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ABSTRACT

In the domain of dynamic Neural Radiance Fields (NeRF) for novel view synthesis,
current state-of-the-art (SOTA) techniques struggle when the camera’s pose deviates
significantly from the primary viewpoint, resulting in unstable and unrealistic
outcomes. This paper introduces Expanded Dynamic NeRF (ExpanDyNeRF),
a monocular NeRF method that integrates a Gaussian splatting prior to tackle
novel view synthesis with large-angle rotations. ExpanDyNeRF employs a pseudo
ground truth technique to optimize density and color features, which enables
the generation of realistic scene reconstructions from challenging viewpoints.
Additionally, we present the Synthetic Dynamic Multiview (SynDM) dataset, the
first GTA V-based dynamic multiview dataset designed specifically for evaluating
robust dynamic reconstruction from significantly shifted views. We evaluate our
method quantitatively and qualitatively on both the SynDM dataset and the widely
recognized NVIDIA dataset, comparing it against other SOTA methods for dynamic
scene reconstruction. Our evaluation results demonstrate that our method achieves
superior performance1.

1 INTRODUCTION

Novel view synthesis plays a critical role in applications such as mixed reality (Xu et al., 2023; Gu
et al., 2024), medical supervision (Yu et al., 2023; Wysocki et al., 2024), autonomous driving (Tancik
et al., 2022; Zhang et al., 2024), wildlife observation (Zhang et al., 2023b; Sinha et al., 2023). Recent
advances in Neural Radiance Field (NeRF) and its dynamic variants have significantly improved
the efficacy of 3D scene reconstruction and novel view synthesis, achieving high precision (Wang
et al., 2022b; 2024; Xu et al., 2024), speed (Garbin et al., 2021; Gao et al., 2024; Lee et al., 2024),
and versatile style editing (Gu et al., 2021; Chen et al., 2024). On the other hand, Gaussian splatting
based methods (Wu et al., 2023; 2024) offer a promising alternative with their efficient and flexible
framework for high-quality rendering. Both methods render sharp and clear content from the primary
perspectives of monocular inputs; however, novel view renderings often appear blurry and filled with
artifacts, especially when significantly deviating from the primary camera view. This observation,
shown in Fig. 1, is understandable since both methods lack supervision from diverse views while
training, a limitation inherent to monocular camera settings.

To address this challenge, we introduce Expanded Dynamic NeRF (ExpanDyNeRF), an innovative
method for dynamic 3D scene reconstruction. ExpanDyNeRF not only handles the primary camera
view but also expands 3D reconstructions from significantly deviated views. Our end-to-end pipeline,
illustrated in Fig. 2, includes a novel-view pseudo ground truth strategy that supervises the model
optimization from novel views by leveraging Gaussian prior (Tang et al., 2023), which precisely
defines dynamic object contours and color features across frames.

Moreover, in order to efficiently evaluate our method, we need a multi-view dataset with dynamic
main camera motion and corresponding rotated side views. The commonly used NVIDIA dataset
(Yoon et al., 2020) has dynamic camera motion but lacks ground truth for rotated side views. Other
multi-view datasets such as the DyNeRF dataset (Li et al., 2022) have numerous rotated side views,

1The code and our data will be publicly available upon acceptance.
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Figure 1: The figure highlights the shortcomings of leading dynamic NeRF models, such as D4NeRF Zhang
et al. (2023a), RoDynRF Sabour et al. (2023), and MonoNeRF Tian et al. (2023), when rendering from new
viewpoints distant from the original camera angle, exhibiting issues like blurring, distortion, and layering, with
objects appearing flat, akin to cardboard cut-outs, at different camera angles. It showcases novel views rotated
10◦ and 20◦ to the left and right. Contrarily, the bottom row demonstrates the superior quality of novel view
renderings achieved by our ExpanDyNeRF model, showcasing its capability to more accurately and reliably
reconstruct dynamic scenes.

but no camera motion is introduced during recording. It is understandable that these limitations
exist, considering that multi-view video recording with dynamic camera motion is difficult to collect
in the real world due to the size and cost of the equipment. Therefore, to best demonstrate the
efficacy of our method and provide reproducible data source for multi-angle rotation evaluation, we
developed a Grand Theft Auto V (GTA V)-based Synthetic Dynamic Multi-view (SynDM) dataset
(Rockstar Games, 2013). A unique dynamic camera dome system is designed for data collection.
It guarantees camera motion for the main camera while providing corresponding side views for
evaluation purposes. In this work, our evaluation primarily focuses on our SynDM dataset while only
providing a qualitative comparison on the NVIDIA dataset. Our key contributions are summarized as:

• Identifying the deficiencies and inadequacies in the rendering results of SOTA monocular
dynamic NeRF at largely deviated perspectives.

• Proposing ExpanDyNeRF, an innovative method capable of producing plausible novel view
synthesis at largely deviated perspective.

• Creating the first GTA V based Synthetic Dynamic Multi-view (SynDM) dataset for evaluat-
ing rotated view synthesis. SynDM introduces both camera motion and the corresponding
groundtruth for rotated side views.

• Conducting an in-depth assessment of SOTA dynamic NeRF models utilizing our dataset
and NVIDIA dataset, this analysis highlights the specific hurdles of dynamic novel view
rendering and showcases the superior performance of our method.

