream tasks.

3 THE ROLE OF ISOTROPY IN ADAPTING LLMS TO NUMERICAL DATA

3.1 NEED OF STRUCTURE IN LEARNED REPRESENTATIONS

Observation 1: The hidden representations of LLM embeddings must exhibit structure to address
the shift-invariance problem of the softmax function. Without such structure, the model can shift the
logits while keeping the training loss unchanged and leaving the logits ineffective for the numeric
downstream tasks.

As previously discussed in Section 2.2, we consider LLM networks whose last layer is usually a
softmax layer and the numeric downstream task is determined by the function of the logits. The
underlying relation between the logits and softmax function determines the performance of the nu-
meric downstream tasks. However, the softmax function is shift-invariant, that is, the output of the
softmax function remains unchanged when all logits are shifted by a constant. Since we do not
have any control over the logit shift of the student model on unseen data, good performance during
training does not necessarily provide any performance guarantee for the numeric downstream task
on unseen scenarios. This can be formalized in the following theorem.

Theorem 1. Let assume the logits z∗(x̃, Tl + 1) of the ground-truth model is bounded. For any
function f∗(x̃, Tl + 1) =

∑|V|
j=1 ajσ(z

∗
j (x̃, Tl + 1) − bj), there exist functions {ẑj(x̃, Tl + 1)}|V|

j=1

such that for all x̃ and Tl + 1, we have p̂(x̃Tl+1|x̃1:Tl
) = p∗(x̃Tl+1|x̃1:Tl

) and f̂(x̃, Tl + 1) :=∑|V|
j=1 a

∗
jσ(ẑj(x̃, Tl + 1) − b∗j ) is always equal to 0. In other words, the pre-training loss of the

model {ẑj(x̃, Tl + 1)}|V|
j=1 is the same as the ground-truth model {z∗j (x̃, Tl + 1)}|V|

j=1, but its logits
are ineffective for the numeric downstream tasks.

Proof. We choose τ ∈ R such that ∀x̃, Tl + 1, τ < minj∈V b
∗
j − maxj∈V z

∗
j (x̃, Tl + 1), and

∀x̃, Tl + 1,∀j ∈ V , we set ẑj(x̃, Tl + 1) := z∗j (x̃, Tl + 1) + τ , then

∀j ∈ V, ẑj(x̃, Tl + 1)− b∗j < z∗j (x̃, Tl + 1) + min
j∈V

b∗j −max
j∈V

z∗j (x̃, Tl + 1)− b∗j ≤ 0,

which implies that σ(ẑj(x̃, Tl+1)− b∗j ) = 0. Therefore, ∀x̃, Tl+1, we have f̂(x̃, Tl+1) = 0.

Theorem 1 demonstrates that without any structure in the hidden representations of LLM embed-
dings, the student model is able to shift the logits for any sample while keeping the pre-training
loss unchanged. In the worst case scenario, this could lead to drastic shifts in the logits for the un-
seen data which leads to poor numeric downstream task performance. Consequently, a theoretical
guarantee for the numeric downstream task performance needs structure in the LLM representations
learned by the pre-trained model.

3.2 RELATION BETWEEN ISOTROPY AND STRUCTURE IN REPRESENTATION

Observation 2: The isotropic property of LLM embeddings preserves the underlying structure of the
representations by approximating the partition function (in equation 3) with a constant for different
samples, thereby resolving the shift-invariance problem of softmax function.
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One way to prevent the shift-invariance problem from influencing the performance of the numeric
downstream tasks is to keep the partition function stable. Note that in equation 3, the probability
of a value in any time instance is the exponential of the corresponding logit zj(x̃, Tl + 1) divided
by the partition function Z(x̃, Tl + 1). If the partition function remains constant for different sam-
ples, the logits can be solely determined by the probabilities, thereby resolving the shift-invariance
problem of the softmax function. In the light of the theoretical findings in Arora et al. (2016), if the
LLMs’ hidden representations are isotropic in contextual embedding space, Z(x̃, Tl + 1) could be
approximated by a constant. Formally, the isotropy of embedding space can be assessed through the
partition function Z(x̃, Tl + 1) Arora et al. (2016); Mu & Viswanath (2018) as follows

I(v1:Tl
) =

minZ(x̃, Tl + 1)

maxZ(x̃, Tl + 1)
, (6)

where l = 1, . . . , L. Accordingly, when the partition function is constant for different samples,
I(v1:Tl

) would be close to one, indicating for a perfectly isotropic embedding space Arora et al.
(2016); Mu & Viswanath (2018). In other words, the isotropic property of LLMs’ embeddings in
the contextual embedding space preserves the underlying structure of the representation and, thus,
makes the logits useful for numeric downstream tasks.

