

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NEURAL SYNCHRONIZATION LANDSCAPES REVEAL ALTERED STRUCTURE–FUNCTION COUPLING IN NEU- RODEGENERATIVE DISEASES

Anonymous authors

Paper under double-blind review

ABSTRACT

Modern neuroimaging technologies enable the study of structural connectivity (SC) and functional connectivity (FC) *in vivo*. However, due to the distinct biological underpinnings of SC and FC, understanding how the altered coupling mechanism is associated with the progression of neurodegeneration remains a challenge in the neuroscience field. Drawing inspiration from the rich neural dynamics captured by the Kuramoto model, we introduce a brain-inspired neural network, coined *KM-Net*, to explain cognitive behavior from neuroimages, which is rooted in the neuroscience principle of oscillatory synchronization. Given that disrupted synchronization in neural oscillations closely underlines neurodegenerative diseases, we further extend *KM-Net* to an explainable deep model in the arena of disease early diagnosis. By capturing the emergence of synchronized FC patterns from the underlying SC architecture, our approach provides a biologically informed representation for the dynamical system of functional fluctuations. We validate our novel computational framework through extensive experiments on a diverse set of neuroimaging cohorts, demonstrating its effectiveness in characterizing cognition-relevant brain fingerprint and disease-specific imaging biomarkers. Together, promising results indicate the potential of neural synchronization modeling for advancing computational neuroscience and improving the understanding of neurodegenerative diseases.

1 INTRODUCTION

Neurodegenerative diseases (ND), including Alzheimer’s disease (AD) (Scheltens et al., 2021), Parkinson’s disease (PD) (Bloem et al., 2021) and frontotemporal dementia (FTD), represent an escalating global health crisis. Together they already affect more than 50 million people worldwide, a number expected to exceed 130 million by 2050 as populations age (Prince et al., 2015; Ehrenberg et al., 2020). The human cost is mirrored by an economic burden that has surpassed US\$1 trillion annually (Jeromin & Bowser, 2017). Despite decades of research, no disease-modifying therapies exist (Cummings, 2017); clinical care remains largely symptomatic (Lang, 2010) and is typically initiated only after irreversible neuronal loss.

A growing body of evidence shows that pathogenic cascades begin years—often decades—before overt clinical presentation. In AD, amyloid- β (A β) aggregates can be detected up to 30 years prior to symptom onset, seeding tauopathy and progressive neurodegeneration (Donohue et al., 2017). In PD, nonmotor prodromes such as hyposmia and REM (rapid eye movement) sleep behavior disorder emerge 5–10 years before motor signs, reflecting early disruption of extranigral circuits (Jansen et al., 2015; Wolk et al., 2018). FTD likewise shows subtle behavioural and network-level changes prior to the onset of clinical symptoms. These prolonged presymptomatic phases offer a critical therapeutic window, given that disease can be detected early and with sufficient specificity. Although biomarkers like PET imaging and CSF assays have achieved remarkable success, their high cost and limited accessibility have hindered their use in routine disease screening. In this regard, there is a strong need for early detection of neurodegenerative diseases using widely available techniques such as MRI (Magnetic Resonance Imaging).

054 **Structural-functional coupling is an early marker for NDs.** The brain’s wiring mechanism offers a complementary, systems-level vantage point on disease progression. Of particular interest is 055 the coupling between structural connectivity (SC) and functional connectivity (FC)—the degree to 056 which the brain’s anatomical scaffold constrains its dynamic activity. Mounting evidence shows that 057 SC-FC coupling is disrupted as neurodegeneration starts in NCs (Zou et al., 2024). For example, 058 (Sun et al., 2024) observed altered SC-FC coupling patterns in parietal, occipitotemporal, motor, 059 and association cortices, which is associated with widespread motor and non-motor symptomatology 060 in AD. Convergent findings from behavioural and language variants of FTD further implicate 061 early breakdown in transmodal networks, with social-cognitive deficits and executive dysfunction 062 observed in bvFTD and PPA subtypes (Harcirek & Cosentino, 2013). Across NDs, SC-FC alteration 063 emerges as a reproducible signature of brain network disruption, which precedes forthcoming 064 structure atrophy through the lens of impaired neuro-synchronization. Because SC-FC coupling 065 is anchored in brain anatomy yet sensitive to functional fluctuations, an in-depth understanding of 066 the coupling mechanism might provide an interpretable biomarker that generalizes across disease 067 boundaries.

068 **From concept to measurable biomarker.** Building on this rationale, we propose to elevate *neural* 069 *oscillatory synchronization*, aka. the magnitude of brain-wide phase coordination, into a quantifiable, 070 clinically actionable biomarker. To achieve it, we introduce *KM-Net*, a biologically grounded 071 deep model, principled in Kuramoto model (Kuramoto, 1975), that characterizes phase-coupled 072 dynamics of functional fluctuations from coupled brain regions wired by neural fibers. By uncovering 073 how disease-specific alterations disrupt large-scale neural synchrony in the brain, our *KM-Net* is 074 designed to not only predict the dementia risk for individual old adults but also identify focal patterns 075 associated with the altered SC-FC coupling mechanism in NDs.

076 **Our work.** Our contributions to this work are three-fold:

- 078 • We cast neurodegeneration as a systems-level disruption of SC-constrained neural synchronization 079 and formalise its quantification with a brain-inspired deep model rooted in the 080 dynamics of the Kuramoto model (as shown in Fig. 1).
- 081 • We have uncovered anatomically interpretable synchronization patterns using machine 082 learning techniques that generalize multiple neurodegenerative disorders in the framework 083 of SC-FC coupling.
- 084 • We present *state-of-the-art* early diagnostic approaches for AD, PD, and FTD, with great 085 potential to be deployed in routine clinical practice.

087 By reframing neurodegeneration as a system-level disruption of brain-wide phase coordination 088 rather than isolated regional deficits, our framework offers a scalable and interpretable data-driven 089 approach toward earlier detection and data-driven therapeutic targeting.

091 2 RELATED WORKS

093 The human brain is perhaps the most 094 complex system in the universe, with 095 its regions interconnected by neuronal 096 fibers that support self-organized 097 functional fluctuations underlying diverse 098 cognitive processes and behaviors. 099 Many neurodegenerative diseases 100 might hijack the communication sys- 101 tem to spread neuropathology throughout 102 the brain. In light of this, it is critical to understand 103 the coupling mechanism between SC and FC, which could potentially serve as a putative biomarker 104 for the early diagnosis across NDs. In this section, we briefly review previous works on compu- 105 tational approaches to SC-FC coupling and Kuramoto-based modeling for whole-brain functional 106 fluctuations.

107 **Computational approaches to SC-FC coupling.** Early work assessed structure-function coupling 108 with simple correlations between regional SC profiles and resting-state FC, or with generative 109 communication models that simulate how information might flow over the structural scaffold (e.g.,

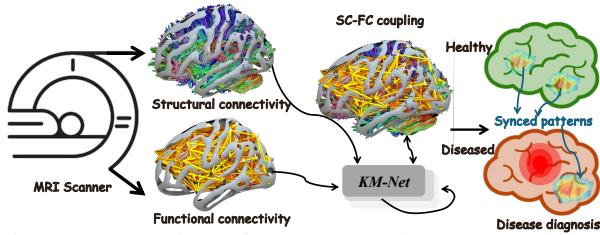


Figure 1: Overview of our work. The Kuramoto-based model (*KM-Net*) captures network-wide synchronization dynamics and links SC-FC coupling to neurodegeneration progression.

shortest-path (Goñi et al., 2014), communicability (Honey et al., 2009), and diffusion metrics (Abdelnour et al., 2014)). Recent large-scale studies have refined these ideas by (i) treating SC-FC coupling as a region-specific rather than global property and (ii) exploring how coupling changes with behavioural demands. For example, (Popp et al., 2025) showed that task-dependent variations in SC-FC coupling predict individual intelligence scores across >700 Human Connectome Project participants, emphasising that coupling is dynamic and context-sensitive.