2 RELATED WORK

NeRF-based Dynamic Novel View Synthesis. NeRF algorithms have emerged as a powerful
technique for high-quality 3D scene reconstruction from a sparse set of images. Original NeRF
(Mildenhall et al., 2021) leverages a fully connected deep neural network to model the volumetric
scene function. This function outputs the color and density for any given 3D point and viewing
direction, enabling the synthesis of novel views through volume rendering techniques. NeRFs have
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Figure 2: The ExpanDyNeRF architecture is structured into two main components: (1) Backbone dynamic
NeRF model that processes rays to extract density (σ) and color (c) features from both background (Φb) and
foreground (Φf ) models, generating rendering predictions Ît from primary camera positions, supervised by the
super-resolution loss Lsr (2) Novel View Feature Optimization uses the Gaussian Splatting based method
to generate a 3D prior for each frame, facilitating the optimization of density and color features via pseudo
ground truth for novel views. This includes updating σf and cf using novel view loss metrics Lσ

nv and Lc
nv ,

respectively, enhancing feature representation across different perspectives.

been particularly successful in static scenes, and recent advancements have extended their application
to dynamic 3D reconstruction. Dynamic NeRF methods, such as HyperNeRF (Park et al., 2021),
D4NeRF (Zhang et al., 2023a), and MonoNeRF (Fu et al., 2022) incorporate temporal components,
allowing for the modeling of scenes with moving objects and varying illumination. These methods
often employ additional strategies like temporal consistency loss and motion field modeling to handle
the complexities of dynamic environments. Despite their success, dynamic NeRFs face challenges
with computational expense and the need for densely sampled temporal data.

Gaussian Splatting-based Dynamic Novel View Synthesis. 3D Gaussian splatting (Kerbl et al.,
2023), an alternative approach to 3D reconstruction, has gained popularity due to its computational
efficiency and flexibility. This technique models the scene using a set of Gaussian blobs, each
characterized by its mean, covariance, and color. These Gaussian blobs can be rendered efficiently
with point-based rendering techniques, which makes this method well-suited for real-time applications.
Recent advancements have extended Gaussian splatting to dynamic scenes using monocular inputs,
enabling the capture of temporal changes from a single viewpoint. Notable methods like 4D Gaussian
Splatting (4DGS) (Wu et al., 2023) and Deformable 3D Gaussian Splatting (Yang et al., 2023)
focus on modeling deformable objects in dynamic scenes using monocular inputs. By incorporating
deformation fields into the Gaussian representation, the method can capture complex non-rigid
motions and surface deformations, providing a more detailed and accurate representation of the
dynamic environment. The integration of monocular cues with deformable Gaussian splatting allows
for robust and flexible reconstruction, bringing high resolution real-time rendering into the dynamic
3D reconstruction domain.

Both NeRF and Gaussian splatting-based approaches offer robust frameworks for dynamic 3D
reconstruction, each with its own unique strengths and limitations. NeRF excels in high-fidelity
reconstruction but is computationally intense, while Gaussian splatting provides a more efficient
alternative with real-time, high-resolution capabilities. However, both methods encounter challenges
in monocular settings, especially when rendering novel views from significantly deviated angles.
In our method, we couple the strengths of both approaches with our own to address the current
limitations of monocular 3D scene reconstruction.
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3 METHOD: EXPANDYNERF MODEL & SYNDM DATASET

We present ExpanDyNeRF, a model capable of rendering dynamic 3D scenes from significantly
deviated perspectives given monocular input. Additionally, we address the research gap related to
the lack of ground truth for novel views of dynamic scenes captured by a monocular camera. The
proposed ExpanDyNeRF model is elaborated in two parts: In Section 3.1, we introduce the dynamic
NeRF structure that serves as the backbone of our ExpanDyNeRF model; In Section 3.2, we outline
how we use the generated 3D Gaussian prior as pseudo-novel view ground truth and explain how this
process supervises the optimization of the backbone model. Finally, in Section 3.3, we present the
simulation setup and multi-view data acquisition method for our SynDM dataset.

3.1 EXPANDYNERF MODEL ARCHITECTURE

Following the structure of (Zhang et al., 2023a), we leverage two intertwined neural networks as our
backbone NeRF model: Φb for the static background and Φf for the dynamic foreground. Details
can be found in Algorithm 1 and Fig. 2

Algorithm 1 ExpanDyNeRF Training Process

Require:
Total training epoch E. N input frames I. Ground truth camera poses P. Epoch threshold T .
Image-to-3D prior F3D. Sampled rays R. Sampled patch Q. Pretrained VGG-19 Fvgg.

Ensure:
Φb, Φf , ωb, ωf , Θ: Trained parameters.

1: Φb, Φf , ωb, ωf , Θ← Initialize networks and weights.
2: for epoch = 1→ E do
3: for It ∈ I, t ∈ [1, N ] do
4: for r ∈ R do ▷ Sample rays from primary view at t
5: X, d← F(Pt) ▷ Sample points along each ray
6: (σb, cb), (σf , cf )← Φb(X, d, θ ∼ PΘ(θ)),Φf (X, d, t) ▷ Query both modules
7: Ĉ ← Integrate (X, d, ωb, ωf ) ▷ Integrate colors and densities of X on each ray
8: end for
9: Lcont ←