3.2.1 STUDY OF ISOTROPY IN LLMS’ HIDDEN REPRESENTATIONS

Inspired by Cai et al. (2021), we follow their procedure and study the isotropy in the LLM represen-
tations in the contextual embedding space for numeric downstream tasks.

Clustering. We begin with the isotropy assesmment by performing clustering on the LLMs’ repre-
sentations in the contextual embedding space. There are various methods for performing cultering,
such as k-means, DBSCAN Ester et al. (1996). We select K-means clustering method because it is
reasonably fast in high embedding dimensions (e.g., d ≥ 768 for GPT2, ELMo, BERT etc.). We
use the celebrated silhouette score analysis Rousseeuw (1987) to determine the number of clusters
|C| in the contextual embedding space. After performing K-means clustering, each observation p
(i.e., one of the j vector representations in V) is assigned to one of C clusters. For an observation p
assigned to the cluster c ∈ C, we compute the silhouette score as follows

a(p) =
1

|C| − 1

∑
q∈C,p ̸=q

dist(p, q); b(p) = min
c̸̃=c

∑
q∈c̃

dist(p, q); s(p) =
b(p)− a(p)

max{b(p), a(p)}
,

where a(p) is the mean distance between an observation p and the rest in the same cluster class
p, while b(p) measures the smallest mean distance from p-th observation to all observations in the
other cluster class. After computing the silhouette scores s(p) of all observations, a global score is
computed by averaging the individual silhouette values, and the partition (with a specific number
of clusters) of the largest average score is pronounced superior to other partitions with a different
number of clusters. We select the best |C| that belongs to the partition that scores highest among the
other partitions.

Isotropy measurement using cosine similarity metric. The metric we use for measuring isotropy
in LLM representations in the contextual embedding space is cosine similarity metric. Let k be a
time series token in time series vocabulary |V|. We call the time series token a type for ease of
reading. Each type i in |V| is represented by ki. Let Ψ(ki) = {ψ1(ki), ψ1(ki), . . .} be the set of all
LLMs’ contextual embedding instances of ki in Ψ(ki). Note that, different contexts in the different
time series sequences yield different LLMs’ embeddings of ki. By constructing

∑
t |Ψ(ki)| = |V|,

we define the inter- type cosine similarity as,

ζcos ≜ Ei ̸=j [cos(ψ(ki), ψ(kj))], (7)

where ψ(ki) is any random sample from Ψ(ki), and the same for ψ(kj) ∈ Ψ(kj). The expectation
is taken over all pairs of different types. Since each LLMs’ contextual embedding instance ψ(ki)
belongs to a particular cluster through clustering, the cosine similarity should be measured after
shifting the mean to the origin Mu & Viswanath (2018). Accordingly, we subtract the mean for each
cluster (i.e., centroid) and calculate the adjusted ζinter. Assuming we have a total of |C| clusters, let
ψc(ki) = {ψ1

c (ki), ψ
2
c (ki), . . . } be the set of type k’s contextual embeddings in cluster c ∈ C, and

ψc(ki) be one random sample in ψc(ki). We define the adjusted inter-type cosine similarity as

ζ ′cos ≜ Ec
[
Ei ̸=j

[
cos

(
ψ̄c(ki), ψ̄c(kj)

)]]
, (8)
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where ψ̄c(ki) = ψc(ki) − Eψc
[ψc(ki)]. Here Ec is the average over different clusters, and ψ̄c(ki)

is the original contextual embedding shifted by the mean, with the mean taken over the samples
in cluster c. The inter-type cosine similarity takes values between −1 and 1. An inter-type cosine
similarity value close to 0 indicates strong isotropy and ensures the existence of structure in the
LLMs’ representations.

