
Adversarial Schrödinger Bridge Matching

Nikita Gushchin∗

Skoltech†
Moscow, Russia

n.gushchin@skoltech.ru

Daniil Selikhanovych∗

Skoltech†
Moscow, Russia

selikhanovychdaniil@gmail.com

Sergei Kholkin∗

Skoltech†
Moscow, Russia

s.kholkin@skoltech.ru

Evgeny Burnaev
Skoltech†, AIRI ‡

Moscow, Russia
e.burnaev@skoltech.ru

Alexander Korotin
Skoltech†, AIRI‡
Moscow, Russia

a.korotin@skoltech.ru

Abstract

The Schrödinger Bridge (SB) problem offers a powerful framework for combining
optimal transport and diffusion models. A promising recent approach to solve the
SB problem is the Iterative Markovian Fitting (IMF) procedure, which alternates
between Markovian and reciprocal projections of continuous-time stochastic pro-
cesses. However, the model built by the IMF procedure has a long inference time
due to using many steps of numerical solvers for stochastic differential equations.
To address this limitation, we propose a novel Discrete-time IMF (D-IMF) proce-
dure in which learning of stochastic processes is replaced by learning just a few
transition probabilities in discrete time. Its great advantage is that in practice it
can be naturally implemented using the Denoising Diffusion GAN (DD-GAN), an
already well-established adversarial generative modeling technique. We show that
our D-IMF procedure can provide the same quality of unpaired domain translation
as the IMF, using only several generation steps instead of hundreds. We provide
the code at https://github.com/Daniil-Selikhanovych/ASBM.

Figure 1: Our D-IMF approach performs unpaired image-to-image translation in just a few steps,
achieving results comparable to the hundred-step IMF [47]. Celeba [33], male→female (128× 128).

∗Equal contribution
†Skolkovo Institute of Science and Technology
‡Artificial Intelligence Research Institute

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Daniil-Selikhanovych/ASBM

1 Introduction
Recent generative models based on the Flow Matching [27] and Rectified Flows [30] show great
potential as a successor of classical denoising diffusion models such as DDPM [15]. Both these
approaches consider the same problem of learning an Ordinary Differential Equation (ODE) that
interpolates one given distribution to the other one, e.g., noise to data. Thanks to the close connection
to the theory of Optimal Transport (OT) problem [52], Flow Matching and Rectified Flows approaches
typically have faster inference compared to classical diffusion models [32, 39]. Also, it was shown
that they can outperform diffusion models on the high-resolution text-to-image synthesis: they even
lie in the foundation of the recent Stable Diffusion 3 model [8].
The extension of Flow Matching and Rectified Flow approaches to the SDE are Bridge Matching
(Markovian projection) and Iterative Markovian fitting (IMF) procedures [36, 47, 35], respectively.
They also have a close connection with the OT theory. Specifically, it is known [47, 35] that IMF
converges to the solution of the dynamic formulation of entropic optimal transport (EOT), also known
as the Schrödinger Bridge (SB). However, learning continuous-time SDEs in IMF is non-trivial and,
unfortunately, leads to long inference due to the necessity to use many steps of numerical solvers.

Contributions. This paper addresses the above-mentioned limitation of the existing Iterative Marko-
vian Fitting (IMF) framework by introducing a novel approach to learn the Schrödinger Bridge.
1. Theory I. We introduce a Discrete Iterative Markovian Fitting (D-IMF) procedure (M3.2, 3.3),

which innovatively applies discrete Markovian projection to solve the Schrödinger Bridge problem
without relying on Stochastic Differential Equations. This approach significantly simplifies the
inference process, enabling it to be accomplished (theoretically) in just a few evaluation steps.

2. Theory II. We derive closed-form update formulas for the D-IMF procedure when dealing with
high-dimensional Gaussian distributions. This advancement permits a detailed empirical analysis
of our method’s convergence rate and enhances its theoretical foundation (M3.4, 4.1).

3. Practice. For general data distributions available by samples, we propose an algorithm (ASBM)
to implement the discrete Markovian projection and our D-IMF procedure in practice (M4.2). Our
algorithm is based on adversarial learning and Denoising Diffusion GAN [53]. Our learned SB
model uses just 4 evaluation steps for inference (M3.5) instead of hundreds of the basic IMF [47].

Notations. In the paper, we simultaneously work with the continuous stochastic processes and discrete
stochastic processes in the D-dimensional Euclidean space RD. We denote by P(C([0, 1]),RD) the
set of continuous stochastic processes with time t ∈ [0, 1], i.e., the set of distributions on continuous
trajectories f : [0, 1] → RD. We use dWt to denote the differential of the standard Wiener process.

To establish a link between continuous and discrete stochastic processes, we fix N ≥ 1 intermediate
time moments 0 = t0 < t1 < · · · < tN < tN+1 = 1 together with t0 = 0 and tN+1 = 1. We con-
sider discrete stochastic processes with those time-moments as the elements of the set P(RD×(N+2))
of probability distributions on RD×(N+2). Among such discrete processes, we are specifically
interested in subset P2,ac(RD×(N+2)) ⊂ P(RD×(N+2)) of absolutely continuous distributions on
RD×(N+2) which have a finite second moment and entropy. For any such q ∈ P2,ac(RD×(N+2)),
we write q(x0, xt1 , . . . , xtN+1

) to denote its density at a point (x0, xt1 , . . . , xtN , x1) ∈ RD×(N+2).
For continuous process T , we denote by pT ∈ P(RD×(N+2)) the discrete process which is the
finite-dimensional projection of T to time moments 0 = t0 < t1 < · · · < tN < tN+1 = 1. For con-
venience we also use the notation xin = (xt1 , . . . , xtN) to denote the vector of all intermediate-time
variables. In what follows, KL is a short notation for the Kullback-Leibler divergence.

2 Background
We start with recalling the Bridge Matching and Iterative Propotional Fitting procedures developed
for continuous-time stochastic processes (M2.1). Next, we discuss the Schrödinger Bridge problem,
the solution to which is the unique fixed point of Iterative Markovian Fitting procedure (M2.2).

2.1 Bridge Matching and Iterative Markovian Fitting Procedures
Modern diffusion and flow generative modeling are mainly about the construction of a model that
interpolates one probability distribution p0 ∈ P2,ac(RD) to some another probability distribution
p1 ∈ P2,ac(RD). One of the general approaches for this task is the Bridge Matching [29, 31, 3].

Reciprocal processes. The Bridge Matching procedure is applied to the processes, which are
represented as a mixture of Brownian Bridges. Consider the Wiener process W ϵ with the volatility ϵ
which start at p0, i.e., the process given by the SDE: dxt =

√
ϵdWt, x0 ∼ p0. Let W ϵ

|x0,x1
denote

2

the stochastic process W ϵ conditioned on values x0, x1 at times t = 0, 1, respectively. This process
W ϵ

|x0,x
is called the Brownian Bridge [17, Chapter 9]. For some q(x0, x1) ∈ P2,ac(RD×2) with

q(x0) = p0(x0) and q(x1) = p1(x1) the process Tq
def
=

∫
W ϵ

|x0,x1
dq(x0, x1) is called the mixture of

Brownian Bridges. Following [47], we say that mixtures of Brownian Bridges form a reciprocal class
of processes (for the Brownian Bridge). For brevity, we call these processes just reciprocal processes.

Bridge matching [29, 31]. The goal of Bridge Matching (with the Brownian Bridge) is to construct
continuous-time Markovian processM from p0 to p1 in the form of SDE: dxt = v(xt, t)dt+

√
ϵdWt.

This is achieved by using the Markovian projection of a reciprocal process Tq =
∫
W ϵ

|x0,x1
dq(x0, x1),

which aims to find the Markovian process M which is the most similar to Tq in the sense of KL:

projM(Tq)
def
= argmin

M∈M
KL (Tq∥M) ,

where M ⊂ P(C([0, 1]),RD) is the set of all Markovian processes. For the Brownian Bridge
W ϵ

|x0,x1
it is known [47, 11] that the SDE and the drift v(xt, t) of projM(Tq) is given by:

dxt = v(xt, t)dt+
√
ϵdWt, v(xt, t) =

∫
x1 − xt
1− t

pTq (x1|xt)dx1,

where pTq (x1|xt) the conditional distribution of the stochastic process Tq at time moments t and 1.
The process projM(Tq) has the same time marginal distributions pTq (xt) as the original Brownian
bridge mixture Tq. However, the joint distribution pTq (x0, x1) of Tq and the joint distribution
pprojM(Tq)(x0, x1) of its projection projM(Tq) do not coincide in the general case [6], see Figure 2.

Figure 2: Markovian projection of a reciprocal stochastic process Tq .

Iterative Markovian Fitting [47, 35, 1]. The Iterative Markovian Fitting procedure introduces a
second type of projection of continuous-time stochastic processes called the Reciprocal projection.
For a process T , it is is defined by projR(T) =

∫
W ϵ

|x0,x1
dpT (x0, x1), see illustrative Figure 3.

Figure 3: Reciprocal projection of a stochastic process T , i.e., projR(T) =
∫
W ϵ

|x0,x1
dpT (x0, x1).

The process projR(T) is called a projection, since:

projR(T) = argmin
R∈R

KL (T∥R) ,

where R ⊂ P(C([0, 1]),RD) is the set of all reciprocal processes. The Iterative Markovian Fitting
procedure is an alternation between Markovian and Reciprocal projections:

T 2l+1 = projM(T 2l), T 2l+2 = projR(T 2l+1),

It is known that the procedure converges to the unique stochastic process T ∗, which is known as a
solution to the Schrödinger Bridge (SB) problem between p0 and p1. Furthermore, the SB T ∗ is the
only process starting at p0 and ending at p1 that is both Markovian and reciprocal [25].

3

2.2 Schrödinger Bridge (SB) Problem
Schrödinger Bridge problem. The Schrödinger Bridge problem [44] was proposed in 1931/1932 by
Erwin Schrödinger. For the Wiener prior W ϵ Schrödinger Bridge problem between two probability
distributions p0 ∈ P2,ac(RD) and p1 ∈ P2,ac(RD) is to minimize the following objective:

min
T∈F(p0,p1)

KL (T∥W ϵ) , (1)

where F(p0, p1) ⊂ P(C([0, 1]),RD) is the subset of stochastic processes which starts at distribution
p0 (at the time t = 0) and end at p1 (at t = 1). The Scrhödinger Bridge has a unique solution, which
is a diffusion process T ∗ described by the SDE: dXt = v∗(Xt, t)dt+

√
ϵdWt [25]. The process T ∗

is called the Schrödinger Bridge and v∗ : RD × [0, 1] → RD is called the optimal drift.

From the practical point of view, the solution to the SB problem T ∗ tends to preserve the Euclidean
distance between start point x0 and endpoint x1. The equivalent form of SB problem, the static
Schrödinger Bridge problem, explains this property more clearly.

Static Schrödinger Bridge problem. One may decompose KL(T ||W ϵ) as [51, Appendix C]:

KL(T ||W ϵ) = KL
(
pT (x0, x1)||pW

ϵ

(x0, x1)
)
+

∫
KL(T|x0,x1

||W ϵ
|x0,x1

)dpT (x0, x1), (2)

i.e., KL divergence between T and W ϵ is a sum of two terms: the 1st represents the similarity of the
processes’ joint marginal distributions at start and finish times t = 0, 1, while the 2nd term represents
the average similarity of conditional processes T|x0,x1

and W ϵ
|x0,x1

. In [25, Proposition 2.3], the
authors show that if T ∗ solves (1), then T ∗

|x0,x1
=W ϵ

|x0,x1
. Hence, one may optimize (1) over T for

which T|x0,x1
=W ϵ

|x0,x1
for every x0, x1, i.e., over reciprocal processes T :

(1) = min
T∈F(p0,p1)∩R

KL
(
pT (x0, x1)||pW

ϵ

(x0, x1)
)
= min
q∈Π(p0,p1)

KL
(
q(x0, x1)||pW

ϵ

(x0, x1)
)
, (3)

where Π(p0, p1) ⊂ P2,ac(RD×2) is the set of joint probability distributions with marginal distribu-
tions p0 and p1. Thus, the initial Schrödinger Bridge problem can be solved by optimizing only
over a reciprocal process’s joint distribution q(x0, x1) at t = 0, 1. This problem is called the Static
Schrödinger Bridge problem. In turn, the problem can be rewritten in the following way [12, Eq. 7]:

min
q∈Π(p0,p1)

ϵKL(q||pW
ϵ

(x0, x1)) = min
q∈Π(p0,p1)

∫
||x0 − x1||2

2
dq(x0, x1)− ϵ · Entropy(q) + C, (4)

i.e., as finding a joint distribution q(x0, x1) which tries to minimize the Euclidian distance ||x−y||2
2

between x0 and x1 (preserve similarity between x0 and x1), but with the addition of entropy
regularizer ϵ · Entropy(q) with the coefficient ϵ. Thus, the coefficient ϵ > 0, which is the same for all
problems considered above, regulates the stochastic or diversity of samples from q(x0, x1). The last
problem (4) is also known as the entropic optimal transport (EOT) problem [4, 38, 25].

3 Adversarial Schrödinger Bridge Matching (ASBM)
The IMF framework [35, 47] works with continuous time stochastic processes: it is built on the
well-celebrated result that the only process which is both Markovian and reciprocal is the Schrödinger
bridge T ∗ [25]. We derive an analogous theoretical result but for processes in discrete time. We
provide proofs for all the theorems and propositions in Appendix B.

In M3.1, we give preliminaries on discrete processes with Markovian and reciprocal properties. In
M3.2, we present the main theorem of our paper, which is the foundation of our Discrete-time
Iteratime Markovian Fitting (D-IMF) framework. In M3.3, we describe D-IMF procedure itself
and prove that it allows us to solve the Schrödinger Bridge problem. In M3.4, we provide an analysis
of applying our D-IMF for solving the Schrödinger Bridge between Gaussian distributions. In M3.5,
we present the practical implementation of our D-IMF procedure using adversarial learning.

