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Abstract

Diffusion models have gained traction as powerful algorithms for synthesizing1

high-quality images. Central to these algorithms is the diffusion process, which2

maps data to noise according to equations inspired by thermodynamics and can3

significantly impact performance. A widely held assumption is that the ELBO4

objective of a diffusion model is invariant to the noise process (Kingma et al.,5

2021). In this work, we dispel this assumption—we propose multivariate learned6

adaptive noise (MULAN), a learned diffusion process that applies Gaussian noise7

at different rates across an image. Our method consists of three components—a8

multivariate noise schedule, instance-conditional diffusion, and auxiliary variables—9

which ensure that the learning objective is no longer invariant to the choice of the10

noise schedule as in previous works. Our work is grounded in Bayesian inference11

and casts the learned diffusion process as an approximate variational posterior that12

yields a tighter lower bound on marginal likelihood. Empirically, MULAN sets a13

new state-of-the-art in density estimation on CIFAR-10 and ImageNet compared to14

classical diffusion.15

1 Introduction16

A diffusion process q transforms an input datapoint denoted by x0 and sampled from a distribution17

q(x0) into a sequence of noisy data instances xt for t ∈ [0, 1] by progressively adding Gaussian18

noise of increasing magnitude. (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020). The19

marginal distribution of each latent is defined by q(xt|x0) = N (xt;αtx0, σtI) where the diffusion20

parameters αt, σt ∈ R+ implicitly define a noise schedule as a function of t, such that ν(t) = α2
t /σ

2
t21

is a monotonically decreasing function in t. Given any discretization of time into T timesteps of22

width 1/T , we define t(i) = i/T and s(i) = (i − 1)/T and we use x0:1 to denote the subset of23

variables associated with these timesteps; the forward process q can be shown to factorize into a24

Markov chain q(x0:1) = q(x0)
(∏T

i=1 q(xt(i)|xs(i))
)

.25

The diffusion model pθ is defined by a neural network (with parameters θ) used to denoise26

the forward process q. Given a discretization of time into T steps, p factorizes as pθ(x0:1) =27

pθ(x1)
∏T

i=1 pθ(xs(i)|xt(i)). We treat the xt for t > 0 as latent variables and fit pθ by maximizing28

the evidence lower bound (ELBO) on the marginal log-likelihood given by:29

log pθ(x0) = ELBO(pθ, q) + DKL[q(xt(1):t(T )|x0)∥pθ(xt(1):t(T )|x0)] ≥ ELBO(pθ, q) (1)

In most works, the noise schedule, as defined by ν(t), is either fixed or treated as a hyper-30

parameter (Ho et al., 2020; Chen, 2023; Hoogeboom et al., 2023). Chen (2023); Hoogeboom31

et al. (2023) show that the noise schedule can have a significant impact on sample quality. Kingma32

et al. (2021) consider learning ν(t), but argue that the KL divergence terms in the ELBO are invariant33

to the choice of function ν, except for the initial values ν(0), ν(1), and they set these values to34
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hand-specified constants in their experiments. They only consider learning ν for the purpose of35

minimizing the variance of the gradient of the ELBO. In this work, we show that the ELBO is not36

invariant to more complex forward processes.37

2 Diffusion Models With Multivariate Learned Adaptive Noise38

Why Learned Diffusion? Perhaps the most direct motivation for our work comes from Bayesian39

inference. Notice that the gap between the evidence lower bound ELBO(p, q) and the marginal log-40

likelihood (MLL) in Eq. 1 is precisely the KL divergence DKL[q(xt(1):t(T )|x0)∥pθ(xt(1):t(T )|x0)]41

between the diffusion process q over the latents xt and the true posterior of the diffusion model.42

The diffusion process takes the role of an approximate variational posterior in ELBO(p, q). This43

observation suggests that the ELBO can be made tighter by choosing a diffusion processes q that44

is closer to the true posterior pθ(xt(1):t(T )|x0); this in turn brings the learning objective of closer45

to log p(x), which is often the ideal objective that we wish to optimize. In fact, the key idea of46

variational inference is to optimize maxq∈Q ELBO(p, q) over a family of approximate posteriors47

Q to induce a tighter ELBO (Kingma & Welling, 2013). Most diffusion algorithms, however48

optimize maxp∈P ELBO(p, q) within some family P with a fixed q. Our work seeks to jointly49

optimize maxp∈P,q∈Q ELBO(p, q); we will show in our experiments that this improves the likelihood50

estimation.51

2.1 A Forward Diffusion Process With Multivariate Adaptive Noise52

This subsection focuses on defining Q; the next sections will show how to parameterize and train a53

reverse model p ∈ P .54

Notation. Given two vectors a and b, we use the notation ab to represent the Hadamard product55

(element-wise multiplication). Additionally, we denote element-wise division of a by b as a / b. We56

denote the mapping diag(.) that takes a vector as input and produces a diagonal matrix as output.57

2.1.1 Multivariate Gaussian Noise Schedule Conditioned on Context58

Formally, our definition of a forward diffusion process with a multivariate noise schedule fol-59

lows previous work (Kingma et al., 2021; Hoogeboom & Salimans, 2022) and defines q via60

the marginal for each latent noise variable xt for t ∈ [0, 1], where the marginal is given by:61

q(xt|x0) = N (xt;αtx0, diag(σ2
t )), where xt,x0 ∈ Rd, αt,σt ∈ Rd

+ and d is the dimension-62

ality of the input data. For more details please refer Sec. B. In Sec. D.4, we argue that this class63

of diffusion process Q induces an ELBO that is not invariant to q ∈ Q. The ELBO consists of64

a line integral along the diffusion trajectory specified by ν(t). A line integrand is almost always65

path-dependent, unless its integral corresponds to a conservative force field, which is rarely the case66

for a diffusion process (Spinney & Ford, 2012). See Sec. D.4 for details.67

Next, we extend the diffusion process to support context-adaptive noise. This enables injecting noise68

in a way that is dependent on the features of an image. Formally, we introduce a context variable69

c ∈ Rm which encapsulates high-level information regarding x0. Examples of c could be a class70

label, a vector of attributes (e.g., features characterizing a human face), or even the input x0 itself. We71

define the marginal of the latent xt in the forward process as q(xt|x0, c) = N (xt;αt(c)x0,σ
2
t (c));72

the reverse process kernel can be similarly derived as Hoogeboom & Salimans (2022):73

q(xs|xt,x0, c) = N

(
µq =

αt|s(c)σ
2
s(c)

σ2
t (c)

xt +
σ2
t|s(c)αs(c)

σ2
t (c)

x0, Σq = diag

(
σ2
s(c)σ

2
t|s(c)

σ2
t (c)

))
(2)

where the diffusion parameters αt, σt are now conditioned on c via a neural network. Specifically,74

we parameterize the diffusion parameters αt(c),σt(c),ν(t, c) as α2
t (c) = sigmoid(−γϕ(c, t)),75

σ2
t (c) = sigmoid(γϕ(c, t)), and ν(c, t) = exp (−γϕ(c, t)). Here, γϕ(c, t) : Rm × [0, 1] →76

[γmin, γmax]
d is a neural network with the property that γϕ(c, t) is monotonic in t. Following Kingma77

et al. (2021); Zheng et al. (2023), we set γmin = −13.30, γmax = 5.0. We express γϕ(c, t) as a78

monotonic degree 5 polynomial in t. Details about the exact functional form of this polynomial and79

its implementation can be found in Suppl. D.2. More such parameterizations are discussed in C.80
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2.2 Auxiliary-Variable Reverse Diffusion Processes81

We introduce a class of approximate reverse processes P that match the structure of Q and that are82

naturally suited to the joint optimization maxp∈P,q∈Q ELBO(p, q).83

Formally, we define a diffusion model where the reverse diffusion process is conditioned on the84

context c. Specifically, given any discretization of t ∈ [0, 1] into T time steps as in Sec. 1, we85

introduce a context-conditional diffusion model pθ(x0:1|c) that factorizes as the Markov chain86

pθ(x0:1|c) = pθ(x1|c)
T∏

i=1

pθ(xs(i)|xt(i), c). (3)

Given that the true reverse process is a Gaussian as specified in Eq. 2, the ideal pθ matches this87 parameterization (the proof mirrors that of regular diffusion models; Suppl. C), which yields88

pθ(xs|c,xt) = N

(
µp =

αt|s(c)σ
2
s(c)

σ2
t (c)

xt +
σ2

t|s(c)αs(c)

σ2
t (c)

xθ(xt, t), Σp = diag

(
σ2

s(c)σ
2
t|s(c)

σ2
t (c)

))
,

(4)

where xθ(xt, t), is a neural network that approximates x0. Instead of parameterizing xθ(xt, t)89

directly using a neural network, we consider 2 other parameterizations. One is the noise pa-90

rameterization (Ho et al., 2020) where ϵθ(xt, c, t) is the denoising model which is parameter-91

ized as ϵθ(xt, t) = (xt −αt(c)xθ(xt, t, c))/σt(c); see Suppl. D.1.1 and the other is veloc-92

ity parameterization (Salimans & Ho, 2022) where vθ(xt, c, t) is a neural network that models93

vθ(xt, c, t) = (αt(c)xt − xθ(xt, c, t))/σt(c); see Suppl. D.1.2.94

2.2.1 Conditioning Noise on an Auxiliary Latent Variable95

In Suppl. C.3, we highlight the challenges when c is deterministic, and hence, propose an alternative96

strategy for learning conditional forward and reverse processes p, q that feature the same structure97

and hence support efficient noise parameterization. Our approach is based on the introduction of98

auxiliary variables (Wang et al., 2023), which lift the distribution pθ into an augmented latent space.99

Specifically, we define z ∈ Rm as a low-dimensional auxiliary latent variable and define a lifted100

pθ(x, z) = pθ(x|z)pθ(z), where pθ(x|z) is the conditional diffusion model from Eq. 3 (with context101

c set to z) and pθ(z) is a simple prior (e.g., unit Gaussian or fully factored Bernoulli). The latents z102

can be interpreted as a high-level semantic representation of x that conditions both the forward and103

the reverse processes. Unlike x0:1, the z are not constrained to have a particular dimension and can104

be a low-dimensional vector of latent factors of variation. They can be continuous or discrete.105

We form a learning objective for the lifted pθ by applying the ELBO twice to obtain:106

log pθ(x0) ≥ Eqϕ(z|x0)[log pθ(x0|z)]− DKL(qϕ(z|x0)∥pθ(z)) (5)

≥ Eqϕ(z|x0)[ELBO(pθ(x0:1|z), qϕ(x0:1|z))]− DKL(qϕ(z|x0)∥pθ(z)), (6)

where ELBO(pθ(x0:1|z), qϕ(x0:1|z)) denotes the variational lower bound of a diffusion model107

(defined in Eq. 1) with a forward process qϕ(x0:1|z) (defined in Eq. 2 and Sec. 2.1.1) and and an108

approximate reverse process pθ(x0:1|z) (defined in Eq. 3), both conditioned on z. The distribution109

qϕ(z|x0) is an approximate posterior for z parameterized by a neural network with parameters ϕ.110

Crucially, note that in the learning objective (Eq. 6), the context, which in this case is z, is available111

at training time in both the forward and reverse processes. At generation time, we can still obtain a112

valid context vector by sampling an auxiliary latent from pθ(z). Thus, this approach addresses the113

aforementioned challenges and enables us to use the noise parameterization in Eq. 4.114

2.3 Variational Lower Bound115

Next, we derive a precise formula for the learning objective (6) of the auxiliary-variable diffusion116

model. Using the objective of a diffusion model in (1) we can write (6) as the sum of four terms:117

log pθ(x0) ≥ Eqϕ [Lrecons + Ldiffusion + Lprior + Llatent], (7)

The reconstruction loss, Lrecons, can be (stochastically and differentiably) estimated using stan-118

dard techniques; see (Kingma & Welling, 2013), Lprior = −DKL[qϕ(x1|x0, z)∥pθ(x1)] is the119
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Table 1: Likelihood in bits per dimension (BPD) on the test set of CIFAR-10 and ImageNet. Results
with “/” means they are not reported in the original papers. Model types are autoregressive (AR),
normalizing flows (Flow), diffusion models (Diff). We only compare with results achieved without
data augmentation.

