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ABSTRACT

Modern neuroimaging technologies enable the study of structural connectivity
(SC) and functional connectivity (FC) in vivo. However, due to the distinct bi-
ological underpinnings of SC and FC, understanding how the altered coupling
mechanism is associated with the progression of neurodegeneration remains a
challenge in the neuroscience field. Drawing inspiration from the rich neural dy-
namics captured by the Kuramoto model, we introduce a brain-inspired neural
network, coined KM-Net, to explain cognitive behavior from neuroimages, which
is rooted in the neuroscience principle of oscillatory synchronization. Given that
disrupted synchronization in neural oscillations closely underlines neurodegenera-
tive diseases, we further extend KM-Net to an explainable deep model in the arena
of disease early diagnosis. By capturing the emergence of synchronized FC pat-
terns from the underlying SC architecture, our approach provides a biologically
informed representation for the dynamical system of functional fluctuations. We
validate our novel computational framework through extensive experiments on a
diverse set of neuroimaging cohorts, demonstrating its effectiveness in character-
izing cognition-relevant brain fingerprint and disease-specific imaging biomark-
ers. Together, promising results indicate the potential of neural synchronization
modeling for advancing computational neuroscience and improving the under-
standing of neurodegenerative diseases.

1 INTRODUCTION

Neurodegenerative diseases (ND), including Alzheimer’s disease (AD) (Scheltens et al., 2021),
Parkinson’s disease (PD) (Bloem et al., 2021) and frontotemporal dementia (FTD), represent an
escalating global health crisis. Together they already affect more than 50 million people worldwide,
a number expected to exceed 130 million by 2050 as populations age (Prince et al., 2015; Ehrenberg
et al., 2020). The human cost is mirrored by an economic burden that has surpassed US$1 trillion
annually (Jeromin & Bowser, 2017). Despite decades of research, no disease-modifying therapies
exist (Cummings, 2017); clinical care remains largely symptomatic (Lang, 2010) and is typically
initiated only after irreversible neuronal loss.

A growing body of evidence shows that pathogenic cascades begin years—often decades—before
overt clinical presentation. In AD, amyloid-β (Aβ) aggregates can be detected up to 30 years prior
to symptom onset, seeding tauopathy and progressive neurodegeneration (Donohue et al., 2017). In
PD, nonmotor prodromes such as hyposmia and REM (rapid eye movement) sleep behavior disorder
emerge 5-10 years before motor signs, reflecting early disruption of extranigral circuits (Jansen et al.,
2015; Wolk et al., 2018). FTD likewise shows subtle behavioural and network-level changes prior to
the onset of clinical symptoms. These prolonged presymptomatic phases offer a critical therapeutic
window, given that disease can be detected early and with sufficient specificity. Although biomarkers
like PET imaging and CSF assays have achieved remarkable success, their high cost and limited
accessibility have hindered their use in routine disease screening. In this regard, there is a strong
need for early detection of neurodegenerative diseases using widely available techniques such as
MRI (Magnetic Resonance Imaging).
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Structural–functional coupling is an early marker for NDs. The brain’s wiring mechanism of-
fers a complementary, systems-level vantage point on disease progression. Of particular interest is
the coupling between structural connectivity (SC) and functional connectivity (FC)—the degree to
which the brain’s anatomical scaffold constrains its dynamic activity. Mounting evidence shows that
SC–FC coupling is disrupted as neurodegeneration starts in NCs (Zou et al., 2024). For example,
(Sun et al., 2024) observed altered SC-FC coupling patterns in parietal, occipitotemporal, motor,
and association cortices, which is associated with widespread motor and non-motor symptomatol-
ogy in AD. Convergent findings from behavioural and language variants of FTD further implicate
early breakdown in transmodal networks, with social-cognitive deficits and executive dysfunction
observed in bvFTD and PPA subtypes (Harciarek & Cosentino, 2013). Across NDs, SC–FC alter-
ation emerges as a reproducible signature of brain network disruption, which precedes forthcoming
structure atrophy through the lens of impaired neuro-synchronization. Because SC-FC coupling
is anchored in brain anatomy yet sensitive to functional fluctuations, an in-depth understanding of
the coupling mechanism might provide an interpretable biomarker that generalizes across disease
boundaries.

