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Abstract

Point defects affect material properties by altering electronic states and modifying1

local bonding environments. However, high-throughput first-principles simula-2

tions of point defects are costly due to large simulation cells and complex energy3

landscapes. To this end, we propose a generative framework for simulating point4

defects, overcoming the limits of costly first-principles simulators. By leveraging5

a primal-dual algorithm, we introduce a constraint-aware diffusion model which6

outperforms existing constrained diffusion approaches in this domain. Across six7

defect configuration settings for Bi2Te3, the proposed approach provides state-of-8

the-art performance generating physically grounded structures.9

1 Introduction10

Point defects play an important role in determining the properties of crystalline materials [1–4].11

Recent work on additive manufacturing (AM) of thermoelectric materials reveals a more complex12

relationship between processing conditions and point defects than in traditional methods [5–7]. They13

are exploited to tailor the structural, electronic, and thermal properties of advanced materials for14

technological applications.15

Layered chalcogenides, a promising material class, are highly susceptible to point defects due to16

their mixed bonding with weak interlayer van der Waals interactions and strong intralayer covalent17

bonds, which critically influence electronic and phononic transport properties [8, 9]. A well-known18

example is bismuth telluride (Bi2Te3), which has been widely studied for its high thermoelectric19

efficiency in the low-temperature regime [10–13]. The performance of Bi2Te3 is strongly governed20

by defect concentration and configuration, and preliminary AM work has shown that laser processing21

parameters can change thermoelectric properties to optimize efficiency and carrier transport. [6, 7].22

Point defects are hard to probe directly and are typically identified indirectly via combined techniques.23

Traditionally, density functional theory (DFT) have been used to complement experimental methods24

for defect identification [14] which is computationally expensive, making high-throughput studies25

computationally prohibitive. This situation highlights the need for alternative approaches, such as26

surrogate models, to supplement the DFT calculations. In related domains, deep learning methods27

have successfully overcome these barriers [15]. Generative models enable digital twins for defect28

prediction, with diffusion models achieving state-of-the-art material generation and inverse design29

[16–18]. Yet, these models excel at generating realistic data, struggle with strict physical constraints.30

Without reliability, designs risk impracticality and may hinder transition to production.31

For other scientific applications, these challenges have been addressed through physics-aware genera-32

tive processes. Simple constraints can be injected into sampling [19–21], but complex ones often33

require integrating costly simulators with high overhead [22, 23]. In this case, runtime demands34

may limit utility, making rejection sampling more efficient. For physics-informed generation of35
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Figure 1: (a) A 2×2×2 supercell of Bi2Te3 for DFT simulations. (b) Another supercell representation,
highlighting quintuple layer, structure Te(1)–Bi–Te(2)–Bi–Te(1) with vacancy defect.

materials like Bi2Te3, first-principle simulators [24] are challenging, as constraints lack closed forms36

and evaluations scale exponentially with system size.37

Contributions. To address these existing challenges, this paper makes the following contributions:38

(1) It extends previous constrained generation approaches to handle complex constraints modeled by39

tractable functions and neural surrogates, leveraging a primal-dual algorithm. (2) It provides the first40

study which explores constrained diffusion to supplement the DFT-based point defect simulation of a41

thermoelectric material (Bi2Te3). (3) Through rigorous evaluation across six defect configurations42

of interest, we provide state-of-the-art performance for generative modeling of physically realistic43

predictions of layered chalcogenides.44

2 Preliminaries45

Score-based Diffusion Models [25, 26], and equivalently denoising diffusion probabilistic models46

[27, 28], model data distributions by introducing a forward noising process and training a neural47

network to approximate its reverse. In the forward process, a clean sample x0 ∼ pdata(x0) is48

gradually perturbed through a sequence of intermediate distributions {pt(xt)}Tt=0. This is achieved49

using a Gaussian noise kernel with a predefined variance schedule ᾱt, which increases with t. As50

t → T , the distribution of xt converges to a standard Gaussian, such that pT (xT ) ≈ N (0, I).51

This process facilitates the training of a score network sθ(xt, t), which learns the score function52

sθ(xt, t) ≈ ∇xt
log pt(xt|x0) by error in the predicted score estimate:53

min
θ

E
t∼[T,1], x0∼pdata

[
∥sθ(xt, t)−∇xt log pt(xt|x0)∥22

]
(1)

The trained score network sθ(xt, t) is then used in the reverse process to iteratively reconstruct data54

samples from the training distribution pdata. At each timestep t, the score function is applied to the55

reverse process, transitioning Gaussian noise xT ∼ N (0, I) to high fidelity samples.56