3.1 Discrete Markovian and reciprocal stochastic processes
Discrete reciprocal processes. We define the discrete reciprocal processes similarly to the continuous
case by considering the finite-time projection of the Brownian bridge W ϵ

|x0,x1
, which is given by:

pW
ϵ

(xt1 , . . . , xtN |x0, x1) =
N∏

n=1

pW
ϵ

(xtn |xtn−1
, x1), (5)

4

pW
ϵ

(xtn |xtn−1 , x1) = N (xtn |xtn−1 +
tn − tn−1

1− tn−1
(x1 − xtn−1), ϵ

(tn − tn−1)(1− tn)

1− tn−1
). (6)

This joint distribution pW
ϵ

(xt1 , . . . , xtN |x0, x1) defines a discrete stochastic process, which we call
a discrete Brownian bridge. In turn, we say that a distribution q ∈ P2,ac(RD×(N×2)) is a mixture of
discrete Brownian bridges if it satisfies

q(x0, xt1 , . . . , xtN , x1) = pW
ϵ

(xt1 , . . . , xtN |x0, x1)q(x0, x1),

where q(x0, x1) denotes its joint marginal distribution of q at times 0, 1. That is, its "inner" part
at times t1, . . . , tN is the discrete Brownian Bridge. We denote the set of all such mixtures as
R(N) ⊂ P2,ac(RD×(N+2)) and call them discrete reciprocal processes.

Discrete Markovian processes. We say that a discrete process q ∈ P2,ac(RD×(N+2)) is Markovian
if its density can be represented in the following form (recall that t0 = 0, tN+1 = 1):

q(x0, xt1 , xt2 , . . . , xtN , x1) = q(x0)

N+1∏
n=1

q(xtn |xtn−1
). (7)

We denote the set of all such discrete Markovian processes as M(N) ⊂ P2,ac(RD×(N+2)).

3.2 Main Theorem
Theorem 3.1 (Discrete Markovian and reciprocal process is the solution of static SB). Consider
any discrete process q ∈ P2,ac(RD×(N+2)), which is simultaneously reciprocal and markovian, i.e.
q ∈ R(N) and q ∈ M(N) and has marginals q(x0) = p0(x0) and q(x1) = p1(x1):

q(x0, xt1 , . . . , xtN , x1) = pW
ϵ

(xt1 , . . . , xtN |x0, x1)q(x0, x1) = q(x0)

N+1∏
n=1

q(xtn |xtn−1),

Then q(x0, xt1 , . . . , xtN , x1) = pT
∗
(x0, xt1 , . . . , xtN , x1), i.e., it is the finite-dimensional projection

of the Schrödinger Bridge T ∗ to the considered times. Moreover, its joint marginal q(x0, x1) at times
t = 0, 1 is the solution to the static SB problem (4) between p0 and p1, i.e., q(x0, x1) = pT

∗
(x0, x1).

Thus, to solve the static SB problem, it is enough to find a Markovian mixture of discrete Brownian
bridges. To do so, we propose the Discrete-time Iterative Markovian Fitting (D-IMF) procedure.

3.3 Discrete-time Iterative Markovian Fitting (D-IMF) procedure
Similar to the IMF procedure, our proposed Discrete-time IMF is based on two alternating projections
of discrete stochastic processes: reciprocal and Markovian. We start with the reciprocal projection.

Definition 3.2 (Discrete Reciprocal Projection). Assume that q ∈ P2,ac(RD×(N+2)) is a discrete
stochastic process. Then the reciprocal projection projR(q) is a discrete stochastic process with the
joint distribution given by:[

projR(q)
]
(x0, xt1 , . . . , xtN , x1) = pW

ϵ

(xt1 , . . . , xtN |x0, x1)q(x0, x1). (8)

This projection takes the joint distribution of start and end points q(x0, x1) and inserts the Brownian
Bridge for intermediate time moments, see Figure 4. The prop. below justifies the projection’s name.

Figure 4: Reciprocal projection of a discrete stochastic process q, i.e.,
r(x0, xt1 , ..., xtN , x1) = pW

ϵ

(xt1 , ..., xtN |x0, x1)q(x0, x1).

5

Proposition 3.3 (Discrete Reciprocal projection minimizes KL divergence with reciprocal processes).
Under mild assumptions, the reciprocal projection projR(q) of a stochastic discrete process q ∈
P2,ac(RD×(N+2)) is the unique solution for the following optimization problem:

projR(q) = argmin
r∈R(N)

KL (q∥r) . (9)

Similarly to the discrete reciprocal projection, we introduce discrete Markovian projection.
Definition 3.4 (Discrete Markovian Projection). Assume that q ∈ P2,ac(RD×(N+2)) is a discrete
stochastic process. The Markovian projection of q is a discrete stochastic process projM(q) ∈
P2,ac(RD×(N+2)) whose joint distribution given by:[

projM(q)
]
(x0, xt1 , ..., xtN , x1) = q(x0)

N+1∏
n=1

q(xtn |xtn−1
). (10)

Despite it is possible to use any discrete stochastic process q as an input to a discrete markovian
projection, in the rest of the paper only discrete reciprocal processes are considered as an input. For
such cases, we provide a visualization of the markovian projection in Figure 5.

Figure 5: Markovian projection of a reciprocal discrete stochastic process q.

As with the reciprocal projection, our following proposition justifies the name of the projection.
Proposition 3.5 (Discrete Markovian projection minimizes KL divergence with Markovian processes).
Under mild assumptions, the Markovian projection projM(q) of a stochastic discrete process q ∈
P2,ac(RD×(N+2)) is a unique solution to the following optimization problem:

projM(q) = argmin
m∈M(N)

KL (q∥m) . (11)

Now we are ready to define our D-IMF procedure. For two given distributions p0 ∈ P2,ac(RD)
and p1 ∈ P2,ac(RD) at times t = 0 and t = 1, respectively, it starts with any discrete Brownian
mixture pW

ϵ

(xt1 , . . . , xtN |x0, x1)q(x0, x1), where q(x0, x1) ∈ Π(p0, p1) ∩ P2,ac(RD×2). Then, it
constructs the following sequence of discrete stochastic processes:

q2l+1 = projM(q2l), q2l+2 = projR(q2l+1). (12)
Theorem 3.6 (D-IMF procedure converges to the the Schrödinger Bridge). Under mild assumptions,
the sequence ql constructed by our D-IMF procedure converges in KL to pT

∗
. In particular, ql(x0, x1)

convergence to the solution pT
∗
(x0, x1) of the static SB. Namely, we have

lim
l→∞

KL
(
ql∥pT

∗
)
= 0, and lim

l→∞
KL

(
ql(x0, x1)∥pT

∗
(x0, x1)

)
= 0.

3.4 Closed form Updates of D-IMF for Gaussian Distributions
In this section, we show that our D-IMF updates (12) can be derived in the closed form for the
Gaussian case. Let p0 = N (x0|µ0,Σ0) and p1 = N (x1|µ1,Σ1) be Gaussians. Consider any initial
discrete Gaussian process q ∈ P2,ac(RD×(N+2)) that has joint distribution q(x0, x1) ∈ Π(p0, p1):

x01
def
=

(
x0
x1

)
, µ01

def
=

(
µ0

µ1

)
, Σ =

(
Σ0 Σcov
ΣT

cov Σ1

)
, q(x0, x1)

def
= N (x01|µ01,Σ) (13)

where Σ ∈ R2D×2D is positive definite and symmetric and Σcov is the covariance of x0 and x1. In
this case, the result of updates (12) is always a discrete Gaussian processes with specific parameters.
To show this, we introduce two auxiliary matrices U ∈ RND×2D and K ∈ RND×ND:

U
def
=

(1− t1)ID t1ID
(1− t2)ID t2ID

...
...

(1− tN)ID tNID

, K
def
=

t1(1− t1)ID t1(1− t2)ID . . . t1(1− tN)ID
t1(1− t2)ID t2(1− t2)ID . . . t2(1− tN)ID

...
... . . .

...
t1(1− tN)ID t2(1− tN)ID . . . tN (1− tN)ID

Here ID is an identity matrix with the shape D ×D. Below we present updates for both projections.

6

Theorem 3.7 (Reciprocal projection of a process whose joint marginal distribution is Gaussian).
Assume that q ∈ P2,ac(RD×(N+2)) has Gaussian joint distribution q(x0, x1) given by (13). Then

[projRq](xin, x0, x1) = N (

(
xin
x01

)
|
(
Uµ01

µ01

)
,ΣR), ΣR

def
=

(
ϵK + UΣUT UΣ

(UΣ)T Σ

)
(14)

Theorem 3.8 (Markovian projection of a discrete Gaussian process). Assume that q ∈
P2,ac(RD×(N+2)) is a discrete Gaussian process with q(x0, x1) given by (13) and the density

q(xin, x0, x1) = N (

(
xin
x01

)
|
(
µin
µ01

)
, Σ̃R), µin = (µt1 , . . . , µtN),

where µin and Σ̃R are some parameters of q. Then its Markovian projection is given by:

[projMq](xin, x0, x1) = q(x0)

N+1∏
n=1

q(xtn |xtn−1
), q(xtn |xtn−1

) = N (xtn |µ̂tn(xtn−1
), Σ̂tn),

µ̂tn(xtn−1) = µtn + (Σ̃R)tn,tn−1((Σ̃R)tn−1,tn−1)
−1(xtn−1 − µtn−1),

Σ̂tn = (Σ̃R)tn,tn − (Σ̃R)tn,tn−1
((Σ̃R)tn−1,tn−1

)−1((Σ̃R)tn,tn−1
)T .

In turn, the joint distribution [projMq](x0, x1) is given by

[projMq](x0, x1) = N (

(
x0
x1

)
|
(
µ0

µ1

)
,

(
Σ0 Σ01

(Σ01)
T Σ1

)
),ΣT

01 =
[N+1∏

n=1

(Σ̃R)tn+1,tn((Σ̃R)tn,tn)
−1

]
Σ0.

Here (Σ̃R)ti,tj is the submatrix of Σ̃R denoting the covariance of xti and xtj , while Σ0 and Σ1 are
covariance matrices of x0 and x1, respectively.

Thus, if we start D-IMF from some discrete process q0 with marginals q0(x0) = p0(x0), q0(x1) =
p1(x1) and Gaussian q(x0, x1), then at each iteration of our D-IMF procedure ql will be discrete
Gaussian process with the same marginals and eventually will converge to q∗. In M4.1, we use our
derived closed-form to perform an experimental analysis of D-IMF’s convergence depending on the
number of intermediate time moments N and the value of coefficient ϵ.

3.5 Practical Implemetation of D-IMF: ASBM Algorithm
To implement our D-IMF procedure in practice, one should choose the process q0 and implement both
discrete Markovian and reciprocal projections. Note that one is usually not interested in the processes’
density but only needs the ability to sample endpoints x1 (or trajectories x0, xt1 , . . . , xtN , x1) given
a starting point x0 (= xt0). Thus, to solve SB between p0(x0) and p1(x1) one should choose q0 to
have start and end marginals q0(x0) = p0(x0) and q0(x1) = p(x1) accessible by samples.

Implementation of the discrete reciprocal projection. The reciprocal projection (8) of a given
discrete process q(x0, xin, x1) is easy if one can sample from q(x0, x1). To sample from projR(q) it is
enough to sample first a pair (x0, x1) ∼ q(x0, x1) and then sample intermediate points xt1 , . . . , xtN
from the Brownian bridge pW

ϵ

(xt1 , . . . , xtN |x0, x1). This can be straightforwardly done using the
formula (5) where the involved distributions (6) are simple Gaussians which are easy to sample from.

Implementation of the discrete Markovian projection via DD-GAN. To find the Markovian
projection (10) of a reciprocal process q ∈ R(N), one just needs to estimate the transition prob-
abilities between sequential time moments, i.e., the set {q(xtn |xtn−1

)}N+1
n=1 and use the starting

marginal [projMq](x0) = q(x0) = p0(x0). The natural way to find transition probabilities is to set
to parametrize all these distributions as {qθ(xtn |xtn−1

)}N+1
n=1 and solve

min
θ

N+1∑
n=1

Eq(xtn−1
)Dadv

(
q(xtn |xtn−1

)||qθ(xtn |xtn−1
)
)
, (15)

where Dadv is some distance or divergence between probability distributions. In this case, a minimum
of such loss is achieved when qθ(xtn |xtn−1

) = q(xtn |xtn−1
) for each n ∈ {1, 2, . . . , N + 1}.

We note that a related setting is considered in the Denoising Diffusion GANs (DD-GAN), see [53, Eq.
4]. The difference is in the nature of q: there q comes from the standard noising diffusion process,
while in our case it is a given reciprocal process. Overall, the authors show that problems like (15)

7

can be efficiently approached via time-conditioned GANs. Therefore, we naturally pick DD-GAN
approach as the backbone to learn our discrete Markovian projection and use their best practices.

In short, following DD-GAN, we parameterize qθ(xtn |xtn−1
) via a time-conditioned generator

network Gθ(xtn−1
, z, tn−1). As in DD-GAN, we use the non-saturating GAN loss [10] as Dadv,

which optimizes softened reverse KL-divergence [46]. To optimize this loss, an additional conditional
discriminator network D(xtn−1 , xtn , tn−1) is needed. We do not recall technical details here as they
are the same as in DD-GAN. For further details on DD-GAN learning, we refer to Appendix D.1.