From concept to measurable biomarker. Building on this rationale, we propose to elevate neural
oscillatory synchronization, aka. the magnitude of brain-wide phase coordination, into a quantifi-
able, clinically actionable biomarker. To achieve it, we introduce KM-Net, a biologically grounded
deep model, principled in Kuramoto model (Kuramoto, 1975), that characterizes phase-coupled dy-
namics of functional fluctuations from coupled brain regions wired by neural fibers. By uncovering
how disease-specific alterations disrupt large-scale neural synchrony in the brain, our KM-Net is de-
signed to not only predict the dementia risk for individual old adults but also identify focal patterns
associated with the altered SC-FC coupling mechanism in NDs.

Our work. Our contributions to this work are three-fold:

• We cast neurodegeneration as a systems-level disruption of SC-constrained neural syn-
chronization and formalise its quantification with a brain-inspired deep model rooted in the
dynamics of the Kuramoto model (as shown in Fig. 1).

• We have uncovered anatomically interpretable synchronization patterns using machine
learning techniques that generalize multiple neurodegenerative disorders in the framework
of SC-FC coupling.

• We present state-of-the-art early diagnostic approaches for AD, PD, and FTD, with great
potential to be deployed in routine clinical practice.

By reframing neurodegeneration as a system-level disruption of brain-wide phase coordination
rather than isolated regional deficits, our framework offers a scalable and interpretable data-driven
approach toward earlier detection and data-driven therapeutic targeting.

2 RELATED WORKS

MRI Scanner

Functional connectivity

KM-Net

SC-FC coupling

Structural connectivity

Disease diagnosis

Healthy

Diseased

Synced patterns

Figure 1: Overview of our work. The Kuramoto-based
model (KM-Net) captures network-wide synchronization
dynamics and links SC–FC coupling to neurodegeneration
progression.

The human brain is perhaps the most
complex system in the universe, with
its regions interconnected by neu-
ronal fibers that support self-organized
functional fluctuations underlying di-
verse cognitive processes and behav-
iors. Many neurodegenerative diseases
might hijack the communication sys-
tem to spread neuropathology throughout the brain. In light of this, it is critical to understand
the coupling mechanism between SC and FC, which could potentially serve as a putative biomarker
for the early diagnosis across NDs. In this section, we briefly review previous works on compu-
tational approaches to SC-FC coupling and Kuramoto-based modeling for whole-brain functional
fluctuations.

Computational approaches to SC–FC coupling. Early work assessed structure–function cou-
pling with simple correlations between regional SC profiles and resting-state FC, or with generative
communication models that simulate how information might flow over the structural scaffold (e.g.,
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shortest-path (Goñi et al., 2014), communicability (Honey et al., 2009), and diffusion metrics (Ab-
delnour et al., 2014)). Recent large-scale studies have refined these ideas by (i) treating SC-FC
coupling as a region-specific rather than global property and (ii) exploring how coupling changes
with behavioural demands. For example, (Popp et al., 2025) showed that task-dependent variations
in SC–FC coupling predict individual intelligence scores across >700 Human Connectome Project
participants, emphasising that coupling is dynamic and context-sensitive.

SC-FC coupling has also been proven as a putative biomarker of neurodegeneration. A multicentre
AD study by (Sun et al., 2024) reported early SC-FC alterations in transmodal cortex that are as-
sociated with CSF-tau and cognitive decline independently of atrophy. Machine-learning pipelines
that combine static and time-resolved (dynamic) coupling further boost diagnostic accuracy: (Wu
et al., 2025) achieved AUCs ≈0.9 for distinguishing healthy controls (HC), individuals with mild
cognitive impairment (MCI), and AD by using static + dynamic coupling features into a Gaussian-
naive-Bayes classifier. Significant alterations of SC-FC coupling have now been documented in
Parkinson’s disease and frontotemporal dementia, but existing work typically analyses each ND
separately and relies on hand-crafted SC-FC coupling measures, which are less reproducible across
neuroimaging studies.

Kuramoto-based whole-brain modeling. The Kuramoto-based phase oscillator framework offers
a mechanistic route to link SC to emergent FC. Early applications used empirical SC as the coupling
matrix and tuned a global coupling constant to reproduce resting-state fMRI correlations (Honey
et al., 2009; Cabral et al., 2011). Current research extends this framework in two main directions.