Model Type CIFAR-10 (↓) ImageNet (↓)

PixelCNN (Van den Oord et al., 2016) AR 3.03 3.83
Image Transformer (Parmar et al., 2018) AR 2.90 3.77
DDPM (Ho et al., 2020) Diff ≤ 3.69 /
ScoreFlow (Song et al., 2021) Diff 2.83 3.76
VDM (Kingma et al., 2021) Diff ≤ 2.65 ≤ 3.72
Flow Matching (Lipman et al., 2022) Flow 2.99 /
Reflected Diffusion Models (Lou & Ermon, 2023) Diff 2.68 3.74
MULAN (Ours) Diff 2.55 ±10−3 3.67 ±10−3

diffusion prior term, Llatent = −DKL[qϕ(z|x0)∥pθ(z)] is the latent prior term, and Ldiffusion =120

− 1
2Et∼[0,1]

[
(ϵt − ϵθ(xt, z, t))

⊤diag (∇tγ(z, t)) (ϵt − ϵθ(xt, z, t))
]

where ∇tγ(z, t) ∈ Rd de-121

notes the Jacobian of γ(z, t) with respect to the scalar t. We try two different kinds of priors122

for pθ(z): discrete (z ∈ {0, 1}m) and continuous (z ∈ Rm). The exact expression for Lprior can be123

found in Suppl. D.3.124

3 Experiments125

This section reports experimental results on the CIFAR-10 (Krizhevsky et al., 2009) and ImageNet-126

32 (Van Den Oord et al., 2016) datasets. More details can be found in Sec. F.127

Likelihood Estimation. In Table 1, we present likelihood estimation results for MULAN and128

recent methods on CIFAR-10 and ImageNet-32 using the VLB-estimate; details in Sec. H.1. Trained129

for 10M steps on CIFAR-10 and 2M steps on ImageNet-32, this MULAN version employs noise130

parameterization, akin to VDM (Kingma et al., 2021). Applied on VDM, MULAN with a learned131

multivariate noising schedule conditioned on auxiliary latent variables significantly improves BPD132

over vanilla VDM. Additionally, using the ODE-based exact likelihood estimate, MULAN outper-133

forms existing methods in density estimation on both datasets, trained for 8M steps on CIFAR-10134

and 2M steps on ImageNet-32. In inference, we extract the underlying probability flow ODE, similar135

to Zheng et al. (2023). While Zheng et al. (2023) used additional techniques, combining them with136

MULAN could enhance its performance.137

Ablations and Noise Schedule. In Fig. 3 we ablate each component of MULAN. As γϕ(z, t) is mul-138

tivariate, diverse noise schedules are expected for distinct input dimensions and z ∼ pθ(z). In Fig. 2139

with our CIFAR-10 model, we visualize the time-dependent variance of the noise schedule for140

different pixels, based on 128 samples z ∼ pθ(z). Early schedule segments show increased variation,141

yet absolute variance is smaller than anticipated. Attempts to visualize noise schedules across diverse142

dataset images and areas (see Fig. 11) and with synthetic datasets exhibit no interpretable patterns,143

despite observable differences in likelihood estimation. We posit that alternative architectures and144

conditioning forms may unveil interpretable variations, a direction for future exploration.145

4 Conclusion146

In this study, we introduce MULAN, a context-adaptive noise process that applies Gaussian noise at147

varying rates across input data. We present theoretical arguments challenging the prevailing notion148

that the likelihood of diffusion models remains independent of the noise schedules. We contend that149

this independence only holds true for univariate schedules, and in the case of multivariate schedules150

like MULAN, different diffusion trajectories yield distinct likelihood estimates. Our evaluation of151

MULAN spans multiple image datasets, where it outperforms state-of-the-art generative diffusion152

models.In general, MULAN represents a promising avenue for advancing generative modeling.153
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A Standard Diffusion Models246

We have a Gaussian diffusion process that begins with the data x0, and defines a sequence of247

increasingly noisy versions of x0 which we call the latent variables xt, where t runs from t = 0 (least248

noisy) to t = 1 (most noisy). Given, T , we discretize time uniformly into T timesteps each with a249

width 1/T . We define t(i) = i/T and s(i) = (i− 1)/T .250

A.1 Forward Process251

q(xt|xs) = N (αt|sxs, σ
2
t|sIn) (8)

where252

αt|s =
αt

αs
(9)

σ2
t|s = σ2

t −
α2
t|s

σ2
s

(10)

A.2 Reverse Process253

Kingma et al. (2021) show that the distribution q(xs|xt,x0) is also gaussian,254

q(xs|xt,x0) = N

(
µq =

αt|sσ
2
s

σ2
t

xt +
σ2
t|sαs

σ2
t

x0, Σq =
σ2
sσ

2
t|s

σ2
t

In

)
(11)

Since during the reverse process, we don’t have access to x0, we approximate it using a neural255

network xθ(xt, t) with parameters θ. Thus,256

pθ(xs|xt) = N

(
µp =

αt|sσ
2
s

σ2
t

xt +
σ2
t|sαs

σ2
t

xθ(xt, t), Σp =
σ2
sσ

2
t|s

σ2
t

In

)
(12)

A.3 Variational Lower Bound257

This corruption process q is the following markov-chain as q(x0:1) = q(x0)
(∏T

i=1 q(xt(i)|xs(i))
)

.258

In the reverse Rrocess, or the denoising process, pθ, a neural network (with parameters θ)259

is used to denoise the noising process q. The reverse Rrocess factorizes as: pθ(x0:1) =260

pθ(x1)
∏T

i=1 pθ(xs(i)|xt(i)). Let xθ(xt, t) be the reconstructed input by a neural network from261

xt. Similar to Sohl-Dickstein et al. (2015); Kingma et al. (2021) we decompose the negative lower262

bound (VLB) as:263

− log pθ(x0) ≤ Eqϕ

[
− log

pθ(xt(0):t(T ))

qϕ(xt(1):t(T )|x0)

]
= Ext(1)∼q(xt(1)|x0)[− log pθ(x0|xt(1))]

+

T∑
i=2

Ext(i)|x0)DKL[pθ(xs(i)|xt(i))∥qϕ(xs(i)|xt(i),x0)]

+ DKL[pθ(x1)∥qϕ(x1|x0)]

= Ext(1)∼q(xt(1)|x0)[− log pθ(x0|xt(1))]︸ ︷︷ ︸
Lrecons

+
T

2
Eϵ∼N (0,In),i∼U{2,T}DKL[pθ(xs(i)|xt(i))∥qϕ(xs(i)|xt(i),x0)]︸ ︷︷ ︸

Ldiffusion

+ DKL[pθ(x1)∥qϕ(x1|x0)]︸ ︷︷ ︸
Lprior

(13)
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The prior loss, Lprior, and reconstruction loss, Lrecons, can be (stochastically and differentiably)264

estimated using standard techniques; see Kingma & Welling (2013). The diffusion loss, Ldiffusion,265

varies with the formulation of the noise schedule. We provide an exact formulation for it in the266

subsequent sections.267

A.4 Diffusion Loss268

For brevity, we use the notation s for s(i) and t for t(i). From Eq. 25 and Eq. 26 we get the following269

expression for q(xs|xt,x0):270

DKL(q(xs|xt,x0)∥pθ(xs|xt))

=
1

2

(
(µq − µp)

⊤Σ−1
θ (µq − µp) + tr

(
ΣqΣ

−1
p − In

)
− log

|Σq|
|Σp|

)
=

1

2
(µq − µp)

⊤Σ−1
θ (µq − µp)

Substituting µq,Σq,µp,Σp from equation 12 and equation 11; for the exact derivation see Kingma et al. (2021)

=
1

2
(ν(s)− ν(t)) ∥(x0 − xθ(xt, t))∥22 (14)

Thus Ldiffusion is given by271

Ldiffusion

= lim
T→∞

T

2
Eϵ∼N (0,In),i∼U{2,T}DKL[pθ(xs(i)|xt(i))∥qϕ(xs(i)|xt(i),x0)]

= lim
T→∞

1

2

T∑
i=2

Eϵ∼N (0,In) (ν(s)− ν(t)) ∥x0 − xθ(xt, t)∥22

=
1

2
Eϵ∼N (0,In)

[
lim

T→∞

T∑
i=2

(ν(s)− ν(t)) ∥x0 − xθ(xt, t)∥22

]

=
1

2
Eϵ∼N (0,In)

[
lim

T→∞

T∑
i=2

T (ν(s)− ν(t)) ∥x0 − xθ(xt, t)∥22
1

T

]

Substituting lim
T→∞

T (ν(s)− ν(t)) =
d
dt
ν(t) ≡ ν′(t); see Kingma et al. (2021)

=
1

2
Eϵ∼N (0,In)

[∫ 1

0

ν′(t)∥x0 − xθ(xt, t)∥22
]

dt (15)

In practice instead of computing the integral is computed by MC sampling.

= −1

2
Eϵ∼N (0,In),t∼U [0,1]

[
ν′(t)∥x0 − xθ(xt, t)∥22

]
(16)

B Multivariate noise schedule272

Our proposed forward diffusion process progressively induces varying amounts of Gaussian noise273

across different areas of the image. We introduce two new components relative to previous work:274

multivariate noise scheduling and context-adaptive noise.275

Intuitively, a multivariate noise schedule injects noise at different rates for each pixel of an input276

image. This enables adapting the diffusion process to spatial variations within the image. We will277

also see that this change is sufficient to make the ELBO no longer invariant in q.278

Formally, our definition of a forward diffusion process with a multivariate noise schedule follows279

previous work (Kingma et al., 2021; Hoogeboom & Salimans, 2022) and defines q via the marginal280

for each latent noise variable xt for t ∈ [0, 1], where the marginal is given by:281

q(xt|x0) = N (xt;αtx0, diag(σ2
t )), (17)
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where xt,x0 ∈ Rd, αt,σt ∈ Rd
+ and d is the dimensionality of the input data. The αt,σt denote282

varying amounts of signal and associated with each component (i.e., each pixel) of x0 as a function283

of time t(i). Similarly to Kingma et al. (2021), we may define the multivariate signal-to-noise ratio284

as ν(t) = α2
t/σ

2
t and we choose αt,σt such that ν(t) is monotonically decreasing in t along all285

dimensions and is differentiable in t ∈ [0, 1]. Let αt|s = αt/αs and σ2
t|s = σ2

t − α2
t|s/σ

2
s with286

all operations applied elementwise. In Hoogeboom & Salimans (2022), show that these marginals287

induce transition kernels of the true reverse process between steps s < t that are given by:288

q(xs|xt,x0) = N

(
xs;µq =

αt|sσ
2
s

σ2
t

xt +
σ2
t|sαs

σ2
t

x0, Σq = diag

(
σ2
sσ

2
t|s

σ2
t

))
(18)

In Sec. D.4, we argue that this class of diffusion process Q induces an ELBO that is not invariant to289

q ∈ Q. The ELBO consists of a line integral along the diffusion trajectory specified by ν(t). A line290

integrand is almost always path-dependent, unless its integral corresponds to a conservative force291

field, which is rarely the case for a diffusion process (Spinney & Ford, 2012). See Sec. D.4 for292

details.293

For a multivariate noise schedule we have αt,σt ∈ Rn×n where t ∈ [0, 1]. αt,σt are diagonal294

matrices. The timesteps s, t satisfy 0 ≤ s < t ≤ 1. Furthermore, we use the following notations295

where arithmetic division represents element wise division between 2 diagonal matrices:296

αt|s =
αt

αs
(19)

σ2
t|s = σ2

t −
α2

t|s

σ2
s

(20)

B.1 Forward Process297

q(xt|xs) = N
(
αt|sxs,σ

2
t|s

)
(21)

Change of variables. We can write xt explicitly in terms of the signal-to-noise ratio, ν(t), and298

input x0 in the following manner:299

νt =
α2

t

σ2
t

We know α2
t = 1− σ2

t for Variance Preserving process; see Sec. 1.