∑
∥σf (t+ 1)− σf (t)∥2 ▷ Calculate continuity loss

10: Lrec ←
∑
∥Ĉ(r)− C(r)∥22 ▷ Calculate reconstruction loss

11: Lsr ← ∥Q̂−Q∥1 +
∑

l λl∥F l
vgg(Q̂)− F l

vgg(Q)∥1 ▷ Calculate super-resolution loss
12: if epoch > T then
13: Rnv ← Sample rays from Pnv ▷ Sample rays from novel view at t
14: Ĉ(rnv), σ̂(rnv)← Φf ( Sample points on rnv ∈ Rnv, t) ▷ Features of rnv at t
15: C(rnv), σ(rnv)← F3D(It, rnv) ▷ Generate pseudo ground truth
16: Lnv = Lc

nv + Lσ
nv ← ∥Ĉ(rnv)− C(rnv)∥22 + ∥σ̂(rnv)− σ(rnv)∥22

17: L ← Lcont + Lrec + Lsr + Lnv

18: end if
19: end for
20: Update (Φb,Φf , ωb, ωf ,Θ) to minimize L ▷ Update network parameters
21: end for
22: return Φb,Φf

Preliminaries: We utilize N video frames It, t ∈ [1, N ], to reconstruct the scene’s point cloud and
estimate the primary camera poses P . For each pose Pt ∈ P , we calculate ray trajectories that allow
us to sample points x = (x, y, z) along ray r at time t in direction d. This process, represented by
the function F(Pt)→ (x,d), links the camera orientation to the sampled spatial points.

Static Background Representation: The static background module, Φb, takes all N frames as input
and utilizes a distribution-based encoding to model the static elements in a scene. The distribution
encoder enhances the alignment between camera projections and the static background distribution,
simplifying the rendering process by focusing on minimal variations in the static features. This
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module, defined by Φb(F(P ), θ)→ (cb, σb), predicts color cb and density σb of spatial points from
all poses in P , using a predefined distribution (θ ∼ PΘ(θ)).

Dynamic Foreground Representation: The dynamic foreground component, Φf , integrates spatial
coordinates, viewing directions, and temporal inputs within a three-frame sliding window to capture
and predict dynamic scene changes (Φf (F(Pt), t)→ (cf , σf )). It achieves temporal consistency by
encoding time t within its inputs, ensuring the model is aware of temporal variations. Spatial-temporal
consistency is achieved through optical flow-based scene flow estimations, which forecast the future
states of dynamic elements. Additionally, continuity constraints are applied to maintain smooth
transitions in attributes across frames, expressed as: Lcont =

∑
∥σf (t+ 1)− σf (t)∥2.

Transmittance Weight: To seamlessly integrate static and dynamic representations at the ray level,
the model uses learnable transmittance weights, ωb for the background and ωf for the foreground.
These weights refine the rendering of transmittance values, allowing precise control over the blending
of static and dynamic components during the rendering process. The rendering output is balanced
according to the equation: Ĉ(r) = ωb · Ĉb(r)+ωf · Ĉf (r), where Ĉb and Ĉf represent the integrated
color and density contributions from the background and foreground, respectively, over ray r.

Primary View Reconstruction Loss: The system employs a reconstruction loss to optimize Φb and
Φf by minimizing the discrepancies between the features Ĉ(r) from rendered images and C(r) from
the ground truth images, defined as Lrec =

∑N
i=1

∑
r∈R ∥Ĉ(r) − C(r)∥22. This loss ensures the

renderings from the primary views closely match the ground truth frames, setting up a baseline for
the following novel view optimization.

Super-Resolution Loss: Inspired by the state-of-the-art super-resolution techniques (Wang et al.,
2021; 2022a), we introduce a super-resolution loss (Lsr) to enhance image quality. The rendered
patches from ExpanDyNeRF are processed by the pre-trained super-resolution model that upscales
low-resolution inputs while preserving fine textures. The super-resolution loss is computed by
sampling patches from the prediction and reference high-resolution images. The formula for Lsr is:

Lsr =

K∑
k=1

∥∥∥Q̂k −Qk

∥∥∥
1
+

K∑
k=1

∑
l

λl

∥∥∥F l
vgg(Q̂k)− F l

vgg(Qk)
∥∥∥
1

Here, Q̂k and Qk represent the super-resolution prediction and reference patches, respectively, F l
vgg

is a set of layers in a pretrained VGG-19 feature extractor, and λl is the reciprocal of the number of
neurons in layer l, combining reconstruction and perceptual losses.

3.2 PSEUDO GROUND TRUTH OPTIMIZATION STRATEGY

Through empirical experiments, we observed that foreground objects appear much blurrier than the
background when the viewpoint rotates. This is due to affine effects, where objects closer to the
viewpoint undergo more significant changes compared to those further away. Therefore, our method
will prioritize foreground optimization. This method utilizes the Gaussian prior (Tang et al., 2023)
to generate high-quality 3D priors, enabling the creation of a pseudo ground truth to supervise the
model’s optimization from new perspectives.

Pseudo Ground Truth Generation for Novel Views:

For each input frame It, we first construct a 3D Gaussian prior for the foreground object within the
corresponding coordinate system. In this coordinate system, we establish a dome system centered
on the foreground object, with a radius Rd as shown in Fig. 3. The radius Rd represents the
distance from the primary viewpoint to the object. The position of Pt on the dome is denoted as
(elevation = e, azimuth = 0, radius = Rd), where e corresponds to the elevation angle of the
primary recording view (the rotation angle along the x-axis of Pt). We then sample novel viewpoints
on the dome, maintaining the radius Rd while varying the azimuth and elevation within a given range.
The forward vector of the camera poses P (d)

nv at these novel viewpoints points towards the center of
the dome. From these novel camera poses, we render pseudo ground truths that capture the density
and color representations of the foreground object for each frame.

