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Abstract

We investigate the cold posterior effect through the lens of PAC-Bayes general-
ization bounds. We argue that in the non-asymptotic setting, when the number of
training samples is (relatively) small, discussions of the cold posterior effect should
take into account that approximate Bayesian inference does not readily provide
guarantees of performance on out-of-sample data. Instead, out-of-sample error is
better described through a generalization bound. In this context, we explore the
connections of the ELBO objective from variational inference and the PAC-Bayes
objectives. We note that, while the ELBO and PAC-Bayes objectives are similar, the
latter objectives naturally contain a temperature parameter λ which is not restricted
to be λ = 1. For realistic classification tasks, in the case of Laplace approximations
to the posterior, we show how this PAC-Bayesian interpretation of the temperature
parameter captures important aspects of the cold posterior effect.

1 Introduction

(a) Classification tasks (b) Laplace, different temperatures λ

Figure 1: PAC-Bayes bounds correlate with the test 0-1 Loss for different values of the temperature
λ (quantities on both axes are normalized). (a) Classification tasks on CIFAR-10, CIFAR-100, and
SVHN datasets (σ2

π = 0.1, ResNet22) and FMNIST dataset (σ2
π = 0.1, ConvNet). (b) Graphical

representation of the Laplace approximation for different temperatures: for hot temperatures λ ≪ 1,
the posterior variance becomes equal to the prior variance; for λ = 1 the posterior variance is
regularized according to the curvature h; for cold temperatures λ ≫ 1, the posterior becomes a Dirac
delta on the MAP estimate.

In their influential paper, Wenzel et al. [38] highlighted the observation that Bayesian neural networks
typically exhibit better test time predictive performance if the posterior distribution is “sharpened”
through tempering. Their work has been influential primary because it serves as a well documented
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example of the potential drawbacks of the Bayesian approach to deep learning. While other subfields
of deep learning have seen rapid adoption, and have had impact on real world problems, Bayesian
deep learning has, to date, seen relatively limited practical use [22, 27, 12, 38]. The “cold posterior
effect”, as the authors of Wenzel et al. [38] named their observation, highlights an essential mismatch
between Bayesian theory and practice. As the number of training samples increases, Bayesian theory
tells states that the posterior distribution should be concentrating more and more on the true model
parameters, in a frequentist sense. At any time, the posterior is our best guess at the true model
parameters, without having to resort to heuristics. Since the original paper, a number of works
[35, 42, 1, 32, 15, 2, 6, 2] have attempted to explain the cold posterior effect, identify its origins,
propose remedies and defend Bayesian deep learning in the process.

Here, we investigate PAC-Bayes generalization bounds [30, 9, 3, 13] as the model that governs per-
formance on out-of-sample data. PAC-Bayes bounds describe the performance on out-of-sample data,
through an application of the convex duality relation between measurable functions and probability
measures. The convex duality relationship naturally gives rise to the log-Laplace transform of a
special random variable [9]. Importantly the log-Laplace transform has a temperature parameter λ
which is not constrained to be λ = 1. We investigate the relationship of this temperature parameter to
cold posteriors.

In summary, our contributions are the following:

• We show that PAC-Bayes bounds correlate with out-of-sample performance for different
values of the temperature parameter λ.

• We find that the coldest temperature (such that the posterior is a Dirac delta centered on a
MAP estimate of the weights) is empirically always optimal in terms of test accuracy.

• We derive a PAC-Bayes bound for the case of the widely used generalized Gauss–Newton
Laplace approximations to the posterior. This bound might explain why it is difficult to
pinpoint an exact cause for the cold-posterior effect.

We also include a detailed FAQ section in the Appendix.

2 Cold posterior effect: misspecified and non-asymptotic setting

We denote the learning sample (X,Y ) = {(xi, yi)}ni=1 ∈ (X × Y)n, that contains n input-output
pairs. Observations (X,Y ) are assumed to be sampled randomly from a distribution D. Thus, we
denote (X,Y ) ∼ Dn the i.i.d observation of n elements. We consider loss functions ℓ : F×X×Y →
R, where F is a set of predictors f : X → Y . We also denote the risk Lℓ

D(f) = E(x,y)∼Dℓ(f,x, y)

and the empirical risk L̂ℓ
X,Y (f) = (1/n)

∑
i ℓ(f,xi, yi). We consider two probability measures,

the prior π ∈ M(F) and the posterior ρ̂ ∈ M(F). Here, M(F) denotes the set of all probability
measures on F . We encounter cases where we make predictions using the posterior predictive
distribution Ef∼ρ̂[p(y|x, f)]. We will use two loss functions, the non-differentiable zero-one loss
ℓ01(f,x, y) = I(argmaxj f(x)j ̸= y), and the negative log-likelihood, which is a commonly used
differentiable surrogate ℓnll(f,x, y) = − log(p(y|x, f)), where we assume that the outputs of f are
normalized to form a probability distribution. Given the above, the Evidence Lower Bound (ELBO)
has the following form