Note that after learning {qθ(xtn |xtn−1
)}N+1

n=1 the sampling assumes to take sample from q0(x0) =

p(x0) and then sample from {qθ(xtn |xtn−1)}N+1
n=1 . Hence it is guaranteed that q0(x0) = p(x0), but

there may be an approximation error in estimating q1(x1) ≈ p(x1). This is due to the asymmetry of
the definition of Markovian projection, i.e., it can be written in two equivalent ways:

[
projM(q)

]
(x0, xt1 , ..., xtN , x1) = q(x0)

N+1∏
n=1

q(xtn |xtn−1) = q(x1)

N+1∏
n=1

q(xtn−1 |xtn).

Analogously to the implementation of IMF [47, Algorithm 1], we address this asymmetry in our
D-IMF by alternatively learning Markovian projection in forward and reverse directions. To learn
Markovian projection in the reverse direction, we just need to use starting marginal [projMq](x1) =

p1(x1), parametrize {qη(xtn−1
|xtn)}N+1

n=1 and solve:

min
η

N+1∑
n=1

Eq(xtn)Dadv
(
q(xtn−1

|xtn)||qη(xtn−1
|xtn)

)
. (16)

In this case q(x1) = p1(x1) is guaranteed, while q(x0) ≈ p0(x0).

Implementation of the D-IMF procedure (ASBM algorithm). We start with initialization of q0 by
the reciprocal process. Depending on the setup we use initialization with the independent coupling,
i.e. q0(x0, x1) = p0(x0)p1(x1) or a minibatch OT coupling [9, 39], see Appendix D.3 for details.

We follow the best practices of IMF [47] and in the Markovian projection steps, we alternately learn
models in the direction p0→ p1 and in the reverse direction p1→ p0 by using functionals (15) and
(16) respectively to avoid the accumulation of errors due to the asymmetry in the definition of the
Markovian projection. For details, see Appendix D.2. At the reciprocal projection steps, we use
the model qθ(x0, xin, x1) or qη(x0, xin, x1) learned to approximate q2l+1 to sample pair (x0, x1) and
then sample intermediate points from Brownian bridge. We use the term outer iteration (K) for a
sequence of two reciprocal projections and two Markovian projections in different directions.

3.6 Relation to Prior Works
There exists a variety of algorithms for learning SB based on different underlying principles: dual
form entropic optimal transport algorithms [5, 34, 24, 11, 12, 45], iterative proportional fitting (IPF)
algorithms [51, 7, 2], bridge matching [49, 29] and iterative Markovian fitting (IMF) algorithms
[47, 35, 28, 20], adversarial algorithms [21], etc. We refer to [13] for a benchmark and to [24, Table
1] for a quick survey of many of them. In turn, in our paper, we specifically focus on the advancement
of IMF-type algorithms [47, 35] as it they are not only theoretically well-grounded but also closely
connected to the rectified flow approach [30] which works well in large-scale generative modeling
[32, 54]. Below we discuss the relation of our contributions (M1) to the prior works in IMF [47, 35].

Theory I. As we detailed in M2, basic IMF operates with stochastic processes in continuous time
and iteratively performs Markovian and reciprocal projections. Our D-IMF procedure (M3) does the
same but in the discrete time, so it might deceptively seem like our D-IMF is just an approximation
of IMF. However, this is a misleading viewpoint. Indeed, the Markovian projection in the discrete
time, in general, does not match with the continuous time Markovian projection. Still our D-IMF
procedure provably converges to SB. Furthermore, D-IMF procedure can theoretically work with
just one intermediate time step (when N = 1). Overall, its convergence rate varies depending on the
number of intermediate points, see M4.1. Naturally, we conjecture that in the limit N → ∞ (when
the time steps t1, . . . , tN densely fill [0, 1]) our D-IMF behaves the same as IMF since the discrete
and continuous Markovian projections start to be close, see discussion in [47, Appendix E].

Theory II. In M3.4, we derive the closed-form expression for our D-IMF updates in the Gaussian
case. For the continuous IMF, there exists an analogous result [35, M6.1]. However, unlike our result,

8

(a) Dependence on the number of time steps N . (b) Dependence on the variance ϵ of the prior process.
Figure 6: Dependence of convergence of our D-IMF procedure on N and ϵ.

that one is not explicit in the sence that it requires solving the matrix-valued ODE [35, Eq. 39] to get
the actual projection. The analytical solution is known only when D = 1, i.e., 1-dimensional case,
see also [47, Appendix D]. In contrast, our Gaussian D-IMF updates work in any dimension D.

Practice. Default continuous-time IMF [47, 35] in practice is naturally implemented via the Bridge
Matching approach which learns an SDE. In our case, at each D-IMF step we learn several transi-
tional probabilities and do this via also well-established adversarial techniques. In this sense, our
practical implementation differs – each approach is based on its own backbone – bridge matching vs.
adversarial learning – and naturally inherits the benefits/drawbacks of the respective backbone. They
are fairly well stated in the discussion of the generative learning trilemma in [53].

4 Experiments
We evaluate our adversarial SB matching (ASBM) algorithm, which implements our D-IMF procedure
on setups with Gaussian distributions (M4.1) for which we have closed form update formulas (M3.4)
and real image data distributions (M4.2). We additionally provide results for an illustrative 2D example
in Appendix C.1, results for the Colored MNIST dataset in Appendix C.3, and results on the standard
SB benchmark in Appendix C.2. The code for our algorithm and all experiments with it is written in
Pytorch, is available in the supplementary materials, and will be made public. We provide all the
technical details in Appendix D.

4.1 Gaussian-to-Gaussian Schrödinger Bridge
We analyze the convergence of our D-IMF procedure depending on the number of intermediate time
steps N ≥ 1 (we use tn = n/N + 1) and the value ϵ > 0 in the Gaussian case. In this case, the static
SB solution pT

∗
(x0, x1) is analytically known, see, e.g., [18]. This provides us an opportunity to

analyse how fast KL
(
ql(x0, x1)∥pT

∗
(x0, x1)

)
decreases when l → ∞.

We conduct experiments by using our analytical formulas for D-IMF from M3.4. We follow setup from
[12] and consider Schrödinger Bridge problem with the dimensionality D = 16 and ϵ ∈ {1, 3, 10}
for centered Gaussians p0 = N (0,Σ0) and p1 = N (0,Σ1). To construct Σ0 and Σ1, sample their
eigenvectors from the uniform distribution on the unit sphere and sample their eigenvalues from the
log uniform distribution on [− log 2, log 2]. We use the same p0 and p1 for all experiments.

We start our D-IMF procedure from the reciprocal process with q0(x0, x1) = p0(x0)p1(x1), i.e.
from the independent joint distribution at times t = 0, 1. We present the convergence plots in
Figures 6a and 6b. In both plots, we use 10−10 as a threshold corresponding to the exact matching of
distributions to prevent numerical instabilities. We see that our D-IMF procedure empirically shows
the exponential rate of convergence in all the cases. As we can see from Figure 6a, the convergence
speed dependence on N quickly saturates. Thus, even several time moments, e.g., N = 5, provide
quick convergence speed. From Figure 6b, we clearly see that the convergence speed is highly
influenced by the chosen value of the parameter ϵ. For instance, the transition from ϵ = 1 to ϵ = 10
requires ten times more D-IMF iterations. Thus, this hyperparameter may be important in practice.

4.2 Unpaired Image-to-image Translation
To test our approach on real data, we consider the unpaired image-to-image translation setup of
learning male → female faces of Celeba dataset [33]. We use 10% of male and female images as
the test set for evaluation. We train our ASBM algorithm based on the D-IMF procedure with ϵ = 1
and ϵ = 10. Following the best practices of DD-GAN [53], we use N = 3, intermediate times
t1 = 1

4 , t2 = 2
4 , t3 = 3

4 and K = 5 outer iterations of D-IMF. We provide qualitative results and
the FID metric [14] on the test set in Figures 7b and 7e. Since we use N = 3 intermediate time
moments, our algorithm requires only 4 number of function evaluations (NFE) at the inference stage.

9

(a) x ∼ p0 (b) ASBM (ours), ϵ = 1 (lower diversity)
FID = 16.08, NFE = 4.

(c) DSBM [47], ϵ = 1 (lower diversity)
FID = 37.8, NFE = 100.

(d) x ∼ p0 (e) ASBM (ours), ϵ = 10 (higher diversity)
FID = 17.44, NFE = 4.

(f) DSBM [47], ϵ = 10 (higher diversity)
FID = 89.19, NFE = 100.

Figure 7: Results of Celeba, male→female translation learned with ASBM (ours), and DSBM
learned on Celeba dataset with 128 resolution size for ϵ ∈ {1, 10}.

We focus our comparison on the DSBM algorithm based on the IMF-procedure [47] since it is closely
related to our method. We train DSBM following the authors [47] and use NFE = 100. As well as
for ASBM, we use 5 outer iterations of IMF, corresponding to the same number of reciprocal and
Markovian projections, but for continuous processes. We use approximately the same number of
parameters of neural networks used for models in Markovian projections for ASBM and DSBM (see
Appendix D.3). For other details, see Appendix D.4. We present results for DSBM in Figure 7c
and Figure 7f. Our algorithm provides better results while using only 4 evaluation steps. Further
additional results and measurements for ASBM and DSBM algorithms on the Celeba dataset are
presented in Appendix E.

Thus, our D-IMF procedure allows us to solve the Schrödinger Bridge efficiently without learning
the time-continuous stochastic process, which in turn speeds up inference by an order of magnitude.
This aligns with the results obtained in the Gaussian-to-Gaussian setups about exponentially fast
convergence of D-IMF even with several intermediate time moments.

5 Discussion
Potential impact. Beside the pure speed up of the inference of IMF, we want to point to another
great advantage of our developed D-IMF framework. In the continuous IMF, one is forced to do
Markovian projection via time-consuming learning of continuous-time SDEs (using procedures like
bridge matching). In our D-IMF framework, one needs to learn several transition probabilities. We
do this via adversarial learning [10], but actually this can be done using almost any other generative
modeling technique (moment matching [26], normalizing flows [23, 41], energy-based models [56],
score-based models [48], etc.). We believe that this observation opens great possibilities for ML
community to further explore and improve generative modeling algorithms based on Schrödinger
Bridges, Markovian projections (bridge matching) and related techniques, e.g., flow matching [27].

Limitations and broader impact are discussed in Appendix A.

10

Acknowledgements

The work was supported by the Analytical center under the RF Government (subsidy agreement
000000D730321P5Q0002, Grant No. 70-2021-00145 02.11.2021).

References

[1] Rob Brekelmans and Kirill Neklyudov. On schrödinger bridge matching and expectation
maximization. In NeurIPS 2023 Workshop Optimal Transport and Machine Learning, 2023.

[2] Tianrong Chen, Guan-Horng Liu, and Evangelos Theodorou. Likelihood training of schrödinger
bridge using forward-backward sdes theory. In International Conference on Learning Represen-
tations, 2021.

[3] Hyungjin Chung, Jeongsol Kim, and Jong Chul Ye. Direct diffusion bridge using data consis-
tency for inverse problems. Advances in Neural Information Processing Systems, 36, 2024.

[4] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems, 26, 2013.

[5] Max Daniels, Tyler Maunu, and Paul Hand. Score-based generative neural networks for large-
scale optimal transport. Advances in neural information processing systems, 34:12955–12965,
2021.

[6] Valentin De Bortoli, Guan-Horng Liu, Tianrong Chen, Evangelos A Theodorou, and Weilie Nie.
Augmented bridge matching. arXiv preprint arXiv:2311.06978, 2023.

[7] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

[8] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transform-
ers for high-resolution image synthesis. In Forty-first International Conference on Machine
Learning, 2024.

[9] Kilian Fatras, Younes Zine, Rémi Flamary, Remi Gribonval, and Nicolas Courty. Learning with
minibatch wasserstein: asymptotic and gradient properties. In International Conference on
Artificial Intelligence and Statistics, pages 2131–2141. PMLR, 2020.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[11] Nikita Gushchin, Sergei Kholkin, Evgeny Burnaev, and Alexander Korotin. Light and optimal
schrödinger bridge matching. In Forty-first International Conference on Machine Learning,
2024.

[12] Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry Vetrov, and Evgeny Burnaev.
Entropic neural optimal transport via diffusion processes. In Advances in Neural Information
Processing Systems, 2023.

[13] Nikita Gushchin, Alexander Kolesov, Petr Mokrov, Polina Karpikova, Andrey Spiridonov,
Evgeny Burnaev, and Alexander Korotin. Building the bridge of schr\" odinger: A continuous
entropic optimal transport benchmark. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2023.

[14] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in neural information processing systems, pages 6626–6637, 2017.

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[16] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-
to-image translation. In Proceedings of the European conference on computer vision (ECCV),
pages 172–189, 2018.

[17] Oliver Ibe. Markov processes for stochastic modeling. Newnes, 2013.

11

[18] Hicham Janati, Boris Muzellec, Gabriel Peyré, and Marco Cuturi. Entropic optimal transport
between unbalanced gaussian measures has a closed form. Advances in neural information
processing systems, 33:10468–10479, 2020.

[19] Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti,
and Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9307–9315, 2024.

[20] Sergei Kholkin, Grigoriy Ksenofontov, David Li, Nikita Kornilov, Nikita Gushchin, Evgeny
Burnaev, and Alexander Korotin. Diffusion & adversarial schr\" odinger bridges via iterative
proportional markovian fitting. arXiv preprint arXiv:2410.02601, 2024.

[21] Beomsu Kim, Gihyun Kwon, Kwanyoung Kim, and Jong Chul Ye. Unpaired image-to-image
translation via neural schrödinger bridge. In The Twelfth International Conference on Learning
Representations, 2024.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[23] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

[24] Alexander Korotin, Nikita Gushchin, and Evgeny Burnaev. Light schr\" odinger bridge. In
International Conference on Learning Representations, 2024.