To supervise the novel view optimization with the pseudo ground truth, we first need to map the
newly sampled novel view camera poses from the Gaussian prior coordinate system to our NeRF
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Figure 3: Generating pseudo ground truth for new viewpoints involves constructing a 3D model of the dynamic
foreground object using the Gaussian Splatting technique and surrounding it with a dome centered on the
foreground. The primary recording view is highlighted in red camera. Deviated novel viewpoints, shown in
black, are created by rotating around the central point within a Rdg radius, spanning from −45◦ to 45◦ in 5◦

increments, at elevations of 0◦, 15◦, and 30◦. Examples of renderings and shape masks at azimuths −45◦, 0◦,
and 45◦ are provided for clarity.

coordinate system. Then, we compute the rendering predictions at those novel camera poses and
calculate the loss between the predictions and the pseudo ground truth.

Mapping Novel Views to the NeRF Coordinate System: We first define the primary camera pose
Pt in the foreground NeRF coordinate system as P (n)

t and the corresponding one in Gaussian prior
coordinate system as P (d)

t . The transformation matrix T that maps camera poses from the Gaussian
prior to the foreground NeRF coordinate system can be calculated as T = P

(n)
t · (P (d)

t )−1. For
the novel view camera poses P

(d)
nv sampled in the Gaussian prior coordinate system, we use the

transformation matrix T to transfer all new camera positions to the foreground NeRF coordinate
system, expressed as: Pnv = {P · T, ∀P ∈ P

(d)
nv }.

Novel View Loss: During each model training iteration, two symmetrical novel views are randomly
selected for each frame from Pnv. For these novel views, a set of rays Rnv is sampled from the
camera pose. Color and density predictions in the foreground NeRF are derived from Φf (F(Pnv), t),
producing (cf , σf ). Here, F(Pnv) → (x,d) samples points along a ray rnv ∈ Rnv. We then
integrate the color and density values along rnv to obtain pixel-wise predictions Ĉf (rnv) and
σ̂f (rnv). The corresponding novel view loss is calculated as follows:

Lnv = Lc
nv + Lσ

nv =
∑

r∈Rnv

(
∥Ĉ(rnv)− C(rnv)∥22 + ∥σ̂(rnv)− σ(rnv)∥22

)
,

where C(rnv) and σ(rnv) represent the pseudo ground truth values for color and density on ray
rnv, respectively. This novel view loss is added to the total loss after specific epochs to manage the
exploding gradient issue effectively. The final loss function is expressed as:

L = Lcont + Lrec + Lsr + Lnv

3.3 SYNTHETIC DYNAMIC MULTIVIEW (SYNDM) DATASET

To demonstrate our method’s efficacy and provide the essential ground truth for evaluating expanded
novel views, we introduce our SynDM dataset. We leverage the high visual quality, open-world
video game GTA V as the source platform for our dataset. Given that GTA V is limited to a single
viewport, acquiring multi-view dynamic scenes presents a significant challenge. We expanded the
GTAV-TeFS (Luo et al., 2023) method, a pioneering approach for generating dual-camera vision from
the otherwise limited GTA V platform, to simultaneously support both monocular primary camera
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capture and multi-view stereo camera collection in GTA V’s dynamic and detailed environment.
Traditionally, to enable multi-camera collection with only one viewport available, we need to perform
frame swapping to display each camera view in sequence and repeat. This would inevitably lead to at
least one frame latency (16.7ms) per swap under a 60 Hz refresh rate setting. This method remains
valid for recording stationary scenarios and no additional camera motion should be introduced during
the recording. However, in our scenario, all cameras are in motion, and the more cameras we add,
the more latency we accumulate. Therefore, we designed a custom plugin to semi-freeze the game’s
graphic state while keeping the rendering engine and physics engine active during the controlled
camera swap moment. With meticulous sequential planning, we were able to reduce the latency from
16.7ms per swap to 0.2ms per swap, making the resulting dataset depth-ready for all potential tasks.

Figure 4: Gallery of images from our SynDM dataset,
showcasing a variety of subjects. Animals are featured
in the top row, humans in the middle row, and vehicles
in the bottom row.

Our dataset supports synthetic object tracking
via multi-view recordings, providing a compre-
hensive ground truth dataset for evaluating novel
view synthesis within dynamic NeRF architec-
tures. We collected nine distinct scenes under
three main categories, each featuring dynamic
entities such as humans, vehicles, and animals.
Samples can be found in Fig. 4. For each scene,
there are 19 cameras positioned horizontally
around the reference point, following the simi-
lar design of Fig. 3, spaced at 5◦ intervals from
−45◦ to 45◦. An anchor camera is placed in
the middle. On the vertical side, there are three
more cameras elevated at the location of −45◦,
0◦, and 45◦, respectively. In total, there are
22 cameras. The resolution for all images is
1920x1080, with a field of view of 90◦ horizon-

tally and 59◦ vertically. The dataset is accompanied by metadata containing the camera position,
camera rotation, character position, and reference point position.

4 EXPERIMENTAL RESULTS

In this section, we conduct a comprehensive comparison between our ExpanDyNeRF and four SOTA
novel view synthesis methods: RoDynRF (Liu et al., 2023), MonoNeRF (Fu et al., 2022), 4DGS (Wu
et al., 2023), and D4NeRF (Zhang et al., 2023a). All models are CC-By licensed. In Section 4.1,
we describe the usage of our SynDM dataset and the NVIDIA dataset during the evaluation of our
method. Section 4.2 shows the qualitative evaluation of ExpanDyNeRF on both the SynDM dataset
and the NVIDIA dataset. In Section 4.3, we quantitatively demonstrate our model’s capability in
synthesizing deviated novel views superior to those of other SOTA methods. Finally, in Section 4.4,
we perform an ablation study on different optimization strategies. Implementation details have been
included in the supplementary material.