−Ef∼ρ̂L̂ℓnll
X,Y (f)−

1

λn
KL(ρ̂∥π), (1)

where λ = 1. Note that our temperature parameter λ is the inverse of the one typically used in
cold posterior papers. In this form λ has a clearer interpretation as the temperature of a log-Laplace
transform. Overall our setup is one of the cases discussed in Wenzel et al. [38], p3 Section 2.3. While
they use MCMC to conduct their experiments, we opt for the ELBO for analytical tractability. Wenzel
et al. [38] also temper by λ both the likelihood and the prior in the MCMC inference setting. As
discussed in Aitchison [2] and Wenzel et al. [38] the relevant setting for the ELBO is the one we
consider (Eq. 1), where only the KL is tempered. One then typically models the posterior and prior
distributions over weights using a parametric distribution (commonly a Gaussian) and optimizes the
ELBO, using the reparametrization trick, to find the posterior distribution [8, 23, 31, 5, 38]. The cold
posterior is the following observation:
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Even though the ELBO has the form (1) with λ = 1, practitioners have found that
much larger values λ ≫ 1 typically result in better test time performance, for
example a lower test misclassification rate and lower test negative log-likelihood.

2.1 ELBO

We assume a training sample (X,Y ) ∼ Dn as before, denote p(w|X,Y ) the true posterior probability
over predictors f parameterized by w (typically weights for neural networks), and π and ρ̂ respectively
the prior and variational posterior distributions as before. The ELBO results from the following
calculations

KL(ρ̂(w)∥p(w|X,Y )) =

∫
ρ̂(w) ln

ρ̂(w)

p(w|X,Y )
dw =

∫
ρ̂(w) ln

ρ̂(w)p(Y |X)

π(w)p(Y |X,w)
dw

=

∫
ρ̂(w)

[
− ln p(Y |X,w) + ln

ρ̂(w)

π(w)
+ ln p(Y |X)

]
dw

= −n

(
−Ef∼ρ̂L̂ℓnll

X,Y (f)−
1

n
KL(ρ̂∥π)

)
︸ ︷︷ ︸

ELBO

+ ln p(Y |X).

Thus, maximizing the ELBO can be seen as minimizing the KL divergence between the true posterior
and the variational posterior over the weights KL(ρ̂(w)∥p(w|X,Y )), and doesn’t directly bound
the test misclassification error. We could ignore this problem if consistency theorems hold and
the posterior quickly contracts to a Dirac delta on the true parameters. However, operating in the
regime of misspecification f∗ /∈ F and where n is (comparatively) small invalidates consistency
theorems such as the Blackwell–Dubins [7] theorem (for example, neural networks have multiple
minima, implying misspecification). This makes it important to derive a more precise certificate of
generalization through a generalization bound, which directly bounds the true risk. In the following
we focus on analyzing a PAC-Bayes bound generalization bound in order to obtain insights into when
the cold posterior effect occurs.

2.2 PAC-Bayes

For classification tasks, we are typically mainly interested in achieving low expected zero-one risk
Ef∼ρ̂Lℓ01

D (f). The ELBO objective is not directly related to this risk, however in the PAC-Bayesian
literature there exist bounds specifically adapted to it. In the following we will use one of the tightest
and most commonly used bounds, the “Catoni" bound, denoted BCatoni.
Theorem 1 (BCatoni, 9). Given a distribution D over X ×Y , a hypothesis set F , the 0-1 loss function
ℓ01 : F ×X ×Y → [0, 1], a prior distribution π over F , a real number δ ∈ (0, 1], and a real number
λ > 0, with probability at least 1− δ over the choice of (X,Y ) ∼ Dn, we have

∀ρ̂ on F : Ef∼ρ̂Lℓ01
D (f) ≤ Φ−1

λ

(
Ef∼ρ̂L̂ℓ01

X,Y (f) +
1

λn

[
KL(ρ̂||π) + ln

1

δ

])
, (2)

where Φ−1
λ (x) = 1−e−λx

1−e−λ .

The empirical risk term is the empirical mean of the loss of the classifier over all training samples.
The KL term is the complexity of the model, which in this case is measured as the KL-divergence
between the posterior and prior distributions. The Moment term has been absorbed in this case in the
function Φ−1

λ (x) = 1−e−λx

1−e−λ .