Biophysical realism & multiscale structure – Hierarchical modeling approaches have recently gained
traction for capturing the multi-scale nature of brain dynamics. Specifically, hierarchical extensions
of neural oscillatory models embed fast, local modules within slower, large-scale oscillatory struc-
tures, enabling a more accurate representation of both spatial and temporal organization in brain
activity. For example, the hierarchical Kuramoto model for the human cortex introduced by Myrov
et al. (Myrov et al., 2024) leverages a two-tiered system of coupled oscillators to simultaneously
capture local synchronization phenomena and long-range coordination across brain regions.

Disease and perturbation studies – Hopfield-Kuramoto hybrid models have been proposed to encode
multiple wave-pattern attractors and replicate dominant fMRI modes (Yao et al., 2025), which has
been used to predict lesion-induced changes in FC (Rayfield et al., 2025). However, most models
fix coupling weights or tune only global parameters, limiting the applicability in disease diagnosis
at an individual level.

Positioning of the present work. The literature therefore leaves two key gaps: (1) Lack system-level
understanding. Existing correlation-based methods primarily target localized SC-FC disruptions but
fall short of providing a system-level understanding of how SC-FC coupling contributes mechanis-
tically to disease progression. (2) Lack model explainability across NDs. Although various deep
models have been proposed, few are specifically designed to uncover novel biological mechanisms
underlying NDs.

Our KM-Net framework bridges these gaps by understanding phase-coupled neural oscillatory syn-
chronization and deriving novel imaging biomarker from the learned SC-FC coupling mechanism
that (i) quantify mechanistic role of SC–FC alteration in NDs, (ii) generate putative biomarkers of
SC-FC coupling across AD, PD, and FTD, and (iii) yield state-of-the-art performance for presymp-
tomatic diagnosis while remaining clinically interpretable.

3 METHODS

3.1 PRELIMINARY

Brain network construction. First, we construct SC from diffusion-weighted imaging (DWI) using
fiber tractography, where the SC matrix S ∈ RN×N represents the connection strength between
N brain regions. Each element sij is defined as: sij =

cij∑
k ̸=i cik

, where cij is the streamline
count between regions i and j. Second, FC is computed from resting-state fMRI by measuring
the Pearson’s correlation between the blood oxygen level-dependent (BOLD) time series between
different brain regions. The FC matrix E ∈ RN×N is given by: Eij =

cov(xi,xj)
σxi

σxj
, where xi and

3
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Figure 2: The network architecture of our proposed KM-Net.

xj are the BOLD signals of regions i and j. They establish the foundation for analyzing SC-FC
coupling in brain networks.

The Kuramoto model for oscillator synchronization. The Kuramoto model describes the emer-
gence of synchronization in coupled phase oscillators, with applications across many fields. Each
oscillator i evolves according to: dθi

dt = ωi +
K
N

∑N
j=1 sin(θj − θi), where θi represents the phase,

ωi the intrinsic frequency, and K the coupling strength (Rodrigues et al., 2016).

3.2 I: KM-Net: SCALABLE KURAMOTO-BASED NEURAL SYNCHRONIZATION

Our KM-Net extends the classic Kuramoto model to describe how FC emerges from SC through
neural phase synchronization. Unlike traditional SC-FC coupling models that rely on statistical cor-
relations or deep learning without clear mechanistic insights (Dan et al., 2023; Mazumder et al.,
2024; Li et al., 2018), we propose a physics-based, brain-inspired, learnable framework. Our KM-
Net integrates oscillator dynamics, adaptive synchronization, and hierarchical memory encoding,
dynamically estimating frequencies, refining phase interactions, and stabilizing functional fluctua-
tions. Specifically, KM-Net consists of three core modules: the NeuroFreq module, which learns
intrinsic oscillation frequencies; the Sync module, which refines phase interactions using a bidirec-
tional coupling mechanism; and the Kuramoto solver, which iteratively integrates past oscillatory
states to stabilize functional emergence. The network architecture of KM-Net is shown in Fig. 2.