4.1 DATASETS

SynDM Dataset. In this experiment, we analyzed five different scenes from SynDM. They are Male,
Female, Chicken, Dog, and Bus scenes. They showcase our method’s performance in both rural and
urban areas in the GTA V environment. We used the first 24 frames from each scene for training
purpose. For evaluation, we generated 12 novel views for each frame of every scene from −30◦ to
+30◦ in 5◦ intervals to compare with the ground truth.

NVIDIA Dataset (Yoon et al., 2020). For qualitative evaluation with other SOTA models, we
evaluated our method on the scenes captured using 12 stationary multi-view cameras. For quantitative
evaluation, we selected 5 multi-view scenes with accurately estimated camera poses. Following the
setup described in (Zhang et al., 2023a), we used 24 frames from the video footage for each scene in
our experiments. The images were uniformly resized to a height of 272 for training purposes.
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Figure 5: Comparison of dynamic NeRF models using novel view predictions on the SynDM dataset, showcasing
ExpanDyNeRF and its counterparts. Each column represents a model’s performance, with rows displaying views
rotated by specific angles. The blue column presents the ground truth from SynDM at a corresponding angle.
Red boxes highlight key performance differences among the models, with ExpanDyNeRF notably excelling in
color and shape fidelity in novel view reconstructions.

4.2 QUALITATIVE EVALUATION

We present numerous visual comparisons on results from both SynDM and NVIDIA datasets,
shown in Fig. 5 and Fig. S1, and more in supplementary (Fig. S6,Fig. S7,Fig. S8 and Fig. S9),
respectively. It is evident that the novel view rendering ability of ExpanDyNeRF significantly
surpasses other methods, particularly in maintaining the shape and color stability of dynamic parts.
Although MonoNeRF shows clarity in rendering dynamic scenes from various angles, it struggles
with conveying depth information, often resulting in a flat, cardboard-like appearance of objects.
Furthermore, the background becomes significantly blurred in side views. Although 4DGS preserves
background clarity, it struggles with inaccurate depth information in dynamic areas, causing objects
to appear fractured upon rotation. This is particularly noticeable in the chicken scene shown in
Fig. S6, where the entire chicken appears completely dispersed at different depths after a 30◦ camera
rotation. Similarly, RoDynRF cannot accurately place the same object at consistent depths within the
scene. In the tests using the NVIDIA dataset illustrated in Fig. S1, we observe that after rotation, the
rendered figures only have their feet in the correct position, while the body sticks to the background
pillars. Compared to our method, D4NeRF struggles to maintain the shape of dynamic parts due to
the lack of supervision from side views. Overall, ExpanDyNeRF excels in maintaining shape and
color stability in dynamic scenes, outperforming other methods that struggle with depth inaccuracies
and fractured objects upon rotation.

Table 1: Quantitative comparison results on SynDM dataset. The best result is in bold and the
second-best results are marked in blue.

Method Male Female Chicken

FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓

4DGS (Wu et al., 2023) 87.83 16.97 0.305 262.8 11.99 0.461 315.3 18.55 0.272
RoDynRF (Liu et al., 2023) 167.3 19.66 0.318 292.3 17.53 0.391 262.0 21.00 0.302
MonoNeRF (Fu et al., 2022) 178.5 17.46 0.441 312.2 15.35 0.572 287.3 15.11 0.545

D4NeRF (Zhang et al., 2023a) 144.4 22.80 0.388 168.0 19.81 0.448 290.6 22.69 0.378
ExpanDyNeRF (Ours) 66.52 22.16 0.144 77.66 19.05 0.173 155.8 23.66 0.142

Method Dog Bus Average

FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓

4DGS (Wu et al., 2023) 258.6 20.27 0.182 69.81 12.87 0.573 198.9 16.13 0.359
RoDynRF (Liu et al., 2023) 206.5 20.73 0.328 99.04 17.11 0.523 205.4 19.21 0.372
MonoNeRF (Fu et al., 2022) 260.5 20.07 0.370 77.39 16.24 0.601 223.2 16.85 0.506

D4NeRF (Zhang et al., 2023a) 148.3 23.05 0.394 111.4 18.43 0.555 172.5 21.36 0.433
ExpanDyNeRF (Ours) 67.35 23.74 0.151 43.78 17.64 0.294 82.22 21.25 0.219
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Figure 6: The images above, taken from a view rotated by -30 degrees, demonstrate the impact of different
loss functions on the rendering quality in our novel view synthesis. The best performance is achieved when all
losses are applied simultaneously, demonstrating the importance of each loss in improving rendering quality and
matching the ground truth.

Table 2: Quantitative Evaluation of optimization strategies on the SynDM Dataset. ’Baseline’ is
without any optimization, ’Lσ

nv’ only uses density optimization, ’Lc
nv’ only applies color optimization,

and ’Lσ
nv + Lc

nv’ trained with both. ’Lσ
nv + Lc

nv + Lsr’ is trained with all of module including super
resolution.