[25] Christian Léonard. A survey of the schr\" odinger problem and some of its connections with
optimal transport. arXiv preprint arXiv:1308.0215, 2013.

[26] Yujia Li, Kevin Swersky, and Rich Zemel. Generative moment matching networks. In Interna-
tional conference on machine learning, pages 1718–1727. PMLR, 2015.

[27] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning
Representations, 2022.

[28] Guan-Horng Liu, Yaron Lipman, Maximilian Nickel, Brian Karrer, Evangelos Theodorou,
and Ricky TQ Chen. Generalized schrödinger bridge matching. In The Twelfth International
Conference on Learning Representations, 2023.

[29] Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A Theodorou, Weili Nie, and Anima
Anandkumar. I2sb: image-to-image schrödinger bridge. In Proceedings of the 40th International
Conference on Machine Learning, pages 22042–22062, 2023.

[30] Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer
data with rectified flow. In The Eleventh International Conference on Learning Representations,
2022.

[31] Xingchao Liu, Lemeng Wu, Mao Ye, et al. Let us build bridges: Understanding and extending
diffusion generative models. In NeurIPS 2022 Workshop on Score-Based Methods, 2022.

[32] Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for
high-quality diffusion-based text-to-image generation. In The Twelfth International Conference
on Learning Representations, 2023.

[33] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[34] Petr Mokrov, Alexander Korotin, Alexander Kolesov, Nikita Gushchin, and Evgeny Burnaev.
Energy-guided entropic neural optimal transport. In The Twelfth International Conference on
Learning Representations, 2024.

[35] Stefano Peluchetti. Diffusion bridge mixture transports, schrödinger bridge problems and
generative modeling. Journal of Machine Learning Research, 24(374):1–51, 2023.

[36] Stefano Peluchetti. Non-denoising forward-time diffusions. arXiv preprint arXiv:2312.14589,
2023.

[37] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical
University of Denmark, 7(15):510, 2008.

[38] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Foundations and Trends®
in Machine Learning, 11(5-6):355–607, 2019.

12

[39] Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron
Lipman, and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch
couplings. In International Conference on Machine Learning, pages 28100–28127. PMLR,
2023.

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[41] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR, 2015.

[42] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18, pages 234–241. Springer, 2015.

[43] Ludger Ruschendorf. Convergence of the iterative proportional fitting procedure. The Annals of
Statistics, pages 1160–1174, 1995.

[44] Erwin Schrödinger. Über die umkehrung der naturgesetze. Verlag der Akademie der Wis-
senschaften in Kommission bei Walter De Gruyter u . . . , 1931.

[45] Vivien Seguy, Bharath Bhushan Damodaran, Remi Flamary, Nicolas Courty, Antoine Rolet,
and Mathieu Blondel. Large scale optimal transport and mapping estimation. In International
Conference on Learning Representations, 2018.

[46] Matt Shannon, Ben Poole, Soroosh Mariooryad, Tom Bagby, Eric Battenberg, David Kao, Daisy
Stanton, and RJ Skerry-Ryan. Non-saturating gan training as divergence minimization. arXiv
preprint arXiv:2010.08029, 2020.

[47] Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
bridge matching. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[48] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[49] Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume
Huguet, Guy Wolf, and Yoshua Bengio. Simulation-free schr\" odinger bridges via score and
flow matching. arXiv preprint arXiv:2307.03672, 2023.

[50] Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence. IEEE
Transactions on Information Theory, 60(7):3797–3820, 2014.

[51] Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving schrödinger
bridges via maximum likelihood. Entropy, 23(9):1134, 2021.

[52] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business
Media, 2008.

[53] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma
with denoising diffusion GANs. In International Conference on Learning Representations,
2022.

[54] Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, and Jiashi Feng. Perflow:
Piecewise rectified flow as universal plug-and-play accelerator, 2024.

[55] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[56] Yang Zhao, Jianwen Xie, and Ping Li. Learning energy-based generative models via coarse-
to-fine expanding and sampling. In International Conference on Learning Representations,
2020.

13

A Limitations and Future Work

Adversarial training. It is a generic knowledge that the adversarial training may be non trivial to
conduct due to instabilities, mode collapse and related issues. Fortunately, our ASBM algorithm relies
on the already well-established and carefully tuned DD-GAN [53] technique as a backbone. The
latter is specifically designed to address many such limitations and is known to score good metrics in
generative modeling.

Theoretical convergence rate. We derive the generic convergence result for our D-IMF procedure
(Theorem 3.6) but without the particular convergence rate. Empirically we observe the exponentially
fast convergence (M4.1), but theoretically proving this rate is an important task for the future work.

Broader Impact. This paper presents work whose goal is to advance the field of Artificial Intelli-
gence, Machine Learning and Generative Modeling. There are many potential societal consequences
of our work, none which we feel must be specifically highlighted here.

B Proofs

Here we provide the proof of our theoretical results one-by-one. Additionally, we introduce and prove
several auxiliary results to simplify the derivation of the main results.

B.1 Proofs for Statements in Section 3.2

In our view, the proof of our main Theorem here is the most interesting and insightful (among all the
proofs in the paper) as it uses some tricky mathematics, especially in its stage 2. In turn, stage 1 of
the proof is inspired by the recent insights of [13, Theorem 3.2] about the characterization of static
Schrödinger Bridge solutions [25] and manipulations with KL for SB in [24, 11].

Proof of Theorem 3.1. We split the proof in 2 stages. The 1st is auxiliary for the 2nd.

Stage 1. Here we show that if some q(x0, x1) ∈ P2,ac(RD×2) with marginals p0(x0) = q(x0) and
p1(x1) = q(x1) has the density in the form

q(x0, x1) = q(x0)Ĉ(x0) exp

(
−||x1 − x0||2

2ϵ

)
ϕ̂(x1),

then it solves the Static SB between distributions p0(x0) and p1(x1). It is known [25], that the
solution q∗(x0, x1)

def
= pT

∗
(x0, x1) of Static SB between p0 and p1 has the density:

q∗(x0, x1) = ψ∗(x0) exp

(
−||x1 − x0||2

2ϵ

)
ϕ∗(x1).

Hence, the conditional density q∗(x1|x0) is expressed as:

q∗(x1|x0) =
ψ∗(x0)

p0(x0)︸ ︷︷ ︸
def
=C∗(x0)

exp

(
−||x1 − x0||2

2ϵ

)
ϕ∗(x1) = C∗(x0) exp

(
−||x1 − x0||2

2ϵ

)
ϕ∗(x1).

Thus, both q(x0, x1) and q∗(x0, x1) have their densities in the same functional form and the same
marginals q(x0) = q∗(x0) = p0(x0) and q(x1) = q∗(x1) = p1(x1). However, we want to prove
that in this case q(x0, x1) and q∗(x0, x1) are equal, i.e., KL (q∗∥q) = 0.

KL (q∗(x0, x1)∥q(x0, x1)) =
∫

log
q∗(x0, x1)

q(x0, x1)
q∗(x0, x1)dx0dx1 =∫

log ���p0(x0)q
∗(x1|x0)

���p0(x0)q(x1|x0)
q∗(x0, x1)dx0dx1 =

∫
log

C∗(x0)
��������
exp

(
− ||x1−x0||2

2ϵ

)
ϕ∗(x1)

Ĉ(x0)
��������
exp

(
− ||x1−x0||2

2ϵ

)
ϕ̂(x1)

q∗(x0, x1)dx0dx1 =

14

∫
(log

C∗(x0)

Ĉ(x0)
+ log

ϕ∗(x1)

ϕ̂(x1)
)q∗(x0, x1)dx0dx1 =∫

log
C∗(x0)

Ĉ(x0)
q∗(x0, x1)dx0dx1 +

∫
log

ϕ∗(x1)

ϕ̂(x1)
q∗(x0, x1)dx0dx1 =∫

log
C∗(x0)

Ĉ(x0)
p0(x0)dx0 +

∫
log

ϕ∗(x1)

ϕ̂(x1)
p1(x1)dx1 =∫

log
C∗(x0)

Ĉ(x0)
q(x0, x1)dx0dx1 +

∫
log

ϕ∗(x1)

ϕ̂(x1)
q(x0, x1)dx0dx1 =∫

(log
C∗(x0)

Ĉ(x0)
+ log

ϕ∗(x1)

ϕ̂(x1)
)q(x0, x1)dx0dx1 =∫

log
C∗(x0)ϕ

∗(x1)

Ĉ(x0)ϕ̂(x1)
q(x0, x1)dx0dx1 =

∫
log

C∗(x0) exp
(
− ||x1−x0||2

2ϵ

)
ϕ∗(x1)

Ĉ(x0) exp
(
− ||x1−x0||2

2ϵ

)
ϕ̂(x1)

q(x0, x1)dx0dx1 =

∫
log

q∗(x1|x0)
q(x1|x0)

q(x0, x1)dx0dx1 =∫
log

p0(x0)q
∗(x1|x0)

p0(x0)q(x1|x0)
q(x0, x1)dx0dx1 =∫

log
q∗(x0, x1)

q(x0, x1)
q(x0, x1)dx0dx1 =

−
∫

log
q(x0, x1)

q∗(x0, x1)
q(x0, x1)dx0dx1 = −KL (q(x0, x1)∥q∗(x0, x1)) .

Thus, KL (q∗∥q) = −KL (q∥q∗). Since the KL divergence is non-negative, we derive that q = q∗.

Stage 2. In this stage, we prove the theorem itself. First, if N > 1, i.e., there is more than one
intermediate time moment, we integrate q(x0, xt1 , . . . , xtN , x1) over all intermediate time moments
except t1. On the one hand, we get

q(x0, xt1 , x1) =

∫
q(x0, xt1 , . . . , xtN , x1)dxt2 . . . dxtN =∫

pW
ϵ

(xt1 , . . . , xtN |x0, x1)q(x0, x1)dxt2 . . . dxtN = pW
ϵ

(xt1 |x0, x1)q(x1, x0). (17)

On the other hand, we derive

q(x0, xt1 , x1) =

∫
q(x0)q(xt1 |x0)

=q(xt2 ,...,xtN
,x1|xt1)︷ ︸︸ ︷

N+1∏
n=2

q(xtn |xtn−1) dxt2 . . . dxtN = q(x0)q(xt1 |x0)q(x1|xt1). (18)

Combining (17) and (18) yields

q(x0)q(xt1 |x0)q(x1|xt1) = q(x0, xt1 , x1) = pW
ϵ

(xt1 |x0, x1)q(x1, x0). (19)

Note that if N = 1, then we already have (19) from the conditions of the theorem. Therefore,

pW
ϵ

(xt1 |x0, x1)q(x1, x0) = q(x0)q(xt1 |x0)q(x1|xt1)

pW
ϵ

(xt1 |x0, x1)q(x1|x0)���q(x0) = ���q(x0)q(xt1 |x0)q(x1|xt1).
From now on, we are interested only in 3 time moments: t0 = 0, t1 and tN+1 = 1. To simplify the
notation, we will write t instead of t2 in the following proof. We take the logarithm and get

log q(x1|x0) = log q(xt|x0) + log q(x1|xt)− log pW
ϵ

(xt|x0, x1)

15

Then, we use the formula for the Brownian Bridge density:

log q(x1|x0) = log q(xt|x0) + log q(x1|xt)− C +
1

2ϵt(1− t)
||xt − (tx1 + (1− t)x0)||2 =

log q(xt|x0) + log q(x1|xt)− C +

1

2ϵt(1− t)
(||xt||2 + ||tx1||2 + ||(1− t)x0||2 − 2txTt x1 − 2(1− t)xTt x0 + 2t(1− t)xT0 x1) =

log q(xt|x0) + log q(x1|xt)− C +

||xt||2

2ϵt(1− t)
+

||(1− t)x0||2

2ϵt(1− t)
+

||tx1||2

2ϵt(1− t)
− xTt x1
ϵ(1− t)

− xTt x0
ϵt

+
xT0 x1
ϵ

=

log q(x1|xt) +
||xt||2

2ϵt(1− t)
+

||tx1||2

2ϵt(1− t)
− xTt x1
ϵ(1− t)

− C︸ ︷︷ ︸
def
=f1(xt,x1)

+

||(1− t)x0||2

2ϵt(1− t)
+ log q(xt|x0)−

xTt x0
ϵt︸ ︷︷ ︸

def
=f2(xt,x0)

+
xT0 x1
ϵ

.

Thus,

log q(x1|x0) = f1(xt, x1) + f2(xt, x0) +
xT0 x1
ϵ

,

log q(x1|x0)−
xT0 x1
ϵ︸ ︷︷ ︸

def
=f3(x0,x1)

= f1(xt, x1) + f2(xt, x0),

f3(x0, x1) = f1(xt, x1) + f2(xt, x0). (20)

Below, we prove that f3(x0, x1) = g1(x0) + g2(x1) for some functions g1 and g2. We note that

f3(x0, 0) = f1(xt, 0) + f2(xt, x0) ⇒ f2(xt, x0) = f3(x0, 0)− f1(xt, 0). (21)

We substitute (21) to (20):

f3(x0, x1) = f1(xt, x1) + f3(x0, 0)− f1(xt, 0)︸ ︷︷ ︸
=f2(xt,x0)

f3(x0, x1)− f3(x0, 0) = f1(xt, x1)− f1(xt, 0). (22)

Since there is no dependence on x0 in the right part of (22), we conclude that f3(x0, x1)− f3(x0, 0)

is a function of only x1. We define g1(x1)
def
= f3(x0, x1)− f3(x0, 0) and g2(x0)

def
= f3(x0, 0). Now

we have the desired result:

f3(x0, x1) = g1(x1) + f3(x0, 0) = g1(x1) + g2(x0). (23)

Thus,

f3(x0, x1) = log q(x1|x0)−
xT0 x1
ϵ

= g1(x1) + g2(x0).