4 WHEN IS ISOTROPY PRESERVED IN LLM REPRESENTATIONS OF
NUMERICAL DATA?

Analysis settings. In this section, we present two examples that illustrate the conditions under which
isotropy is preserved in LLM representations. To reflect the numeric data generation process in
equation 1, we select two datasets of wireless channels as they are dynamic, noisy, time-varying, and
subject to interference, and thus hold all primary characteristics of the numerical data across various
domains. Specifically, we use time division duplexing (TDD) and frequency division duplexing
(FDD) from two different wireless communication settings, as shown in Figure 2. We call the TDD
dataset “Dataset 1” and the FDD dataset “Dataset 2”. The downstream task here is to predict the
channel property using LLM, where Dataset 1 causes good downstream performance, while the
Dataset 2 causes bad downstream task performance. We use NMSE as a performance metric for
the numeric downstream task because it is widely used for signal prediction. We use the GPT2
Radford et al. (2019) as our pre-trained contextual embedding model and the first six layers of
which are deployed. We perform our isotropy evaluations on the pretrained uncased base models
from Huggingface (https://huggingface.co/transformers/index.html).

Figure 2: Visualization of dataset 1 (Left) and dataset 2 (Right) labels
for two extreme cases of velocities, i.e., 10 km/hour and 100 km/hour.

We use the datasets and
simulation setups from Liu
et al. (2024), which are the
standard settings for wire-
less time series forecasting.
We predict L = 4 future
channel properties based
on the historical T = 16
Channel properties through
time series forecasting us-
ing GPT2. The training and
validation dataset contains
8, 000 and 1, 000 samples,
respectively, with user ve-
locities uniformly distributed between 10 km/hour and 100 km/hour. The test dataset contains ten
velocities ranging from 10 km/hour to 100 km/hour, with 1, 024 samples for each velocity.

4.1 EXAMPLE 1: ISOTROPY IN DATASET 1

Performance of Dataset 1. In this section, we provide an example of a good numeric downstream
task performance with Dataset 1. For instance, in Figure 3, we compare the NMSE performance
of our GPT2 based channel prediction model with baselines for different user velocities. From
Figure 3, we can observe that the NMSE performance of all baselines gradually increased along
with the increase in user velocity. This is because, with the increase in velocity, the wireless channel
characteristics rapidly changes within a very short coherence time, resulting in increased prediction
difficulty for the prediction model. The GPT2 based model consistently outperforms other baselines
and demonstrates its high prediction accuracy.

Effective dimension in Dataset 1. For Dataset 1, we first analyze the effective GPT2 em-
bedding dimensions through PCA. There are D = 768 embedding dimensions for GPT2.
For each layer of GPT2, we start with the data matrix, M ∈ RN , where N is the
number of input tokens and M is the original number of dimensions. We perform PCA
to reduce the embedding dimension and project the original Dataset 1 into a 3-D view in
Figure 4, with 50 km/hour user velocity. Let the explained variance ratio be: rm =∑m−1
i=0 σm/

∑d−1
i=0 σm, where σi is the i-th largest eigen value of covariance matric of M .
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Figure 3: GPT2 outperforms all other baselines for all
of the ten different velocities for Dataset 1.

We are particularly interested in the last
layer (i.e., layer 6) as it is related to the
logits z we used in our model in equa-
tion 3. From Figure 4, we can observe the
first three principal components account
for 76% of the total variance in layer 6.
Also, we can see from Figure 4 that there
are two disconnected islands that are far
away from each other in layer 6. When
the variance (i.e., rm) is dominated by the
distances between clusters, the isotropy
estimation would be biased by the inter-
cluster system. In this case, it is more rea-
sonable to consider a per-cluster study of
isotropy rather than a global estimate.

Figure 4: Illustration of effective dimension using PCA for TDD dataset. Isolated clusters exist in
the GPT2’s contextual embedding space from layer 3 to layer 6.