Method Male Female Chicken

FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓

Baseline 144.4 22.80 0.388 168.0 19.81 0.448 290.6 22.69 0.378
Lσ

nv 128.2 22.43 0.393 147.1 19.90 0.452 237.8 23.57 0.374
Lc

nv 118.0 21.96 0.392 162.8 19.88 0.442 315.3 23.35 0.378
Lσ

nv + Lc
nv 113.4 21.96 0.322 138.4 19.66 0.428 207.9 23.89 0.339

Lσ
nv + Lc

nv + Lsr 66.52 22.16 0.144 77.66 19.05 0.173 155.8 23.66 0.142

Method Dog Bus Average

FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓

Baseline 148.3 23.05 0.394 111.4 18.43 0.555 172.5 21.36 0.433
Lσ

nv 115.4 23.54 0.376 60.13 18.67 0.551 137.7 21.62 0.429
Lc

nv 124.1 23.41 0.387 62.72 18.18 0.513 156.6 21.36 0.422
Lσ

nv + Lc
nv 106.8 23.95 0.341 59.33 18.28 0.502 125.2 21.54 0.386

Lσ
nv + Lc

nv + Lsr 67.35 23.74 0.151 43.78 17.64 0.294 82.22 21.25 0.219

4.3 QUANTITATIVE EVALUATION

We evaluate ExpanDyNeRF on five scenes from the SynDM dataset, focusing on PSNR, LPIPS, and
FID metrics, which reflect the reconstruction quality, perceptual similarity, and distribution similarity,
respectively–as seen in Table 1. In scenes such as "Male," our method achieves the second-best
PSNR performance (which measures pixel-level reconstruction quality); however, it is important
to note that D4NeRF also achieves relatively high PSNR scores despite producing heavily blurred
images (Fig. 5), suggesting that PSNR may not be sensitive to certain distortions. Therefore, PSNR
is not the most reliable metric for evaluating predictions with large deviation. In contrast, FID and
LPIPS provide a more accurate assessment of image fidelity and perceptual similarity, where our
model demonstrates superior performance compared to other methods. For instance, we achieve the
lowest LPIPS scores (0.219, which is 40% lower than the second-best score of 0.359), indicating that
our renderings are more perceptually similar to the ground truth. Moreover, the FID scores further
highlight our model’s effectiveness, delivering the best results (82.22 on average, more than twice as
good as the second-best score of 172.5), showing that the distribution of ExpanDyNeRF’s renderings
aligns more closely with the ground truth compared to other methods.

4.4 ABLATION STUDY

To further validate the effectiveness of our proposed method, we conducted an ablation study focusing
on varying optimization strategies. As shown in Fig. S5, the baseline result rendered using methods
that lack optimization displays poorly defined shapes and noticeable blurring. Although results
optimized with Lc

nv show reduced blurring, the absence of shape optimization from Lσ
nv during

training leads to white artifacts around the objects. Models that utilize only Lσ
nv maintain good shape

integrity, but their colors appear to be faded or distorted due to insufficient color optimization from
Lc
nv. Clear and stable rendering results are achieved when both Lσ

nv and Lc
nv are applied, although

they lack the fine texture seen in the ground truth. Using color Lc
nv , density Lσ

nv and super-resolution
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Lsr loss simultaneously yields the best results, closely matching the ground truth. This demonstrates
that utilizing Lnv can effectively eliminate artifacts, such as ghosting and blurring, that occur during
novel view rotations.

The quantitative comparisons shown in Table 2 highlight the effectiveness of our method across
various metrics. While PSNR scores show no conclusive trend due to their limitations for evaluating
deviated angles as previously discussed, FID and LPIPS scores consistently improve with the
application of novel view and super-resolution loss. The best results are achieved with the full
combination of Lσ

nv + Lc
nv + Lsr. This demonstrates the effectiveness of our approach in enhancing

the perceptual quality and reducing the distance between the distributions of generated and real
images.

5 DISCUSSION AND CONCLUSION

Limitations. Although our experimental results demonstrate superior performance compared to other
models, several limitations remain when viewed in a broader context. These include sub-optimal
performance at wider viewing angles (greater than 45 degrees of deviation) and unsatisfactory visual
results when generating previously unseen background information. Addressing these challenges
will be a key focus of future research, with the goal of improving performance in extreme angles and
enhancing the realism of unseen scene generation.

Conclusion. ExpanDyNeRF advances dynamic NeRF by significantly improving novel view synthe-
sis, particularly at wider viewing angles, by extending the range of stable visualization. Our SynDM
dataset, based on GTA V for dynamic multiview scenarios, provides a strong foundation for evaluating
dynamic scene reconstructions from varied angles. Our evaluations demonstrate ExpanDyNeRF’s
superior ability to render dynamic scenes.
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A SUPPLEMENTARY MATERIALS

Implementation Details. In our comparative experiments, we employed the settings provided in the
papers for each method. Our proposed model was trained on 2 V100 graphics cards, with a total of
600,000 iterations for each scene. The weight coefficients for the three losses we introduced, Lc

nv,
Lσ
nv and Lsr, are 1.0, 0.1 and 0.5 respectively. All other parameter settings were kept consistent with

baseline (Zhang et al., 2023a). Additionally, the ray sampling strategy we used involved sampling
within a bounding box with a padding of 2.

Table S1: Quantitative comparison results on NVIDIA dynamic scenes. The best result is in bold,
and the second-best results are marked in blue.