Now, we can use this result about the separation of variables together with the result from the first
stage to conclude the proof of the theorem.

log q(x1|x0) = g1(x1) + g2(x0) +
xT0 x1
ϵ

=

g1(x1) +
||x1||2

2ϵ
+ g2(x0) +

||x0||2

2ϵ
− ||x0 − x1||2

2ϵ
,

q(x1|x0) = exp

(
g2(x0) +

||x0||2

2ϵ

)
︸ ︷︷ ︸

def
=C(x0)

exp

(
−||x0 − x1||2

2ϵ

)
exp

(
g1(x1) +

||x1||2

2ϵ

)
︸ ︷︷ ︸

def
=ϕ(x1)

=

16

q(x1|x0) = C(x0) exp

(
−||x0 − x1||2

2ϵ

)
ϕ(x1),

q(x0, x1) = q(x0)C(x0) exp

(
−||x0 − x1||2

2ϵ

)
ϕ(x1).

Hence, from the first stage of this proof it follows that q(x0, x1) is the solution to the Static SB
between q(x0) = p0(x0) and q(x1) = p1(x1) with the coefficient ϵ. That is, pT

∗
(x0, x1) =

q(x0, x1). Since q(xt1 , . . . , xtN |x0, x1) = pW
ϵ

(xt1 , . . . , xtN |x0, x1) by the assumptions of the
current theorem, we also conclude that q(x0, xt1 , . . . , xtN , x1) = pT

∗
(x0, xt1 , . . . , xtN , x1), i.e., the

discrete processes coincide.

B.2 Proofs for Statements in Section 3.3

The logic of our justification of D-IMF for discrete processes generally follows the respective logic
of the justification of IMF for continuous stochastic processes [47].

Proof of Proposition 3.3. The mild assumption here consists in the existence of at least one process
r ∈ R(N) for which KL (q∥r) <∞. The reciprocal process r ∈ R(N) has its density in the form
r(x0, xt1 , . . . , xtN , x1) = pW

ϵ

(xt1 , . . . , xtN |x0, x1)r(x0, x1) (see (7)). Thus, we need to optimize
only the part r(x0, x1). Below we show, that r(x0, x1) should be equal q(x0, x1) to minimize the
functional.

KL (q∥r) =
∫

log
q(x0, xin, x1)

r(x0, xin, x1)
q(x0, xin, x1)dx0dxindx1 =∫

log
q(xin|x0, x1)q(x0, x1)
r(xin|x0, x1)︸ ︷︷ ︸
pWϵ (xin|x0,x1)

r(x0, x1)
q(x0, xin, x1)dx0dxindx1 =

∫
log

q(xin|x0, x1)
pW ϵ(xin|x0, x1)

q(x0, xin, x1)dx0dxindx1︸ ︷︷ ︸
=Const

+

∫
log

q(x0, x1)

r(x0, x1)
q(x0, xin, x1)dx0dxindx1 =

Const +
∫

log
q(x0, x1)

r(x0, x1)
q(x0, x1)dx0dx1︸ ︷︷ ︸

=KL(q(x0,x1)∥r(x0,x1))

= Const + KL (q(x0, x1)∥r(x0, x1))

Hence, projR(q) = argminr∈R(N) KL (q∥r) = pW
ϵ

(xin|x0, x1)q(x0, x1).

Proof of Proposition 3.5. Similar to the previous proposition, the mild assumption here consists
in the existence of at least one process m ∈ M(N) for which KL (q∥m) < ∞. This proof is a
bit more technical than for the reciprocal projection. We need to define new notation xnot

tn,tn−1
=

(xt0 , . . . , xtn−2
, xtn+1

, . . . , xtN+1
) for a vector of variables for all time moment except two time

moments tn and tn−1.

KL (q∥m) =

∫
log

q(x0, xin, x1)

m(x0, xin, x1)
q(x0, xin, x1)dx0dxindx1 =∫

log
q(x0, xin, x1)

m(x0)
∏N+1

n=1 m(xtn |xtn−1
)
q(x0, xin, x1)dx0dxindx1 =∫

log
q(x0)

m(x0)
q(x0, xin, x1)dx0dxindx1 +

∫
log

q(xin, x1|x0)∏N+1
n=1 m(xtn |xtn−1)

q(x0, xin, x1)dx0dxindx1 =∫
log

q(x0)

m(x0)
q(x0)dx0︸ ︷︷ ︸

KL(q(x0)∥m(x0))

+

∫
log

q(xin, x1|x0)∏N+1
n=1 m(xtn |xtn−1

)
q(x0, xin, x1)dx0 =

17

KL (q(x0)∥m(x0)) +

∫
log

q(xin, x1|x0)∏N+1
n=1 m(xtn |xtn−1

)
q(x0, xin, x1)dx0dxindx1 + (24)

N

∫
log

q(x0, xin, x1)

q(x0, xin, x1)
q(x0, xin, x1)dx0dxindx1︸ ︷︷ ︸
=0

+

∫
log

q(x0)

q(x0)
q(x0, xin, x1)dx0dxinx1︸ ︷︷ ︸

=0

= (25)

KL (q(x0)∥m(x0)) +

∫
log

∏N+1
n=1 q(x0, xin, x1)∏N+1
n=1 m(xtn |xtn−1)

q(x0, xin, x1)dx0dxindx1 −

(
N

∫
log q(x0, xin, x1)q(x0, xin, x1)dx0dxindx1 +

∫
log q(x0)q(x0)dx0dxindx1

)
=

KL (q(x0)∥m(x0)) +

N+1∑
n=1

∫
log

q(x0, xin, x1)

m(xtn |xtn−1
)
q(x0, xin, x1)dx0dxindx1 −

(
N

∫
log q(x0, xin, x1)q(x0, xin, x1)dx0dxindx1 +

∫
log q(x0)q(x0)dx0dxindx1

)
︸ ︷︷ ︸

def
=C1

=

KL (q(x0)∥m(x0))− C1 +
N+1∑
n=1

∫
log

q(xtn |xtn−1)q(xtn−1)q(x
not
tn,tn−1

|xtn , xtn−1)

m(xtn |xtn−1)
q(x0, xin, x1)dx0dxindx1 =

KL (q(x0)∥m(x0))−C1 +

N+1∑
n=1

∫
log

(
q(xtn−1

)q(xnot
tn,tn−1

|xtn , xtn−1
)
)
q(x0, xin, x1)dx0dxindx1︸ ︷︷ ︸

def
=C2

+

N+1∑
n=1

∫
log

q(xtn |xtn−1
)

m(xtn |xtn−1
)
q(x0, xin, x1)dx0dxindx1 =

KL (q(x0)∥m(x0)) + C2 +

N+1∑
n=1

(∫
log

q(xtn |xtn−1)

m(xtn |xtn−1
)
q(xtn |xtn−1

)dxtn︸ ︷︷ ︸
KL(q(xtn |xtn−1

)∥m(xtn |xtn−1
))

)
q(xtn−1

)dxtn−1
=

KL (q(x0)∥m(x0)) +

N+1∑
n=1

∫
KL

(
q(xtn |xtn−1

)∥m(xtn |xtn−1
)
)
q(xtn−1

)dxtn−1
+ C2.

In the line (25), we add terms equal to zero, to match each m(xtn |xtn−1
) by the separate term

q(x0, xin, x1) in the line (25). We need it to as we want to place each term m(xtn |xtn−1
) in the

separate KL-divergence in the final expression. Hence, the minimizer of the objective m∗ ∈ M(N)
has m∗(x0) = q(x0) and all transitional distributions m∗(xtn |xtn−1

) = q(xtn |xtn−1
), i.e. is given

by

m∗(x0, xin, x1) = [projM(q)](x0, xin, x1) = q(x0)

N+1∏
n=1

q(xtn |xtn−1
).

Proposition B.1 (Pythagorean theorems for projections). Assume that r ∈ R(N) and m ∈ M(N).
If KL (r∥m) <∞ and KL (r∥projM(r)) <∞, then

KL (r∥m) = KL (r∥projM(r)) + KL (projM(r)∥m) (26)
and if KL (m∥r) <∞, KL (m∥projR(m)) <∞ then

KL (m∥r) = KL (m∥projR(m)) + KL (projR(m)∥r)

Proof of Proposition B.1. Before proving the first equation (26) we prove the additional property of
r ∈ R(N) for any n ∈ [1, 2, . . . , N + 1]:

[projMr](xtn , xtn−1
) = r(xtn , xtn−1

).

18

[projMr](xtn , xtn−1) = [projMr](xtn |xtn−1)[projMr](xtn) = r(xtn |xtn−1)r(xtn). (27)

Since [projMr](xtn |xtn−1
) = r(xtn |xtn−1

) by the definition and since Markovian projection pre-
serve all intermediate time marginals. Now we prove the first equation (26).

KL (r∥m) =

∫
log

r(x0, xin, x1)

m(x0, xin, x1)
r(x0, xin, x1)dx0dxindx1 =∫

log
r(x0, xin, x1)

m(x0, xin, x1)
r(x0, xin, x1)dx0dxindx1 +∫

log
[projM(r)](x0, xin, x1)

[projM(r)](x0, xin, x1)
r(x0, xin, x1)dx0dxindx1︸ ︷︷ ︸

=0

=

∫
log

r(x0, xin, x1)

[projM(r)](x0, xin, x1)
r(x0, xin, x1)dx0dxindx1︸ ︷︷ ︸

KL(r∥projM(r))

+

∫
log

[projM(r)](x0, xin, x1)

m(x0, xin, x1)
r(x0, xin, x1)dx0dxindx1 =

KL (r∥projM(r)) +

∫
log

[projM(r)](x0)
∏N+1

n=1 [projM(r)](xtn |xtn−1)

m(x0)
∏N+1

n=1 m(xtn |xtn−1)
r(x0, xin, x1)dx0dxindx1 =

KL (r∥projM(r)) + KL ([projM(r)](x0)∥m(x0)) +
N+1∑
n=1

∫
log

[projM(r)](xtn |xtn−1
)

m(xtn |xtn−1
)

r(x0, xin, x1)dx0dxindx1 =

KL (r∥projM(r)) + KL ([projM(r)](x0)∥m(x0)) +
N+1∑
n=1

∫
log

[projM(r)](xtn |xtn−1
)

m(xtn |xtn−1
)

r(xtn , xtn−1
)︸ ︷︷ ︸

=[projM(r)](xtn ,xtn−1
)

dxtndxtn−1
=

KL (r∥projM(r)) + KL ([projM(r)](x0)∥m(x0)) +
N+1∑
n=1

∫
log

[projM(r)](xtn |xtn−1)

m(xtn |xtn−1)
[projM(r)](xtn , xtn−1)dxtndxtn−1 =

KL (r∥projM(r)) + KL ([projM(r)](x0)∥m(x0)) +
N+1∑
n=1

∫
log

[projM(r)](xtn |xtn−1
)

m(xtn |xtn−1
)

[projM(r)](x0, xin, x1)dx0dxindx1 =

KL (r∥projM(r)) +

∫
log

[projR](q)(x0)

m(x0)
[projR](q)(x0)dx0︸ ︷︷ ︸

=KL([projM(r)](x0)∥m(x0))

+

∫
log

∏N+1
n=1 [projM(r)](xtn |xtn−1

)∏N+1
n=1 m(xtn |xtn−1)

[projM(r)](x0, xin, x1)dx0dxindx1 =

KL (r∥projM(r)) +

∫
log

[projM(r)](x0, xin, x1)

m(x0, xin, x1)
[projM(r)](x0, xin, x1)dx0dxindx1︸ ︷︷ ︸

KL(projM(r)∥m)

=

KL (r∥projM(r)) + KL (projM(r)∥m) .

That concludes the proof of the first equation (26). The proof for the second equation (27) is similar.

KL (m∥r) =
∫

log
m(x0, xin, x1)

r(x0, xin, x1)
m(x0, xin, x1)dx0dxindx1 +

19

∫
log

[projR(m)](x0, xin, x1)

[projR(m)](x0, xin, x1)︸ ︷︷ ︸
=0

m(x0, xin, x1)dx0dxindx1 =

∫
log

m(x0, xin, x1)

[projR(m)](x0, xin, x1)
m(x0, xin, x1)dx0dxindx1︸ ︷︷ ︸

KL(m∥projR(m))

+

∫
log

[projR(m)](x0, xin, x1)

r(x0, xin, x1)
m(x0, xin, x1)dx0dxindx1 =

KL (m∥projR(m)) +∫
log (((((((

pWϵ(xin|x0, x1)[projR(m)](x0, x1)

(((((((
pWϵ(xin|x0, x1)r(x0, x1)

m(x0, xin, x1)dx0dxindx1 =∫
log

[projR(m)](x0, x1)

r(x0, x1)
m(x0, x1)︸ ︷︷ ︸

=[projR(m)](x0,x1)

dx0dx1 =

KL (m∥projR(m)) +

∫
log

[projR(m)](x0, x1)

r(x0, x1)
[projR(m)](x0, x1)dx0dx1 =

KL (m∥projR(m)) +

∫
log

[projR(m)](x0, x1)

r(x0, x1)
[projR(m)](x0, xin, x1)dx0dxindx1 =

KL (m∥projR(m)) +

∫
log

pWϵ(xin|x0, x1)[projR(m)](x0, x1)

pWϵ(xin|x0, x1)r(x0, x1)
[projR(m)](x0, xin, x1)dx0dxindx1 =

KL (m∥projR(m)) +

∫
log

[projR(m)](x0, xinx1)

r(x0, xin, x1)
[projR(m)](x0, xin, x1)dx0dxindx1︸ ︷︷ ︸

=KL([projR(m)](x0,xinx1)∥r(x0,xin,x1))

=

= KL (m∥projR(m)) + KL (projR(m)∥r)

That concludes the proof of the second equation (27).