Intrinsic frequency estimation via NeuroFreq module. The NeuroFreq module learns the intrinsic
frequencies of neural oscillators, avoiding fixed distributions and instead dynamically parameteriz-
ing oscillation rates through a structured anti-symmetric transformation. Each oscillator i evolves
according to the modified scalable Kuramoto equation:

dfi

dt
= ωi + λ(si +

∑
N
j=1sijfi), (1)

where fi(t) ∈ RN represents the vector-based oscillator’s phase information of region i (we omit
the index t for simplicity), derived from the FC through a mapping function F = ψϑ(E). ψϑ

encodes FC into an oscillatory representation, modeling each brain region as a dynamic oscillator.
sij is the SC matrix defining coupling strengths at region (i, j), λ is the global coupling coefficient.
Unlike traditional methods that assume ωi follows a predefined Gaussian distribution, we introduce
a learnable transformation matrix Ω to parameterize intrinsic frequencies adaptively:

ωi = Ωifi, where Ω = −Ω⊺, (2)

where Ω is constrained to be anti-symmetric to enforce realistic frequency shifts. This learned
frequency dynamically modulates the oscillator phase evolution, leading to subject-specific syn-
chronization behavior. The transformation ensures that oscillatory trajectories remain aligned with
empirical neuroimaging observations rather than being stereotyped by arbitrary statistical priors. To
maintain numerical stability, the transformed oscillations are expanded to align with the batch and
time dimensions: ωb,t,i = |Ωifi|, ∀b ∈ [1, B], t ∈ [1, T ], i ∈ [1, N ], where B, T repre-
sent the batch and time dimensions, and the expansion aligns the frequency tensor with temporal
oscillatory updates.

Neural synchronization via Sync module. The Sync module refines phase interactions between
brain regions by incorporating SC as a constraint while dynamically adapting interaction strengths
through a learned synchronization matrix. Unlike classical Kuramoto models, which assume a fixed
adjacency matrix S, we introduce a trainable coupling matrix P ∈ RN×N , ensuring that oscillatory
interactions evolve in a data-driven manner: P = 1

2 (A+A⊺) ⊙ S, where A is a trainable affinity
matrix. The symmetric formulation enforces bidirectional coupling influence while maintaining neu-
robiological realism. The synchronization term in Eq. 1 can be redefined as zi = si +

∑N
j=1 pijfi.
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Note that a projection operation is applied to oscillatory updates onto a synchronization manifold,
which prevents mode collapse and preserves diverse phase interactions:ϕzi

= zi − ⟨zi,fi⟩fi.

In this context, the evolution equation is reformulated as:

dfi

dt
= ωi + λϕ(si +

∑
N
j=1pijfi), (3)

This projection effectively removes redundant phase components, maintaining oscillatory diversity
and preventing over-constrained functional states. By iteratively refining synchronization trajecto-
ries, our method ensures that functional connectivity states emerge from structural constraints while
preserving the flexibility necessary to accommodate individual variations in brain dynamics.

Hierarchical memory-driven phase stabilization via Kuramoto solver. The Kuramoto solver in-
tegrates hierarchical memory mechanisms to refine phase synchronization trajectories over multiple
iterations. Unlike traditional SC-FC coupling models that rely on direct functional simulations, our
solver iteratively adjusts synchronization states via the update rule: dfi

dt = Ωifi + λϕzi
. To ensure

numerical stability, all phase updates are renormalized via spherical projection: ζ(fi) =
fi

∥fi∥ . This
prevents numerical divergence, ensuring that phase evolution remains well-conditioned across solver
iterations. A critical advancement in our framework is the hierarchical memory-driven refinement,
where past oscillatory states are recursively integrated into the phase update mechanism:

F l(t+ 1) = ζ(F l(t) + β
dF l(t)

dt
), (4)

where β is the discretization step size, our method can dynamically re-weight structural connec-
tions based on past functional interactions. This recursive learning mechanism enables long-range
functional stabilization, allowing the model to iteratively adjust for transient fluctuations while pre-
serving global oscillatory coherence. At the end of each layer lth, we apply a readout function ψ−1

ξ

to obtain the feature representation. Ultimately, the feature representation at the final Lth layer is
given by F̂ = ψ−1

ξ (FL), where L denotes the number of network layers. To optimize synchro-
nization learning, we employ a cross-entropy loss associated with the underlying clinical outcome
(such as healthy or diseased), ensuring that the model effectively captures disease-related patterns
in SC-FC coupling.