2.3 Safe-Bayes and other relevant work

Germain et al. [16] were the first to find connections between PAC-Bayes and Bayesian inference.
However they only investigate the case where λ = 1. After identifying two sources of misspecification,
Grünwald and Langford [18] proposed a solution, through an approach which they named Safe-Bayes
[17, 19]. Safe-Bayes corresponds to finding a temperature parameter λ for a generalized (tempered)
posterior distribution with λ possibly different than 1. The optimal value of λ is found by taking a
sequential view of Bayesian inference. By contrast we provide an analytical expression of the bound
on true risk, given λ, and also numerically investigate the case of λ > 1. Our analysis thus provides
intuition regarding which parameters (for example the curvature) might result in cold posteriors.
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3 Experiments on classification tasks

The ELBO (1) is minimized at the probability density ρ⋆(f) given by: ρ⋆(f) :=

π(f)e−λnL̂ℓnll
X,Y (f)/Ef∼π

[
e−λnL̂ℓnll

X,Y (f)
]

[9]. We will use the Laplace approximation to the pos-

terior in our experiments. This is equivalent to approximating λnL̂ℓnll
X,Y (f) using a second order

Taylor expansion around a minimum wρ̂, such that λnL̂ℓnll
X,Y (fw) ≈ λnL̂ℓnll

X,Y (fwρ̂
) + λn(w −

wρ̂)
⊤ 1

2∇∇L̂ℓnll

X,Y (fw)|w=wρ̂
(w − wρ̂). Assuming a Gaussian prior π = N (0, σ2

πI), the Laplace
approximation to the posterior ρ̂ is again a Gaussian

ρ̂ = N

(
wρ̂,

(
λH+

1

σ2
π

I

)−1
)

where H is the network Hessian H = n∇∇L̂ℓnll
X,Y (fw)|w=wρ̂

. This Hessian is generally infeasible
to compute in practice for modern deep neural networks, such that many approaches employ the
generalized Gauss–Newton (GGN) approximation HGGN :=

∑n
i=1 Jw(xi)

⊤Λ(yi; fi)Jw(xi),
where Jw(x) is the network per-sample Jacobian [Jw(x)]c = ∇wfc(x;wρ̂), and Λ(y; f) =
−∇2

ff log p(y; f) is the per-input noise matrix [25]. We will use two simplified versions of the GGN

• An isotropic approximation with variance σ2
ρ̂(λ) such that 1

σ2
ρ̂(λ)

= λh
d + 1

σ2
π

, where h =∑
i,j,k g(i, k)(∇wfk(xi;wρ̂)j)

2 is the trace of the Gauss–Newton approximation to the
Hessian, with g(i, k) = [Λ(yi; f)]kk.

• The Kronecker-Factorized Approximate Curvature (KFAC) [29] approximation, which
retains only a block diagonal part of the GGN.

When making predictions, we use the posterior predictive distribution Ew∼ρ̂[p(y|x, fw)] of the full
neural network model, meaning that samples from ρ̂ are inputted to the full neural network. Since
the 0-1 loss is not differentiable, the posterior estimated with the cross entropy loss will be used for
classification problems.

We have tested extensively in classification tasks, scaling from simplified settings to realistic models
and datasets. For the classification task we used the CIFAR-10, CIFAR-100 [24], SVHN [34]
and FashionMnist [39] datasets. In all experiments, we split the dataset into two sets. These
three are the typical prediction tasks sets: training set Ztrain, testing set Ztest, and validation set
Zvalidation. We use Monte Carlo sampling to estimate the Empirical Risk term (f ∼ ρ̂). For the
isotropic Laplace approximation, and a Gaussian isotropic prior, the KL divergence has a simple

analytical expression KL(ρ̂||π) = 1
2

(
d
σ2
ρ̂(λ)

σ2
π

+ 1
σ2
π
∥wρ̂ −wπ∥2 − d− d lnσ2

ρ̂(λ) + d lnσ2
π

)
. PAC-

Bayes bounds require correct control of the prior mean as the ℓ2 distance between prior and posterior
means in the KL term is often the dominant term in the bound. To control this distance, we follow a
variation of the approach in Dziugaite et al. [14] to constructing our classifiers. We first use Ztrain to
find a prior mean wπ . We then set the posterior mean equal to the prior mean wρ̂ = wπ but evaluate
the r.h.s of the bounds on Zvalidation. Note that in this way ∥wρ̂ −wπ∥22 = 0, while the bound is still
valid since the prior is independent from the evaluation set X,Y = Zvalidation. For the CIFAR-10,
CIFAR-100, and SVHN datasets, we use a WideResNet22 [40], with Fixup initialization [43]. For the
FashionMnist dataset, we use a convolutional architecture with three convolutional layers, followed
by two fully connected non-linear layers. More details on the experimental setup can be found in the
Appendix.