Proposition B.2. Assume that we have a sequence of processes {ql}∞l=0 from D-IMF procedure start-
ing from q0 for which KL

(
q0∥q∗

)
<∞. Assume that for each reciprocal and Markovian projection in

a sequence KL
(
ql∥ql+1

)
<∞. Then KL

(
ql+1∥q∗

)
≤ KL

(
ql∥q∗

)
and liml→∞ KL

(
ql∥ql+1

)
= 0.

Proof of Proposition B.2. We use the same technique as was used in the proof of IMF procedure [47,
Proposition 7], and for forward KL in [43]. We apply Proposition B.1 and for every l we have:

KL
(
ql∥q∗

)
= KL

(
ql∥ql+1

)
+ KL

(
ql+1∥q∗

)
Since the KL divergence is non-negative, it follows that KL

(
ql+1∥q∗

)
≤ KL

(
ql∥q∗

)
. Applying this

proposition for each l ≤ L ∈ N, we have

KL
(
q0∥q∗

)
= KL

(
q0∥q1

)
+ KL

(
q1∥q∗

)
=

L∑
l=0

KL
(
ql∥ql+1

)
+ KL

(
qL+1∥q∗

)
.

Since KL is non-negative and KL
(
q0∥q∗

)
<∞, we get liml→∞ KL

(
ql∥ql+1

)
= 0.

Proof of Theorem 3.6. The mild assumptions here are the assumptions of the Propositon B.2, i.e.
KL

(
ql∥ql+1

)
<∞. To prove the current theorem, we follow the proof of [47, Theorem 8] but do the

derivations for discrete stochastic processes instead of continuous. By our previous Proposition B.2
it holds that KL

(
ql∥q∗

)
≤ KL

(
q0∥q∗

)
< ∞ for every l. Hence the sequence (ql)∞l=0 and its

subsequences of markovian (ml)∞l=1 = (q2l+1)∞l=1 and reciprocal processes (rl)∞l=1 = (q2l)∞l=1

are subsets of a set {q ∈ P2,ac(RD×(N+2)) : KL (q∥q∗) ≤ KL
(
q0∥q∗

)
} which is compact [50,

Theorem 20]. Hence, (ml)
∞
l=1 contains a convergent subsequence (mlk)∞k=1 → m∗. In turn, the

20

subsequence (rlk)∞k=1 containes a convergent subsequence (rlkj)∞j=1 → r∗. Since sets of Markovian
M(N) and reciprocal R(N) processes are closed under weak convergence, we have m∗ ∈ M(N)
and r∗ ∈ R(N). From the lower semicontinuity of KL divergence in the weak topology [50, Theorem
19] and liml→∞ KL

(
ql∥ql+1

)
= 0 (see Proposition B.2):

0 ≤ KL (m∗∥r∗) ≤ lim inf
j→∞

KL
(
mlkj ∥rlkj

)
= 0. (28)

Thus, m∗ = r∗
def
= qlim. We know that qlim has the same marginals p0(x0) = q(x0) and

p1(x1) = q(x1) since both Markovian and reciprocal projections preserve marginals. By our
Theorem 3.1 since qlim ∈ M(N) ∩ R(N), then qlim(x0, xin, x1) = pT

∗
(x0, xin, x1). Finally,

liml→∞ KL
(
ql(x0, xin, x1)∥pT

∗
(x0, xin, x1)

)
= 0 follows using

lim
j→∞

KL
(
rlkj (x0, xin, x1)∥pT

∗
(x0, xin, x1)

)
= 0

and the mononotonicity of KL
(
ql∥q∗

)
, see Proposition B.2.

B.3 Proofs of the Statements in M3.4

The proofs in this subsection are the most technical as there are a lot of manipulations with matrices.

Proof of Theorem 3.7. From (6) and (5) follows that the discrete Brownian Bridge pW
ϵ

(xin|x0, x1)
has also a Gaussian distribution. The covariance of the Brownian Bridge with coefficient ϵ at times
s < t [17, Eq. 9.14] is ϵs(1 − t). Thus, the matrix ϵK is a covariance matrix for all pairs of time
moments t, t′ ∈ [t1, . . . , tN] of the considered discrete Brownian Bridge pW

ϵ

(xin|x0, x1). The mean
value E[xtn |x0, x1] of Brownian Bridge at time tn is equal to tnx1 + (1− tn)x0. Thus, the discrete
Brownian Bridge has the following distribution: pW

ϵ

(xin|x0, x1) = N (xin|Ux01, ϵK).

Recall that the reciprocal projection is given by:

[projRq](xin, x0, x1) = pW
ϵ

(xin|x0, x1)q(x0, x1). (29)

Since it is a product of two Gaussian distributions, which itself is also a Gaussian distribution, our
goal is to find the mean vector and covariance matrix of [projRq](xin, x0, x1). Further we denote
[projRq](xin, x0, x1) as r(x0, xin, x1) for convenience.

The mean vector of [projRq](xin, x0, x1) for each tn is given by

Er(xtn)xtn =

∫
Er(xtn |x0,x1)[xtn |x0, x1]q(x0, x1)dx0dx1 =∫

EpWϵ (xtn |x0,x1)[xtn |x0, x1]q(x0, x1)dx0dx1 =

∫ [
x0 + tn(x1 − x0)

]
q(x0, x1)dx0dx1 =

(1− tn)

∫
x0q(x0, x1)dx0dx1 + tn

∫
x1q(x0, x1)dx0dx1 = tnµ1 + (1− tn)µ0.

where µ0 and µ1 are the means of q(x0) and q(x1), respectively. Thus, the mean vector of
[projRq](xin, x0, x1) is given by (Uµ01, µ0, µ1).

Now, we are going to find the covariance matrix ΣR. We will first find the inverse covariance

Σ−1
R =

(
A B
BT C

)
of [projRq](xin, x0, x1). Here A has shape ND ×ND as the matrix K, while the matrix C has the
shape 2D×2D as the matrix Σ. Matrices A and C are symmetric since they are a part of the inversed
symmetric matrix ΣR. We exploit the fact that the logarithm of a Gaussian distribution has the form
(by Const we denote all terms that does not depend on xin or x01):

log
(
[projRq](xin, x0, x1)

)
=

Const − 1

2
((xin, x01)− (Uµ01, µ01))

TΣ−1
R ((xin, x01)− (Uµ01, µ01)) =

21

Const − 1

2
((xin, x01)− (Uµ01, µ01))

T

(
A B
BT C

)
((xin, x01)− (Uµ01, µ01)) =

Const − 1

2
(xin − Uµ01)

TA(xin − Uµ01)−
1

2
(x01 − µ01)

TC(x01 − µ01)−

(xin − Uµ01)
TB(x01 − µ01) =

Const − 1

2
xTinAxin + (Uµ01)

TAxin −
1

2
xT01Cx01 + µT

01Cx01 −

xTinBx01 − xTinBµ01 − (Uµ01)
TBx01 − (Uµ01)

TBµ01 =

Const − 1

2
xTinAxin + (Uµ01)

TAxin −
1

2
xT01Cx01 + µT

01Cx01 −

xTinBx01 − xTinBµ01 − (Uµ01)
TBx01.

In turn, from (29) we have:

log
(
[projRq](xin, x0, x1)

)
= log pW

ϵ

(xin|x0, x1) + log q(x0, x1) =

Const − 1

2
(xin − Ux01)

T (ϵK)−1(xin − Ux01)−
1

2
(x01 − µ01)

TΣ−1(x01 − µ01) =

Const − 1

2
xTin(ϵK)−1xin + xTin(ϵK)−1Ux01 −

1

2
(Ux01)

T (ϵK)−1Ux01 −

1

2
xT01Σ

−1x01 + xT01Σ
−1µ01 −

1

2
µ01Σ

−1µ01 =

Const − 1

2
xTin (ϵK)︸ ︷︷ ︸

=A

xin + xTin (ϵK)−1U︸ ︷︷ ︸
=B

x01 −
1

2
xT01 (U

T (ϵK)−1U +Σ−1)︸ ︷︷ ︸
=C

x01 + xT01Σ
−1µ01.

By matching the formulas above, it follows:

A = (ϵK)−1, B = −(ϵK)−1U, C = UT (ϵK)−1U +Σ−1. (30)

Thus, we have:

Σ−1
R =

(
A B
BT C

)
=

(
(ϵK)−1 −(ϵK)−1U

−((ϵK)−1U)T UT (ϵK)−1U +Σ−1

)
By using the formula of block-wise matrix inversion [37, Section 9.1.3] :(
A B
BT C

)−1

=

(
A−1 +A−1B(C −BTA−1B)−1BTA−1 −A−1B(C −BTA−1B)−1

−(C −BTA−1B)−1BTA−1 (C −BTA−1B)−1

)
. (31)

Applying this formula, we have:

(C −BTA−1B)−1 = (UT (ϵK)−1U +Σ−1 − UT (ϵK)−1(ϵK)(ϵK)−1U)−1 = (Σ−1)−1 = Σ.

A−1 +A−1B(C −BTA−1B)−1BTA−1 =

ϵK + ϵK(ϵK)−1UΣΣ−1ΣUT ϵK(ϵK)−1 = ϵK + UΣUT .

−A−1B(C −BTA−1B)−1 = ϵK(ϵK)−1UΣ = UΣ.

Thus, we obtain the desired result:

ΣR =

(
ϵK + UΣUT UΣ

(UΣ)T Σ

)
.

Proof of Theorem 3.8. Part 1. Since from the assumptions of the theorem q(xin, x0, x1) has Gaussian
distribution, it follows that joint distribution of two time moments q(xtn , xtn−1) is also Gaussian and
is given by:

q(xtn , xtn−1) = N (

(
xtn
xtn−1

)
|
(
µtn
µtn−1

)(
(Σ̃R)tn,tn (Σ̃R)tn,tn−1

(Σ̃R)tn−1,tn (Σ̃R)tn−1,tn−1

)
) (32)

22

Recall that here (Σ̃R)ti,tj represents submatrix of Σ̃R with covariance of xti and xtj . Hence, the
conditional distributions are given by [37, Sec 8.1.3]:

q(xtn |xtn−1
) = N (xtn |µ̂tn(xtn−1

), Σ̂tn),

µ̂tn(xtn−1
)

def
= µtn + (Σ̃R)tn,tn−1

((Σ̃R)tn−1,tn−1
)−1(xtn−1

− µtn−1
), (33)

Σ̂tn
def
= (Σ̃R)tn,tn − (Σ̃R)tn,tn−1

((Σ̃R)tn−1,tn−1
)−1((Σ̃R)tn,tn−1

)T .

That concludes the first part of our proof about the whole distribution [projMq](x0, xin, x1) of
Markovian projection.

Part 2. Next, we find the distribution of [projMq](x0, x1), but before we proceed, we introduce new
notation to improve readability:

qM(x0, xin, x1)
def
= [projMq](x0, xin, x1). (34)

Since the process qM(x0, xin, x1) is Gaussian, all its joint and conditional distributions are also
Gaussian. Moreover, we know that from the definition of the Markovian projection (10) follows
that it preserve all marginal distributions, i.e. qM(xtn) = q(xtn), hence we can already write that
qM(x0, x1) is given by:

qM(x0, x1) = N (

(
x0
x1

)
|
(
µ0

µ1

)
,

(
Σ0 Σ01

(Σ01)
T Σ1

)
), (35)

where µ0 and µ1 are the means of q(x0) and q(x1), while Σ0 and Σ1 are the covariance matricies
of q(x0) and q(x1). Thus, only Σ01 is unknown. Again, by using the formula for the conditional
distributions [37, Sec 8.1.3] we have that:

qM(x1|x0) = N (x1|µ̃1(x0), Σ̃1(x0)),

µ̃1(x0)
def
= µ1 +ΣT

01Σ
−1
0︸ ︷︷ ︸

def
=G

(x0 − µ0),

Σ̂1
def
= Σ1 − ΣT

01Σ
−1
0 Σ01.

Since the mean µ̃1(x0) of the conditional distribution is a affine map of x0 with the matrix G we can
derive:

ΣT
01 = GΣ0.

Thus, we need to find the expression for G, by considering the expression for µ̃1(x0). To derive
the expression of the mean µ̃1(x0) of qM(x1|x0) we consider the sequence qM(xtn |x0) for n ∈
[1, . . . , N + 1]. We already know the expression for n = 1 which is given by [projMq](xt1 |x0) =
q(xt1 |x0) in the first part of the proof. For other n, we use the following expression:

qM(xtn |x0) =
∫
q(xtn |xtn−1

)qM(xtn−1
|x0)dxtn−1

. (36)

Since qM(xtn |x0) is Gaussian we denote qM(xtn |x0) = N (xtn |µ̃tn(x0), Σ̃tn). We derive the mean
µ̃tn(x0) by using the properties of conditional expectations as follows:

µ̃tn(x0) = EqM(xtn |x0)[xtn] =

∫ (
Eq(xtn |xtn−1

)[xtn]
)

︸ ︷︷ ︸
µ̂tn (xtn−1

)

qM(xtn−1
|x0)dxtn−1

=

∫ (
µtn + (Σ̃R)tn,tn−1((Σ̃R)tn−1,tn−1)

−1(xtn−1 − µtn−1)
)
qM(xtn−1 |x0)dxtn−1 =

µtn + (Σ̃R)tn,tn−1
((Σ̃R)tn−1,tn−1

)−1
((∫

xtn−1
qM(xtn−1

|x0)dxtn−1

)
− µtn−1

)
=

µtn + (Σ̃R)tn,tn−1((Σ̃R)tn−1,tn−1)
−1

((
EqM(xtn−1

|x0)xtn−1︸ ︷︷ ︸
=µ̃(xtn−1

)(x0)

)
− µtn−1

)
=

µtn + (Σ̃R)tn,tn−1
((Σ̃R)tn−1,tn−1

)−1(µ̃tn−1
(x0)− µtn−1

) = µ̂tn(µ̃tn−1
(x0)). (37)

23

Note that in the line (37), we use equation (33) for µ̂tn(xtn−1) with xtn−1 = µ̃tn−1(x0) to simplify
the expression. Since µ̃tn(x0) = µ̂tn(µ̃tn−1(x0)) we can derive µ̃1(x0) recursively as follows:

µ̃1(x0) = µ̃tN+1
(x0) = µ̂tN+1

(µ̃tN (x0)) = µ̂tN+1
(µ̂tN (. . . µ̂0(x0) . . .)),

where each µ̂tn(xtn−1
) is a affine map given by (33) with the matrix given by

(Σ̃R)tn,tn−1((Σ̃R)tn−1,tn−1)
−1.