3.3 II: NOVEL PUTATIVE SYNCHRONIZATION-BASED SC–FC COUPLING BIOMARKERS

Conceptual basis. Healthy brains operate in a metastable regime, flexibly transitioning between
synchronized and desynchronized states to support cognition. Neurodegeneration disrupts this bal-
ance in network- and frequency-specific ways, manifesting as both hypo- and hyper-synchrony
(Grieder et al., 2018; Brier et al., 2014; Hammond et al., 2007b; Shine et al., 2019). To quantify
these alterations in network dynamics, we first extract a three-level hierarchy of Kuramoto Order
Parameters (KOPs), then introduce a time-integrated synchrony energy statistic that summarizes
global synchronization over time (serves as an index of persistent phase-locking).

Step 1 — Instantaneous phase extraction. For each node i and time point t, we reconstruct an
analytic signal from the learned feature representation F l

i (t) and take its phase θ̂li(t) = arg
{
F l
i (t)+√

−1H[F l
i (t)]

}
, band-limiting to 0.01−0.1 Hz to match infra-slow BOLD oscillations (Glerean

et al., 2012; Cabral et al., 2017a; Glomb et al., 2017).

Step 2 — Region-wise KOP. The basic unit of synchrony is the region-specific order parameter
Rl

i(t) =
∣∣∣ 1
M

∑M
m=1 e

√
−1θ̂l

i,m(t)
∣∣∣, where i = 1, ..., N denotes the index of brain region, m =

1, ...,M denotes the subjects. Because the modulus of a single oscillator is always 1, Rl
i(t) acts as

a phase carrier for downstream aggregation.

Step 3 — Subnetwork-wise KOP. Grouping regions into C subnetworks Cj yields Rl
j(t) =∣∣∣ 1

Nj

∑
i∈Cj

e
√
−1θ̂l

i(t)
∣∣∣, j = 1, . . . , C, which captures intra-subnetwork coherence and is sensi-

tive to subnetwork-specific dysfunction.
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Step 4 — Whole-brain KOP. A global summary is obtained by averaging the regional magnitudes,
Rl

whole(t) = 1
N

∑N
i=1R

l
i(t) = 1

N

∑N
i=1

∣∣∣e√
−1θ̂l

i(t)
∣∣∣, providing a coarse but intuitive read-out of

brain-wide phase coordination.

Step 4 — Synchrony Energy (time-invariant biomarker). To measure the capacity of each module
to sustain synchrony over an entire training phase, we integrate squared coherence for subnetwork-
based energy: SynEj = 1

TL

∑L−1
l=0

∑T−1
t=0

(
Rl

j(t)
)2
, and whole brain-based energy:

SynEwhole =
1

TL

∑
L−1
l=0

∑
T−1
t=0

(
Rl

whole(t)
)2
. (5)

The ℓ2-norm in Eq. 5 encourages prolonged, high-coherence episodes while down-weighting brief
coincidences. The C-dimensional vector SynE = [SynE1, . . . ,SynEC ] and its global counterpart
SynEwhole together form an interpretable, disease-sensitive SC–FC coupling signature.

Neuroscientific interpretation. SynEj quantifies how effectively the structural architecture of
subnetwork j facilitates ongoing functional synchrony. Disease-related deviations in SynE may oc-
cur in either direction: low values indicate disrupted or fragmented coupling, while abnormally high
values may reflect a breakdown of adaptive desynchronization, shifting the system toward overly
regular or stereotyped activity patterns. This non-monotonic relationship aligns with prior theories
of disrupted metastability in neurodegeneration (Deco et al., 2017; Hellyer et al., 2014). By span-
ning regional, subnetwork-wise, and whole-brain scales, the putative biomarker links micro-level
phase dynamics to macro-level connectome constraints, offering a principled readout for tracking
disease progression.

*** * * *** *** *** * * *** * * *** * * * *

******************

***

∗ 𝑝 < 0.0583.15
82.97

68.83
63.13

68.28

51.72

Figure 3: Performance metrics (%) on ADNI, PPMI and NIFD datasets. ‘*’ denotes the significant
improvement (p < 0.05).