Method Truck Umberalla Playground Balloon1 Balloon2 Average

PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓
DynNeRF (Gao et al., 2021) 25.78 0.134 23.15 0.146 23.65 0.093 21.47 0.125 25.97 0.059 24.00 0.111

NeRF (Mildenhall et al., 2021) 27.93 0.098 21.23 0.234 20.75 0.157 21.41 0.141 23.30 0.071 22.92 0.140
4DGS (Wu et al., 2023) 26.39 0.239 23.17 0.280 19.43 0.268 23.31 0.235 25.75 0.238 23.61 0.252

RoDynRF (Liu et al., 2023) 29.13 0.063 24.26 0.089 24.96 0.048 22.37 0.103 26.19 0.054 25.38 0.071
Mononerf (Fu et al., 2022) 27.56 0.115 23.62 0.180 22.61 0.130 21.89 0.129 27.36 0.052 24.61 0.121

D4NeRF (Zhang et al., 2023a) 31.75 0.041 24.20 0.104 23.94 0.073 23.87 0.067 27.60 0.041 26.27 0.065
ExpanDyNeRF (Ours) 30.60 0.034 23.71 0.152 22.06 0.129 23.79 0.076 27.41 0.050 25.50 0.088

Quantitative Evaluation on NVIDIA Dataset. In Table S1, we conducted a quantitative analysis of
our method on the NVIDIA dataset and compared it with several current state-of-the-art methods. The
results are satisfactory. Although we did not achieve the highest results in the tests, this observation
stems from the unique properties of the NVIDIA dataset. The NVIDIA dataset was captured using
a system of 12 stationary cameras. Therefore, the camera poses used in the training and test sets
are the same, even though the video frames tested are from different times. These 12 cameras are
almost all positioned directly in front of the scene, leading to superior test results for these methods
on the NVIDIA dataset. However, because we further optimized for side views of the scene, it
resulted in a decline in test results for the primary views (camera poses in the NVIDIA dataset).
Qualitative Evaluation on SynDM and NVIDIA Dataset. The novel view predictions showcase

0° +20°−20°

D4NeRF

RoDynRF

MonoNeRF

(Ours)

0° +20°−20°

ExpanDyNeRF

Figure S1: Demonstration of the rendering capabilities of leading dynamic NeRF models in new camera
perspectives, using the NVIDIA dataset with skating and truck sequences for illustration. It displays the original
video capture viewpoint and views rotated 20◦ to the left and right around the center of the foreground for each
sequence. The outcomes indicate that our ExpanDyNeRF model exhibits minimal distortion in color and shape.

the performances of the state-of-the-art dynamic NeRF models alongside our ExpanDyNeRF in
the following figures, all trained on the SynDM dataset and NVIDIA dataset. It is evident that
ExpanDyNeRF significantly surpasses others in terms of novel view rendering stability, particularly
in maintaining the shape and color stability of dynamic parts.
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𝑎 𝑏 𝑐 𝑑

𝑒 𝑓 𝑔 ℎ

Figure S2: This figure presents an ablation study on our ray sampling strategy. Panel (a) displays the base
model’s output without optimization for color and density. Panel (b) depicts the pseudo-ground-truth of novel
views from the created 3D mesh. Panel (c) illustrates the density mask derived from pseudo ground truth, where
the yellow and blue boxes represent the bounding box with 2-pixel padding, and 10-pixel padding, respectively.
Panel (e) shows predictions from global ray sampling on the mask, while panel (f) shows predictions from ray
sampling within the foreground object area only. Panel (g) demonstrates the GaussianBlur strategy’s prediction.
Panels (d) and (h) showcase predictions with 2-pixel and 10-pixel padding, respectively. The comparison
between panels (d) and (h) reveals that employing 2-pixel padding leads to enhanced quality in reconstructing
novel view details with minimum background distortion.

Ray Sampling Strategies We compared various ray sampling strategies for novel view density and
color optimization in Equation 3.2. Examples are shown in Fig. S2. Global sampling over the whole
frame yields results in Panel (e) similar to the base output in Panel (a), due to the small proportion
of dynamic segments in the frame, causing generalized and ineffective updates. Alternate strategies
sample within the foreground object’s area shown white in Panel (c), which may overlook updates
outside this zone. Panel (f) demonstrates that sampling from various viewpoints for dynamic density
updates can unintentionally extend beyond the intended mask, causing non-dynamic areas to obscure
the background. Panel (g) shows the third strategy where the GaussianBlur (Gonzalez, 2009) expands
the foreground boundary, creating a zero gray-scale edge. Sampling within this blurred mask improves
results, yet areas adjacent to the person still see undue dynamic density updates beyond the motion
mask. Our final strategies focused on ray sampling within the padded area of the mask’s bounding
box (bounding boxes in Panel (c)), which outperforms the other strategies. Experimentation showed
that while larger padding, like 10 pixels in Panel (h), achieves comparable foreground optimization
to smaller padding, such as 2 pixels in Panel (d), it adversely affects background clarity.

Table S2: This table compares key attributes across various popular datasets for dynamic 3D re-
construction, highlighting the proposed SynDM dataset that outperforms other datasets by uniquely
enabling quantitative evaluation of dynamic scene reconstruction from multiple deviated angles at
any frame, a capability absent in the other datasets. The columns represent: (1) Multi-view: whether
the dataset provides images from multiple viewpoints instead of monocular images per frame; (2)
Deviated View GT: whether the dataset includes ground truth data from multiple deviated viewing
angles (small and large deviations) per frame; (3) Unconstrained Scene: whether the dataset covers
diverse recording locations (near and far) or object categories (human, animal, vehicle, etc.); (4) Cams
Motion: whether the dataset was collected using a moving camera; and (5) Background: whether the
dataset includes the full scene with both foreground and background.