Hence, µ̃1(x0) is a composition of affine maps, and its matrix is given by the product of matrices
µ̃tn(xtn−1

) as follows:

G =
[N+1∏

n=1

(Σ̃R)tn,tn−1
((Σ̃R)tn−1,tn−1

)−1
]
,

in turn ΣT
01 is given by:

ΣT
01 = GΣ0 =

[N+1∏
n=1

(Σ̃R)tn,tn−1
((Σ̃R)tn−1,tn−1

)−1
]
Σ0.

This concludes the proof.

C Additional Experiments

C.1 Illustrative 2D Example

Here we consider the SB problem with p0 as a 2D Gaussian distribution and p1 as the Swiss-roll
distribution. We use independent q0(x0, x1) = p0(x0)p1(x1), N = 3 (tn = n

N+1) and K = 20
outer iterations. We run our ASBM algorithm with different values of parameter ϵ and present our
results in Figure 8. In all the cases, we observe the convergence to the target distribution. Overall, the
trajectories are similar to the Brownian bridge and the closeness of start and endpoints is preserved.
In Figure 9, we show the evolution of trajectories for different D-IMF iterations, which become more
straight when number of iterations increase.

C.2 Benchmark

We use the SB mixtures benchmark proposed by [13, M4] to experimentally verify that our ASBM
algorithm is indeed able to solve the Schrödinger Bridge between p0 and p1. The benchmark
provides continuous probability distribution pairs p0, p1 for dimensions D ∈ {2, 16, 64, 128} with
the known static SB solution pT

∗
(x0, x1) for parameters ϵ ∈ {0.1, 1.10}. To evaluate the quality

of our recovered SB solution, we use cBW2
2-UVP metric as suggested by the authors [13, M5] and

provide results in Table 1. Additionally, we study how our approach learns the target distribution

(a) x0 ∼ p0, x1 ∼ p1. (b) ϵ = 0.03. (c) ϵ = 0.1. (d) ϵ = 0.3.

Figure 8: The final process qθ learned with ASBM (ours) in Gaussian→Swiss roll example.

24

(a) Outer iteration 0. (b) Outer iteration 1. (c) Outer iteration 10. (d) Outer iteration 19.

Figure 9: Evolution of our learned discrete process qθ depending on D-IMF iteration in Gaussian→
Swiss roll example with ϵ = 0.03.

p1 in Table 2. In all the cases, we run our ASBM algorithm starting from the independent coupling
between p0 and p1.

As the baselines, we consider other neural bridge matching methods [49, 47]. The first one (SF2M-
Sink) is based on minibatch OT approximations, while the latter implements continuous IMF (DSBM).
Additionally, we include the results of the best algorithm (for each setup) from the benchmark [13].

As shown in the Table 1, our algorithm demonstrates superior performance on ϵ = 10, superior
performance or comparable performance on ϵ = 1, slightly worse performance w.r.t. SF2M-Sink
[49] and superior performance w.r.t. DSBM [47] on ϵ = 0.1. Also, from Table 2 one may note that
ASBM fits target distribution better then other Bridge Matching SB algorithms.

ϵ = 0.1 ϵ = 1 ϵ = 10

Algorithm Type D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

Best algorithm on benchmark† Varies 1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27 2.36 1.31
DSBM

Bridge matching
1.21 4.61 9.81 19.8 0.68 0.63 5.8 29.5 0.23 5.45 68.9 362

SF2M-Sink† 0.54 3.7 9.5 10.9 0.2 1.1 9 23 0.31 4.9 319 819
ASBM (ours) 0.89 8.2 13.5 53.7 0.19 1.6 5.8 10.5 0.13 0.4 1.9 4.7

Table 1: Comparisons of cBW2
2-UVP ↓ (%) between the static SB solution pT (x0, x1) and the learned qθ(x0, x1) on the SB benchmark.

The best metric over bridge Matching algorithms is bolded. Results marked with † are taken from [11].

ϵ = 0.1 ϵ = 1 ϵ = 10

Algorithm Type D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

Best algorithm on benchmark† Varies 0.016 0.05 0.25 0.22 0.005 0.09 0.56 0.12 0.01 0.02 0.15 0.23
DSBM

Bridge matching
0.1 0.14 0.44 3.2 0.13 0.1 0.91 6.67 0.1 5.17 66.7 356

SF2M-Sink† 0.04 0.18 0.39 1.1 0.07 0.3 4.5 17.7 0.17 4.7 316 812
ASBM (ours) 0.016 0.1 0.85 11.05 0.02 0.34 1.57 3.8 0.013 0.25 1.7 4.7

Table 2: Comparisons of BW2
2-UVP ↓ (%) between the ground truth target distribution p1(x1) and learned target distribution qθ(x1).

The best metric over bridge matching algorithms is bolded. Results marked with † are taken from [11].

Remark. There exist recent light SB algorithms [24, 11] which do not use neural parameterization
and rely on the Gaussian mixtures instead. However, these methods have very strong inductive bias
towards the benchmark as it is also constructed using Gaussian mixtures. Therefore, we exclude them
from comparison, see the comments of the authors in [24, M5.2] and [11, M5.2]

C.3 Colored MNIST

Here we test ASBM (ours, NFE=4) and DSBM (NFE=100) algorithms starting from mini-batch OT
coupling [49] on transfer between colorized MNIST digits of classes "2" and "3" with ϵ ∈ {1, 10}.
We learn ASBM and DSBM on train set of digits and show the translated test images in Figures 10
and 11 along with calcualted test FID in Table 3.

For ϵ = 1 the color stays almost exactly the same through translation and there are minor shape
diversity for both ASBM and DSBM, see Figures (10b, 10c, 11b, 11c). In turn, ϵ = 10 introduces
more stochastisity to the solutions, and expectedly the color and shape vary a bit but overall stays
similar to input data for both ASBM and DSBM, see Figures (10d, 10e, 11d, 11e). As one can see
from Table 3, ASBM has better FID on both ϵ ∈ {1, 10}. However DSBM experiences a notable

25

(a)
x ∼ p0

(b) ASBM (ours),
ϵ = 1

(c) DSBM [47],
ϵ = 1

(d) ASBM (ours),
ϵ = 10

(e) DSBM [47],
ϵ = 10

Figure 10: Samples from ASBM (ours) and DSBM learned on Colored MNIST 2→3 (32× 32)
translation for ϵ ∈ {1, 10}.

(a)
x ∼ p0

(b) ASBM (ours),
ϵ = 1

(c) DSBM [47],
ϵ = 1

(d) ASBM (ours),
ϵ = 10

(e) DSBM [47],
ϵ = 10

Figure 11: Samples from ASBM (ours) and DSBM learned on Colored MNIST 3→2 (32× 32)
translation for ϵ ∈ {1, 10}.

Model ϵ FID (2 → 3) FID (3 → 2)
ASBM (ours) 1 2.7 2.8

DSBM 1 6.2 5.3
ASBM (ours) 10 4.3 4.53

DSBM 10 58.7 59.9

Table 3: C-MNIST FID ↓ values for ASBM and DSBM with ϵ ∈ {1, 10}

increase in FID with ϵ = 10. We conjecture that this is due to the FID unstability w.r.t. slightly noisy
images which may appear in DSBM due to the neccesity to integrate noisy trajectories (for large ϵ).

D Experimental Details

D.1 Details of DDGAN Implementation for Learning Markovian Projection

Below, we discuss the parametrization of the discriminator and generator in detail. In general we
follow [53], but we change their DDPM diffusion inner process on the Brownian bridge process.

Parametrization and objective for the discriminator. As in the DD-GAN paper [53] we use a
time-conditional discriminator Dξ(xtn , xtn−1

, tn−1): RD × RD × [0, 1] → [0, 1]. For each time
moment t and object xtn−1

, the role of this discriminator is to check whether the sample xtn is from
the distribution q(xtn |xtn−1

). As well as in the DD-GAN paper [53], we train this discriminator by
optimizing the following objective:

min
ξ

N+1∑
n=1

Eq(xtn−1
)[Eq(xtn |xtn−1

)[− logDξ(xt, xtn−1 , tn−1)] (38)

+Eqθ(xtn |xtn−1
)[− log

(
1−Dξ(xt, xtn−1 , tn−1)

)
]]

Here, the samples from q(xtn |xtn−1
) play the role of true samples, while the samples obtained from

the parametrized distribution qθ(xtn |xtn−1
) play role of fake samples in terms of original GANs.

To estimate the first expectation Eq(xtn−1
)Eq(xtn |xtn−1

) = Eq(xtn ,xtn−1
) one should sample from

q(xtn , xtn−1
). To sample a pair (xtn , xtn−1

) ∼ q(xtn , xtn−1
), we use the properties (5) and (6) of

26

the reciprocal process q:

q(xtn , xtn−1) =

∫
pW

ϵ

(xtn |xtn−1 , x1)p
W ϵ

(xtn−1 |x0, x1)q(x1, x0)dx1dx0.

Sampling from q(xtn−1)qθ(xtn |xtn−1) for estimation of second expectation is given in detail below.

Parametrization and objective for the generator. We follow the same setup as the authors of
DD-GAN [53] and parametrize qθ(xtn |xtn−1

) implicitly through the generator Gθ(xtn−1
, z, t) :

RD × RZ × [0, 1] → RD as follows:

qθ(xtn |xtn−1
)

def
=

∫
RD

qθ(x1|xtn−1
)pW

ϵ

(xtn |xtn−1
, x1)dx1 =∫

RZ

pW
ϵ

(xtn |xtn−1 , x1 = Gθ(xtn−1 , z, t))pz(z)dz,

where qθ(x1|xtn−1) should match q(x1|xtn−1) and pz(z) is the auxiliary probability distribution
for the generator Gθ to model samples from qθ(x1|xtn−1). Thus, for a given xtn−1 sample xtn ∼
qθ(xtn |xtn−1) is obtained by first sampling x1 from the generator Gθ and then using sampling from
the Brownian bridge pW

ϵ

(xtn |xtn−1 , x1). While in the DD-GAN, the authors use the intermediate
time distribution q(xin|x0, x1) from DDPM [15] and it is the main difference between our Markovian
projection and one which the authors of DD-GAN used. As in the non-saturation GANs [10], we
train the generator by optimizing the following objective:

max
θ

N+1∑
n=1

Eq(xtn−1
)Eqθ(xtn |xtn−1

)[log
(
Dϕ(xt, xtn−1 , tn−1)

)
].

D.2 Details of D-IMF Implementation

General description of the ASBM algorithm. D-IMF algorithm is parametrized by the number
K of outer D-IMF iterations, number of inner D-IMF iterations (number of generator gradient
optimization steps inside one IMF iteration), ASBM number of inner steps N and starting coupling
q0(x0, x1) used in the initial reciprocal process q0(x0, xin, x1) = pW

ϵ

(xin|x0, x1)q0(x0, x1). Our
ASBM Algorithm 1 for D-IMF procedure is analog of DSBM [47, Algorithm 1] for IMF procedure.

Algorithm 1: Adversarial SB matching (ASBM).
Input :number of intermediate steps N ;

initial process q0(x0, xt1 , . . . , xtN , x1) accessible by samples;
number of outer iteration K ∈ N;
forward transitional density network {qθ(xtn |xtn−1

)}N+1
n=1 ;

backward transitional density network {qη(xtn−1|xtn
)}N+1

n=1 ;
Output :p0(x0)

∏N+1
n=1 qθ(xtn |xtn−1

) ≈ p1(x1)
∏N+1

n=1 qη(xtn−1
|xtn) ≈ pT

∗
(x0, xin, x1).

for k = 0 to K − 1 do
Learn {qθ(xtn |xtn−1)}N+1

n=1 using 15 with q4k;
Let q4k+1 be given by p0(x0)

∏N+1
n=1 qθ(xtn |xtn−1

);
Let q4k+2 be given by pW

ϵ

(xin|x0, x1)qθ(x0, x1);
Learn {qη(xtn−1

|xtn)}N+1
n=1 using 16 with q4k+2;

Let q4k+3 be given by p1(x1)
∏N+1

n=1 qη(xtn−1
|xtn);

Let q4k+4 be given by pW
ϵ

(xin|x0, x1)qη(x0, x1);

We do not reinitialize neural networks during the ASBM algorithm.

Special pretraining on the 0-th outer iteration. While, in general, Algorithm 1 implements our
scheme, in our experiments, we slightly modify the initial outer iteration based on purely empirical
reasons. We train both forward and backward models {qθ(xtn |xtn−1)}N+1

n=1 and {qη(xtn−1|xtn
)}N+1

n=1

with q0 and the let q1 be p0(x0)
∏N+1

n=1 qθ(xtn |xtn−1
). We use more gradient setups on this iteration

than on the further outer iterations. We do that to "pretrain" both processes qθ and qη to model p1 and
p0 respectively. Then we proceed to other iterations as described in Algorithm 1.