SC-FC coupling has also been proven as a putative biomarker of neurodegeneration. A multicentre AD study by (Sun et al., 2024) reported early SC-FC alterations in transmodal cortex that are associated with CSF-tau and cognitive decline independently of atrophy. Machine-learning pipelines that combine static and time-resolved (dynamic) coupling further boost diagnostic accuracy: (Wu et al., 2025) achieved AUCs ≈ 0.9 for distinguishing healthy controls (HC), individuals with mild cognitive impairment (MCI), and AD by using static + dynamic coupling features into a Gaussian-naïve-Bayes classifier. Significant alterations of SC-FC coupling have now been documented in Parkinson’s disease and frontotemporal dementia, but existing work typically analyses each ND separately and relies on hand-crafted SC-FC coupling measures, which are less reproducible across neuroimaging studies.

Kuramoto-based whole-brain modeling. The Kuramoto-based phase oscillator framework offers a mechanistic route to link SC to emergent FC. Early applications used empirical SC as the coupling matrix and tuned a global coupling constant to reproduce resting-state fMRI correlations (Honey et al., 2009; Cabral et al., 2011). Current research extends this framework in two main directions.

Biophysical realism & multiscale structure – Hierarchical modeling approaches have recently gained traction for capturing the multi-scale nature of brain dynamics. Specifically, hierarchical extensions of neural oscillatory models embed fast, local modules within slower, large-scale oscillatory structures, enabling a more accurate representation of both spatial and temporal organization in brain activity. For example, the hierarchical Kuramoto model for the human cortex introduced by Myrov et al. (Myrov et al., 2024) leverages a two-tiered system of coupled oscillators to simultaneously capture local synchronization phenomena and long-range coordination across brain regions.

Disease and perturbation studies – Hopfield-Kuramoto hybrid models have been proposed to encode multiple wave-pattern attractors and replicate dominant fMRI modes (Yao et al., 2025), which has been used to predict lesion-induced changes in FC (Rayfield et al., 2025). However, most models fix coupling weights or tune only global parameters, limiting the applicability in disease diagnosis at an individual level.

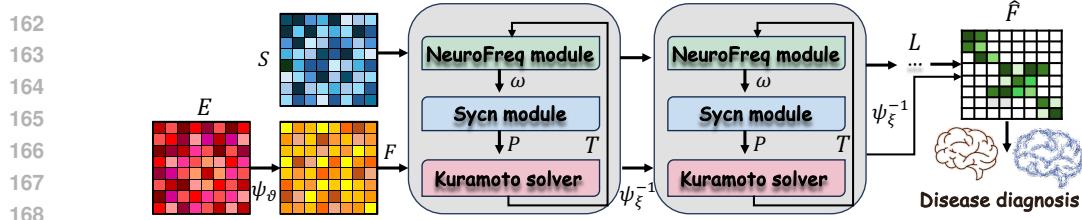
Positioning of the present work. The literature therefore leaves two key gaps: (1) *Lack system-level understanding*. Existing correlation-based methods primarily target localized SC-FC disruptions but fall short of providing a system-level understanding of how SC-FC coupling contributes mechanistically to disease progression. (2) *Lack model explainability across NDs*. Although various deep models have been proposed, few are specifically designed to uncover novel biological mechanisms underlying NDs.

Our *KM-Net* framework bridges these gaps by understanding phase-coupled neural oscillatory synchronization and deriving novel imaging biomarker from the learned SC-FC coupling mechanism that (i) quantify mechanistic role of SC-FC alteration in NDs, (ii) generate putative biomarkers of SC-FC coupling across AD, PD, and FTD, and (iii) yield state-of-the-art performance for presymptomatic diagnosis while remaining clinically interpretable.

3 METHODS

3.1 PRELIMINARY

Brain network construction. *First*, we construct SC from diffusion-weighted imaging (DWI) using fiber tractography, where the SC matrix $S \in \mathbb{R}^{N \times N}$ represents the connection strength between N brain regions. Each element s_{ij} is defined as: $s_{ij} = \frac{c_{ij}}{\sum_{k \neq i} c_{ik}}$, where c_{ij} is the streamline count between regions i and j . *Second*, FC is computed from resting-state fMRI by measuring the Pearson’s correlation between the blood oxygen level-dependent (BOLD) time series between different brain regions. The FC matrix $E \in \mathbb{R}^{N \times N}$ is given by: $E_{ij} = \frac{\text{cov}(x_i, x_j)}{\sigma_{x_i} \sigma_{x_j}}$, where x_i and

Figure 2: The network architecture of our proposed *KM-Net*.

x_j are the BOLD signals of regions i and j . They establish the foundation for analyzing SC-FC coupling in brain networks.

The Kuramoto model for oscillator synchronization. The Kuramoto model describes the emergence of synchronization in coupled phase oscillators, with applications across many fields. Each oscillator i evolves according to: $\frac{d\theta_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=1}^N \sin(\theta_j - \theta_i)$, where θ_i represents the phase, ω_i the intrinsic frequency, and K the coupling strength (Rodrigues et al., 2016).

3.2 I: *KM-Net*: SCALABLE KURAMOTO-BASED NEURAL SYNCHRONIZATION

Our *KM-Net* extends the classic Kuramoto model to describe how FC emerges from SC through neural phase synchronization. Unlike traditional SC-FC coupling models that rely on statistical correlations or deep learning without clear mechanistic insights (Dan et al., 2023; Mazumder et al., 2024; Li et al., 2018), we propose a physics-based, brain-inspired, learnable framework. Our *KM-Net* integrates oscillator dynamics, adaptive synchronization, and hierarchical memory encoding, dynamically estimating frequencies, refining phase interactions, and stabilizing functional fluctuations. Specifically, *KM-Net* consists of three core modules: the *NeuroFreq module*, which learns intrinsic oscillation frequencies; the *Sync module*, which refines phase interactions using a bidirectional coupling mechanism; and the *Kuramoto solver*, which iteratively integrates past oscillatory states to stabilize functional emergence. The network architecture of *KM-Net* is shown in Fig. 2.