Isotropy assessment for Dataset 1. For
illustrative purposes, we pick three user velocities: 10 km/hour, 50 km/hour, and 100 km/hour, for
isotropy assessment of Dataset 1. The GPT2 based model achieves good NMSE performance for all
of these three velocities, as shown in Figure 3. We perform the clustering by K-means clustering,
as it is more reasonable for the Dataset 1. We apply adjusted inter-type cosine similarity ζ ′cos (as in
equation 8) to measure the isotropy in GPT2 embedding space. From Figure 5, we can see that the
GPT2 based model has consistent near-zero cosine similarity values for all layers, including layer
6. This indicates that nearly perfect isotropy exists in the GPT2 embedding space for the Dataset
1, which preserves the structure in the GPT2’s hidden representations and causes good downstream
task performance.

Explanation:

Question: When the next-word prediction 
capability of LLMs can be effectively adapted 
to numerical domains?

inter-type cosine 
similarity 𝜻𝒄𝒐𝒔 is 

close to 0

Isotropy exists in LLM 
embedding space

Stabilizes the 
partition function 𝒁 

Solves the shift-
invatriance problem 
of softmax function

Makes the logits 𝒛 
effective for numeric 

downstream tasks

Figure 5: Inter-type cosine similarities for Dataset 1 with different velocities. ζ ′cos are close to zero
for all the layers, including layer 6, indicating that nearly perfect isotropy exists in the GPT2 em-
bedding space for the Dataset 1, which preserves the structure in the GPT2’s hidden representations
and causes good downstream task performance.

4.2 EXAMPLE 2: ISOTROPY IN DATASET 2

Performance of Dataset 2. In this section, we provide an example of bad nu-
meric downstream task performance. As shown in Figure 6, the NMSE per-
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formance fluctuates randomly for different velocities, while the NMSE perfor-
mance for Dataset 1 is gradually increasing with increase in the velocities.

Figure 6: The NMSE performance of the GPT2
based time series forecasting for Dataset 2 deteri-
orates significantly compared to Dataset 1.

The NMSE performance for Dataset 2 deterio-
rates significantly compared to the Dataset 1.

Effective dimension in Dataset 2. In Figure 7,
analyze the effective GPT2 embedding dimen-
sions for Dataset 2 through PCA. As before, we
are particularly interested in the last layer (i.e.,
layer 6) as it is related to the logits Z. From
Figure 7, we can observe the the first three prin-
cipal components account for rm = 92% of the
total variance. We can also see that there are
no separated islands, as we see for the Dataset
1. Hence, it is more meaningful to consider a
global estimate of isotropy for Dataset 2, as op-
posed to performing per cluster investigation.

Figure 7: Unlike Dataset 1, no isolated clusters exist in the GPT2’s embedding for Dataset 2.

Isotropy assessment for Dataset 2. As before,
with the three user velocities, the NMSE per-
formance for Dataset 2 for all of these velocities is worse as compared to Dataset 1, as shown in
Figure 6. From Figure 8, we can observe a weak isotropy (i.e., anisotropy) in the LLM embedding
space for Dataset 2, cauing a lack of structure in the GPT2 hidden representations, and thus leading
to bad downstream performance.

Explanation:

Question: When the next-word prediction 
capability  of LLMs fails to adapt to numerical 
domains?

High inter-type 
cosine similarity

Weak isotropy (i.e., anisotropy) 
exists in LLM embedding space

Destabilizes the 
partition function 𝒁 

Softmax function 
becomes shift-variant

Makes the logits 𝒛 
useless for numeric 
downstream tasks

Figure 8: Inter-type cosine similarities for Dataset 2 for different velocities. Higher ζcos values
indicate a weak isotropy (i.e., anisotropy) exists in the LLM embedding space which causes a lack
of structure in the GPT2 hidden representations, yielding bad downstream performance.

5 CONCLUSION AND LIMITATIONS

Isotropy in embeddings as studied here can serve as a foundation for future research on the deeper
understanding of LLMs and their applications in various domains. Beyond isotropy, there could be
other methods to approximate the partition function with a constant and make the logits useful for
the numeric downstream tasks. Moreover, our isotropy study only ensured the existence of structure
in the LLMs’ hidden representations and provides a performance guarantee when the structure is
preserved by isotropy. Improving the numeric downstream task performance when structure is not
preserved in the LLM representations is a topic of future work.
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