Dataset Multi-view Deviated View GT Unconstrained Scene Cams Motion Background
DAVIS (Pont-Tuset et al., 2017) ✗ ✗ ✓ ✓ ✓
iPhone (Gao et al., 2022) ✗ ✗ ✓ ✓ ✓
NeRFDS (Yan et al., 2023) ✗ ✗ ✓ ✓ ✓
NVIDIA (Yoon et al., 2020) ✗ ✗ ✓ ✓ ✓
HyperNeRF (Park et al., 2021) ✗ ✗ ✗ ✓ ✓
DyNeRF (Li et al., 2022) ✓ ✓ ✗ ✗ ✓
ActorsHQ (Işık et al., 2023) ✓ ✓ ✗ ✗ ✗
Multi-face (Wuu et al., 2022) ✓ ✓ ✗ ✗ ✗

SynDM(Ours) ✓ ✓ ✓ ✓ ✓
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Ground Truth 𝑳𝒏𝒗
𝝈 only𝑳𝒏𝒗

𝝈 + 𝑳𝒏𝒗
𝒄 𝑳𝒏𝒗

𝒄 only Baseline𝑳𝒏𝒗
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𝒄 + 𝑳𝒔𝒓 𝑳𝒔𝒓 only

Figure S3: The images above, rendered from a view rotated by -30 degrees, illustrate the impact of different
loss functions on the quality of novel view synthesis. The best performance is achieved when all loss functions
(Lnov +Lhw +Lsr) are applied simultaneously, highlighting the complementary role each loss plays in enhancing
rendering quality and achieving a closer match to the ground truth. Notably, using the super-resolution loss (Lsr)
alone does not improve rendering quality, as the significant gains observed in Table 2 are primarily due to the
novel view loss (Lnov) effectively addressing the blurriness issue. This improvement provides the necessary
foundation for the super-resolution loss to contribute meaningfully to the final rendering quality.

GT
Baseline

PSNR: 20.43

MSE: 588.95

ExpanDyNeRF
PSNR: 20.20

MSE: 620.98

GT
Baseline

PSNR: 21.77

MSE: 432.59

ExpanDyNeRF
PSNR: 20.67

MSE: 557.29

40000

30000
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20000

20000

Pixel-wise 
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Figure S4: Comparison of visual and quantitative results between the baseline and ExpanDyNeRF models,
evaluated using PSNR and MSE metrics. The "GT" column represents the ground truth images. The red and
green boxes highlight critical regions of interest for analysis. The red box demonstrates areas with sharp and
detailed reconstruction by ExpanDyNeRF, whereas the baseline exhibits significant blur. Despite ExpanDyNeRF
producing clearer outputs, PSNR scores are lower due to localized high-density errors (highlighted in the
pixel-wise error heatmap). In contrast, the baseline’s blurry results yield smoother transitions, leading to lower
MSE despite poorer visual quality. The green box further illustrates how blurry regions (e.g., human pants or
chicken body) blend into the background, minimizing MSE contributions. This demonstrates the limitation of
PSNR in capturing perceptual quality, particularly when evaluating sharpness and clarity.

Necessity and Advantage of Proposed SynDM Dataset Table S2 underscores the critical limitations
of existing datasets for evaluating dynamic scene reconstruction under large deviations. None of
the datasets simultaneously provide the essential features required for fair frame-wise quantitative
evaluation, such as multi-view data, deviated view ground truth (GT), dynamic full-scene repre-
sentation (including foreground and background), and camera motion. For instance, datasets like
DAVIS, iPhone, and NVIDIA lack multi-view data, while NeRFDS, HyperNeRF, and DyNeRF offer
multi-view information but fail to include deviated GT, which is crucial for robust quantitative metrics
such as PSNR and LPIPS. Furthermore, many datasets, such as NeRFDS and DyNeRF, exclude
background information, limiting their applicability for full-scene dynamic rendering. This absence
of deviated GT across all existing real-world datasets severely restricts the ability of current methods,
including ExpanDyNeRF, to perform frame-wise quantitative evaluations under large deviations.
In contrast, our proposed SynDM dataset uniquely addresses these gaps by providing multi-view
data, deviated GT, dynamic full-scene representation, and camera motion, enabling comprehensive
evaluations that were previously unattainable. This highlights the indispensable role of SynDM in
advancing dynamic scene reconstruction research and further underscores the need for a real-world
dataset with comparable features, such as one we plan to develop using a large-scale moving camera
dome with precise pose capture capabilities.
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3DGSInstant-NGP

Primary 

View

Side 

View

Figure S5: Comparison of scene reconstructions between Instant-NGP Müller et al. (2022) and 3DGS Kerbl
et al. (2023) from both primary and side views. The primary view (top row) for both methods appears visually
consistent, with the sky maintaining its expected uniformity, giving the impression of accurate reconstruction.
However, in the side view, 3DGS (bottom right) introduces significant artifacts, with the sky being incorrectly
reconstructed as a nearby structure, obstructing the distant background, including mountains and bushes. In
contrast, Instant-NGP (bottom left) retains the expected characteristics of the sky as distant and uniform,
achieving higher fidelity and richer scene details. These differences highlight the limitations of GS models in
handling objects without clear geometric boundaries or at infinite distances, as opposed to NeRF-based methods.
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Figure S6: This figure presents an ablation study on the novel view synthesis performance of leading dynamic
NeRF models and our ExpanDyNeRF training on the animal data from our SynDM dataset.
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Figure S7: This figure presents an ablation study on the novel view synthesis performance of leading dynamic
NeRF models and our ExpanDyNeRF training on the human data from our SynDM dataset.
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Figure S8: This figure presents an ablation study on the novel view synthesis performance of leading dynamic
NeRF models and our ExpanDyNeRF training on the truck data from the NVIDIA dataset.
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Figure S9: This figure presents an ablation study on the novel view synthesis performance of leading dynamic
NeRF models and our ExpanDyNeRF training on the skating data from the NVIDIA dataset.
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