27

D.3 Hyperparameters of ASBM

For all the experiments, Discrete Markovian Projection is conducted using the DD-GAN code [53]:

https://github.com/NVlabs/denoising-diffusion-gan

The only thing that we modify is the replacement of the DDPM [15] posterior sampling for generator
with our Brownian Bridge posterior sampling, see Appendix D.1. In all the experiments we use a
uniform time discretization, i.e., for the number of inner times pointsN , tn = n

N+1 for n ∈ [0, N+1].

In Toy 2D (Appendix C.1) and SB Benchmark (Appendix C.2) experiments, both generator and dis-
crimintor are parametrized by MLPs with inner layer widths [256, 256, 256], LeakyReLU activations
and 2-dimensional time embeddings using torch.nn.Embeddings. In CelebA (M4.2) and Colored
MNIST (Appendix C.3) experiments, generator is parametrized by U-Net [42] and discriminator by
a ResNet-like architectures with addition of positional time encoding as in [53]. Neural networks
are optimized with the Adam optimizer [22] and apply the Exponential Moving Averaging (EMA)
on generator’s weights. At the start of a new D-IMF iteration, both the generator, generator (EMA),
discriminator and optimizers are initialized using checkpoints from the end of the previous D-IMF
iteration. Inside each D-IMF iteration (except the initial one), EMA generator weights are used for
sampling from previous Discrete Markovian Projections. Starting coupling q0(x0, x1) may be either
Ind, i.e. q0(x0, x1) = p0(x0)p1(x1), or Mini Batch Optimal Transport coupling (MB), i.e. discrete
Optimal Transport solved on mini-batch samples [49].

The hyperparameters which we use in the experiments are summarized in Table 4.

Experiment
Start couping
q0(x0, x1)

D-IMF
outer iters

D-IMF=0
grad updates

D-IMF
grad updates N Batch Size D/G opt

ratio
EMA
decay Lr G Lr D

2D Toy Ind 20 400000 40000 3 512 1:1 0.999 1e-4 1e-4
SB Bench Ind 2 133000 67000 31 128 3:1 0.999 1e-4 1e-4
C-MNIST MB 3 100000 50000 3 64 1:1 0.999 1.25e-4 1.6e-4

CelebA MB 5 1000000 40000 3 32 1:1 0.9999 1.25e-4 1.6e-4

Table 4: Hyperparameters for experiments. D stands for Discriminator and G stands for Generator.
Ratio of Discriminator optimization steps w.r.t. Generator optimization steps is denoted by D/G opt

ratio. Lr stands for learning rate.

Other details & pre-processing. Test FID is calculated using pytorch-fid package. Working with
CelabA dataset [33], we use all 84434 male and 118165 female samples (90% train, 10% test of each
class). Each sample is resized to 128× 128 and normalized by 0.5 mean and 0.5 std. Generator and
discriminator are the same as for CelebA-HQ in DDGAN [53] (42M Generator parameters and 27M
Discriminator parameters). Working with Colorized MNIST [12], we pick digits of classes "2" and
"3" (we use the default MNIST train/test split), resize them to 32× 32 and normalize by 0.5 mean
and 0.5 std. We use the same generator and discriminator as DDGAN uses in CIFAR10 [53].

Computational time. The most time challenging experiment on CelebA runs for approximately 7
days on 1 GPUs A100. Experiment with Colored MNIST takes less then 2 days of training on GPU
A100. Toy2D and Schrödinger Bridge benchmark experiments take several hours on GPU A100.

D.4 Details of DSBM Baseline

DSBM [47] implementation is taken from the official code:

https://github.com/yuyang-shi/dsbm-pytorch

For CelebA experiment all the hyperparameters, except for 200k training iterations for the first IMF
iteration (Bridge Matching pretrain, Appx I.3 [47]) and number of overall IMF iterations (that is
taken the same as for corresponding ASBM experiment, see Table 4), were taken from [47]. As a
neural network time conditional U-Net model (38M parameters) was used. Hyperparameters and
neural network for Colored MNIST experiment were taken from MNIST ↔ E-MNIST experiment
[47, M6]. Starting coupling is exactly the same as for ASBM in corresponding experiments (Table 4).

28

https://github.com/NVlabs/denoising-diffusion-gan
https://github.com/mseitzer/pytorch-fid
https://github.com/yuyang-shi/dsbm-pytorch

E Additional results on CelebA

E.1 Extended Evaluation using Other Metrics

FID for female→male. We evaluate the backward model (female→male) trained for unpaired
CelebA (128×128) image-to-image translation (M4.2) and present the test FID in Table 5.

Model ϵ = 1 ϵ = 10
DSBM 24.06 92.15

ASBM (ours) 16.86 17.44
Table 5: Test FID↓ values for CelebA female→male image-to-image translation.

CMMD. To strengthen the unpaired CelebA (128×128) male→female image-to-image translation
(M4.2) experimental results, we add CMMD [19] metric. CMMD is a recent analogue of the FID that
enjoys unbiased estimation and rich CLIP [40] embeddings. We estimate CMMD on CelebA for
the same DSBM and ASBM models as for the FID calculation (M7) using all available female test
samples and present results in Table 6. It can be seen that the CMMD values correlate with the FID
values.

Model ϵ = 1 ϵ = 10
DSBM 0.365 1.140

ASBM (ours) 0.216 0.231
Table 6: CMMD↓ [19] metric for unpaired CelebA (128×128) male→female image-to-image

translation estimated on female test set.

Training with different NFE. In the unpaired CelebA (128×128) male→female image-to-image
translation (M 4.2), number of inner steps N = 3 is considered. However, it is possible to train the
model with different values of N , which correspond to the model NFE minus one. For completeness,
we provide experimental results with training and evaluation at N = 1 and N = 7 (NFE= 2 and
NFE= 8). Here all training hyperparameters are the same as for N = 3, see Appendix D. Samples
and test FID are shown in Figure 12.

(a) NFE=2, FID=11.829 (b) NFE=4, FID=16.08 (c) NFE=8, FID=29.58

Figure 12: Unpaired CelebA (128×128) male→female image-to-image translation samples and
FID↓ values for ASBM trained with different NFE ∈ {2, 4, 8} with ϵ = 1.

Inference with different NFE. Although in practice models are trained with a fixed NFE (see
Appendix D), it is possible to use different NFE at the inference stage by exploiting the continuity
of the time-conditional module, see Algorithm 2. We take the model for male→female trained on
NFE=3 with ϵ = 1 and evaluate it with different NFE ∈ {1, 2, 3, 4, 8, 16, 32}, see the results in
Figure 13, and do quantitative evaluation using FID and MSE cost (MSE between inputs and outputs)
in Table 7. As can be seen, the MSE cost increases with NFE and the FID is optimal at NFE=4.

29

Algorithm 2: Inference of forward ASBM model.
Input :number of intermediate steps N ; sample x0

forward xN generator network Gθ;
Output :sample from p0(x0)

∏N+1
n=1 qθ(xtn |xtn−1

).
for n = 0 to N do

xn+1 ∼ pW
ϵ

(xtn+1 |xtn , x1 = Gθ(xtn , z, t))

Figure 13: CelebA male→female translation samples of ASBM trained with NFE= 4 and evaluated
with NFE ∈ {1, 2, 3, 4, 8, 16, 32}.

NFE 1 2 3 4 8 16 32
FID 58.71 32.27 17.67 16.62 55.72 67 86.97

MSE cost 0.009 0.023 0.047 0.113 0.288 0.354 0.50
Table 7: Quantitative evaluation of ASBM model trained with NFE= 4 and evaluated with

NFE∈ {1, 2, 3, 4, 8, 16, 32}. FID↓ and MSE cost are calculated on the test set.

LPIPS diversity. To measure the generation diversity of our model on CelebA male→female
translation, we compute the LPIPS variance [16]. Specifically, we take a subset of 500 images from
the test part of the Celeba dataset and sample a batch of 16 generated images for each input image.
We then compute the average LPIPS [55] distance between all possible pairs of these images and
average these values. We present the results in the Table 8 for DSBM and ASBM with different
values of the coefficient ϵ = 1 and ϵ = 10.

Model ϵ = 1 ϵ = 10
DSBM 0.1047 0.1909

ASBM (ours) 0.0933 0.1878
Table 8: Average diversity of DSBM and ASBM generative models for male→female translation

measured by using LPIPS variance [16].

LPIPS perceptual similarity. To evaluate the content preservation during the unpaired image-to-
image male→female translation on CelebA, we calculate the perceptual similarity. Namely, we take
the test samples from CelebA dataset, translate them using learned DSBM and ASBM models with
parameters ϵ = 1 and ϵ = 10 and then calculate LPIPS [55] between inputs and generated outputs
and average results. One can see results in the Table 9.

30

Model ϵ = 1 ϵ = 10
DSBM 0.246 0.386
ASBM 0.242 0.294

Table 9: Perceptual similarity for male→female translation for DSBM and ASBM models with ϵ = 1
and ϵ = 10 measured using LPIPS↓ [55] between inputs from CelebA test and generated outputs.

E.2 Analysis on D-IMF/IMF iterations dynamics

Figure 14: ASBM and DSBM FID w.r.t.
IMF iterations.

We include additional analysis on dynamics of model sam-
ples with D-IMF iterations for ASBM (ours) and IMF
iterations for DSBM with ϵ = 1. As one can see from
Figure 15a ASBM visually almost converges after 5 iter-
ations in terms of similarity of generated sample w.r.t. to
input data, i.e., the transport cost. From plot in Figure 14
we see that ASBM’s FID does not change through subse-
quent D-IMF iterations; ASBM fits target on the iteration
5 rather well. Looking at Figure 15b, one can conclude
that for DSBM visual similarity along side with transport
cost starts to diverge after 5th outer IMF iteration. Also,
as it can be seen at plot in Figure 14, FID stops to improve
after outer iteration 9 and does not improve drastically
from outer iteration 5. Hence, we take ASBM and DSBM with 5 outer D-IMF/IMF iterations as a
balance point for our comparison.

(a) ASBM (ours)

(b) DSBM

Figure 15: Samples dependence on D-IMF/IMF outer iterations number k , ϵ = 1.

31

(a) x ∼ p0 (b) ASBM (ours), ϵ = 1
FID: 16.87

(c) DSBM [47], ϵ = 1
FID: 24.06

(d) x ∼ p0 (e) ASBM (ours), ϵ = 10
FID: 14.73

(f) DSBM [47], ϵ = 10
FID: 92.16

Figure 16: Samples from ASBM (ours) and DSBM learned on Celeba female→male (128× 128) for
ϵ ∈ {1, 10}

E.3 ASBM (ours) and DSBM samples for female→male (128× 128)

In Figure 16, we provide additional examples for female→male (128× 128) setting with ϵ ∈ {1, 10}
for ASBM (Figures 16b, 16e) and DSBM (Figures 16c, 16f) along with quantitative evaluation of
FID values. Both ASBM and DSBM models were evaluated at D-IMF/IMF iteration number 4. As
one can see ASBM (NFE=4) outperforms DSBM (NFE=100) in FID using only 4 evaluation steps.

E.4 Extra (uncurated) samples for ASBM (ours) on CelebA male↔female (128× 128)

In Figures 17 and 18, we provide additional samples for ASBM CelebA male↔female (128× 128)
experiment with ϵ ∈ {1, 10}.

32

(a) Input (b) Output for ϵ = 10 (c) Output for ϵ = 10

Figure 17: ASBM (ours) Celeba male→female (128× 128) samples for ϵ ∈ {1, 10}
.

33

(a) Input (b) ϵ = 10 (c) ϵ = 10

Figure 18: ASBM female→male (128× 128) samples for ϵ ∈ {1, 10}

34

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: For every contribution in introduction there are links to sections about them.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Appendix A

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

35

Justification: Proofs along with assumptions are provided in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details are discussed in Appendix D. Code for the experiments is
provided in supplemetary materials. All the datasets are available in public.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

36

Answer: [Yes]
Justification: Code will be made public after the paper acceptance (now we provide it in
the supplementary). Experimental details are provided in Appendix D. All the datasets are
publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental details are discussed in Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Unfortunately running experiments several times to calculate statistics and
error bars would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

37

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computational time and used computational resources details were reported
for several experiments in D.3
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Research conforms with NeurIPS Code of Ethics. Societal impact related
information was discussed in A
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impact was discussed in A
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

38

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Presented research doesn’t need safeguards

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the used assets are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

39

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Code is provided in supplementary material. License for the code will be
included after the paper acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

40

	Introduction
	Background
	Bridge Matching and Iterative Markovian Fitting Procedures
	Schrödinger Bridge (SB) Problem

	Adversarial Schrödinger Bridge Matching (ASBM)
	Discrete Markovian and reciprocal stochastic processes
	Main Theorem
	Discrete-time Iterative Markovian Fitting (D-IMF) procedure
	Closed form Updates of D-IMF for Gaussian Distributions
	Practical Implemetation of D-IMF: ASBM Algorithm
	Relation to Prior Works

	Experiments
	Gaussian-to-Gaussian Schrödinger Bridge
	Unpaired Image-to-image Translation

	Discussion
	Limitations and Future Work
	Proofs
	Proofs for Statements in Section 3.2
	Proofs for Statements in Section 3.3
	Proofs of the Statements in "4D3.4

	Additional Experiments
	Illustrative 2D Example
	Benchmark
	Colored MNIST

	Experimental Details
	Details of DDGAN Implementation for Learning Markovian Projection
	Details of D-IMF Implementation
	Hyperparameters of ASBM
	Details of DSBM Baseline

	Additional results on CelebA
	Extended Evaluation using Other Metrics
	Analysis on D-IMF/IMF iterations dynamics
	ASBM (ours) and DSBM samples for femalemale (128128)
	Extra (uncurated) samples for ASBM (ours) on CelebA malefemale (128128)