Projected Diffusion Models [19] build from Langevin Dynamics employed by score-based diffusion57

models, interpreting the sampling process as an optimization with respect to a series of intermediate58

probability density functions (Equation (2a)). In doing so, the formulation enabled a natural extension59

to constrained sampling problems by enforcing constraint adherence on the sample:60

minimize
xT ,...,x1

∑
t=T,...,0

− log pt(xt|x0) (2a)

s.t.: xT , . . . ,x0 ∈ C. (2b)

Constraints can then be enforced by extending the reverse process with Projected Langevin Dynamics,61

such each update step is projected to the nearest feasible point by PC(x) = argmin
y∈C

∥y − x∥22:62

x
(i+1)
t = PC

(
x
(i)
t + γtsθ(x

(i)
t , t) +

√
2γtϵ

)
(3)

where γt is the step size decreasing with t, and ϵ is Gaussian noise.63

3 Constrained Diffusion for Point Defect Generation64

Generating relaxed atomic structures with targeted defects in Bi2Te3 is a challenging problem, as the65

combinatorial diversity of defect placements creates a vast configuration space where DFT becomes66
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computationally prohibitive. To address this, we propose a generative diffusion framework that67

samples Bi2Te3 structures under prescribed stoichiometries. Given target counts of Bi and Te atoms68

in a supercell, as shown in Figure 1, the model generates diverse arrangements that explore physically69

meaningful defects while retaining diffusion sampling’s inherent randomness. However, diffusion70

alone does not ensure physical plausibility, motivating the adoption of three constraint types.71

1. Geometric Constraints. Ensure physically-meaningful interatomic distances and periodic boundary72

conditions. Physical validity requires a lower bound on interatomic distances to prevent atomic73

collapse. For consistency with DFT simulations, generated structures must also satisfy periodic74

boundary constraints to align with reference distributions. Thus,75

∥ri − rj∥ ≥ dmin, ∀i ̸= j; fi ∈ [0, 1]3, (4)

where dmin is the minimum allowable interatomic distance between arbitrary atoms ri and rj , and76

fi is the fractional coordinate constrained to [0, 1]3 to enforce periodic boundary conditions.77

2. Distributional Constraints. Align radial distributions (within 5Å) with reference data; This reflects78

structural patterns, such as relative intensities of coordination shells. This yeilds,79

D[0,Rc](pgen, pref) ≤ ε, (5)

where D[0,Rc] measures discrepancy between distributions over distances in [0, Rc], p denotes the80

empirical distribution of pairwise distances in generated and reference structures.81

3. Force Minimization. Stable structures are defined by low total forces, rendering force minimization82

critical for physical plausibility. As shown in Section 4, stochastic generations often yield83

high forces. We therefore introduce a soft force-minimization constraint, adding a ∥force(r)∥284

prediction term from a surrogate [29] to the objective (2a), optimized at sampling.85

Terminal Set Constraints. Projection-based constraint enforcement can be very effective in many86

applications. Unlike post-processing, these techniques yield higher-fidelity outputs to the learned87

distribution, as the score function refines samples displaced from high-density regions. Yet, projected88

diffusion models rely on a stringent assumption: Constraints can be meaningfully imposed on any89

xt ∼ pt(xt) for an arbitrary t [19].90

Often, it may be reasonable to assume that constraints can be modeled at intermediate states (e.g.,91

path planning, where even noisy samples form valid trajectories) [30]. However, this assumption does92

not hold in many scientific applications such as ours, where complex dynamics require surrogates93

that are unreliable on noisy samples. This challenge, studied in training-free guidance [31–33], can94

lead to “misaligned gradients,” only matching the true value as t → 0, leading to compounding errors95

[34, 35]. Alternatively, finetuning on noisy data is often ineffective: (1) Labels are not available for96

our constraints due to simulators requirements [24], which are not only prohibitive due to runtime97

but also as the DFT process fails on increasingly noisy samples. (2) Even when labels are available,98

gradient inaccuracies remain a concern [36].99

Hence, designing a constraint evaluation surrogate robust to high noise levels is prohibitive for100

complicated constraint sets. A more promising strategy is to relax the intermediate feasibility101

assumption. To facilitate this, our framework treats the objective in Equation (2) as a multi-stage102

optimization problem. While Equation (2b) enforces xt ∈ C, from a multi-stage perspective only the103

terminal state x0 must be feasible. Thus, intermediate constraints serve as a conservative proxy for104

final feasibility, while earlier states may remain unconstrained if the process yields x0 ∈ C.105