Intrinsic frequency estimation via NeuroFreq module. The *NeuroFreq module* learns the intrinsic frequencies of neural oscillators, avoiding fixed distributions and instead dynamically parameterizing oscillation rates through a structured anti-symmetric transformation. Each oscillator i evolves according to the modified scalable Kuramoto equation:

$$\frac{d\mathbf{f}_i}{dt} = \omega_i + \lambda(s_i + \sum_{j=1}^N s_{ij} \mathbf{f}_i), \quad (1)$$

where $\mathbf{f}_i(t) \in \mathbb{R}^N$ represents the vector-based oscillator's phase information of region i (we omit the index t for simplicity), derived from the FC through a mapping function $F = \psi_\theta(E)$. ψ_θ encodes FC into an oscillatory representation, modeling each brain region as a dynamic oscillator. s_{ij} is the SC matrix defining coupling strengths at region (i, j) , λ is the global coupling coefficient. Unlike traditional methods that assume ω_i follows a predefined Gaussian distribution, we introduce a learnable transformation matrix Ω to parameterize intrinsic frequencies adaptively:

$$\omega_i = \Omega_i \mathbf{f}_i, \quad \text{where } \Omega = -\Omega^\top, \quad (2)$$

where Ω is constrained to be anti-symmetric to enforce realistic frequency shifts. This learned frequency dynamically modulates the oscillator phase evolution, leading to subject-specific synchronization behavior. The transformation ensures that oscillatory trajectories remain aligned with empirical neuroimaging observations rather than being stereotyped by arbitrary statistical priors. To maintain numerical stability, the transformed oscillations are expanded to align with the batch and time dimensions: $\omega_{b,t,i} = |\Omega_i \mathbf{f}_i|, \quad \forall b \in [1, B], \quad t \in [1, T], \quad i \in [1, N]$, where B, T represent the batch and time dimensions, and the expansion aligns the frequency tensor with temporal oscillatory updates.

Neural synchronization via Sync module. The *Sync module* refines phase interactions between brain regions by incorporating SC as a constraint while dynamically adapting interaction strengths through a learned synchronization matrix. Unlike classical Kuramoto models, which assume a fixed adjacency matrix S , we introduce a trainable coupling matrix $P \in \mathbb{R}^{N \times N}$, ensuring that oscillatory interactions evolve in a data-driven manner: $P = \frac{1}{2}(A + A^\top) \odot S$, where A is a trainable affinity matrix. The symmetric formulation enforces bidirectional coupling influence while maintaining neurobiological realism. The synchronization term in Eq. 1 can be redefined as $z_i = s_i + \sum_{j=1}^N p_{ij} \mathbf{f}_i$.

216 Note that a projection operation is applied to oscillatory updates onto a synchronization manifold,
 217 which prevents mode collapse and preserves diverse phase interactions: $\phi_{\mathbf{z}_i} = \mathbf{z}_i - \langle \mathbf{z}_i, \mathbf{f}_i \rangle \mathbf{f}_i$.

218 In this context, the evolution equation is reformulated as:

$$\frac{d\mathbf{f}_i}{dt} = \boldsymbol{\omega}_i + \lambda\phi(\mathbf{s}_i + \sum_{j=1}^N p_{ij} \mathbf{f}_j), \quad (3)$$

223 This projection effectively removes redundant phase components, maintaining oscillatory diversity
 224 and preventing over-constrained functional states. By iteratively refining synchronization trajectories,
 225 our method ensures that functional connectivity states emerge from structural constraints while
 226 preserving the flexibility necessary to accommodate individual variations in brain dynamics.

227 **Hierarchical memory-driven phase stabilization via Kuramoto solver.** The *Kuramoto solver* in-
 228 tegrates hierarchical memory mechanisms to refine phase synchronization trajectories over multiple
 229 iterations. Unlike traditional SC-FC coupling models that rely on direct functional simulations, our
 230 solver iteratively adjusts synchronization states via the update rule: $\frac{d\mathbf{f}_i}{dt} = \Omega_i \mathbf{f}_i + \lambda\phi_{\mathbf{z}_i}$. To ensure
 231 numerical stability, all phase updates are renormalized via spherical projection: $\zeta(\mathbf{f}_i) = \frac{\mathbf{f}_i}{\|\mathbf{f}_i\|}$. This
 232 prevents numerical divergence, ensuring that phase evolution remains well-conditioned across solver
 233 iterations. A critical advancement in our framework is the hierarchical memory-driven refinement,
 234 where past oscillatory states are recursively integrated into the phase update mechanism:

$$F^l(t+1) = \zeta(F^l(t) + \beta \frac{dF^l(t)}{dt}), \quad (4)$$

236 where β is the discretization step size, our method can dynamically re-weight structural connec-
 237 tions based on past functional interactions. This recursive learning mechanism enables long-range
 238 functional stabilization, allowing the model to iteratively adjust for transient fluctuations while pre-
 239 serving global oscillatory coherence. At the end of each layer l^{th} , we apply a readout function ψ_ξ^{-1}
 240 to obtain the feature representation. Ultimately, the feature representation at the final L^{th} layer is
 241 given by $\hat{F} = \psi_\xi^{-1}(F^L)$, where L denotes the number of network layers. To optimize synchro-
 242 nization learning, we employ a cross-entropy loss associated with the underlying clinical outcome
 243 (such as healthy or diseased), ensuring that the model effectively captures disease-related patterns
 244 in SC-FC coupling.

245 3.3 II: NOVEL PUTATIVE SYNCHRONIZATION-BASED SC-FC COUPLING BIOMARKERS

246 **Conceptual basis.** Healthy brains operate in a *metastable* regime, flexibly transitioning between
 247 synchronized and desynchronized states to support cognition. Neurodegeneration disrupts this bal-
 248 ance in network- and frequency-specific ways, manifesting as both *hypo-* and *hyper-synchrony*
 249 (Grieder et al., 2018; Brier et al., 2014; Hammond et al., 2007b; Shine et al., 2019). To quantify
 250 these alterations in network dynamics, we first extract a three-level hierarchy of Kuramoto Order
 251 Parameters (KOPs), then introduce a time-integrated *synchrony energy* statistic that summarizes
 252 global synchronization over time (serves as an index of *persistent phase-locking*).

253 *Step 1 — Instantaneous phase extraction.* For each node i and time point t , we reconstruct an
 254 analytic signal from the learned feature representation $F_i^l(t)$ and take its phase $\hat{\theta}_i^l(t) = \arg\{F_i^l(t) +$
 255 $\sqrt{-1}\mathcal{H}[F_i^l(t)]\}$, band-limiting to $0.01 - 0.1$ Hz to match infra-slow BOLD oscillations (Gleerean
 256 et al., 2012; Cabral et al., 2017a; Glomb et al., 2017).

257 *Step 2 — Region-wise KOP.* The basic unit of synchrony is the region-specific order parameter
 258 $R_i^l(t) = \left| \frac{1}{M} \sum_{m=1}^M e^{\sqrt{-1}\hat{\theta}_{i,m}^l(t)} \right|$, where $i = 1, \dots, N$ denotes the index of brain region, $m =$
 259 $1, \dots, M$ denotes the subjects. Because the modulus of a single oscillator is always 1, $R_i^l(t)$ acts as
 260 a *phase carrier* for downstream aggregation.

261 *Step 3 — Subnetwork-wise KOP.* Grouping regions into C subnetworks \mathcal{C}_j yields $R_j^l(t) =$
 262 $\left| \frac{1}{N_j} \sum_{i \in \mathcal{C}_j} e^{\sqrt{-1}\hat{\theta}_i^l(t)} \right|$, $j = 1, \dots, C$, which captures intra-subnetwork coherence and is sensi-
 263 tive to subnetwork-specific dysfunction.