=⇒ 1− σ2
t

σ2
t

= νt

=⇒ σ2
t =

1

1 + νt
and α2

t =
νt

1 + νt
(22)

300

νt =
α2
t

σ2
t

We know α2
t = 1− σ2

t for Variance Preserving process; see Sec. 1.

=⇒ 1− σ2
t

σ2
t

= νt

=⇒ σ2
t =

1

1 + νt
and α2

t =
νt

1 + νt
(23)

Thus, we write xt in terms of the signal-to-noise ratio in the following manner:301

xν(t) = αtx0 + σtϵt; ϵt ∼ N (0, In)

=

√
ν(t)√

1 + ν(t)
x0 +

1√
1 + ν(t)

ϵt Using Eq. 22 (24)
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B.2 Reverse Process302

The distribution of xt given xs is given by:303

q(xs|xt,x0) = N

(
µq =

αt|sσ
2
s

σ2
t

xt +
σ2
t|sαs

σ2
t

x0, Σq = diag

(
σ2
sσ

2
t|s

σ2
t

))
(25)

Let xθ(xt, t) be the neural network approximation for x0. Then we get the following reverse process:304

pθ(xs|xt) = N

(
µp =

αt|sσ
2
s

σ2
t

xt +
σ2
t|sαs

σ2
t

xθ(xt, t), Σp = diag

(
σ2
sσ

2
t|s

σ2
t

))
(26)

B.3 Diffusion Loss305

For brevity we use the notation s for s(i) and t for t(i). From Eq. 25 and Eq. 26 we get the following306

expression for q(xs|xt,x0):307

DKL(q(xs|xt,x0)∥pθ(xs|xt))

=
1

2

(
(µq − µp)

⊤Σ−1
θ (µq − µp) + tr

(
ΣqΣ

−1
p − In

)
− log

|Σq|
|Σp|

)
=

1

2
(µq − µp)

⊤Σ−1
θ (µq − µp)

Substituting µq,µp,Σp from equation 26 and equation 25.

=
1

2

(
σ2
t|sαs

σ2
t

x0 −
σ2
t|sαs

σ2
t

xθ(xt, t)

)⊤

diag

(
σ2
sσ

2
t|s

σ2
t

)−1(
σ2
t|sαs

σ2
t

x0 −
σ2
t|sαs

σ2
t

xθ(xt, t)

)

=
1

2
(x0 − xθ(xt, t))

⊤diag

(
σ2
t|sαs

σ2
t

)⊤

diag

(
σ2
sσ

2
t|s

σ2
t

)−1

diag

(
σ2
t|sαs

σ2
t

)
(x0 − xθ(xt, t))

=
1

2
(x0 − xθ(xt, t))

⊤diag

(
σ2
t|sαs

σ2
t

⊙ σ2
t

σ2
sσ

2
t|s

⊙
σ2
t|sαs

σ2
t

)
(x0 − xθ(xt, t))

=
1

2
(x0 − xθ(xt, t))

⊤diag

(
σ2
t|sα

2
s

σ2
tσ

2
s

)
(x0 − xθ(xt, t))

Simplifying the expression using eq. 19 and eq. 20 we get,

=
1

2
(x0 − xθ(xt, t))

⊤diag
(
α2

s

σ2
s

− α2
t

σ2
t

)
(x0 − xθ(xt, t))

Using the relation ν(t) = α2
t/σ

2
t we get,

=
1

2
(x0 − xθ(xt, t))

⊤diag (ν(s)− ν(t)) (x0 − xθ(xt, t)) (27)
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Like Kingma et al. (2021) we train the model in the continuous domain with T → ∞.308

Ldiffusion

= lim
T→∞

1

2

T∑
i=2

Eϵ∼N (0,In)DKL(q(xs(i)|xt(i),x0)∥pθ(xs(i)|xt(i)))

= lim
T→∞

1

2

T∑
i=2

Eϵ∼N (0,In)(x0 − xθ(xt(i), t(i)))
⊤diag

(
νs(i) − νt(i)

)
(x0 − xθ(xt(i), t))

=
1

2
Eϵ∼N (0,In)

[
lim

T→∞

T∑
i=2

(x0 − xθ(xt(i), t(i)))
⊤diag

(
νs(i) − νt(i)

)
(x0 − xθ(xt(i), t))

]

=
1

2
Eϵ∼N (0,In)

[
lim

T→∞

T∑
i=2

T (x0 − xθ(xt(i), t(i)))
⊤diag

(
νs(i) − νt(i)

)
(x0 − xθ(xt(i), t))

1

T

]
Let lim

T→∞
T (νs(i) − νt(i)) =

d
dt

ν(t) denote the scalar derivative of the vector ν(t) w.r.t t

=
1

2
Eϵ∼N (0,In)

[∫ 1

0

(x0 − xθ(xt, t))
⊤diag

(
d
dt
ν(t)

)
(x0 − xθ(xt, t))dt

]
(28)

In practice instead of computing the integral is computed by MC sampling.

= −1

2
Eϵ∼N (0,In),t∼U [0,1]

[
(x0 − xθ(xt, t))

⊤diag
(

d
dt
ν(t)

)
(x0 − xθ(xt, t))

]
(29)

B.4 Vectorized Representation of the diffusion loss309

Let ν(t) be the vectorized representation of the diagonal entries of the matrix ν(t). We can rewrite310

the integral in eq. 28 in the following vectorized form where ⊙ denotes element wise multiplication311

and ⟨, ⟩ denotes dot product between 2 vectors.312

Ldiffusion

= −1

2

∫ 1

0

(x0 − xθ(xt, t))
⊤diag

(
d
dt
ν(t)

)
(x0 − xθ(xt, t))dt

= −1

2

∫ 1

0

〈
(x0 − xθ(xt, t))⊙ (x0 − xθ(xt, t)),

d
dt
ν(t)

〉
dt

Using change of variables as mentioned in Sec. 2.1 we have

= −1

2

∫ 1

0

〈
(x0 − x̃θ(xν(t),ν(t)))⊙ (x0 − x̃θ(xν(t),ν(t))),

d
dt
ν(t)

〉
dt

Let fθ(x0,ν(t)) = (x0 − x̃θ(xν(t),ν(t)))⊙ (x0 − x̃θ(xν(t),ν(t)))

=

∫ 1

0

〈
fθ(x0,ν(t)),

d
dt
ν(t)

〉
dt (30)

Thus Ldiffusion can be interpreted as the amount of work done along the trajectory ν(0) −→ ν(1) in the313

presence of a vector field fθ(x0,ν(z, t)). From the perspective of thermodynamics, this is precisely314

equal to the amount of heat lost into the environment during the process of transition between 2315

equilibria via the noise schedule specified by ν(t).316

B.5 Log likelihood and Noise Schedules: A Thermodynamics perspective317

A diffusion model characterizes a quasi-static process that occurs between two equilibrium distri-318

butions: q(x0) −→ q(x1), via a stochastic trajectory (Sohl-Dickstein et al., 2015). According to319

Spinney & Ford (2012), it is demonstrated that the diffusion schedule or the noising process plays320

a pivotal role in determining the "measure of irreversibility" for this stochastic trajectory which is321

expressed as log PF (x0:1)
PB(x1:0)

. PF (x0:1) represents the probability of observing the forward path x0:1322

and PB(x1:0) represents the probability of observing the reverse path x1:0. It’s worth noting that323
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log PF (x0:1)
PB(x1:0)

corresponds precisely to the ELBO Eq. 1 that we optimize when training a diffusion324

model. Consequently, thermodynamics asserts that the noise schedule indeed has an impact on the325

log-likelihood of the diffusion model which contradicts Kingma et al. (2021).326

C Multivariate noise schedule conditioned on context327

Let’s say we have a context variable c ∈ Rm that captures high level information about x0.328

αt(c),σt(c) ∈ Rn×n are diagonal matrices. The timesteps s, t satisfy 0 ≤ s < t ≤ 1. Furthermore,329

we use the following notations:330

αt|s(c) =
αt(c)

αs(c)
(31)

σ2
t|s(c) = σ2

t (c)−
α2

t|s(c)

σ2
s(c)

(32)

The forward process for such a method is given as:331

qϕ(xt|xs, c) = N
(
αt|s(c)xs,σ

2
t|s(c)

)
(33)

The distribution of xt given xs is given by (the derivation is similar to Hoogeboom & Salimans332

(2022)):333

qϕ(xs|xt,x0, c)

= N

(
µq =

αt|s(c)σ
2
s(c)

σ2
t (c)

xt +
σ2
t|s(c)αs(c)

σ2
t (c)

x0, Σq = diag

(
σ2
s(c)σ

2
t|s(c)

σ2
t (c)

))
(34)

We explore various parameterizations for γϕ(c, t). These schedules are designed in a manner that334

guarantees γϕ(c, 0) = γmin1d and γϕ(c, 1) = γmax1d, Below, we list these parameterizations. The335

polynomial parameterization is novel to our work and yields significant performance gains.336

Monotonic Neural Network. (Kingma et al., 2021) We use the monotonic neural network γvdm(t),337

proposed in VDM to express γ as a function of t such that γvdm(t) : [0, 1] → [γmin, γmax]
d. Then we338

use FiLM conditioning (Perez et al., 2018) in the intermediate layers of this network via a neural339

network that maps z. The activations of the FiLM layer are constrained to be positive.340

Sigmoid. (Ours) We express γϕ(c, t) as a sigmoid function in t such that:341

γϕ(c, t) = γmin + (γmax − γmin)
sigmoid(aϕ(c)t+bϕ(c))−sigmoid(bϕ(c))
sigmoid(aϕ(c)+bϕ(c))−sigmoid(bϕ(c))

where the coefficients aϕ,bϕ are342

parameterized by a neural network such that aϕ : Rm → Rd
>0, bϕ : Rm → Rd.343

Polynomial. (Ours) We express γϕ(c, t) as a monotonic degree 5 polynomial in t . Details about the344

exact functional form of this polynomial and its implementation can be found in Suppl. D.2.345

C.1 context is available during the inference time.346

Even though c represents the input x0, it could be available during during inference. For example347

c could be class labels (Dhariwal & Nichol, 2021) or prexisting embeddings from an auto-encoder348

(Preechakul et al., 2022).349

C.1.1 Reverse Process: Approximate350

Let xθ(xt, c, t) be an approximation for x0. Then we get the following reverse process (for brevity351

we write xθ(xt, c, t) as xθ):352

pθ(xs|xt, c) = N

(
µp =

αt|s(c)σ
2
s(c)

σ2
t (c)

xt +
σ2
t|s(c)αs(c)

σ2
t (c)

xθ, Σp = diag

(
σ2
s(c)σ

2
t|s(c)

σ2
t (c)

))
(35)
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C.1.2 Diffusion Loss353

Similar to the derivation of multi-variate Ldiffusion in Eq. 27 we can derive Ldiffusion for this case too:354

Ldiffusion = −1

2
Eϵ∼N (0,In),t∼U [0,1]

[
(x0 − xθ(xt, c, t))

⊤diag
(

d
dt
ν(t)

)
(x0 − xθ(xt, c, t))

]
(36)

C.1.3 Limitations of this method355

This approach is very limited where the diffusion process is only conditioned on class labels. Using356

pre-existing embeddings like Diff-AE (Preechakul et al., 2022) is also not possible in general and is357

only limited to tasks such as attribute manipulation in datasets.358

C.2 context isn’t available during the inference time.359

If the context, c is an explicit function of the input x0 things become challenging because x0 isn’t360

available during the inference stage. For this reason, Eq. 34 can’t be used to parameterize µp,Σp in361

pθ(xs|xt). Let pθ(xs|xt) = N (µp(xt, t),Σp(xt, t)) where µp,Σp are parameterized directly by a362

neural network. Using Eq. 2 we get the following diffusion loss:363

Ldiffusion = T Ei∼U [0,T ]DKL
(
q(xs(i)|xt(i),x0)∥pθ(xs(i)|xt(i))