4 EXPERIMENTS

4.1 DATASET AND EXPERIMENTAL SETUP

In our experiments, we evaluate the proposed method on three publicly available neurodegenerative
disease datasets. (1) Alzheimer’s Disease Neuroimaging Initiative (ADNI): This dataset includes
resting-state fMRI data from 135 subjects, comprising individuals diagnosed with AD and cogni-
tively normal (CN) controls. It is designed to track brain changes associated with AD progression.
(2) Parkinson’s Progression Markers Initiative (PPMI): A multi-center study that collects neuroimag-
ing data from 175 subjects, including individuals with PD, scans without evidence of dopaminergic
deficit (SWEDD), prodromal PD, and CN. (3) Neuroimaging Initiative for Frontotemporal Lobar
Degeneration (NIFD): This dataset focuses on FTD and includes resting-state fMRI data from 1,010
subjects. Participants are categorized into CN, logopenic variant of primary progressive aphasia
(LVPPA), behavioral variant frontotemporal dementia (BV), progressive non-fluent aphasia (PNFA),
and semantic variant (SV) groups. All involved data can be found and downloaded in the Image and
Data Archive (IDA) 1. The detailed demographic statistics are listed in Table 1. We utilize stan-
dardized preprocessing pipelines 2 to produce the SC and FC. In all subsequent experiments, we
parcellate the brain into 116 regions using the AAL (Tzourio-Mazoyer et al., 2002) atlas, resulting

1https://adni.loni.usc.edu/, https://memory.ucsf.edu/research-trials/research/allftd, https://www.ppmi-
info.org/.

2fmriprep.org/en/stable/, qsiprep.readthedocs.io/en/latest/.
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Table 1: demographic characteristics of ADNI, PPMI, and NIFD cohorts.

Dataset Size Age Sex Disease stage
range Mean±std Male Female CN ND

ADNI 135 55∼85 70.8±6.5 65 (48.2%) 70 (51.8%) 110 (81.5%) 25 (18.5%)
PPMI 175 40∼81 65.7±7.9 67 (38.2%) 108 (61.8%) 87 (49.7%) 88 (50.3%)
NIFD 1010 39∼88 64.8±7.7 523 (51.8%) 487 (48.2%) 490 (48.5%) 520 (51.5%)

in 116 × 116 SC and FC matrices (Fig. 1, middle). We further divide the whole brain into six
subnetworks, including frontoparietal network (FPN.) visual network (Vis.), default mode network
(D.M.), Ventral attention network (V.A.), sensorimotor network (SM.) and Cerebellum (Cereb.). No-
tably, while the present study adopts the widely used AAL116 parcellation, it is well recognized that
atlas choice can influence SC–FC analyses (Messé, 2020; Albers et al., 2021). Systematic cross-
atlas validation remains relatively rare in the connectomics literature, despite repeated calls for such
evaluation (Bryce et al., 2021; Turnbull et al., 2025). We therefore acknowledge atlas dependence
as a potential limitation, and suggest future work to test robustness across multiple atlases.

We implemented all models on NVIDIA H100 NVL (94GB, a total of 8 GPUs). We used a batch
size of 32, a learning rate of 1 × 10−3, and a cosine annealing schedule without warm-up. All
experiments were conducted for 300 epochs. We set L = 2, 256 hidden channels, 25 iteration steps
(T = 25). The Kuramoto layer used attention-based connectivity (A = "attn") with projection
enabled. The model was initialized with ω = 0.01, and the frequency length was learnable. Max-
pooling was applied by default.

We compare our KM-Net against several graph-based approaches, including the vanilla graph neu-
ral network (GCN) (Kipf & Welling, 2016), graph isomorphism networks (GIN) (Xu et al., 2018),
graph attention networks (GAT) (Veličković et al., 2017), recent popular method GCNII (Chen et al.,
2020), GraphSAGE (Hamilton et al., 2017), the graph transformer with spectral attention network
(SAN) (Kreuzer et al., 2021) and a graph-coupled oscillator networks (GraphCON) (Rusch et al.,
2022). The graph embeddings of these methods are vectorized FCs and the adjacency matrices
are SCs. For the disease diagnosis task, the ADNI dataset is formulated as a binary classifica-
tion problem (AD vs. CN), the PPMI dataset as a four-class classification problem (PD, SWEDD,
Prodromal, and CN), and the NIFD dataset as a five-class classification problem (CN, LVPPA,
BV, PNFA, and SV). We evaluate model performance using accuracy (Acc), precision (Pre), and
F1-score (F1), reporting results based on 5-fold cross-validation. The code will be released at
https://anonymous.4open.science/r/KuramNet-4EB8 upon publication.