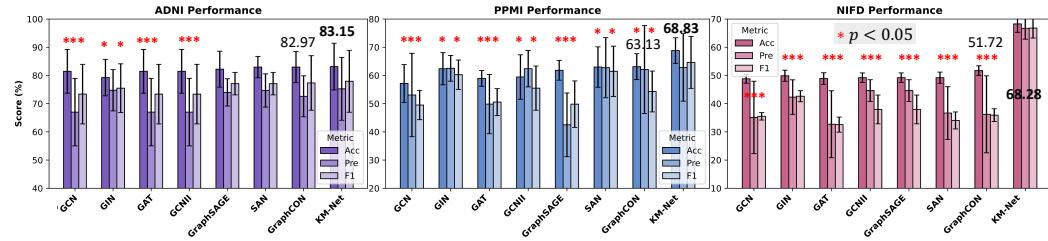
270 *Step 4 — Whole-brain KOP.* A global summary is obtained by averaging the regional magnitudes,
 271 $R_{\text{whole}}^l(t) = \frac{1}{N} \sum_{i=1}^N R_i^l(t) = \frac{1}{N} \sum_{i=1}^N |e^{\sqrt{-1}\hat{\theta}_i^l(t)}|$, providing a coarse but intuitive read-out of
 272 brain-wide phase coordination.

273 *Step 4 — Synchrony Energy (time-invariant biomarker).* To measure the *capacity* of each module
 274 to sustain synchrony over an entire training phase, we integrate squared coherence for subnetwork-
 275 based energy: $\text{SynE}_j = \frac{1}{TL} \sum_{l=0}^{L-1} \sum_{t=0}^{T-1} (R_j^l(t))^2$, and whole brain-based energy:
 276

$$\text{SynE}_{\text{whole}} = \frac{1}{TL} \sum_{l=0}^{L-1} \sum_{t=0}^{T-1} (R_{\text{whole}}^l(t))^2. \quad (5)$$

277 The ℓ_2 -norm in Eq. 5 encourages prolonged, high-coherence episodes while down-weighting brief
 278 coincidences. The C -dimensional vector $\text{SynE} = [\text{SynE}_1, \dots, \text{SynE}_C]$ and its global counterpart
 279 $\text{SynE}_{\text{whole}}$ together form an interpretable, disease-sensitive SC-FC coupling signature.

280 **Neuroscientific interpretation.** SynE_j quantifies how effectively the *structural* architecture of
 281 subnetwork j facilitates ongoing *functional* synchrony. Disease-related deviations in SynE may
 282 occur in either direction: low values indicate disrupted or fragmented coupling, while abnormally high
 283 values may reflect a breakdown of adaptive desynchronization, shifting the system toward overly
 284 regular or stereotyped activity patterns. This non-monotonic relationship aligns with prior theories
 285 of disrupted metastability in neurodegeneration (Deco et al., 2017; Hellyer et al., 2014). By span-
 286 ning regional, subnetwork-wise, and whole-brain scales, the putative biomarker links micro-level
 287 phase dynamics to macro-level connectome constraints, offering a principled readout for tracking
 288 disease progression.



301 Figure 3: Performance metrics (%) on ADNI, PPMI and NIFD datasets. ‘*’ denotes the significant
 302 improvement ($p < 0.05$).

4 EXPERIMENTS

4.1 DATASET AND EXPERIMENTAL SETUP

303 In our experiments, we evaluate the proposed method on three publicly available neurodegenerative
 304 disease datasets. (1) Alzheimer’s Disease Neuroimaging Initiative (ADNI): This dataset includes
 305 resting-state fMRI data from 135 subjects, comprising individuals diagnosed with AD and cogni-
 306 tively normal (CN) controls. It is designed to track brain changes associated with AD progression.
 307 (2) Parkinson’s Progression Markers Initiative (PPMI): A multi-center study that collects neuroim-
 308 aging data from 175 subjects, including individuals with PD, scans without evidence of dopaminergic
 309 deficit (SWEDD), prodromal PD, and CN. (3) Neuroimaging Initiative for Frontotemporal Lobar
 310 Degeneration (NIFD): This dataset focuses on FTD and includes resting-state fMRI data from 1,010
 311 subjects. Participants are categorized into CN, logopenic variant of primary progressive aphasia
 312 (LVPPA), behavioral variant frontotemporal dementia (BV), progressive non-fluent aphasia (PNFA),
 313 and semantic variant (SV) groups. All involved data can be found and downloaded in the Image and
 314 Data Archive (IDA)¹. The detailed demographic statistics are listed in Table 1. We utilize stand-
 315 arardized preprocessing pipelines² to produce the SC and FC. In all subsequent experiments, we
 316 parcellate the brain into 116 regions using the AAL (Tzourio-Mazoyer et al., 2002) atlas, resulting
 317

318 ¹<https://adni.loni.usc.edu/>, <https://memory.ucsf.edu/research-trials/research/allftd>, [https://www.ppmi-320 info.org/](https://www.ppmi-319 info.org/).

321 ²fmriprep.org/en/stable/, qskiprep.readthedocs.io/en/latest/.

Table 1: demographic characteristics of ADNI, PPMI, and NIFD cohorts.

Dataset	Size	Age		Sex		Disease stage	
		range	Mean \pm std	Male	Female	CN	ND
ADNI	135	55~85	70.8 \pm 6.5	65 (48.2%)	70 (51.8%)	110 (81.5%)	25 (18.5%)
PPMI	175	40~81	65.7 \pm 7.9	67 (38.2%)	108 (61.8%)	87 (49.7%)	88 (50.3%)
NIFD	1010	39~88	64.8 \pm 7.7	523 (51.8%)	487 (48.2%)	490 (48.5%)	520 (51.5%)

in 116×116 SC and FC matrices (Fig. 1, middle). We further divide the whole brain into six subnetworks, including frontoparietal network (*FPN*.) visual network (*Vis.*), default mode network (*D.M.*), Ventral attention network (*V.A.*), sensorimotor network (*SM.*) and Cerebellum (*Cereb.*). Notably, while the present study adopts the widely used AAL116 parcellation, it is well recognized that atlas choice can influence SC-FC analyses (Messé, 2020; Albers et al., 2021). Systematic cross-atlas validation remains relatively rare in the connectomics literature, despite repeated calls for such evaluation (Bryce et al., 2021; Turnbull et al., 2025). We therefore acknowledge atlas dependence as a potential limitation, and suggest future work to test robustness across multiple atlases.

We implemented all models on NVIDIA H100 NVL (94GB, a total of 8 GPUs). We used a batch size of 32, a learning rate of 1×10^{-3} , and a cosine annealing schedule without warm-up. All experiments were conducted for 300 epochs. We set $L = 2$, 256 hidden channels, 25 iteration steps ($T = 25$). The Kuramoto layer used attention-based connectivity ($A = \text{"attn"}$) with projection enabled. The model was initialized with $\omega = 0.01$, and the frequency length was learnable. Max-pooling was applied by default.

We compare our *KM-Net* against several graph-based approaches, including the vanilla graph neural network (GCN) (Kipf & Welling, 2016), graph isomorphism networks (GIN) (Xu et al., 2018), graph attention networks (GAT) (Veličković et al., 2017), recent popular method GCNII (Chen et al., 2020), GraphSAGE (Hamilton et al., 2017), the graph transformer with spectral attention network (SAN) (Kreuzer et al., 2021) and a graph-coupled oscillator networks (GraphCON) (Rusch et al., 2022). The graph embeddings of these methods are vectorized FCs and the adjacency matrices are SCs. For the disease diagnosis task, the ADNI dataset is formulated as a binary classification problem (AD vs. CN), the PPMI dataset as a four-class classification problem (PD, SWEDD, Prodromal, and CN), and the NIFD dataset as a five-class classification problem (CN, LVPPA, BV, PNFA, and SV). We evaluate model performance using accuracy (Acc), precision (Pre), and F1-score (F1), reporting results based on 5-fold cross-validation. The code will be released at <https://anonymous.4open.science/r/KuramNet-4EB8> upon publication.