Hence, we impose the constraints only on the final minimization of − log pdata(x0). This can then106

be interpreted as terminal set constraints drawn from Model Predictive Control theory [37], where107

feasibility is often only enforced on final decision variables. This removes dependence on intermediate108

feasibility assumptions as constraints are only imposed on clean samples within pdata.109

Primal-Dual Projection Algorithm. As neural surrogates provide differentiable loss functions, it is110

most reasonable to solve the projection mapping using a gradient-based approach. To facilitate this,111

we adopt the Augmented Lagrangian representation of the constraint problem following Liang et al.,112

incorporating constraints into the objective through Lagrange multipliers [38], and yielding:113

L(y,x(i)
0 ;λ, µ) := ∥y − x

(i)
0 ∥22 +

N∑
j

λjcj(y) +

N∑
k

µk

2
ck(y)

2 (6)

where λ = {λ1, . . . , λN} and µ = {µ1, . . . , µN} are dual variables associated with N constraint114

violation functions c = {c1, . . . , cN} and y is the solution optimized. Ensuring the strongest115
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Method Config RMSD ↓ RDF ↓ Force (eV/Å) ↓

Conditional DM 16Bi + 21Te 1.86± 0.33 65.85± 19.75 1.85× 109

16Bi + 22Te 1.93± 0.36 82.11± 29.54 3.49× 109

Projected DM 16Bi + 21Te 2.54± 0.55 1.11± 0.77 8.35× 102

16Bi + 22Te 1.41± 0.83 0.78± 0.55 7.20× 101

Post-proc DM 16Bi + 21Te 2.30± 0.40 27.25± 28.30 8.45× 106

16Bi + 22Te 1.14± 0.65 21.82± 28.09 9.29× 106

Ours 16Bi + 21Te 0.90± 0.38 0.30± 0.11 7.88× 10−2

16Bi + 22Te 1.02± 0.70 0.35± 0.18 1.44× 10−1

Table 1: Empirical comparison across stoichiometric configurations. Extended table in Appendix C.

relaxation of this projection, the Lagrangian dual is used to optimize the dual variables [39]:116

argmax
λ, µ

(
argmin

y

(
L(y,x(i)

0 ;λ, µ)
))

(7)

This converges to satisfy the distance and distributional constraints while simultaneously minimizing117

the force and remaining close to the original input. Following Equation (3), we begin applying this as118

our projection operator at t = 0. More details are provided in Appendix B.119

4 Experiments120

Baselines. We compare our approach against three representative baselines: (1) conditional diffusion121

models [40], where constraints are incorporated during training and sampling to bias the denoising122

process toward feasible regions. (2) post-processing optimization [41], where the final output of123

an unconstrained diffusion model is projected onto the constraint set in a single step. (3) projected124

diffusion models [19], which enforce constraints at every denoising step. This represents the current125

state-of-the-art but relies on meaningful constraint evaluation under noisy configurations.126

Evaluation. We target four categories of defects that frequently occur in Bi2Te3 structure systems: Te127

vacancies, Bi vacancies, Bi on Te anti-site, and Te on Bi anti-site. Additional details on the problem128

setup and results are provided in Appendix C. Our evaluation consists of the following metrics:129

• RMSD (Root Mean Square Deviation): Computes positional deviation between generations and130

closest reference structures by matching atoms via a Hungarian matching algorithm.131

• RDF (Radial Distribution Function): Compares radial distributions for all generations within132

5Å to assess global geometric consistency. This indicates the accuracy of positions and heights of133

nearest neighbor shell peaks under a common defect.134

• Force (eV/Å): Reports the total force as computed by a neural surrogate [29]. Lower force indicates135

generations closer to stable states and more suitable for downstream simulations.136

Interpretation. As shown in Table 1, our method achieves substantially lower deviation from137

reference structures and reduced total forces. Existing approaches observe key limitations: (1)138

conditional diffusion preserves structural characteristics but allows overlapping atoms, undermining139

physical realism and leading to extremely high total force; (2) post-processing, while improving140

over the conditional model, struggles to impose the highly nonconvex constraints in a single step, as141

the final output often deviates from the constraint set significantly; (3) projected diffusion provides142

the strongest baseline, but misaligned gradients at higher noise results in higher RDF deviation. In143

contrast, our method preserves diffusion dynamics while ensuring feasibility. By applying constraints144

on the final Langevin optimization, gradient inaccuracies are avoided (unlike projected diffusion145

models), while providing a sufficient number of constrained diffusion steps to ensure feasibility146