)
= Eqϕ

T2 (µq − µp)
⊤Σ−1

θ (µq − µp)︸ ︷︷ ︸
term 1

+
T

2

(
tr
(
ΣqΣ

−1
p − In

)
− log

|Σq|
|Σp|

)
︸ ︷︷ ︸

term 2

 (37)

C.2.1 Reverse Process: Approximate364

Due to the challenges associated with parameterizing µp,Σp directly using a neural network we365

parameterize c using a neural network that approximates c in the reverse process. Let xθ(xt, t) be an366

approximation for x0. Then we get the following reverse Rrocess (for brevity we write xθ(xt, t) as367

xθ, and cθ denotes an approximation to c in the reverse process.):368

pθ(xs|xt)

= N

(
µp =

αt|s(cθ)σ
2
s(cθ)

σ2
t (cθ)

xt +
σ2
t|s(cθ)αs(cθ)

σ2
t (cθ)

xθ, Σp = diag

(
σ2
s(cθ)σ

2
t|s(cθ)

σ2
t (cθ)

))
(38)

Consider the limiting case where T → ∞. Let’s analyze the 2 terms in Eq. 37 separately.369

Using Eq. 2 and Eq. 4, term 1 in Eq. 37 simplifies in the following manner:370

lim
T→∞

T

2
(µq − µp)

⊤Σ−1
θ (µq − µp)

lim
T→∞

T

2

d∑
i=1

((µq)i − (µp)i)
2

(Σθ)i
(39)

Substituting 1 / T as δ

lim
δ→0+

d∑
i=1

1

δσi
2(xθ, t− δ)

(
1− νi(xθ,t)

νi(xθ,t−δ)

)×
[
αi(x, t− δ)

αi(x, t)

νi(x, t)

νi(x, t− δ)
zt +αi(x, t− δ)

(
1− νi(x, t)

νi(x, t− δ)

)
xi

− αi(xθ, t− δ)

αi(xθ, t)

νi(xθ, t)

νi(xθ, t− δ)
zt +αi(xθ, t− δ)

(
1− νi(xθ, t)

νi(xθ, t− δ)

)
(xθ)i

]2
(40)
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Consider the scalar case: substituting δ = 1/T ,371

lim
δ→0

1

δσ2(xθ, t− δ)
(
1− ν(xθ,t)

ν(xθ,t−δ)

)×
[
α(x, t− δ)

α(x, t)

ν(x, t)

ν(x, t− δ)
zt + α(x, t− δ)

(
1− ν(x, t)

ν(x, t− δ)

)
x

− α(xθ, t− δ)

α(xθ, t)

ν(xθ, t)

ν(xθ, t− δ)
zt + α(xθ, t− δ)

(
1− ν(xθ, t)

ν(xθ, t− δ)

)
xθ

]2
(41)

Notice that this equation is in indeterminate for when we substitute δ = 0. One can apply L’Hospital372

rule twice or break it down into 3 terms below. For this reason let’s write it as373

expression 1: lim
δ→0

1

δ
×

[
α(x, t− δ)

α(x, t)

ν(x, t)

ν(x, t− δ)
zt + α(x, t− δ)

(
1− ν(x, t)

ν(x, t− δ)

)
x

− α(xθ, t− δ)

α(xθ, t)

ν(xθ, t)

ν(xθ, t− δ)
zt + α(xθ, t− δ)

(
1− ν(xθ, t)

ν(xθ, t− δ)

)
xθ

]
(42)

expression 2: lim
δ→0

1(
1− ν(xθ,t)

ν(xθ,t−δ)

) ×

[
α(x, t− δ)

α(x, t)

ν(x, t)

ν(x, t− δ)
zt + α(x, t− δ)

(
1− ν(x, t)

ν(x, t− δ)

)
x

− α(xθ, t− δ)

α(xθ, t)

ν(xθ, t)

ν(xθ, t− δ)
zt + α(xθ, t− δ)

(
1− ν(xθ, t)

ν(xθ, t− δ)

)
xθ

]2
(43)

Applying L’Hospital rule in expression 1 we get,374

d

dδ

(
α(x, t− δ)

α(x, t)

ν(x, t)

ν(x, t− δ)

) ∣∣∣∣∣
δ=0

=
ν(x, t)

α(x, t)

−ν(x, t)α′(x, t) + α(x, t)ν′(x, t)

ν2(x, t)

=
−α′(x, t)

α(x, t)
+
ν′(x, t)

ν(x, t)
(44)

d

dδ
α(x, t− δ)

(
1− ν(x, t)

ν(x, t− δ)

) ∣∣∣∣∣
δ=0

= −α(x, t)ν
′(x, t)

ν(x, t)
(45)

[(
−α′(x, t)

α(x, t)
+
ν′(x, t)

ν(x, t)
+
α′(xθ, t)

α(xθ, t)
− ν′(xθ, t)

ν(xθ, t)

)
zt (46)

−α(x, t)ν
′(x, t)

ν(x, t)
x+ α(xθ, t)

ν′(xθ, t)

ν(xθ, t)
xθ

]2
× ν(x, t)

ν′(x, t)
(47)

Thus the final result:375
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d∑
i=1

[(
−αi

′(x, t)

αi(x, t)
+

νi
′(x, t)

νi(x, t)
+

αi
′(xθ, t)

αi(xθ, t)
− νi

′(xθ, t)

νi(xθ, t)

)
zt

−αi(x, t)
νi

′(x, t)

νi(x, t)
x+αi(xθ, t)

νi
′(xθ, t)

νi(xθ, t)
xθ

]2
× νi(x, t)

νi
′(x, t)

= Λ⊤diag
(
ν(x, t)

ν′(x, t)

)
Λ

where Λ =

[(
−α′(x, t)

α(x, t)
+

ν′(x, t)

ν(x, t)
+

α′(xθ, t)

α(xθ, t)
−

ν′(xθ, t)

ν(xθ, t)

)
zt − α(x, t)

ν′(x, t)

ν(x, t)
x + α(xθ, t)

ν′(xθ, t)

ν(xθ, t)
xθ

]
(48)

For the second term we have the following:376

lim
T→∞

T

2

(
tr
(
ΣqΣ

−1
p − In

)
− log

|Σq|
|Σp|

)
= lim

T→∞

T

2

[
tr
(

diag
(
σ2(c, s)

(
1− ν(c, t)

ν(c, s)

))/
diag

(
σ2(cθ, s)

(
1− ν(cθ, t)

ν(cθ, s)

))
− In

)

− log

∣∣∣∣∣diag
(
σ2(c, s)(1− ν(c,t)

ν(c,s) )
) ∣∣∣∣∣∣∣∣∣∣diag

(
σ2(cθ, s)(1− ν(cθ,t)

ν(cθ,s)
)
) ∣∣∣∣∣
]

= lim
T→∞

T

2

d∑
i=1

 σi
2(c, s)

(
1− νi(c,t)

νi(c,s)

)
σi

2(cθ, s)
(
1− νi(cθ,t)

νi(cθ,s)

) − 1− log
σi

2(c, s)
(
1− νi(c,t)

νi(c,s)

)
σi

2(cθ, s)
(
1− νi(cθ,t)

νi(cθ,s)

)
 (49)

(50)

Let pi =
σi

2(c,s)
(
1− νi(c,t)

νi(c,s)

)
σi

2(cθ,s)
(
1− νi(cθ,t)

νi(cθ,s)

)377

The sequence limT→∞
T
2

∑d
i=1(pi − 1− log pi) converges iff limT→∞

∑d
i=1(pi − 1− log pi) = 0.378

Notice that the function f(x) = x− 1− log x ≥ 0 ∀x ∈ R and the equality holds for x = 1. Thus,379

the condition limT→∞
T
2

∑d
i=1(pi − 1− log pi) holds iff limT→∞ pi = 0 ∀i ∈ {1, . . . , d}. Thus,380
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lim
T→∞

pi = 1

=⇒ lim
T→∞

 σi
2(c, s)

(
1− νi(c,t)

νi(c,s)

)
σi

2(cθ, s)
(
1− νi(cθ,t)

νi(cθ,s)

)
 = 1

Substituting 1/T as δ,

=⇒ lim
δ→0+

 σi
2(c, t− δ)

(
1− νi(c,t)

νi(c,t−δ)

)
σi

2(cθ, t− δ)
(
1− νi(cθ,t)

νi(cθ,t−δ)

)
 = 1

=⇒ σi
2(c, t)

σi
2(cθ, t)

lim
δ→0+

1− νi(c,t)
νi(c,t−δ) )

1− νi(cθ,t)
νi(cθ,t−δ)

 = 1

Applying L’Hospital rule,

=⇒ σi
2(c, t)

σi
2(cθ, t)

 −νi
′(c,t)

νi(c,t)
)

−νi
′(cθ,t)

νi(cθ,t)

 = 1

=⇒ σi
2(c, t)

σi
2(cθ, t)

(
νi

′(c, t)νi(cθ, t)

νi(c, t)νi
′(cθ, t))

)
= 1 (51)

In the vector form the above equation can be written as,381

σ2
t (c)νt(cθ)∇tν(c, t)

σ2
t (cθ)νt(c)∇tν(cθ, t)

→ 1d (52)

Eq. 52 holds if:382

• xθ = x0 i.e. the unet can perfectly map xt to x0 ∀t ∈ [0, 1] which is unrealistic.383

• Clever parameterizations for σ,α,ν that ensure Eq. 52 holds.384

Because of aforementioned challenges we evaluate this method with finite T = 1000. We demonstrate385

the performance of the model empirically in Fig. 1.386

C.2.2 Recovering VDM387

If we substitute νt(c),νt(cθ) with ν(t) (since the SNR isn’t conditioned on the context c),388

σt(cθ),σt(c) with σt and αt(cθ),αt(c) with αt, Eq. 39 reduces to the intermediate loss in VDM389

i.e. 1
2 (xθ − x0)

⊤(∇tν(t)) (xθ − x0) and Eq. 49 reduces to 0.390

C.3 Challenges in Conditioning on Context391

Note that the model pθ(x0:1|c) implicitly assumes the availability of c at generation time. Sometimes,392

this context may be available, such as when we condition on a label. We may then fit a conditional393

diffusion process with a standard diffusion objective Ex0,c[ELBO(x0, pθ(x0:1|c), qϕ(x0:1|c)], in394

which both the forward and the backward processes are conditioned on c (see Sec. 2.3).395

When c is not known at generation time, we may fit a model pθ that does not condition on c. Unfortu-396

nately, this also forces us to define pθ(xs|xt) = N (µp(xt, t),Σp(xt, t)) where µp(xt, t),Σp(xt, t)397

is parameterized directly by a neural network. We can no longer use a noise parameterization398

ϵθ(xt, t) = (xt −αt(c)xθ(xt, t, c))/σt(c) because it requires us to compute αt(c) and σt(c),399

which we do not know. Since noise parameterization plays a key role in the sample quality of400

diffusion models (Ho et al., 2020), this approach limits performance.401

The other approach is to approximate c using a neural network, cθ(xt, t). This would allow us402

to write pθ(xs|xt) = qϕ(xs|xt,x0 = xθ(xt, t), c = cθ(xt, t)). Unfortunately, this introduces403

instability in the learning objective, which we observe both theoretically and empirically. Specifically,404
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Figure 1: For c = “class labels” or c = x0 the likelihood estimates are worse than VDM. For c = x0

we see that the VLB degrades with increasing T whereas for VDM and MULAN it improves for
increasing T; see Kingma et al. (2021). This empirical observation is consistent with our mathematical
insights earlier. As these models consistently exhibit inferior performance w.r.t VDM, in line with
our initial conjectures, we refrain from training them beyond 300k iterations due to the substantial
computational cost involved.