4.2 DIAGNOSTIC PERFORMANCE ACROSS NEURODEGENERATIVE DISORDERS

Fig. 3 shows that *KM-Net* outperforms every competing graph model on all three cohorts in all three metrics with differences that are statistically significant (* $p < 0.05$, paired t-test). These consistencies confirm that modeling the oscillatory coupling between SC and FC reveals clinically meaningful patterns overlooked by models using only static SC or FC. The robustness of the improvements—modest but significant in ADNI, larger in PPMI, and most pronounced in NIFD—suggests that our synchronization-based framework is particularly effective when network disruptions are subtle or heterogeneous, laying the groundwork for the mechanistic, hypothesis-driven analyses that follow. We report the running time for each mode on ADNI dataset. Most standard GNNs run in 0.6–0.9 ms: GraphSAGE 0.57 (fastest), GIN 0.58, GCN 0.66, GAT 0.86, GCNII 0.82, GraphCON 0.85, with SAN at 1.02. Our *KM-Net* is also 1.02 ms, matching SAN—about 1.8 \times slower than GraphSAGE but still millisecond-level.

4.3 NOVEL INTERPRETATION OF NEURODEGENERATION VIA NEURAL SYNCHRONIZATION BIOMARKER

Global synchrony establishes a whole-brain baseline. We *hypothesize* that reduced neural synchronization is a putative indicator of neurodegeneration in aging brains. To test this, we quantify phase synchronization between regions using the KOP computed from the final feature representation F^L (see Methods). Fig. 4 (left) summarizes whole-brain KOP across diagnostic groups, age groups, and gender for the three cohorts. In every dataset, disease groups show a modest but systematic downward shift in mean KOP relative to CN group (ADNI: \sim 5%; PPMI: \sim 10%; NIFD: $<$ 5%). Because the grand-average KOP aggregates phase information over the entire cortex, even

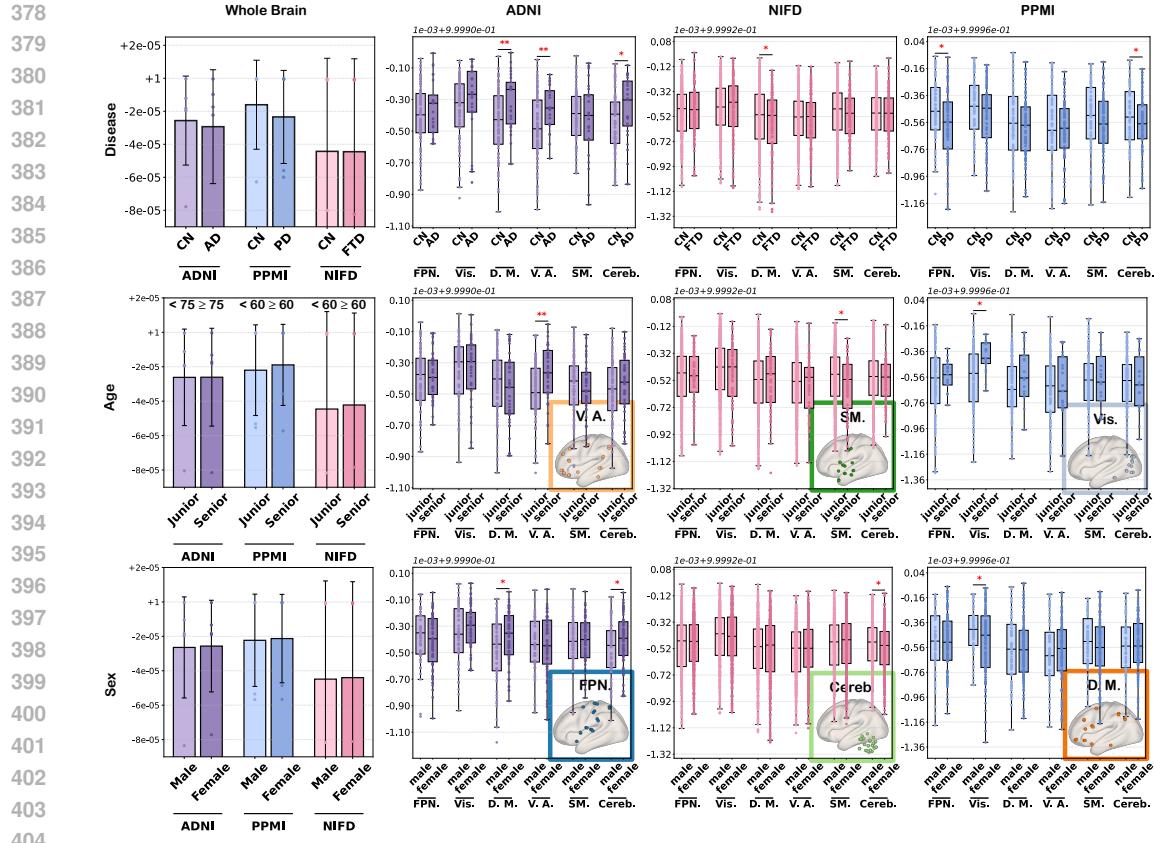


Figure 4: Whole-brain (left) and subnetwork-wise (right) Kuramoto synchrony for ADNI, PPMI and NIFD. Disease groups show lower global KOP than CN, while subnetwork-wise synchrony energy pinpoints the most affected networks—*D.M.* and *Vis.* in AD, *D.M.* in FTD, and *FPN.*, *Cereb.* in PD. Asterisks mark significant group differences (*, $p < 0.05$ **, $p < 0.001$).

subtle regional desynchronization yields small absolute changes; nevertheless, the consistent direction across AD, PD, and FTD supports the view that large-scale synchrony diminishes with neurodegeneration. By contrast, neither age (Junior vs. Senior) nor gender (Male vs. Female) produces discernible differences, indicating that the observed desynchronization is not trivially driven by demographics. Although the global effects are modest—reflecting disease heterogeneity and the dilution from whole-brain averaging—they provide a conservative benchmark. We therefore turn to a finer-grained analysis of *subnetwork-resolved* KOP to capture region-specific dysfunction, and a time-layer-integrated *synchrony-energy* measure, $\text{SynE}_{\text{whole}}$ (Eq. 5), which indexes *persistent* phase-locking.