3.1 Classification experiments

We find ten MAP estimates for the neural network weights of the CIFAR-10, CIFAR-100, SVHN and
FMNIST datasets by training on Ztrain using SGD. We then fit an Isotropic Laplace approximation to
each MAP estimate using X,Y = Zvalidation. For different values of λ we then estimate the Catoni
bound (Theorem 1) using Zvalidation. We also estimate the test 0-1 Loss, negative log-likelihood
(NLL) and the Expected Calibration Error (ECE) [33] of the posterior predictive on Ztest. We use
the prior variance σ2

π = 0.1, as optimizing the marginal likelihood leads to σ2
π ≈ 0 which is not

relevant for BNNs. We also test two standard setups of increasing difficulty. First, the standard
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Figure 2: Test 0-1 Loss mean, as well as 10 MAP trials , along with the generalization
certificate (we denote λ = 1 by ): BCatoni PAC-Bayes bound (top), standard Isotropic
Laplace posterior (middle) and standard KFAC (bottom). The BCatoni PAC-Bayes bound closely
tracks the test 0-1 Loss. For the standard Isotropic and KFAC posteriors the test and validation 0-1
Loss behave similar to the Catoni case, with a rapid improvement as λ ↑ followed by a plateau.
Coldest posteriors λ ≫ 1 are always best.

“Isotropic" case where we fit the Laplace on Ztrain. Second, the KFAC case where we fit the Laplace
on Ztrain and also choose the prior through the marginal likelihood. In both of these last two cases,
we estimate the evaluation metrics on the validation set Zvalidation as from the literature we know
that any PAC-Bayes bound will be vacuous (larger than 1) as we do not control ∥wρ̂ −wπ∥22.

We plot the results for all datasets in Figure 2. The Catoni bound correlates tightly with test 0-1
Loss for all datasets and we plot this correlation in Figure 1(b). Again, in terms of test 0-1 Loss, the
MAP estimate (obtained where λ ≫ 1 and the posterior is “coldest") is optimal. This bevaviour is
replicated both in the “Isotropic” and “KFAC” cases. In the Laplace approximation literature for
deep neural networks, there are various similar results hidden in plain sight and to the best of our
knowledge never directly addressed [4, 10, 37].

The crucial point here is the choice of the evaluation metric. We plot in the Appendix the Isotropic
and KFAC cases for the NLL. We find that all three cases of temperatures (cold posterior, warm
posterior, as well as posterior with λ = 1) can be optimal, for varying datasets. We discuss the ECE
results in the Appendix.

4 Effect of temperature parameter λ on PAC-Bayes bound

In light of our empirical results, it would be interesting to derive an analytical form that elucidates
the important variables that affect the bound. However, PAC-Bayes objectives are difficult to analyze
theoretically for the non-convex case. Thus in the following we make a number of simplifying
assumptions. The Laplace approximation with the Generalized Gauss-Newton approximation to the
Hessian corresponds to a linearization of the neural network around the MAP estimate wρ̂ ∈ Rd [20]

flin(x;w) = f(x;wρ̂) +∇wf(x;wρ̂)
⊤(w −wρ̂). (3)
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When analyzing minima of the loss landscape linearization is reasonable even without assuming
infinite width Zancato et al. [41], Maddox et al. [28]. For appropriate modelling choices, we aim at
deriving a bound for this linearized model.

We adopt the linear form (3) together with the Gaussian likelihood with σ = 1, yielding
ℓnll(w,x, y) = 1

2 ln(2π) +
1
2 (y − f(x;wρ̂) − ∇wf(x;wρ̂)

⊤(w − wρ̂))
2. We also make the

following modeling choices

• Prior over weights: w ∼ N (wπ, σ
2
πI).

• Gradients as Gaussian mixture: ∇wf(x;wρ̂) ∼
∑k

i=1 ϕiN (µi, σ
2
xiI); note that this as-

sumption should be plausible for trained neural networks, in that previous works have
shown that per sample gradients with respect to the weights, at wρ̂, are clusterable [41]. We
consider that a Gaussian Mixture model for these clusters is reasonable.

• Labeling function: y = f(x;wρ̂) +∇wf(x;wρ̂)
⊤(w∗ −wρ̂) + ϵ, where ϵ ∼ N (0, σ2

ϵ ).

Thus y|x ∼ N (f(x;wρ̂) +∇wf(x;wρ̂)
⊤(w∗ −wρ̂), σ

2
ϵ ). The assumption that w∗ is close to wρ̂

is quite strong, and we furthermore argued in the previous sections that no single w is truly “correct”.
However we note that for fine-tuning tasks linearized neural networks work remarkably well [28, 11].
It is therefore at least somewhat reasonable to assume the above oracle labelling function, in that
for deep learning architectures good w that fit many datasets can be found close to wρ̂ in practical
settings. We also assume that we have a deterministic estimate of the posterior weights wρ̂ which we
keep fixed, and we model the posterior as ρ̂ = N (wρ̂, σ

2
ρ̂(λ)I), similarly to our experimental section.

Therefore estimating the posterior corresponds to estimating the variance σ2
ρ̂(λ).