in Suppl. C we show that the learning objective diverges unless the following condition holds true:405

limT→∞ T
σ2

t (x0)νt(x0)ν
′
t(xθ)

σ2
t (xθ)νt(xθ)ν′

t(x0)
→ Id pointwise across t. Experiments in Suppl. C.4 confirm this issue.406

C.4 Experimental results407

In Fig. 1 we demonstrate that the multivariate diffusion processes where c = “class labels” or c = x0408

perform worse than VDM. Since a continuous time formulation i.e. T → ∞ for the case when c = x0409

isn’t possible (unlike MULAN or VDM) we evaluate these models in the discrete time setting where410

we use T = 1000. Furthermore we also ablate T = 10k, 100k for c = x0 to show that the VLB411

degrades with increasing T whereas for VDM and MULAN it improves for increasing T; see Kingma412

et al. (2021). This empirical observation is consistent with our mathematical insights earlier. As these413

models consistently exhibit inferior performance w.r.t VDM, in line with our initial conjectures, we414

refrain from training them beyond 300k iterations due to the substantial computational cost involved.415

D MULAN: MUltivariate Latent Auxiliary variable Noise Schedule416

D.1 Parameterization in the reverse process417

D.1.1 Noise parameterization418

Since the forward pass is given by xt = αt(z)x0 + σt(z)ϵt, we can write the noise ϵt in terms of419

x0,xt in the following manner:420

ϵt =
xt −αt(z)x0

σt(z)
(53)

Following Dhariwal & Nichol (2021); Kingma et al. (2021), instead of parameterizing xθ(xt, z, t)421

using a neural network, we use Eq. 53 to parameterize the denoising model in terms of a noise422

prediction model ϵθ(xt, z, t),423

ϵθ(xt, z, t) =
xt −αt(z)xθ(xt, z, t)

σt(z)
(54)
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Table 2: Likelihood in bits per dimension (BPD) (mean and 95% confidence interval), on the test set
of CIFAR-10 computed using VLB estimate.

parameterization Num training steps CIFAR-10 (↓)
Noise parameterization 10M 2.60± 10−3

Velocity parameterization 8M 2.59± 10−3

D.1.2 Velocity parameterization424

Following Salimans & Ho (2022); Zheng et al. (2023), we explore another parameterization of the425

denoising network which is given by426

vθ(xt, z, t) =
αt(z)xt − xθ(xt, z, t)

σt(z)
(55)

In practice, Velocity parameterization leads to a better performance than noise parameterization; as427

illustrated in Table 2.428

D.2 Polynomial Noise Schedule429

Let f(x;ψ) be a scalar-valued polynomial of degree n with coefficients ψ ∈ Rn+1 expressed as:

f(x;ψ) = ψnx
n + ψn−1x

n−1 + · · ·+ ψ1x+ ψ0,

and denote its derivative with respect to x as d
dxf(x;ψ), represented by f ′(x;ψ). Now we’d like to430

find least n such that f(x;ψ) satisfies the following properties:431

1. f(x;ψ) is monotonically increasing, i.e. f ′(x;ψ) ≥ 0 ∀x ∈ R, ψ ∈ Rn+1.432

2. f ′(x1;ψ) = 0, f ′(x2;ψ) = 0 ∃x1, x2 ∈ C, x1 ̸= x2,∀ψ ∈ Rn+1.433

For the first condition to hold, we can design f ′(x;ψ) such that it’s a perfect square with real /434

imaginary roots. That way f ′(x;ψ) ≥ 0 ∀x ∈ R, ψ ∈ Rn+1 . This means that f ′(x;ψ) is an even435

degree polynomial, i.e. the degree of f ′(x;ψ) can take the following values: 2, 4, . . . . Also, note that436

at least half of the roots of f ′(x;ψ) are repeated since f ′(x;ψ) can be expressed as a perfect square,437

i.e., if f ′(x;ψ) has a degree 2 then it has exactly 1 unique root (real / imaginary), if f ′(x;ψ) has a438

degree 4 then it has at most 2 unique roots (real / imaginary), and so on.439

For the second condition to hold, f ′(x;ψ) needs to have at least 2 unique roots ∃ψ ∈ Rn+1. For this440

reason f ′(x;ψ) is a polynomial of degree 4. Thus, f ′(x;ψ) can be written as f ′(x;ψ) = (ψ3x
2 +441

ψ2x+ψ1)
2. This ensures that ∃ψ ∈ R5 s.t. f ′(x;ψ) = 0 twice in x ∈ R, and f ′(x;ψ) ≥ 0 ∀ψ ∈ R5.442

Thus, f(x;ψ) takes the following functional form:443

f(x;ψ) =

∫
(ψ3x

2 + ψ2x+ ψ1)
2dx

=
ψ2
3

5
x5 +

ψ3ψ2

2
x4 +

ψ2
2 + 2ψ3ψ1

3
x3 + ψ2ψ1x

2 + ψ2
1x+ constant. (56)

For the above-mentioned reasons we express γ(c, t) : Rm × [0, 1] → Rd as a degree 5 polynomial in
t. We define neural networks aϕ(c) : Rm → Rd, bϕ(c) : Rm → Rd, and dϕ(c) : Rm → Rd with
parameters ϕ. Let fϕ : Rm × [0, 1] → Rd be defined as:

fϕ(c, t) =
a2ϕ(c)

5
t5 +

aϕ(c)bϕ(c)

2
t4 +

b2
ϕ(c) + 2aϕ(c)dϕ(c)

3
t3 + bϕ(c)dϕ(c)t

2 + d2
ϕ(c)t

where the multiplication and division operations are elementwise. The the noise schedule, γ(c, t), is444

given as follows:445

γϕ(c, t) = γmin + (γmax − γmin)
fϕ(c, t)

fϕ(c, t = 1)
(57)

Notice that γϕ(c, t) has these interesting properties:446
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• Is increasing in t ∈ [0, 1] which is crucial as mentioned in Sec. D.4.447

• γϕ(c, t) has end points at t = 0 and t = 1 which the user can specify via γmin and γmax.448

Specificaly, γϕ(c, t = 0) = γmin and γϕ(c, t = 1) = γmax.449

• Its time-derivative i.e. ∇tγϕ(c, t) can be zero twice in t ∈ [0, 1]. This isn’t a necessary450

condition but it’s nice to have a flexible noise schedule whose time-derivative can be 0 at the451

beginning and the end of the diffusion process.452

D.3 Variational Lower Bound453

In this section we derive the VLB. For ease of reading we use the notation xt to denote xt(i) and454

xt−1 to denote xt(i−1) ≡ xs(i) in the following derivation.455

− log pθ(x0)

≤ Eqϕ

[
− log

pθ(z,x0:T )

qϕ(z,x1:T |x0)

]
= Eqϕ

[
− log

pθ(x0:T−1|z,xT )

qϕ(z,x1:T |x0)
− log pθ(xT )− log pθ(z)

]
= Eqϕ

[
− log

pθ(x0:T−1|z,xT )

qϕ(x1:T |z,x0)
− log

1

qϕ(z|x0)
− log pθ(xT )− log pθ(z)

]
= Eqϕ

[
− log

pθ(x0:T−1|z,xT )

qϕ(x1:T |z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]
= Eqϕ

[
−

T∑
t=1

log
pθ(xt−1|z,xt)

qϕ(xt|xt−1, z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

[
− log

pθ(x0|z,x1)

qϕ(x1|x0, z)
−

T∑
t=2

log
pθ(xt−1|z,xt)

qϕ(xt|xt−1, z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

[
− log

pθ(x0|z,x1)

qϕ(x1|x0, z)
−

T∑
t=2

log
pθ(xt−1|z,xt)qϕ(xt−1|z,x0)

qϕ(xt−1|xt, z,x0)qϕ(xt|z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

[
− log

pθ(x0|z,x1)

qϕ(x1|x0, z)
−

T∑
t=2

log
pθ(xt−1|z,xt)

qϕ(xt−1|xt, z,x0)
−

T∑
t=2

log
qϕ(xt−1|z,x0)

qϕ(xt|z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

[
− log

pθ(x0|z,x1)

qϕ(x1|x0, z)
−

T∑
t=2

log
pθ(xt−1|z,xt)

qϕ(xt−1|xt, z,x0)
− log

q(x1|z, x0)

qϕ(xT |z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

[
− log pθ(x0|z,x1)−

T∑
t=2

log
pθ(xt−1|z,xt)

qϕ(xt−1|xt, z,x0)
− log

1

qϕ(xT |z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

[
− log pθ(x0|z,x1)−

T∑
t=2

log
pθ(xt−1|z,xt)

qϕ(xt−1|xt, z,x0)
− log

pθ(xT )

qϕ(xT |z,x0)
− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

− log pθ(x0|z,x1)︸ ︷︷ ︸
Lrecons

+

T∑
t=2

DKL[pθ(xt−1|z,xt)∥qϕ(xt−1|xt, z,x0)]︸ ︷︷ ︸
Ldiffusion


+ Eqϕ

DKL[pθ(xT )∥qϕ(xT |z,x0)]︸ ︷︷ ︸
Lprior

+DKL[pθ(z)∥q(z|x0)]︸ ︷︷ ︸
Llatent

 (58)
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Switching back to the notation used throughout the paper, the VLB is given as:456

− log pθ(x0)

≤ Eqϕ

− log pθ(x0|z,x1)︸ ︷︷ ︸
Lrecons

+

T∑
i=2

DKL[pθ(xs(i)|z,xt(i))∥qϕ(xs(i)|xt(i), z,x0)]︸ ︷︷ ︸
Ldiffusion


+ Eqϕ

DKL[pθ(x1)∥qϕ(x1|z,x0)]︸ ︷︷ ︸
Lprior

+DKL[pθ(z)∥qϕ(z|x0)]︸ ︷︷ ︸
Llatent

 (59)

Next, we derive a precise formula for the learning objective (6) of the auxiliary-variable diffusion457

model. Using the objective of a diffusion model in (1) we can write (6) as the sum of four terms:458

log pθ(x0) ≥ Eqϕ [Lrecons + Ldiffusion + Lprior + Llatent], (60)
The reconstruction loss, Lrecons, can be (stochastically and differentiably) estimated using standard459

techniques; see (Kingma & Welling, 2013), Lprior = −DKL[qϕ(x1|x0, z)∥pθ(x1)] is the diffusion460

prior term, Llatent = −DKL[qϕ(z|x0)∥pθ(z)] is the latent prior term, and Ldiffusion is the diffusion loss461

term, which we examine below. The complete derivation is given in Suppl. D.3.462

D.3.1 Diffusion Loss463

Discrete-Time Diffusion. We start by defining pθ in discrete time, and as in Sec. 1, we let T > 0464

be the number of total time steps and define t(i) = i/T and s(i) = (i− 1)/T as indexing variables465

over the time steps. We also use x0:1 to denote the subset of variables associated with these timesteps.466

Starting with the expression in Eq. 1 and following the steps in Suppl. D, we can write Ldiffusion as:467

Ldiffusion = −
T∑

i=2

DKL[qϕ(xs(i)|xt(i),x0, z)∥pθ(xs(i)|xt(i), z)]

=
1

2

T∑
i=2

[
(ϵt − ϵθ(xt, z, t(i)))

⊤diag (γ(z, s(i))− γ(z, t(i))) (ϵt − ϵθ(xt, z, t(i)))
]
(61)

Continuous-Time Diffusion. We can also consider the limit of the above objective as we take an468

infinitesimally small partition of t ∈ [0, 1], which corresponds to the limit when T → ∞. In Suppl. D469

we show that taking this limit of Eq. 61 yields the continuous-time diffusion loss:470

Ldiffusion = −1

2
Et∼[0,1]

[
(ϵt − ϵθ(xt, z, t))

⊤diag (∇tγ(z, t)) (ϵt − ϵθ(xt, z, t))
]