Subnetwork-wise synchrony reveals disorder-specific network liabilities. Moving from a whole-brain average to *subnetwork-resolved* KOPs amplifies group differences and aligns them with canonical network signatures (Fig. 4 right; asterisks denote $p < 0.05$). (1) *ADNI* — Within-network KOP is elevated in patients relative to CN in the *default-mode network* (*D.M.*) and, to a lesser extent, the *visual network* (*Vis.*) (Buckner et al., 2005). Higher KOP indicates stronger *instantaneous* synchrony, consistent with a loss of adaptive desynchronization under E–I imbalance (Palop & Mucke, 2016). Thus, the subnetwork-wise KOP captures a transmodal (*D.M.*) plus posterior-sensory pattern of hypersynchrony in early AD. (2) *NIFD* — The *D.M.* is the only subnetwork exhibiting a significant decline, indicating reduced intra-network synchrony; this mirrors anterior cingulo-frontal decoupling in behavioural-variant FTD (Seeley et al., 2009) and accords with its social-cognitive and executive impairments. (3) *PPMI* — PD shows lower within-network KOP than CN in the *frontoparietal network* (*FPN.*) and *cerebellum*, indicating reduced intra-network synchrony. This fits with dopamine depletion disrupting basal ganglia–thalamo–cortical and cerebello–thalamo–cortical loops, weakening executive circuitry and timing/sensorimotor integration; although compensatory increases are sometimes reported, early drug-naïve PD typically exhibits diminished network coherence (Boon et al., 2020; Luo et al., 2014; Lefevre et al., 2016). Age- and gender-related

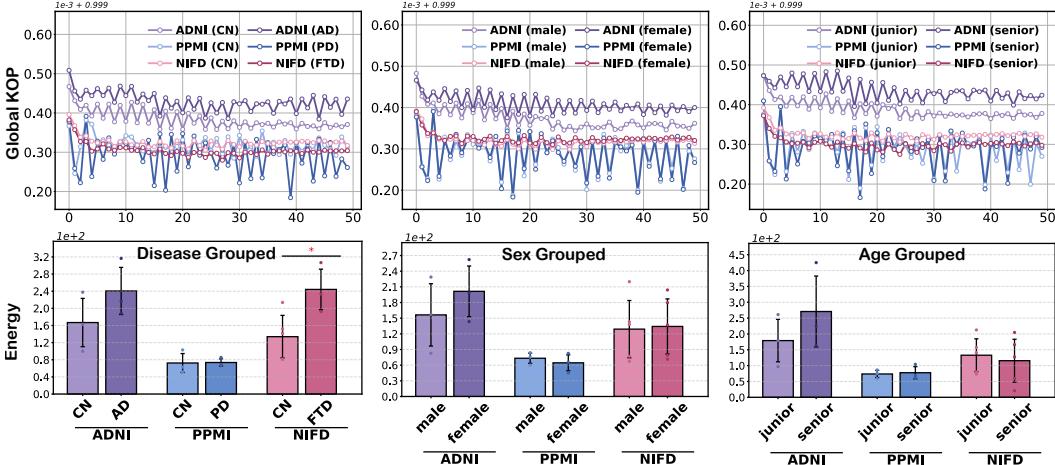


Figure 5: Global (whole brain) Kuramoto synchrony across 50 iterations (top) and its time-layer-integrated energy (bottom). Disease groups show lower and more volatile KOP than controls, especially in PD, while age and gender have negligible impact. Synch-energy is elevated in AD and FTD, indicating more persistent phase-locking; PD shows only a modest increase.

effects are modest and subnetwork-specific—significant contrasts appear occasionally (e.g., age: ADNI–FPN., NIFD–D.M., PPMI–Vis.; gender: ADNI–Vis., NIFD–SM., PPMI–Cerebellum) and are clearly smaller than the disease-group effects.

Iteration- and layer-resolved analysis of global synchrony. Fig. 5 tracks the *global* KOP (whole brain, Eq. 5) across 50 numerical integration steps (top) and encodes the same information into a single synchrony-energy scalar (bottom; Eq. 5). Two features stand out: (1) *Slower convergence and lower plateaus in disease.* Disease trajectories equilibrate more slowly and $\sim 10\text{--}20\%$ lower than CN, implying a weaker-synchrony attractor and aligning with models where reduced structural coupling delays global phase alignment (Cabral et al., 2017b). (2) *Pronounced temporal volatility in Parkinson’s disease.* PPMI trajectories show larger peak-to-trough excursions—consistent with burst-like β oscillations in PD—indicating rapid alternations between synchronized and desynchronized states (Hammond et al., 2007a; Herz et al., 2017). *Energy read-out.* SynE is elevated in AD (ADNI) and highest in FTD (NIFD; $p < 0.05$), indicating more *persistent* phase-locking (hypersynchrony) and reduced adaptive desynchronization in these dementias (Palop & Mucke, 2016; Zhou & Seeley, 2014). In contrast, PD (PPMI) shows only a modest, non-significant change relative to CN, consistent with transient, burst-driven dynamics rather than a sustained shift in global synchrony (Hammond et al., 2007a; Herz et al., 2017). *Minimal demographic influence.* Compared with the clinical groups, age- and gender-related differences are minor in both the temporal and energy domains, reinforcing that the observed synchrony changes are driven primarily by disease rather than by demographic factors.

Taken together, a lower global mean KOP accompanied by a higher whole-brain SynE suggests that neurodegeneration yields fewer but longer-lasting bouts of synchrony: overall average coupling is weakened, yet the episodes that do emerge remain phase-locked for longer, reflecting more persistent hypersynchrony when it occurs.

5 CONCLUSION

In this work, we presented *KM-Net*, a brain-inspired deep Kuramoto framework that links structural connectomes to phase-synchrony dynamics. By modelling how oscillatory synchrony emerges from structural coupling, *KM-Net* yields an interpretable, biologically grounded representation of whole-brain fluctuations. Across three independent cohorts, our *KM-Net* achieved state-of-the-art diagnostic accuracy for AD, PD and FTD and exposed disorder-specific vulnerabilities. At the macroscale, disease groups showed a distinctive burst-like synchrony regime: global mean KOP was lower, yet whole-brain SynE was higher, indicating fewer but longer-lasting episodes of hypersynchrony. Taken together, our results demonstrate the potential of neural-synchrony modelling to advance computational neuroscience and provide a practical, interpretable tool for early detection and longitudinal tracking of neurodegenerative progression.

486 REFERENCES
487

488 Farras Abduelnor, Henning U Voss, and Ashish Raj. Network diffusion accurately models the rela-
489 tionship between structural and functional brain connectivity networks. *Neuroimage*, 90:335–347,
490 2014.

491 Kristoffer J Albers, Karen S Ambrosen, Matthew G Liptrot, Tim B Dyrby, Mikkel N Schmidt, and
492 Morten Mørup. Using connectomics for predictive assessment of brain parcellations. *NeuroIm-
493 age*, 238:118170, 2021.

494 Bastiaan R Bloem, Michael S Okun, and Christine Klein. Parkinson’s disease. *The Lancet*, 397
495 (10291):2284–2303, 2021.

496

497 Lennard I Boon, Dagmar H Hepp, Linda Douw, Noëlle van Geenen, Tommy AA Broeders,
498 Jeroen JG Geurts, Henk W Berendse, and Menno M Schoonheim. Functional connectivity be-
499 tween resting-state networks reflects decline in executive function in parkinson’s disease: A lon-
500 gitudinal fmri study. *NeuroImage: Clinical*, 28:102468, 2020.

501 Matthew R Brier, Jewell B Thomas, Anne M Fagan, Jason Hassenstab, David M Holtzman, Tam-
502 mme L Benzinger, John C Morris, and Beau M Ances. Functional connectivity and graph theory
503 in preclinical alzheimer’s disease. *Neurobiology of aging*, 35(4):757–768, 2014.