Proposition 1 (Bapproximate). With the above modeling choices, and given a distribution D over
X × Y , real numbers δ ∈ (0, 1] and λ ∈ (0, 1

c ) with c = 2nσ2
xσ

2
π, with probability at least 1 − δ

over the choice (X,Y ) ∼ Dn, we have

Ew∼ρ̂Lℓnll

D (w)

≤ ∥y − f(X;wρ̂)∥22
2n

+

(
λh

d
+

1

σ2
π

)−1
h

2n
+

1

2
ln(2π)︸ ︷︷ ︸

Empirical Risk

+
σ2
x(σ

2
πd+ ∥w∗∥22)

1− 2λnσ2
xσ

2
π

+ σ2
ϵ︸ ︷︷ ︸

Moment

+

1

λn

[
1

2

(
d

σ2
π

1
λh
d + 1

σ2
π

+
1

σ2
π

∥wρ̂ −wπ∥22 − d− d ln
1

λh
d + 1

σ2
π

+ d lnσ2
π

)
+ ln

1

δ

]
︸ ︷︷ ︸

KL

where h =
∑

i

∑
j(∇wf(xi;wρ̂)j)

2 is the curvature parameter, and σ2
x =

∑k
j=1 ϕjσ

2
xj is the

posterior gradient variance.

We now make a number of observations regarding Proposition 1. Here, h is the trace of the Hessian
under the Gauss–Newton approximation (without a scaling factor n). Under the PAC-Bayesian
modeling of the risk, cold posteriors are the result of a complex interaction between various parameters
resulting from 1) our model such as the prior variance σ2

π and prior mean wπ 2) our data σ2
x and

w∗ (the curvature of the minimum h and the MAP estimate wρ̂ depend on the deep neural network
architecture, the optimization procedure and the data). A number of works have tried to identify the
causes of the cold posterior effect [35, 15], with often contradictory results, typically identifying
sufficient but necessary conditions. Given the complex interactions in Proposition 1, our result might
shed light on why pinpointing the exact cause is difficult in practice.

5 Discussion

A number of interesting questions are raised by our results. How can we link our results to the
MCMC setting? Which metrics are relevant for the cold-posterior effect? For which metrics and
for which approximations to the curvature is the Laplace approximation relevant for modern deep
learning? We intend to answer these in future work.
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A Proofs main results

A.1 Proof of Proposition 1

Recall that we model our predictor as flin(x;w) = f(x;wρ̂) − ∇wf(x;wρ̂)
⊤(w − wρ̂). Then

for the choice of a Gaussian likelihood, given a training signal x, a training label y and weights
w, the negative log-likelihood loss takes the form ℓnll(w,x, y) = 1

2 ln(2π) +
1
2 (y − f(x;wρ̂) −

∇wf(x;wρ̂)
⊤(w − wρ̂))

2. We also define L̂ℓ
X,Y (f) = (1/n)

∑
i ℓ(f,xi, yi). Our derivations

closely follow the approach of Germain et al. [16] p.11, section A.4.

Given the above definitions and modelling choices we develop the empirical risk term

2nEw∼ρ̂L̂ℓnll

X,Y (w)− n ln(2π) = Ew∼ρ̂

n∑
i=1

(yi − f(xi;wρ̂)−∇wf(xi;wρ̂)
⊤(w −wρ̂))

2

= Ew∼ρ̂∥y − f(X;wρ̂)−∇wf(X;wρ̂)
⊤(w −wρ̂)∥22

= Ew∼ρ̂[∥y − f(X;wρ̂)∥22 − 2(y − f(X;wρ̂))
⊤∇wf(X;wρ̂)

⊤(w −wρ̂)

+ (w −wρ̂)
⊤∇wf(X;wρ̂)∇wf(X;wρ̂)

⊤(w −wρ̂)]

= Ew∼ρ̂[∥y − f(X;wρ̂)∥22 − 2(y − f(X;wρ̂))
⊤∇wf(X;wρ̂)

⊤(w −wρ̂)

+ (w −wρ̂)
⊤[∑

i ∇wf(xi;wρ̂)∇wf(xi;wρ̂)
⊤](w −wρ̂)]

= Ew∼ρ̂[∥y − f(X;wρ̂)∥22]− 2(y − f(X;wρ̂))
⊤∇wf(X;wρ̂)

⊤
(((((((
Ew∼ρ̂[w −wρ̂]

+Ew∼ρ̂

[
(w −wρ̂)

⊤ [∑
i ∇wf(xi;wρ̂)∇wf(xi;wρ̂)

⊤] (w −wρ̂)
]

= ∥y − f(X;wρ̂)∥22 + σ2
ρ̂

[∑
i

∑
j(∇wf(xi;wρ̂)j)

2
]

= ∥y − f(X;wρ̂)∥22 + σ2
ρ̂h.