4.2 DIAGNOSTIC PERFORMANCE ACROSS NEURODEGENERATIVE DISORDERS

Fig. 3 shows that KM-Net outperforms every competing graph model on all three cohorts in all three
metrics with differences that are statistically significant (* p < 0.05, paired t-test). These consis-
tencies confirm that modeling the oscillatory coupling between SC and FC reveals clinically mean-
ingful patterns overlooked by models using only static SC or FC. The robustness of the improve-
ments—modest but significant in ADNI, larger in PPMI, and most pronounced in NIFD—suggests
that our synchronization-based framework is particularly effective when network disruptions are
subtle or heterogeneous, laying the groundwork for the mechanistic, hypothesis-driven analyses that
follow. We report the running time for each mode on ADNI dataset. Most standard GNNs run in
0.6–0.9 ms: GraphSAGE 0.57 (fastest), GIN 0.58, GCN 0.66, GAT 0.86, GCNII 0.82, GraphCON
0.85, with SAN at 1.02. Our KM-Net is also 1.02 ms, matching SAN—about 1.8× slower than
GraphSAGE but still millisecond-level.

4.3 NOVEL INTERPRETATION OF NEURODEGENERATION VIA NEURAL SYNCHRONIZATION
BIOMARKER

Global synchrony establishes a whole-brain baseline. We hypothesize that reduced neural syn-
chronization is a putative indicator of neurodegeneration in aging brains. To test this, we quantify
phase synchronization between regions using the KOP computed from the final feature representa-
tion FL (see Methods). Fig. 4 (left) summarizes whole-brain KOP across diagnostic groups, age
groups, and gender for the three cohorts. In every dataset, disease groups show a modest but sys-
tematic downward shift in mean KOP relative to CN group (ADNI: ∼5%; PPMI: ∼10%; NIFD:
< 5%). Because the grand-average KOP aggregates phase information over the entire cortex, even
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Figure 4: Whole-brain (left) and subnetwork-wise (right) Kuramoto synchrony for ADNI, PPMI and
NIFD. Disease groups show lower global KOP than CN, while subnetwork-wise synchrony energy
pinpoints the most affected networks—D.M. and Vis. in AD, D.M. in FTD, and FPN., Cereb. in PD.
Asterisks mark significant group differences (*, p < 0.05 **, p < 0.001 ).
subtle regional desynchronization yields small absolute changes; nevertheless, the consistent direc-
tion across AD, PD, and FTD supports the view that large-scale synchrony diminishes with neu-
rodegeneration. By contrast, neither age (Junior vs. Senior) nor gender (Male vs. Female) pro-
duces discernible differences, indicating that the observed desynchronization is not trivially driven
by demographics. Although the global effects are modest—reflecting disease heterogeneity and the
dilution from whole-brain averaging—they provide a conservative benchmark. We therefore turn
to a finer-grained analysis of subnetwork-resolved KOP to capture region-specific dysfunction, and
a time–layer–integrated synchrony-energy measure, SynEwhole (Eq. 5), which indexes persistent
phase-locking.