(62)

where ∇tγ(z, t) ∈ Rd denotes the Jacobian of γ(z, t) with respect to the scalar t. We observe that471

the limit of T → ∞ yields improved performance, matching the existing theoretical argument by472

Kingma et al. (2021).473

D.3.2 Auxiliary latent loss474

We try two different kinds of priors for pθ(z): discrete (z ∈ {0, 1}m) and continuous (z ∈ Rm).475

Continuous Auxiliary Latents. In the case where z is continuous, we select pθ(z) as N (0, Im).476

This leads to the following KL loss term:477

DKL(qϕ(z|x0)∥pθ(z)) = 1
2 (µ

⊤(x0)µ(x0)) + tr(Σ2(x0)− Im)− log |Σ2(x0)|).478

Discrete Auxiliary Latents. In the case where z is discrete, we select pθ(z) as a uniform dis-479

tribution. Let z ∈ {0, 1}m be a k-hot vector sampled from a discrete Exponential Family dis-480

tribution pθ(z; θ) with logits θ. Niepert et al. (2021) show that z ∼ pθ(z; θ) is equivalent to481

z = argmaxy∈Y ⟨θ + ϵg, y⟩ where ϵg denotes the sum of gamma distribution Suppl. E, Y denotes482

the set of all k-hot vectors of some fixed length m. For k > 1, To differentiate through the argmax483

we use a relaxed estimator, Identity, as proposed by Sahoo et al. (2023). This leads to the following484

KL loss term: DKL(qϕ(z|x0)∥pθ(z)) = −
∑m

i=1 qϕ(z|x0)i(log qϕ(z|x0)i + logm).485
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D.4 The Variational Lower Bound as a Line Integral Over The Noise Schedule486

Having defined our loss, we now return to the question of whether it is invariant to the choice of487

diffusion process. Notice that we may rewrite Eq. 62 in the following vectorized form:488

Ldiffusion = −1

2

∫ 1

0

(x0 − xθ(xt, z, t))
2 · ∇tν(z, t)dt (63)

where the square is applied elementwise. We seek to rewrite (63) as a line integral
∫ b

a
f(r(t))· d

dtr(t)dt489

for some vector field f and trajectory r(t). Recall that ν(z, t) is monotonically decreasing in each490

coordinate as a function of t; hence, it is invertible on its image, and we can write t = ν−1
z (ν(z, t))491

for some ν−1
z . Let x̄θ(xν(z,t), z,ν(z, t)) = xθ(xν−1

z (ν(z,t)), z,ν
−1
z (ν(z, t))) and note that for all t,492

we can write xt as xν(z,t); see Eq. 24, and have x̄θ(xν(z,t), z,ν(z, t)) = xθ(xt, z, t). We can then493

write the integral in (63) as
∫ 1

0
(x0 − x̄θ(xν(z,t), z,ν(z, t)))

2 · d
dtν(z, t)⟩dt, which is a line integral494

with f(r(t)) ≡ (x0 − x̄θ(xν(z,t), z,ν(z, t)))
2 and r(t) ≡ ν(z, t) and .495

Thus the diffusion loss, Ldiffusion, can be interpreted as a measure of work done along the trajectory496

ν(z, t) in the presence of a vector field f . Different "trajectories" yield different results for most497

integrands, unless its integral corresponds to a conservative force field, which is rarely the case for a498

diffusion process (Spinney & Ford, 2012). We empirically observe this in our experiments where499

swapping out different multivariate ν yields different values of the ELBO. In Sec. D.6, we show that500

variational diffusion models can be viewed as following only linear trajectories ν(t), hence their501

objective is invariant to the noise schedule. Our method learns a multivariate ν that yields paths502

corresponding to a better ELBO.503

D.5 Diffusion Loss504

To derive the diffusion loss, Ldiffusion in Eq. 60, we first derive an expression for505

DKL(qϕ(xs|z,xt,x0)∥pθ(xs|z,xt)) using Eq. 2 and Eq. 4 in the following manner (details in506

Suppl. D):507

DKL(qϕ(xs|z,xt,x0)∥pθ(xs|z,xt))

=
1

2

(
(µqϕ − µp)

⊤Σ−1
θ (µqϕ − µp) + tr

(
ΣqϕΣ

−1
p − In

)
− log

|Σqϕ |
|Σp|

)
=

1

2

(
(x0 − xθ)

⊤diag(ν(z, s)− ν(z, t))(x0 − xθ)
)

(64)

Let limT→∞ T (νs(z) − νt(z)) = −∇tν(z, t) be the partial derivative of the vector ν(z, t) w.r.t508

scalar t. Then we derive the diffusion loss, Ldiffusion, for the continuous case in the following manner509
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(for brevity we use the notation s for s(i) = (i− 1)/T and t for t(i) = i/T ):510

Ldiffusion

= lim
T→∞

1

2

T∑
i=2

Eϵ∼N (0,In)DKL(q(xs|xt,x0, z)∥pθ(xs|xt, z))

Using Eq. 64 we get,

= lim
T→∞

1

2

T∑
i=2

Eϵ∼N (0,In)(x0 − xθ(xt, t(i)))
⊤diag (ν(s(i), z)− ν(t(i), z)) (x0 − xθ(xt, t(i)))

=
1

2
Eϵ∼N (0,In)

[
lim

T→∞

T∑
i=2

T (x0 − xθ(xt, t(i)))
⊤diag (ν(s(i), z)− ν(t(i), z)) (x0 − xθ(xt, t(i)))

1

T

]
Using the fact that lim

T→∞
T (ν(s, z)− ν(z, t)) = −∇tν(t, z) we get,

= −1

2
Et∼{0,...,1}

[
(x0 − xθ(xt, t))

⊤ (∇tνt(z)) (x0 − xθ(xt, t))
]

Substituting x0 = α−1
t (z)(xt − σt(z)ϵt) from Eq. 53 and

Substituting xθ(xt, z, t) = α−1
t (z)(xt − σt(z)ϵθ(xt, t)) from Eq. 54 we get,

= −1

2
Et∼[0,1]

[
(ϵt − ϵθ(xt, t))

⊤
(
σ2
t (z)

α2
t (z)

×∇tνt(z)

)
(ϵt − ϵθ(xt, t))

]
Let ν−1(z, t) denote the reciprocal of the values in the vector ν(z, t).

= −1

2
Et∼[0,1]

[
(ϵt − ϵθ(xt, t))

⊤diag
(
ν−1(t)(z)∇tνt(z)

)
(ϵt − ϵθ(xt, t))

]
Substituting ν(z, t) = exp(−γ(z, t)) from Sec. D.1.1

= −1

2
Et∼[0,1]

[
(ϵt − ϵθ(xt, t))

⊤diag (exp (γ(z, t))∇t exp (−γ(z, t))) (ϵt − ϵθ(xt, t))
]

=
1

2
Et∼[0,1]

[
(ϵt − ϵθ(xt, t))

⊤diag (exp (γ(z, t)) exp (−γ(z, t))∇tγ(z, t)) (ϵt − ϵθ(xt, t))
]

=
1

2
Et∼[0,1]

[
(ϵt − ϵθ(xt, t))

⊤diag (∇tγ(z, t)) (ϵt − ϵθ(xt, t))
]

(65)

D.6 Recovering VDM from the Vectorized Representation of the diffusion loss511

Notice that we recover the loss function in VDM when ν(z, t) = ν(t)1d where νt ∈ R+ and 1d512

represents a vector of 1s of size d and the noising schedule isn’t conditioned on z.513

∫ 1

0

⟨fθ(x0,ν(z, t)),
d
dt
ν(t)⟩dt =

∫ 1

0

⟨fθ(x0,ν(t)),
d
dt
(ν(t)1n)⟩dt

=

∫ 1

0

⟨fθ(x0,ν(t)),1d⟩ν′(t)dt

=

∫ 1

0

ν′(t)∥fθ(x0,ν(t))∥11dt

=

∫ 1

0

ν′(t)∥(x0 − x̃θ(xν(t),ν(t)))∥22dt (66)∫ 1

0
d
dtν(t)∥(x0 − x̃θ(xν(t),ν(t)))∥22dt denotes the diffusion loss, Ldiffusion, as used in VDM; see514

Kingma et al. (2021).515

E Subset Sampling516

Sampling a subset of k items from a collection of collection of n items, x1, x2, . . . , x3 belongs517

to a category of algorithms called reservoir algorithms. In weighted reservoir sampling, every518
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xi is associated with a weight wi ≥ 0. The probability associated with choosing the sequence519

Swrs = [i1, i2, . . . , ik] be a tuple of indices. Then the probability associated with sampling this520

sequence is521

p(Swrs|w) =
wi1

Z

wi2

Z − wi1

. . .
wik

Z −
∑k−1

j=1 wij

(67)

Efraimidis & Spirakis (2006) give an algorithm for weighted reservoir sampling where each item522

is assigned a random key ri = u
1
wi
i where ui is drawn from a uniform distribution [0, 1] and wi is523

the weight of item xi. Let TopK(r, k) which takes keys r = [r1, r2, . . . , rn] and returns a sequence524

[i1, i2, . . . , ik]. Efraimidis & Spirakis (2006) proved that TopK(r, k) is distributed according to525

p(Swrs|w).526

Let’s represent a subset S ∈ {0, 1}n with exactly k non-zero elements that are equal to 1. Then the527

probability associated with sampling S is given as,528

p(S|w) =
∑

Swrs∈Π(S)

p(Swrs|w) (68)

where Π(S) denotes all possible permutations of the sequence S. By ignoring the ordering of the ele-529

ments in Swrs we can sample using the same algorithm. Xie & Ermon (2019) show that this sampling530

algorithm is equivalent to TopK(r̂, k) where r̂ = [r̂1, r̂2, . . . , r̂n] where r̂i = − log(− log(ri)) =531

logwi+ Gumbel(0, 1). This holds true because the monotonic transformation − log(− log(x))532

preserves the ordering of the keys and thus TopK(r, k) ≡ TopK(̂r, k).533

Sum of Gamma Distribution. Niepert et al. (2021) show that adding SOG noise instead of Gumbel534

noise leads to better performance.535

Niepert et al. (2021) show that z ∼ pθ(z; θ) is equivalent to z = argmaxy∈Y ⟨θ + ϵg, y⟩ where ϵg is536

a sample from Sum-of-Gamma distribution given by537

SoG(k, τ, s) =
τ

k

( s∑
i=1

Gamma
(1
k
,
k

i

)
− log s

)
, (69)

where s is a positive integer and Gamma(α, β) is the Gamma distribution with (α, β) as the shape538

and scale parameters.539

And hence, given logits logw, we sample a k-hot vector using TopK(logw + ϵ). We choose a540

categorical prior with uniform distribution across n classes. Thus the KL loss term is given by:541

−
n∑

i=1

wi

Z
log
(
n
wi

Z

)
(70)

F Experiment Details542

F.1 Model Architecture543

Denoising network. Our model architecture is extremely similar to VDM. The UNet of our pixel-544

space diffusion has an unchanged architecture from Kingma et al. (2021).This structure is specifically545

designed for optimal performance in maximum likelihood training. We employ features from VDM546

such as the elimination of internal downsampling/upsampling processes and the integration of Fourier547

features to enhance fine-scale prediction accuracy. In alignment with the configurations suggested by548

Kingma et al. (2021), our approach varies depending on the dataset: For CIFAR-10, we employ a549

U-Net with a depth of 32 and 128 channels; for ImageNet-32, the U-Net also has a depth of 32, but550

the channel count is increased to 256. Additionally, all these models incorporate a dropout rate of 0.1551

in their intermediate layers.552

Encoder network. qϕ(z|x) is modeled using a sequence of 4 Resnet blocks with a channel count553

of 128 for CIFAR-10 and 256 for ImageNet-32 with a drop out of 0.1 in their intermediate layers.554
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Table 3: Likelihood in bits per dimension (BPD) on the test set of CIFAR-10 and ImageNet. Results
with “/” means they are not reported in the original papers. Model types are autoregressive (AR),
normalizing flows (Flow), variational autoencoders (VAE), diffusion models (Diff), diffusion ODEs
(Diff ODE). The likelihood for “Diff” type models is computed using the VLB-based method
described in appendix Sec. H.1, while “Diff ODE” type models utilize an ODE-based exact likelihood
estimate as detailed in appendix Sec. H.2. Additionally, for MULAN , we present the mean and a
95% confidence interval.