In the penultimate line, we have used the fact that a real number is the trace of itself as well as the
cyclic property of the trace. The second summation (

∑
j over the parameters of the model) results

from the fact that ρ̂ = N (wρ̂, σ
2
ρ̂I) is isotropic with a common scaling factor σ2

ρ̂. The term in blue is
exactly the Gauss–Newton approximation to the Hessian of the full neural network, for the squared
loss function [25, 20], and in the last line we set h =

[∑
i

∑
j(∇wf(xi;wρ̂)j)

2
]
. Since h is a sum

of positive numbers, taking into account that the blue term is the Gauss–Newton approximation to
the Hessian and if we assume that the Gauss–Newton approximation is diagonal, then h is a measure
of the curvature at minimum wρ̂ of the loss landscape. We finally get

Ew∼ρ̂L̂ℓnll

X,Y (w) =
∥y − f(X;wρ̂)∥22

2n
+

σ2
ρ̂h

2n
+

1

2
ln(2π).

We continue with the KL term which is known to have the following analytical expression for
Gaussian prior and posterior distributions

KL(N (wρ̂, σ
2
ρ̂I)∥N (wπ, σ

2
πI)) =

1

2

(
d
σ2
ρ̂

σ2
π

+
1

σ2
π

∥wρ̂ −wπ∥2 − d− d ln
σ2
ρ̂

σ2
π

)
.
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We finally develop the moment term. Using an intermediate variable λn = λn
2 to simplify the

calculations, we get

Ψℓ,π,D(λ, n) = lnEf∼πE(X′,Y ′)∼Dn exp
[
λn
(
Lℓnll
D (f)− L̂ℓnll

X′,Y ′(f)
)]

= lnEf∼πE(X′,Y ′)∼Dn exp
[
λn

(
E(x,y)

[
ln(2π) + (y − flin(x;w)2

]
− ln(2π)− (1/n)

∑
i(yi − flin(xi;w)2

)]
= lnEf∼πE(X′,Y ′)∼Dn exp

[
λn

(
E(x,y)

[
(y − flin(x;w)2

]
− (1/n)

∑
i(yi − flin(xi;w)2

)]
≤ lnEw∼π exp

[
λnE(x,y) (y − flin(x;w))

2
]

= lnEw∼π exp[λnE(x,y)(f(x;wρ̂) +∇wf(x;wρ̂)
⊤(w∗ −wρ̂) + ϵ

− (f(x;wρ̂) +∇wf(x;wρ̂)
⊤(w −wρ̂)))

2]

= lnEw∼π exp[λnE(x,y)(∇wf(x;wρ̂)
⊤(w∗ −w) + ϵ)2]

= lnEw∼π exp[λnEx[(∇wf(x;wρ̂)
⊤(w∗ −w))2] + λnσ

2
ϵ ].

Inequality in line 4 is because the exponential function is less than 1 on the negative half line. In
the fifth line we use our modelling choice y = f(x;wρ̂) +∇wf(x;wρ̂)

⊤(w∗ −wρ̂) + ϵ, where
ϵ ∼ N (0, σ2

ϵ ). To obtain the final line we note that the gradient of the neural network output with
respect to w, that is ∇wf(x;wρ̂), does not depend on the label y. We get the last line by applying
the square and taking the expectation, given that the noise ϵ is centered.

We now take into account the Gaussian mixture modelling for the gradients per data sample,
∇wf(x;wρ̂) ∼

∑k
j=1 ϕjN (µj , σ

2
xjI). We get

Ex[(∇wf(x;wρ̂)
⊤(w∗ −w))2] = Ex[(

∑
i ∇wf(x;wρ̂)i(w∗ −w)i)

2]

= Ex

[
(
∑

i ∇wf(x;wρ̂)
2
i (w∗ −w)2i + 2

∑
i,j ∇wf(x;wρ̂)i∇wf(x;wρ̂)j(w∗ −w)i(w∗ −w)j)

]
=
∑

i Ex[∇wf(x;wρ̂)
2
i ](w∗ −w)2i =

∑
i

∑k
j=1(ϕjσ

2
xj)(w∗ −w)2i = σ2

x∥w∗ −w∥22.
The red term cancels out because we assumed that each weight is independent from the others. Next
we use the Gaussian mixture modelling to get Ex[∇wf(x;wρ̂)

2
i ] =

∑k
j=1(ϕjσ

2
xj), and we finally

set σ2
x =

∑k
j=1(ϕjσ

2
xj), as each component of the mixture is isotropic, thus the second moment of

all weights is the same. By completing the square above, one obtains the Gaussian expectation of this
squared norm and forms the moment term as follows

Ψℓ,π,D(λ, n) = lnEw∼π exp
[
λnσ

2
x∥w∗ −w∥22 + λnσ

2
ϵ

]
= ln

(
1

(1− 2λnσ2
xσ

2
π)

d
2

exp

[
λnσ

2
x∥w∗ −wπ∥22

1− 2λnσ2
xσ

2
π

+ λnσ
2
ϵ

])