504

505 Nessa V Bryce, John C Flournoy, João F Guassi Moreira, Maya L Rosen, Kelly A Sambook, Patrick
506 Mair, and Katie A McLaughlin. Brain parcellation selection: An overlooked decision point with
507 meaningful effects on individual differences in resting-state functional connectivity. *NeuroImage*,
508 243:118487, 2021.

509 Randy L Buckner, Abraham Z Snyder, Benjamin J Shannon, Gina LaRossa, Rimmon Sachs, An-
510 thony F Fotenos, Yvette I Sheline, William E Klunk, Chester A Mathis, John C Morris, et al.
511 Molecular, structural, and functional characterization of alzheimer’s disease: evidence for a rela-
512 tionship between default activity, amyloid, and memory. *Journal of neuroscience*, 25(34):7709–
513 7717, 2005.

514 Joana Cabral, Etienne Hugues, Olaf Sporns, and Gustavo Deco. Role of local network oscillations
515 in resting-state functional connectivity. *Neuroimage*, 57(1):130–139, 2011.

516

517 Joana Cabral, Morten L Kringelbach, and Gustavo Deco. Functional connectivity dynamically
518 evolves on multiple time-scales over a static structural connectome: Models and mechanisms.
519 *NeuroImage*, 160:84–96, 2017a.

520 Joana Cabral, Diego Vidaurre, Paulo Marques, Ricardo Magalhães, Pedro Silva Moreira, José
521 Miguel Soares, Gustavo Deco, Nuno Sousa, and Morten L Kringelbach. Cognitive performance
522 in healthy older adults relates to spontaneous switching between states of functional connectivity
523 during rest. *Scientific reports*, 7(1):5135, 2017b.

524 Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph con-
525 volutional networks. In *International Conference on Machine Learning*, pp. 1725–1735. PMLR,
526 2020.

527

528 Jeffrey Cummings. Disease modification and neuroprotection in neurodegenerative disorders. *Trans-
529 lational Neurodegeneration*, 6:1–7, 2017.

530 Tingting Dan, Minjeong Kim, Won Hwa Kim, and Guorong Wu. Uncovering structural-functional
531 coupling alterations for neurodegenerative diseases. In *International Conference on Medical Im-
532 age Computing and Computer-Assisted Intervention*, pp. 87–96. Springer, 2023.

533 Gustavo Deco, Morten L Kringelbach, Viktor K Jirsa, and Petra Ritter. The dynamics of resting
534 fluctuations in the brain: metastability and its dynamical cortical core. *Scientific reports*, 7(1):
535 3095, 2017.

536 Michael C Donohue, Reisa A Sperling, Ronald Petersen, Chung-Kai Sun, Michael W Weiner, Paul S
538 Aisen, Alzheimer’s Disease Neuroimaging Initiative, et al. Association between elevated brain
539 amyloid and subsequent cognitive decline among cognitively normal persons. *Jama*, 317(22):
2305–2316, 2017.

540 Alexander J Ehrenberg, Ayesha Khatun, Emma Coomans, Matthew J Betts, Federica Capraro, Elis-
 541 abeth H Thijssen, Konstantin Senkevich, Tehmina Bharucha, Mehrsa Jafarpour, Peter NE Young,
 542 et al. Relevance of biomarkers across different neurodegenerative diseases. *Alzheimer's research
 543 & therapy*, 12:1–11, 2020.

544 Enrico Glerean, Juha Salmi, Juha M Lahnakoski, Iiro P Jääskeläinen, and Mikko Sams. Functional
 545 magnetic resonance imaging phase synchronization as a measure of dynamic functional connec-
 546 tivity. *Brain connectivity*, 2(2):91–101, 2012.

547 Katharina Glomb, Adrián Ponce-Alvarez, Matthieu Gilson, Petra Ritter, and Gustavo Deco. Resting
 548 state networks in empirical and simulated dynamic functional connectivity. *NeuroImage*, 159:
 549 388–402, 2017.

550 Joaquín Goñi, Martijn P Van Den Heuvel, Andrea Avena-Koenigsberger, Nieves Velez de Men-
 551 dizabal, Richard F Betzel, Alessandra Griffa, Patric Hagmann, Bernat Corominas-Murtra, Jean-
 552 Philippe Thiran, and Olaf Sporns. Resting-brain functional connectivity predicted by analytic
 553 measures of network communication. *Proceedings of the National Academy of Sciences*, 111(2):
 554 833–838, 2014.

555 Matthias Grieder, Danny JJ Wang, Thomas Dierks, Lars-Olof Wahlund, and Kay Jann. Default mode
 556 network complexity and cognitive decline in mild alzheimer's disease. *Frontiers in neuroscience*,
 557 12:770, 2018.

558 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 559 *Advances in neural information processing systems*, 30, 2017.

560 Christian Hammond, Hagai Bergman, and Peter Brown. Pathological synchronization in Parkinson's
 561 disease: Networks, models and treatments, 2007a.

562 Constance Hammond, Hagai Bergman, and Peter Brown. Pathological synchronization in parkin-
 563 son's disease: networks, models and treatments. *Trends in neurosciences*, 30(7):357–364, 2007b.

564 Michał Harciarek and Stephanie Cosentino. Language, executive function and social cognition in
 565 the diagnosis of frontotemporal dementia syndromes. *International Review of Psychiatry*, 25(2):
 566 178–196, 2013.

567 Peter J Hellyer, Murray Shanahan, Gregory Scott, Richard JS Wise, David J Sharp, and Robert
 568 Leech. The control of global brain dynamics: opposing actions of frontoparietal control and
 569 default mode networks on attention. *Journal of Neuroscience*, 34(2):451–461, 2014.

570 Damian M. Herz, Simon Little, David J. Pedrosa, Maarten Speekenbrink, Anja Horn, Rafal Bogacz,
 571 and Peter Brown. Mechanisms underlying decision-making in the mothers of Parkinson's dis-
 572 ease: The role of oscillatory bursts. *Proceedings of the National Academy of Sciences*, 114(49):
 573 E10494–E10503, 2017. doi: 10.1073/pnas.1702512114.

574 Christopher J Honey, Olaf Sporns, Leila Cammoun, Xavier Gigandet, Jean-Philippe Thiran, Reto
 575 Meuli, and Patric Hagmann. Predicting human resting-state functional connectivity from struc-
 576 tural connectivity. *Proceedings of the National Academy of Sciences*, 106(6):2035–2040, 2009.

577 Willemijn J Jansen, Rik Ossenkoppela, Dirk L Knol, Betty M Tijms, Philip Scheltens, Frans RJ
 578 Verhey, Pieter Jelle Visser, Pauline Aalten, Dag Aarsland, Daniel Alcolea, et al. Prevalence of
 579 cerebral amyloid pathology in persons without dementia: a meta-analysis. *Jama*, 313(19):1924–
 580 1938, 2015.

581 Andreas Jeromin and Robert Bowser. Biomarkers in neurodegenerative diseases. *Neurodegenerative
 582 diseases: pathology, mechanisms, and potential therapeutic targets*, pp. 491–528, 2017.

583 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 584 works. *arXiv preprint arXiv:1609.02907*, 2016.

585 Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
 586 thinking graph transformers with spectral attention. *Advances in Neural Information Processing
 587 Systems*, 34:21618–21629, 2021.