Model Type CIFAR-10 (↓) ImageNet (↓)
PixelCNN (Van den Oord et al., 2016) AR 3.03 3.83
PixelCNN++ (Salimans et al., 2017) AR 2.92 /
Glow (Kingma & Dhariwal, 2018) Flow / 4.09
Image Transformer (Parmar et al., 2018) AR 2.90 3.77
DDPM (Ho et al., 2020) Diff 3.69 /
Score SDE (Song et al., 2020) Diff 2.99 /
Improved DDPM (Nichol & Dhariwal, 2021) Diff 2.94 /
VDM (Kingma et al., 2021) Diff 2.65 3.72
Flow Matching (Lipman et al., 2022) Flow 2.99 /
i-DODE (Zheng et al., 2023) (VLB-based) Diff 2.61 /
i-DODE (Zheng et al., 2023) (ODE-based) Diff ODE 2.56 3.69
MULAN (Ours, VLB-based; see Sec. H.1) Diff 2.60 3.71
MULAN (Ours, ODE-based; see Sec. H.2) Diff ODE 2.55 ±10−3 3.67 ±10−3

Noise schedule. For polynomial noise schedule, we use an MLP that maps the latent vector z555

to aϕ(z),bϕ(z), c(z); see Eq. D.2 for details. The MLP has 2 hidden layers of size 3072 with556

swish activation function. The final layer is a linear mapping to 3× 3072 values corresponding to557

aϕ(z),bϕ(z), c(z). Note that aϕ(z),bϕ(z), c(z) have the same dimensionality of 3072.558

F.2 Hardware.559

For the ImageNet experiments, we used a single GPU node with 8-A100s. For the cifar-10 experi-560

ments, we used several GPUs types including V100, A5000s, A6000s, A100-40GBs, and 3090s but561

the experiments were trained on 4 GPUs with float32 precision.562

F.3 Training563

This section reports experimental results on the CIFAR-10 (Krizhevsky et al., 2009) and ImageNet-564

32 (Van Den Oord et al., 2016) datasets. We chose to employ a discrete prior for the auxiliary latent565

space rather than a Gaussian prior due to training instability issues that frequently led to NaNs. In all566

our experiments, we set the parameters for the discrete latent distribution as m = 50 and k = 15.567

F.4 Likelihood Estimation.568

In Table 1, we present the likelihood estimation results for MULAN, and other recent methods on569

CIFAR-10 and ImageNet-32 using the VLB-estimate; details in Sec. H.1. This version of MULAN570

was trained with noise parameterization for 10M steps on CIFAR-10 and 2M steps on Imagenet-32,571

similar to VDM (Kingma et al., 2021). We apply MULAN on top of the VDM, endowing it with a572

learned multivariate noising schedule conditioned on auxiliary latent variables. We find that these573

new components result in a significant improvement in BPD over a vanilla VDM.574

We also compute the likelihood using ODE-based exact likelihood estimate with which we outperform575

all existing methods in denstity estimation on CIFAR-10 and ImageNet-32. We train MULAN for 8M576

steps using velocity parameterization on CIFAR-10 and 2M steps on Imagenet-32. During inference,577

we extract the underlying probability flow ODE; see Sec. H.2, just like Zheng et al. (2023). Although578

Zheng et al. (2023) used various other techniques, such as importance-sampled training, variance579

minimization, and higher-order score matching, MULAN did not incorporate these. Combining these580

strategies with MULAN could further improve its performance.581

24



0.0 0.2 0.5 0.8 1.0
t

0

100

200

300

400

500

va
r z

(z
,t

)

CIFAR-10: Each curve corresponds to a pixel

Figure 2: Noise schedule visualizations for MULAN on CIFAR-10. In this figure, we plot the
variance of νϕ(z, t) across different z ∼ pθ(z) where each curve represents the SNR corresponding
to an input dimension.
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the noise schedule isn’t conditioned on an auxililary
latent variable. MULAN w/o multivariate refers to
MULAN with a scalar noise schedule. VDM uses a
scalar noise schedule and doesn’t have an auxiliary
latent space. We see that MULAN performs the best.
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tional parameterizations: sigmoid, polynomial, and a
monotonic neural network with FiLM conditioning.
We observe that the polynomial parameterization per-
forms the best.

Figure 3: CIFAR-10 ablation studies with a reduced batch size and fewer training steps.

F.5 Ablation Analysis582

Due to the expensive cost of training, we only performed ablation studies on CIFAR-10 with a reduced583

batch size of 64 and trained the model for 2.5M training steps. In Fig. 3 we ablate each component of584

MULAN: when we remove the conditioning on an auxiliary latent space from MULAN so that we585

have a multivariate noise schedule that is solely conditioned on time t, our performance becomes586

comparable to that of VDM, on which our model is based. Modifying our method to have a scalar587

noise schedule conditioned on the auxiliary latent variable z leads to slightly lower performance than588

VDM in the initial training stages. However, it gradually converges toward VDM.589

Loss curves for different noise schedules. We investigate different parameterizations of the noise590

schedule in Fig. 3. Among polynomial, sigmoid, and monotonic neural network, we find that the591

polynomial parameterization yields the best performance. The polynomial noise schedule is a novel592

component introduced in our work.593

Replacing the noise schedules in a trained denoising model. We also wish to confirm experimen-594

tally our claim that the learning objective is not invariant to our choice of multivariate noise schedule.595

To investigate this, we replace the noise schedule in the trained denoising model with two alternatives:596

MULAN with scalar noise schedule, and a linear noise schedule: γϕ(z, t) = γmin + t(γmax −γmin)1d;597

see (Kingma et al., 2021). For both the noise schedules the likelihood worsens to the same value as598

that of the VDM: 2.65. This experimental result strongly supports our theory that all scalar noise599

schedules are equivalent, as they compute the likelihood along the same diffusion trajectory. It also600
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underscores that it is not the multivariate nature or the auxiliary latent space individually, but the601

combination of both, that makes MULAN effective.602

Examining the noise schedule. Since the noise schedule, γϕ(z, t) is multivariate, we expect to603

learn different noise schedules for different input dimensions and different inputs z ∼ pθ(z). In Fig. 2,604

we take our best trained model on CIFAR-10 and visualize the variance of the noise schedule at each605

point in time for different pixels, where the variance is taken on 128 samples z ∼ pθ(z). We note606

an increased variation in the early portions of the noise schedule. However, on an absolute scale,607

the variance of this noise is smaller than we expected. We also tried to visualize noise schedules608

across different dataset images and across different areas of the same image; refer to Fig. 11. We609

also generated synthetic datasets in which each datapoint contained only high frequencies or only low610

frequencies, and with random masking applied to parts of the data points; see Sec. G. Surprisingly,611

none of these experiments revealed human-interpretable patterns in the learned schedule, although612

we did observe clear differences in likelihood estimation. We hypothesize that other architectures and613

other forms of conditioning may reveal interpretable patterns of variation; however, we leave this614

exploration to future work.615

G Datasets and Visualizations616

In this section we provide a brief description of the datasets used in the paper and visualize the617

generated samples and the noise schedules.618

G.1 CIFAR-10619

The CIFAR-10 dataset (Krizhevsky et al., 2009) is a collection of images consisting of 60,000 32×32620

color images in 10 different classes, with each class representing a distinct object or scene. The621

dataset is divided into 50,000 training images and 10,000 test images, with each class having an equal622

representation in both sets. The classes in CIFAR-10 include: Airplane, Automobile, Bird, Cat, Deer,623

Dog, Frog, Horse, Ship, Truck.624

Randomly generated samples for the CIFAR-10 datasaet are provided in Fig. 4a for MULAN and625

Fig. 4b for VDM. We visualize the noise schedule in Fig. 11.626

(a) MULAN with velocity reparameterization after
8M training iterations.

(b) VDM after 10M training iterations.

Figure 4: CIFAR-10 samples generated by different methods.
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G.2 ImageNet-32627

ImageNet-32 is a dataset derived from ImageNet Deng et al. (2009), where the original images have628

been resized to a resolution of 32×32. This dataset comprises 1,281,167 training samples and 50,000629

test samples, distributed across 1,000 labels.630

Randomly generated samples for the ImageNet datasaet are provided in Fig. 5 for MULAN and631

Fig. 6 for VDM. We visualize the noise schedule in Fig. 11.632

Figure 5: MULAN with noise parameterization after 2M training iterations.
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Figure 6: VDM after 2M training iterations.

G.3 Frequency633

To see if MULAN learns different noise schedules for images with different intensities, we modify634

the images in the CIFAR-10 dataset where we modify an image where we randomly remove the low635

frequency component an image or remove the high frequency with equal probability. Fig. 7a shows636

the training samples. MULAN was trained for 500K steps. The samples generated by MULAN is637

shown in Fig. 7b. The corresponding noise schedules is shown in Fig. 11. As compared to CIFAR-10,638

we notice that the spatial variation in the noise schedule increases (SNRs for all the pixels form a639

wider band) while the variance of the noise schedule across instances decreases slightly.640
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(a) Training samples. (b) Samples generated by MULAN with noise pa-
rameterization after 500K training iterations.

Figure 7: Frequency Split CIFAR-10 dataset.

G.4 Frequency-2641

To see if MULAN learns different noise schedules for images with different intensities, we modify642

the images in the CIFAR-10 dataset where we modify an image where we randomly remove the low643

frequency component an image or remove the high frequency with equal probability. Fig. 7a shows644

the training samples. MULAN was trained for 500K steps. The samples generated by MULAN is645

shown in Fig. 7b. The corresponding noise schedules is shown in Fig. 11. As compared to CIFAR-10,646

we notice that the spatial variation in the noise schedule increases (SNRs for all the pixels form a647

wider band) and the variance of the noise schedule across instances increases as well.648

(a) Training samples. (b) Samples generated by MULAN with noise pa-
rameterization after 500K training iterations.

Figure 8: Frequency Split-2 CIFAR-10 dataset.

G.5 CIFAR-10: Intensity649

To see if MULAN learns different noise schedules for images with different intensities, we modify650

the images in the CIFAR-10 dataset where we randomly convert an image into a low intensity or651
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a high intensity image with equal probability. Originally, the CIFAR10 images are in the range [0,652

255]. To convert an image into a low intensity image we multiply all pixel values by 0.5. To convert653

an image into a high intensity image we multiply all the pixel values by 0.5 and add 127.5 to them.654

Fig. 9a shows the training samples. MULAN was trained for 500K steps. The samples generated by655

MULAN is shown in Fig. 9b. The corresponding noise schedules is shown in Fig. 11. As compared656

to CIFAR-10, we notice that the spatial variation in the noise schedule slightly increases (SNRs for657

all the pixels form a wider band) while the variance of the noise schedule across instances slightly658

decreases.659

(a) Training samples. (b) Samples generated by MULAN with noise pa-
rameterization after 500K training iterations.

Figure 9: Intensity CIFAR-10 dataset.

G.6 Mask660

We modify the CIFAR-10 dataset where we randomly mask (i.e. replace with 0s) the top of an661

image or the bottom half of an image with equal probability. Fig. 10a shows the training samples.662

MULAN was trained for 500K steps. The samples generated by MULAN is shown in Fig. 10b. The663

corresponding noise schedules is shown in Fig. 11. As compared to CIFAR-10, we notice that the664

spatial variation in the noise schedule slightly increases (SNRs for all the pixels form a wider band)665

while the variance of the noise schedule across instances decreases.666
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(a) Training samples. (b) Samples generated by MULAN with noise pa-
rameterization after 500K training iterations.