= −d

2
ln(1− 2λnσ

2
xσ

2
π) +

λnσ
2
x∥w∗ −wπ∥22

1− 2λnσ2
xσ

2
π

+ λnσ
2
ϵ

≤ λnσ
2
xσ

2
πd

1− 2λnσ2
xσ

2
π

+
λnσ

2
x∥w∗ −wπ∥22

1− 2λnσ2
xσ

2
π

+ λnσ
2
ϵ

=
λnσ

2
x(σ

2
πd+ ∥w∗ −wπ∥22)
1− 2λnσ2

xσ
2
π

+ λnσ
2
ϵ ,

which assumes 1−2λnσ
2
xσ

2
π > 0. The second line above is obtained by using the moment generating

function of noncentral χ2 variables, while the inequality comes from ln(u) < u − 1 for u > 1.
Setting back λn

2 in place of λn, we get
1

λn
Ψℓ,π,D(λ, n) ≤

σ2
x(σ

2
πd+ ∥w∗ −wπ∥22)
2− 2λn2σ2

xσ
2
π

+
σ2
ϵ

2
.

We are now ready to minimize the following objective, where the moment term is absent since it does
not depend on σ2

ρ̂

min
σ2
ρ̂

Ew∼ρ̂L̂ℓnll

X,Y (w) +
1

λn

[
KL(N (wρ̂, σ

2
ρ̂I)∥N (wπ, σ

2
πI)) + ln

1

δ

]
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The derivative of the objective function w.r.t. σ2
ρ̂ simply writes

∂

∂σ2
ρ̂

(
∥y − f(X;wρ̂)∥22

2n
+

σ2
ρ̂h

2n
+

1

2
ln(2π)

+
1

λn

[
1

2

(
1

σ2
π

dσ2
ρ̂ +

1

σ2
π

∥wρ̂ −wπ∥22 − d− d lnσ2
ρ̂ + d lnσ2

π

)
+ ln

1

δ

])
=

h

2n
+

1

2λn

(
d

σ2
π

− d

σ2
ρ̂

)
.

Now setting the above to zero we get the typical prior-to-posterior update for a Gaussian precision
term

1

σ2
ρ̂

=
λh

d
+

1

σ2
π

.

The proposition is proven by replacing the terms in the bound from Theorem 1 with the results
derived above.

B Experiments

B.1 Experimental setup

We run our experiments on GPUs of the type NVIDIA GeForce RTX2080ti, on our local cluster.
The total computation time was approximately 125 GPU hours. In the following list we include the
libraries and datasets that we used together with their corresponding licences

• Laplace-Redux Package [10]: MIT License

• Netcal package [26]: Apache Software License

• Pytorch package [36]: Modified BSD Licence

• CIFAR-10 dataset [24]: MIT Licence

• CIFAR-100 dataset [24]: MIT Licence

• SVHN dataset [34]: -

• FashionMnist dataset [39]: MIT Licence

B.2 Dataset splits

For the classification datasets CIFAR-10, CIFAR-100, SVHN, FMNIST we used the standard test
and train splits. We use 10% of the data for the validation set.

B.3 Models

For the classification datasets CIFAR-10, CIFAR-100 and SVHN we use the WideResNet22 [40]
architecture. Because the Laplace approximation does not interact well [4] with BatchNorm [21] we
instead use Fixup Initialization Zhang et al. [43]. We train our networks using the softmax activation
and the cross-entropy loss. We use the SGD optimizer with learning rate η = 0.1, weight decay 5e-4,
and momentum 0.9 and 300 epochs. We furthermore divide the initial learning rate by 10, at the point
of 50%, 75% and 87% of the epochs. We also use dropout with 0.4 after all the Resnet blocks. We
evaluate the NLL using the cross-entropy loss.

For the classification dataset FMNIST we use a Convolutional Network with 3 nonlinear convolutional
layers followed by 2 non-linear fully connected layers. We use the SGD optimizer with learning rate
η = 0.001, weight decay 5e-4, and momentum 0.9 and 10 epochs. We evaluate the NLL using the
cross-entropy loss.

We do not use data augmentation in any experiment. This partially explains the problems with
the CIFAR-100 dataset. In particular, in preliminary experiments (which we include further in the
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Appendix) both the CIFAR-10 and the CIFAR-100 dataset improve significantly in accuracy with data
augmentation (random flips and random crops) and the matrix inversion in the CIFAR-100 KFAC
case is better posed and results in significantly improved accuracy 70% over the non augmented
counterpart.

Average MAP Test Error

CIFAR-10 10.4%
CIFAR-100 40.6%
SVHN 4.2%
FMNIST 8.8%

Table 1: In this table we plot the average test 0-1 Loss of the MAP estimates of the different networks
and datasets.