594 Yoshiki Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In *International*
 595 *symposium on mathematical problems in theoretical physics: January 23–29, 1975, kyoto*
 596 *university, kyoto/Japan*, pp. 420–422. Springer, 1975.

597

598 Anthony E Lang. Clinical trials of disease-modifying therapies for neurodegenerative diseases: the
 599 challenges and the future. *Nature medicine*, 16(11):1223–1226, 2010.

600

601 Shannon C Lefavre, Matt JN Brown, and Quincy J Almeida. Cerebellar involvement in parkinson’s
 602 disease resting tremor. *Cerebellum & Ataxias*, 3(1):13, 2016.

603

604 Bai Li, Xue Chen, Yue Yuan, and Yanjiang Wang. Analyzing the relationship between human brain
 605 structural and functional connectivity using kuramoto model. In *2018 14th IEEE International*
 606 *Conference on Signal Processing (ICSP)*, pp. 774–779. IEEE, 2018.

607

608 ChunYan Luo, Wei Song, Qin Chen, ZhenZhen Zheng, Ke Chen, Bei Cao, Jing Yang, JianPeng Li,
 609 XiaoQi Huang, QiYong Gong, et al. Reduced functional connectivity in early-stage drug-naive
 610 parkinson’s disease: a resting-state fmri study. *Neurobiology of aging*, 35(2):431–441, 2014.

611

612 Badhan Mazumder, Ayush Kanyal, Lei Wu, Vince D. Calhoun, and Dong Hye Ye. Physics-guided
 613 multi-view graph neural network for schizophrenia classification via structural-functional cou-
 614 pling. In *International Workshop on PRedictive Intelligence In MEDicine*, pp. 61–73. Springer,
 615 2024.

616

617 Arnaud Messé. Parcellation influence on the connectivity-based structure–function relationship in
 618 the human brain. *Human brain mapping*, 41(5):1167–1180, 2020.

619

620 Vladislav Myrov, Alina Suleimanova, Samanta Knapič, Paula Partanen, Maria Vesterinen, Wenya
 621 Liu, Satu Palva, and J Matias Palva. Hierarchical whole-brain modeling of critical synchronization
 622 dynamics in human brains. *bioRxiv*, pp. 2024–05, 2024.

623

624 Jorge J Palop and Lennart Mucke. Network abnormalities and interneuron dysfunction in alzheimer
 625 disease. *Nature Reviews Neuroscience*, 17(12):777–792, 2016.

626

627 Johanna L Popp, Jonas A Thiele, Joshua Faskowitz, Caio Seguin, Olaf Sporns, and Kirsten Hilger.
 628 Structural-functional brain network coupling during cognitive demand reveals intelligence-
 629 relevant communication strategies. *Communications Biology*, 8(1):855, 2025.

630

631 Martin Prince, Anders Wimo, Maëlenn Guerchet, Gemma-Claire Ali, Yu-Tzu Wu, and Matthew
 632 Prina. *World Alzheimer Report 2015. The Global Impact of Dementia: An analysis of prevalence,*
 633 *incidence, cost and trends*. PhD thesis, Alzheimer’s Disease International, 2015.

634

635 Adam C Rayfield, Taotao Wu, Jared A Rifkin, and David F Meaney. Individualized mouse brain
 636 network models produce asymmetric patterns of functional connectivity after simulated traumatic
 637 injury. *Network Neuroscience*, 9(1):326–351, 2025.

638

639 Francisco A Rodrigues, Thomas K DM Peron, Peng Ji, and Jürgen Kurths. The kuramoto model in
 640 complex networks. *Physics Reports*, 610:1–98, 2016.

641

642 T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bron-
 643 stein. Graph-coupled oscillator networks. In *International Conference on Machine Learning*, pp.
 644 18888–18909. PMLR, 2022.

645

646 Philip Scheltens, Bart De Strooper, Miaa Kivipelto, Henne Holstege, Gael Chételat, Charlotte E
 647 Teunissen, Jeffrey Cummings, and Wiesje M van der Flier. Alzheimer’s disease. *The Lancet*, 397
 648 (10284):1577–1590, 2021.

649

650 William W Seeley, Richard K Crawford, Juan Zhou, Bruce L Miller, and Michael D Greicius. Neu-
 651 rodegenerative diseases target large-scale human brain networks. *Neuron*, 62(1):42–52, 2009.

652

653 James M Shine, Michael Breakspear, Peter T Bell, Kaylena A Eigoetz Martens, Richard Shine,
 654 Oluwasanmi Koyejo, Olaf Sporns, and Russell A Poldrack. Human cognition involves the dy-
 655 namic integration of neural activity and neuromodulatory systems. *Nature neuroscience*, 22(2):
 656 289–296, 2019.

648 Yibao Sun, Pan Wang, Kun Zhao, Pindong Chen, Yida Qu, Zhuangzhuang Li, Suyu Zhong,
 649 Bo Zhou, Jie Lu, Xi Zhang, et al. Structure–function coupling reveals the brain hierarchical
 650 structure dysfunction in alzheimer’s disease: A multicenter study. *Alzheimer’s & Dementia*, 20
 651 (9):6305–6315, 2024.

652 Adam Turnbull, Feng Yankee Lin, and Zhengwu Zhang. Issues of parcellation in the calculation of
 653 structure–function coupling. *Nature Reviews Neuroscience*, 26(1):60–60, 2025.

654 Nathalie Tzourio-Mazoyer, Brigitte Landeau, Dimitri Papathanassiou, Fabrice Crivello, Octave
 655 Etard, Nicolas Delcroix, Bernard Mazoyer, and Marc Joliot. Automated anatomical labeling
 656 of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject
 657 brain. *Neuroimage*, 15(1):273–289, 2002.

658 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 659 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

660 David A Wolk, Carl Sadowsky, Beth Safirstein, Juha O Rinne, Ranjan Duara, Richard Perry, Marc
 661 Agronin, Jose Gamez, Jiong Shi, Adrian Ivanoiu, et al. Use of flutemetamol f 18–labeled positron
 662 emission tomography and other biomarkers to assess risk of clinical progression in patients with
 663 amnestic mild cognitive impairment. *JAMA neurology*, 75(9):1114–1123, 2018.

664 Han Wu, Yingping Lu, Luyao Wang, Jinglong Wu, Ying Liu, and Zhilin Zhang. Dynamic and static
 665 structure–function coupling with machine learning for the early detection of alzheimer’s disease.
 666 *Human Brain Mapping*, 46(5):e70202, 2025.

667 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 668 networks? *arXiv preprint arXiv:1810.00826*, 2018.

669 Ruwei Yao, Yichao Li, Xintong Yao, Kang Wang, Jingling Qu, Xiaolong Zou, and Bo Hong. Brain
 670 wave dynamics in a hopfield-kuramoto model. *Physical Review E*, 111(4):044310, 2025.

671 Juan Zhou and William W Seeley. Network dysfunction in alzheimer’s disease and frontotemporal
 672 dementia: implications for psychiatry. *Biological psychiatry*, 75(7):565–573, 2014.

673 Ting Zou, Chen Chen, Huafu Chen, Xuyang Wang, Lin Gan, Chong Wang, Qing Gao, Chunyan
 674 Zhang, Wei Liao, Jingliang Cheng, et al. Structural-functional connectivity decoupling in multi-
 675 scale brain networks in parkinson’s disease. *BMC neuroscience*, 25(1):78, 2024.

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701