(unlike post-processing schemes). We achieve the lowest RMSD in nearly all settings, the highest147

RDF similarity (by more than 2x), and lower total forces by several orders of magnitude.148

5 Conclusion149

Motivated by the real-world importance of thermoelectric defect structure modeling, this paper150

addresses existing barriers by integrating constraints into the sampling process through tractable151

functions and neural surrogate models. Building upon a primal–dual projection algorithm, this152

work provides effectively enforces feasibility while addressing challenges with misaligned gradients.153

Across six representative defect configurations in Bi2Te3, our approach provides state-of-the-art per-154

formance in producing physically realistic structures, highlighting the significance of our framework155

for complex material systems.156
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A Related Work281

Constraint Conditioning [40, 42] enables controllable generation by incorporating a conditioning282

variable to bias the posterior which is sampled. Accomplished either explicitly through the addition283

of classifier-derived gradient signals or implicitly by training the denoiser with specific conditioning284

labels, these techniques provide soft guidance towards particular subdistributions. Notably, these285

methods have been applied to improve constraint adherence in a variety of applications including286

[fill in references]. Yet, while constraint conditioning can improve feasibility rates in specific cases,287

it is unreliable when exact satisfaction is required. Particularly when constraint sets are complex,288

conditioning methods have been shown ineffective in providing viable outputs, a challenge that is289

demonstrated in our empirical analysis.290

Post-Processing Optimization [41] provides an alternative approach which injects constraints291

following the denoising process. These approaches leverage a generative model to produce a starting292

structure x0, after which domain-specific corrections are applied. For material structure generations,293

this often consists of running DFT simulators [24] to relax the atomic configurations, ensuring294

stability as the structure is refined to reach equilibrium. Yet, these approaches are inherently void295

of distributional information, and the optimization procedure may drive the samples away from the296

learned distribution. While the original candidate structure will fall within pdata, without access to the297

learned score function or likelihood estimates, post-processing can degrade sample quality, resulting298

in an output distribution that is constrained but no longer resembles the training data.299
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B Augmented Lagrangian Method300

In our settings, projection is required to ensure a collection of physical constraints. Unlike standard301

convex projection operators, these constraints are often highly non-convex and some are evaluated302

through surrogate models, such as pretrained MACE model. This makes exact projection onto feasible303

set intractable. To overcome this, we rely on the Augmented Lagrangian Method (ALM) [38]. Instead304

of attempting to solve the constrained problem in a closed form, Lagrangian relaxation converts these305

into differentiable residuals. By combining linear multipliers λ and quadratic penalties µ, ALM306

provides a mechanism to gradually enforce feasibility.307

Let x0 denote the current sample produced by the diffusion process, and let y be the projected308

candidate. We aim to find y that remains close to xt while reducing constraint violations. The309

approach introduces a relaxed objective by embedding constraint residuals into the optimization310

problem:311

L(y,x(i)
0 ;λ, µ) := ∥y − x

(i)
0 ∥22 + w · ∥force(y)∥22 +

N∑
j

λjcj(y) +

N∑
k

µk

2
ck(y)

2 (8)

where {c1, . . . , cN} denotes a series of differentiable violation residual of constraints. Additionally,312

we treat the force prediction provided by MACE [29] as a minimization term (scaled by w) rather313

than as a hard constraint, due to runtime considerations and surrogate predictive accuracy. This314

formulation transforms the constrained projection into a differentiable optimization problem that can315

be solved iteratively alongside diffusion sampling. Algorithm 1 summarizes the procedure: starting316

from the diffusion output xt, we iteratively compute constraint residuals, update the augmented317

objective, take a gradient step, and adjust multipliers and penalties.318

Algorithm 1: Augmented Lagrangian Projection
Input: xt, Lagrange multiplier: λ, quadratic penalty: µ,

scaling constant: α, step size: γ, tolerance: δ
y ← xt

while
∑

i ci(y) < δ do
for j ← 1 to max_inner_iter do
LALM ←
∥xt − y∥22 +

∑N
j λjcj(y) +

∑N
k

µk
2
ck(y)