B.3.1 Additional notes on bound evaluation

We try to make our bounds as tight as possible. To do this we try to control the term ∥wρ̂ −wπ∥22
which typically dominates the bound. We follow for all tasks a variation of the approach of Dziugaite
et al. [14]. Specifically we use Ztrain to learn a prior mean wπ then we set, wρ̂ = wπ, such that
∥wρ̂ −wπ∥22 = 0. Note that we can still evaluate a valid bound so long as we set (X,Y ) in Theorem
1 to be independent of the prior mean. This is the reason why we separated a part of the training set
in the form of Zvalidation. We thus set (X,Y ) = Zvalidation in Theorem 1.

In our experiments we test multiple values of λ and σ2
π. Typically one would need to take a union

bound over a grid on these parameters so as for the generalization bound to be valid [13]. However
this typically costs only logarithmically to the actual bound. We ignore these calculations as our
bounds are in general quite loose anyway, and these calculations would result in additional terms
would make the final bound even more complex.

For the bounds to be valid, one would typically want to show concentration inequalities such that
the Monte Carlo estimates of the Empirical Risk and the Moment terms concentrate close to the true
expected value with high probability. We do not provide such guarantees. Note however that, at
least for the Empirical Risk term, our sample size of m = 100 from the posterior distribution over
weights is a sample size that is typically used in practice and provides good estimates. We have tried
to balance sampling sufficiently to approximate the expectation on the one hand, and also not too
much such that the computations become prohibitive.

B.4 Additional classification results

B.4.1 NLL results

We plot in Figure 3 the standard Isotropic and standard KFAC cases for the NLL. We find that all three
cases of temperatures (cold posterior, warm posterior, as well as posterior with λ = 1) can be optimal,
for varying datasets. Furthermore the test behaviour is dominated again by a sharp improvement as
we decrease the posterior variance (λ ↑) followed by a plateau. An optimal λ strictly less than +∞
(when it exists) results in only a relatively modest variation of the overall trend. Thus, we believe that
our bounds would be informative even in a hypothetical scenario where they would not be able to
capture these optimal λ < +∞.

B.4.2 ECE results

We plot in Figure 4 the standard Isotropic and standard KFAC cases for the ECE. Even without data
augmentation and even when we optimize the prior variance using the marginal likelihood, we find
that all three cases of temperatures (cold posterior, warm posterior, as well as posterior with λ = 1)
can be optimal, for varying datasets. Unfortunately we are not aware of approaches to directly bound
the ECE. In Figure 4 the ECE is notable for having a significantly different behaviour from the NLL
and the 0-1 Loss.
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Figure 3: Test NLL mean, as well as 10 MAP trials , along with the validation NLL
(we denote λ = 1 by ) for the Standard Isotropic Laplace posterior (top) and standard

KFAC (bottom). The test and validation NLL show warm posteriors (FMNIST and SVHN KFAC),
cold posteriors (CIFAR-10) and posteriors with λ = 1 (SVHN Isotropic). The general trend remains
a rapid improvement as λ ↑ followed by a plateau, however the coldest posteriors λ ≫ 1 are not
always optimal contrary to the 0-1 Loss case.

Better calibration in terms of ECE than a simple MAP estimate is one of the purported main benefits
of the Bayesian paradigm. In Figure 5 we plot the Pareto front of the test 0-1 Loss with respect to the
test ECE. The top row is the standard Isotropic case and the bottom row is the standard KFAC case.
We see that in most cases there is a clear tradeoff between the test 0-1 Loss and the test ECE. These
results might be relevant for the applicability of the Laplace approximation for improving the ECE,
in that it seems that we cannot achieve a clear improvement in ECE without hurting test accuracy.

B.4.3 Augmentation results

In Figure 6 we see that data augmentation (random flips and crops) results in better test accuracy
and makes the matrix inversion in the Laplace approximation better posed such that the accuracy on
CIFAR-100 is within a normal range.
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Figure 4: Test ECE mean, as well as 10 MAP trials , along with the validation ECE
(we denote λ = 1 by ) for the Standard Isotropic Laplace posterior (top) and standard

KFAC (bottom). The test and validation ECE show warm posteriors (FMNIST and SVHN KFAC),
cold posteriors (CIFAR-10) and posteriors with λ = 1 (SVHN Isotropic). The general trend remains
a rapid improvement as λ ↑ followed by a plateau, however the coldest posteriors λ ≫ 1 are not
always optimal contrary to the 0-1 Loss case.

Figure 5: We plot the Pareto front of the test 0-1 Loss with respect to the test ECE. The top row is the
standard Isotropic case and the bottom row is the standard KFAC case. We see that in most cases
there seems to be a tradeoff between the test 0-1 Loss and the test ECE.
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Figure 6: Test 0-1 Loss mean, as well as 10 MAP trials , along with the validation
0-1 Loss (we denote λ = 1 by ) for the Standard Isotropic Laplace posterior (top) and
standard KFAC (bottom) for CIFAR-10 and CIFAR-100 with data augmentation (random flips and
crops). The performance on both improves significantly and the Laplace approximation becomes
better posed.
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