Subnetwork-wise synchrony reveals disorder-specific network liabilities. Moving from a whole-
brain average to subnetwork-resolved KOPs amplifies group differences and aligns them with canon-
ical network signatures (Fig. 4 right; asterisks denote p< 0.05). (1) ADNI — Within-network KOP
is elevated in patients relative to CN in the default-mode network (D.M.) and, to a lesser extent,
the visual network (Vis.) (Buckner et al., 2005). Higher KOP indicates stronger instantaneous syn-
chrony, consistent with a loss of adaptive desynchronization under E–I imbalance (Palop & Mucke,
2016). Thus, the subnetwork-wise KOP captures a transmodal (D.M.) plus posterior-sensory pattern
of hypersynchrony in early AD. (2) NIFD — The D.M. is the only subnetwork exhibiting a sig-
nificant decline, indicating reduced intra-network synchrony; this mirrors anterior cingulo-frontal
decoupling in behavioural-variant FTD (Seeley et al., 2009) and accords with its social-cognitive
and executive impairments. (3) PPMI — PD shows lower within-network KOP than CN in the fron-
toparietal network (FPN.) and cerebellum, indicating reduced intra-network synchrony. This fits
with dopamine depletion disrupting basal ganglia–thalamo–cortical and cerebello–thalamo–cortical
loops, weakening executive circuitry and timing/sensorimotor integration; although compensatory
increases are sometimes reported, early drug-naı̈ve PD typically exhibits diminished network co-
herence (Boon et al., 2020; Luo et al., 2014; Lefaivre et al., 2016). Age- and gender-related
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Figure 5: Global (whole brain) Kuramoto synchrony across 50 iterations (top) and its time–layer-
integrated energy (bottom). Disease groups show lower and more volatile KOP than controls, es-
pecially in PD, while age and gender have negligible impact. Synch-energy is elevated in AD and
FTD, indicating more persistent phase-locking; PD shows only a modest increase.

effects are modest and subnetwork-specific—significant contrasts appear occasionally (e.g., age:
ADNI–FPN., NIFD–D.M., PPMI–Vis.; gender: ADNI–Vis., NIFD–SM., PPMI–Cerebellum) and
are clearly smaller than the disease-group effects.

Iteration- and layer-resolved analysis of global synchrony. Fig. 5 tracks the global KOP (whole
brain, Eq. 5) across 50 numerical integration steps (top) and encodes the same information into a
single synchrony-energy scalar (bottom; Eq. 5). Two features stand out: (1) Slower convergence
and lower plateaus in disease. Disease trajectories equilibrate more slowly and ∼10–20% lower
than CN, implying a weaker-synchrony attractor and aligning with models where reduced structural
coupling delays global phase alignment (Cabral et al., 2017b). (2) Pronounced temporal volatility
in Parkinson’s disease. PPMI trajectories show larger peak-to-trough excursions—consistent with
burst-like β oscillations in PD—indicating rapid alternations between synchronized and desynchro-
nized states (Hammond et al., 2007a; Herz et al., 2017). Energy read-out. SynE is elevated in
AD (ADNI) and highest in FTD (NIFD; p < 0.05), indicating more persistent phase-locking (hy-
persynchrony) and reduced adaptive desynchronization in these dementias (Palop & Mucke, 2016;
Zhou & Seeley, 2014). In contrast, PD (PPMI) shows only a modest, non-significant change rela-
tive to CN, consistent with transient, burst-driven dynamics rather than a sustained shift in global
synchrony (Hammond et al., 2007a; Herz et al., 2017). Minimal demographic influence. Compared
with the clinical groups, age- and gender-related differences are minor in both the temporal and
energy domains, reinforcing that the observed synchrony changes are driven primarily by disease
rather than by demographic factors.

Taken together, a lower global mean KOP accompanied by a higher whole-brain SynE suggests that
neurodegeneration yields fewer but longer-lasting bouts of synchrony: overall average coupling is
weakened, yet the episodes that do emerge remain phase-locked for longer, reflecting more persistent
hypersynchrony when it occurs.

5 CONCLUSION

In this work, we presented KM-Net, a brain-inspired deep Kuramoto framework that links struc-
tural connectomes to phase-synchrony dynamics. By modelling how oscillatory synchrony emerges
from structural coupling, KM-Net yields an interpretable, biologically grounded representation of
whole-brain fluctuations. Across three independent cohorts, our KM-Net achieved state-of-the-art
diagnostic accuracy for AD, PD and FTD and exposed disorder-specific vulnerabilities. At the
macroscale, disease groups showed a distinctive burst-like synchrony regime: global mean KOP
was lower, yet whole-brain SynE was higher, indicating fewer but longer-lasting episodes of hyper-
synchrony. Taken together, our results demonstrate the potential of neural-synchrony modelling to
advance computational neuroscience and provide a practical, interpretable tool for early detection
and longitudinal tracking of neurodegenerative progression.
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