2

y ← y − γ∇yLALM

λ← λ+ µ
∑N

j λjcj(y); µ← min
(
αµ, µmax

)
xt−∆ ← y
return xt−∆

In our implementation, the residual vector319

ϕ̃(y) collects violations from three major320

classes of constraints: (i) geometric con-321

straints, including minimum interatomic322

distances and periodic boundaries; (ii) dis-323

tributional constraints, capturing radial dis-324

tribution alignment; and (iii) force min-325

imization, based on surrogate predicted326

forces.327

C Evaluation Setup328

Our model is trained on full DFT relaxation trajectories. The training dataset consists of approxi-329

mately 13,000 structures from DFT trajectories. Each structure is represented by atom types and330

corresponding 3D coordinates in Cartesian space. Our generative model starts from Gaussian noise331

and progressively denoises toward physically relaxed structures under the targeted defect configu-332

rations. Each of the six stoichiometric configurations was evaluated with 100 generated samples,333

resulting in 600 structures per method. These six configurations were chosen because they are334

the most prevalent in our training trajectories and serve as representative cases of the four major335

defect categories considered [43]. All methods are evaluated under a shared random seeds to ensure336

comparability.337

Metric computation For pairwise RMSD similarity, given a generated structure and the set of338

relaxed references under the same stoichiometric composition. Before measuring, both structures are339

centered, and atoms are matched by species. Within each species, we form the pairwise Eucluidean340

distance matrix between generated and reference coordinates and solve an optimal one to one341

assignment using the Hungarian algorithm[44]. The final RMSD is taken under this assignment and342

reported at the structure level of the sampling set.343

The RDF characterizes the radial number density of neighbors, i.e., the probability density of finding344

another atom at distance r[45]. We compute g(r) for generated structures under a 5Å local cutoff.345

Among relaxed references of the same composition, we then identify the nearest reference in RDF346
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space by minimizing the RMSD between RDF profiles. The result is recorded as the sample’s347

distributional deviation. This procedure provides a global distribution check that is independent of348

the previous RMSD assignment.349

To assess proximity to locally stable states, we estimate total forces for all generated samples with a350

pretrained surrogate and summarize each structure by the magnitude of its total forces. Lower values351

indicate that the generated configuration lies closer to an equilibrium basin and is more suitable352

as an input to downstream relaxation. We report mean total forces over the sampled set to enable353

comparison across methods.354

Method Config RMSD ↓ RDF ↓ Force (eV/Å) ↓

Conditional DM

16Bi + 21Te 1.86± 0.33 65.85± 19.75 1.85× 109

16Bi + 22Te 1.93± 0.36 82.11± 29.54 3.49× 109

18Bi + 22Te 2.10± 0.38 87.90± 39.29 1.64× 109

14Bi + 26Te 1.22± 0.60 40.63± 41.77 1.28× 109

14Bi + 24Te 0.75± 0.81 27.41± 44.46 5.52× 108

13Bi + 24Te 0.95± 0.51 22.17± 33.53 3.90× 108

Projected DM

16Bi + 21Te 2.54± 0.55 1.11± 0.77 8.35× 102

16Bi + 22Te 1.41± 0.83 0.78± 0.55 7.20× 101

18Bi + 22Te 1.85± 1.17 1.45± 1.62 5.85× 103

14Bi + 26Te 1.43± 0.78 1.00± 0.67 5.04× 101

14Bi + 24Te 2.35± 0.45 0.94± 0.49 5.50× 101

13Bi + 24Te 2.93± 0.39 1.44± 0.38 1.17× 102

Post-proc DM

16Bi + 21Te 2.30± 0.40 27.25± 28.30 8.45× 106

16Bi + 22Te 1.14± 0.65 21.82± 28.09 9.29× 106

18Bi + 22Te 1.41± 0.45 63.27± 35.58 1.69× 108

14Bi + 26Te 1.16± 0.62 50.00± 35.32 6.54× 107

14Bi + 24Te 2.17± 0.38 37.37± 28.29 1.61× 107

13Bi + 24Te 2.75± 0.34 59.24± 28.05 1.76× 107

Ours

16Bi + 21Te 0.90± 0.38 0.30± 0.11 7.88× 10−2

16Bi + 22Te 1.02± 0.70 0.35± 0.18 1.44× 10−1

18Bi + 22Te 1.22± 0.42 0.47± 0.22 3.00× 10−1

14Bi + 26Te 1.00± 0.39 0.28± 0.19 1.67× 10−1

14Bi + 24Te 0.68± 0.56 0.30± 0.11 1.80× 10−1

13Bi + 24Te 0.99± 0.49 0.36± 0.06 1.93× 10−1

Table 2: Complete experimental results across all six stoichiometric configurations in four defect
categories: Te vacancies (16Bi + 22Te, 16Bi + 21Te), Bi vacancies (14Bi + 24Te, 13Bi + 24Te), Bi in
Te antisites (18Bi + 22Te), and Te in Bi antisites (14Bi + 26Te).
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