Figure 10: Intensity CIFAR-10 dataset.
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Figure 11: signal-to-noise ratio for different datasets.
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H Likelihood Estimation667

We used both Variance Lower Bound (VLB) and ODE-based methods to compute BPD.668

H.1 VLB Estimate669

In the VLB-based approach, we employ Eq. 60. To compute Ldiffusion, we use T = 128 in Eq. 61,670

discretizing the timesteps, t ∈ [0, 1] into 128 bins.671

H.2 Exact likelihood computation using Probability Flow ODE672

A diffusion process whose marginal is given by (the same as in Eq. 71),673

q(xt|x0) = N (xt;αtx0, diag(σ2
t )), (71)

can be modeled as the solution to an Itô Stochastic Differential Equation (SDE):674

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q0(x0), (72)

where f(t) ∈ Rd,g(t) ∈ Rd take the following expressions (Song et al., 2020):675

f(t) =
d
dt

logαt,

g2(t) =
d
dt
σ2
t − 2σ2

t

d
dt

logαt

The corresponding reverse process, Eq. 2, can also be modelled by an equivalent reverse-time SDE:676

dxt = [f(t)− g(t)2∇xt
log q(xt|x0)]dt+ g(t)dw̄t, x1 ∼ pθ(x1), (73)

where w̄ is a standard Wiener process when time flows backwards from 1 → 0, and dt is an677

infinitesimal negative timestep. Song et al. (2020) show that the marginals of Eq. 73 can be described678

by the following Ordinary Differential Equation (ODE) in the reverse process:679

dxt =

[
f(t)xt −

1

2
g2(t)∇xt

log q(xt|x0)

]
dt. (74)

This ODE, also called the probablity flow ODE, allows us to compute the exact likelihood on any680

input data via the instantaneous change of variables formula as proposed in Chen et al. (2018). Note681

that during the reverse process, the term q(xt|x0) is unknown and is approximated by parameterized682

by pθ(xt). For the probability flow defined in Eq. 74, Chen et al. (2018) show that the log- likelihood683

of pθ(x0) can be computed using the following equation:684

log pθ(x0) = log pθ(x1)−
∫ t=1

t=0

tr (∇xthθ(xt, t)) dt, (75)

where hθ(xt, t) ≡ f(t)xt −
1

2
g2(t)∇xt

log pθ(xt)

H.2.1 Probability Flow ODE for MULAN.685

Similarly for the forward process conditioned on the auxiliary latent variable, z,686

qϕ(xt|x0, z) = N (xt;αt(z)x0, diag(σ2
t (z))), x0 ∼ q0(x0), z ∼ qϕ(z|x0), (76)

we can extend Eq. 72 in the following manner,687

dxt = f(z, t)xtdt+ g(z, t)dwt, x0 ∼ q0(x0), z ∼ qϕ(z|x0), (77)

to obtain the corresponding SDE formulation. Notice that the random variable z in the above equation688

doesn’t have a subscript t, and hence, z is drawn from qϕ(z|x0) once and the same z is used as x0689

diffuses to x1. The expressions for f(z, t) : Rm × [0, 1] → Rd, g(z, t) : Rm × [0, 1] → Rd is given690

as follows:691

f(z, t) =
d
dt

logαt(z),

g2(z, t) =
d
dt
σ2
t (z)− 2σ2

t (z)
d
dt

logαt(z)
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Recall that α2
t (z) = sigmoid(−γϕ(z, t)), σ2

t (z) = sigmoid(γϕ(z, t)). Substituting these in the692

above equations, the expressions for f(z, t) and g2(z, t) simplify to the following:693

f(z, t) = −1

2
sigmoid(γϕ(z, t))

d
dt
γϕ(z, t),

g2(z, t) = sigmoid(γϕ(z, t))
d
dt
γϕ(z, t)

The corresponding reverse-time SDE is given as:694

dxt = [f(t)− g(t)2∇xt log qϕ(xt|x0, z)]dt+ g(t)dw̄t, x1 ∼ pθ(x1), z ∼ pθ(z), (78)

where w̄ is a standard Wiener process when time flows backwards from 1 → 0, and dt is an695

infinitesimal negative timestep. Given, sθ(xt, z), an approximation to the true score function,696

∇xt
log qϕ(xt|x0, z), Song et al. (2020) show that the marginals of Eq. 78 can be described by the697

following Ordinary Differential Equation (ODE):698

dxt =

[
f(z, t)− 1

2
g2(z, t)sθ(xt, z)

]
dt, (79)

Zheng et al. (2023) show that the score function, sθ(xt, z), for the noise and the velocity parameteri-
zation is given as follows:

sθ(xt, z) =


−ϵθ(xt, t)

σt(z)
Noise parameterization; see Sec. D.1.1 (80a)

−xt − exp

(
−1

2
γϕ(z, t)

)
vθ(xt, z, t) Velocity parameterization; see Sec. D.1.2 (80b)

Applying the change of variables formula (Chen et al., 2018) on Eq. 79, log pθ(x0|z) can be computed699

in the following manner:700

log pθ(x0|z) = log pθ(x1)−
∫ t=1

t=0

tr (∇xthθ(xt, z, t)) dt, (81)

where hθ(xt, z, t) ≡ f(z, t)− 1

2
g2(z, t)sθ(xt, z)

The expression for log-likelihood (Eq. 6) is as follows,701

log pθ(x0) ≥ Eqϕ(z|x0)[log pθ(x0|z)]− DKL(qϕ(z|x0)∥pθ(z))
Using Eq. 81,

= Eqϕ(z|x0)

[
log pθ(x1)−

∫ t=1

t=0

tr (∇xthθ(xt, t, z)) dt
]
− DKL(qϕ(z|x0)∥pθ(z))

(82)

Computing tr (∇xt
hθ(xt, t, z)) is expensive and we follow Chen et al. (2018); Zheng et al. (2023);702

Grathwohl et al. (2018) to estimate it with Skilling-Hutchinson trace estimator (Skilling, 1989;703

Hutchinson, 1989). In particular, we have704

tr (∇xt
hθ(xt, t, z)) = Ep(ϵ)

[
ϵ⊤∇xt

hθ(xt, t, z)ϵ
]
, (83)

where the random variable ϵ satisfies Ep(ϵ)[ϵ] = 0 and Covp(ϵ)[ϵ] = I. Common choices for p(ϵ)705

include Rademacher or Gaussian distributions. Notably, the term ∇xthθ(xt, t, z)ϵ can be computed706

efficiently using “Jacobian-vector-product” computation in JAX. In our experiments, we follow the707

exact evaluation procedure for computing likelihood as outlined in Song et al. (2020); Grathwohl708

et al. (2018). Specifically, for the computation of Eq. 83, we employ a Rademacher distribution for709

p(ϵ). To calculate the integral in Eq. 82, we utilize the RK45 ODE solver (Dormand & Prince, 1980)710

provided by scipy.integrate.solve_ivp with atol=1e-5 and rtol=1e-5.711
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H.2.2 Dequantization.712

Real-world datasets for images or texts often consist of discrete data. Attempting to learn a continuous
density model directly on these discrete data points can lead to degenerate outcomes (Uria et al.,
2013) and fail to provide meaningful density estimations. Dequantization (Salimans et al., 2017; Ho
et al., 2020; Zheng et al., 2023) is a common solution in such cases. To elaborate, let x0 represent
8-bit discrete data scaled to [-1, 1]. Dequantization methods assume that we have trained a continuous
model distribution pθ for x0, and define the discrete model distribution by

Pθ(x0) =

∫
[− 1

256 ,
1

256 )
d

pθ(x0 + u)du.

To train Pθ(x0) by maximum likelihood estimation, variational dequantization (Ho et al., 2020;713

Zheng et al., 2023) introduces a dequantization distribution q(u|x0) and jointly train pmodel and714

q(u|x0) by a variational lower bound:715

logPθ(x0) ≥ Eq(u|x0)[pθ(x0 + u)− log q(u|x0)]. (84)

Truncated Normal Dequantization. Zheng et al. (2023) show that truncated Normal distribution,

q(u|x0) = T N
(
0, I,− 1

256
,

1

256

)
with mean 0, covariance I, and bounds

[
− 1

256 ,
1

256

]
along each dimension, leads to a better likelihood716

estimate. Thus, Eq. 84 simplifies to the following (for details please refer to section A. in Zheng et al.717

(2023)):718

logPθ(x0) ≥Eϵ̂∼T N (0,I,−τ,τ)

[
log pθ

(
x0 +

σϵ
αϵ
ϵ̂

)]
+
d

2
(1 + log(2πσ2

ϵ ))− 0.01522× d (85)

with
σϵ

αϵ
= exp(−1

2
× 13.3),

σϵ = sqrt(sigmoid(−13.3)), and τ = 3.

log pθ

(
x0 +

σϵ

αϵ
ϵ̂
)

is evaluated using Eq. 82.719

Importance Weighted Estimator. Eq. 85 can also be extended to obtain an importance weighted720

likelihood estimator to get a tighter bound on the likelihood. The variational bound is given by (for721

details please refer to section A. in Zheng et al. (2023)):722

logPθ(x0) ≥Eϵ̂(1),...,ϵ̂(K)∼T N (0,I,−τ,τ)

log
 1

K

K∑
i=1

pθ

(
x0 +

σϵ

αϵ
ϵ̂(k)
)

q(ϵ̂(i))

+ d log σϵ (86)

with
σϵ

αϵ
= exp(−1

2
× 13.3), log σϵ =

1

2
(−13.3 + softplus(−13.3)),

q(ϵ̂) =
1

(2πZ)2
exp
(
−1

2
∥ϵ̂∥22

)
, Z = 0.9974613, and τ = 3.

Note that for K = 1, Eq. 86 is equivalent to Eq. 85; see Zheng et al. (2023). log pθ
(
x0 +

σϵ

αϵ
ϵ̂
)

is723

evaluated using Eq. 82. In Table 4, we report BPD values for MULAN on CIFAR10 (8M training724

steps, velocity parameterization) and ImageNet (2M training steps, noise parameterization) using725

both the VLB-based approach, and the ODE-based approach with K = 1 and K = 20 importance726

samples.727

I MULAN vs other methods728

MULAN is a noise schedule that can be integrated into any diffusion model such as VDM (Kingma729

et al., 2021), InfoDiffusion (Wang et al., 2023), or i-DODE (Zheng et al., 2023). The shared730

components among these models are summarized and compared in Table 5.731
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Table 4: NLL (mean and 95% Confidence Interval for MULAN) on CIFAR10 (8M training steps,
velocity parameterization) and ImageNet (2M training steps, noise parameterization) using both the
VLB-based approach, and the ODE-based approach. K = 1 means that we do not use importance
weighted estimator since Eq. 86 is equivalent to Eq. 85 for this case; see Zheng et al. (2023).

Likelihood Estimation type CIFAR-10 (↓) Imagenet (↓)
VLB-based 2.59 ±10−3 3.71 ±10−3

ODE-based (K = 1; Eq. 85) 2.59 ±3× 10−4 3.71 ±10−3

ODE-based (K = 20; Eq. 86) 2.55 ±3× 10−4 3.67 ±10−3

Table 5: MULAN is a noise schedule that can be integrated into any diffusion model such as
VDM (Kingma et al., 2021), InfoDiffusion (Wang et al., 2023), or i-DODE (Zheng et al., 2023). The
shared components between MULAN and these models are summarized and compared in this table.

Method learned
noise

multivariate
noise

input con-
ditioned

noise

auxiliary
latents

noise
parameter-

ization

VDM (Kingma
et al., 2021) Yes No No No

Monotonic
neural

network
Blurring Diffusion
Model (Hoogeboom
& Salimans, 2022)

No Yes No No Frequency
scaling

InfoDiffusion (Wang
et al., 2023) No No No

In
denoising
process

Cosine
schedule

MULAN (Ours) Yes Yes Yes

In noising
and

denoising
process

Polynomial,
sigmoid
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