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Abstract

Point defects affect material properties by altering electronic states and modifying
local bonding environments. However, high-throughput first-principles simula-
tions of point defects are costly due to large simulation cells and complex energy
landscapes. To this end, we propose a generative framework for simulating point
defects, overcoming the limits of costly first-principles simulators. By leveraging
a primal-dual algorithm, we introduce a constraint-aware diffusion model which
outperforms existing constrained diffusion approaches in this domain. Across six
defect configuration settings for Bi, Tes, the proposed approach provides state-of-
the-art performance generating physically grounded structures.

1 Introduction

Point defects play an important role in determining the properties of crystalline materials [1-4].
Recent work on additive manufacturing (AM) of thermoelectric materials reveals a more complex
relationship between processing conditions and point defects than in traditional methods [5H7]. They
are exploited to tailor the structural, electronic, and thermal properties of advanced materials for
technological applications.

Layered chalcogenides, a promising material class, are highly susceptible to point defects due to
their mixed bonding with weak interlayer van der Waals interactions and strong intralayer covalent
bonds, which critically influence electronic and phononic transport properties [8} 9]. A well-known
example is bismuth telluride (BiyTes), which has been widely studied for its high thermoelectric
efficiency in the low-temperature regime [10-13]. The performance of Bi,Tes is strongly governed
by defect concentration and configuration, and preliminary AM work has shown that laser processing
parameters can change thermoelectric properties to optimize efficiency and carrier transport. [6} [7].

Point defects are hard to probe directly and are typically identified indirectly via combined techniques.
Traditionally, density functional theory (DFT) have been used to complement experimental methods
for defect identification [[14] which is computationally expensive, making high-throughput studies
computationally prohibitive. This situation highlights the need for alternative approaches, such as
surrogate models, to supplement the DFT calculations. In related domains, deep learning methods
have successfully overcome these barriers [15]. Generative models enable digital twins for defect
prediction, with diffusion models achieving state-of-the-art material generation and inverse design
[L6H18]. Yet, these models excel at generating realistic data, struggle with strict physical constraints.
Without reliability, designs risk impracticality and may hinder transition to production.

For other scientific applications, these challenges have been addressed through physics-aware genera-
tive processes. Simple constraints can be injected into sampling [[19-21]], but complex ones often
require integrating costly simulators with high overhead [22, 23]. In this case, runtime demands
may limit utility, making rejection sampling more efficient. For physics-informed generation of
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Figure 1: (a) A 2x2x2 supercell of Bi,Te; for DFT simulations. (b) Another supercell representation,
highlighting quintuple layer, structure Te(1)-Bi—Te(2)-Bi—Te(1) with vacancy defect.

materials like Bi, Tes, first-principle simulators [24] are challenging, as constraints lack closed forms
and evaluations scale exponentially with system size.

Contributions. To address these existing challenges, this paper makes the following contributions:
(1) It extends previous constrained generation approaches to handle complex constraints modeled by
tractable functions and neural surrogates, leveraging a primal-dual algorithm. (2) It provides the first
study which explores constrained diffusion to supplement the DFT-based point defect simulation of a
thermoelectric material (BiyTes). (3) Through rigorous evaluation across six defect configurations
of interest, we provide state-of-the-art performance for generative modeling of physically realistic
predictions of layered chalcogenides.

2 Preliminaries

Score-based Diffusion Models [25 26], and equivalently denoising diffusion probabilistic models
[27, 28], model data distributions by introducing a forward noising process and training a neural
network to approximate its reverse. In the forward process, a clean sample g ~ Dgaa(20) is
gradually perturbed through a sequence of intermediate distributions {p;(x;)}._. This is achieved
using a Gaussian noise kernel with a predefined variance schedule &, which increases with ¢. As
t — T, the distribution of x; converges to a standard Gaussian, such that pr(x7) ~ N(0,1).
This process facilitates the training of a score network sg(x+, t), which learns the score function
so(xs,t) = Vg, log pr(x¢|xo) by error in the predicted score estimate:

. 2

min E [Iso(xs,t) — Va, log pi(x:|xo)]|3] (1)
0 t~[T,1], xo~Pdaa

The trained score network sg(x¢,t) is then used in the reverse process to iteratively reconstruct data

samples from the training distribution pg,,. At each timestep ¢, the score function is applied to the

reverse process, transitioning Gaussian noise 7 ~ N(0, I) to high fidelity samples.

Projected Diffusion Models [[19] build from Langevin Dynamics employed by score-based diffusion
models, interpreting the sampling process as an optimization with respect to a series of intermediate
probability density functions (Equation (Za)). In doing so, the formulation enabled a natural extension
to constrained sampling problems by enforcing constraint adherence on the sample:

minimize Z —log pi(x¢|x0) (2a)
LT, L1
t=T,...,0
st. xp,...,xzo € C. (2b)

Constraints can then be enforced by extending the reverse process with Projected Langevin Dynamics,
such each update step is projected to the nearest feasible point by Pc(z) = arg min|y — z||3:
yeC

2l = P (al” + yisp(@) 1) + \/271€) 3)

where ; is the step size decreasing with ¢, and € is Gaussian noise.

3 Constrained Diffusion for Point Defect Generation

Generating relaxed atomic structures with targeted defects in Bi,Tes is a challenging problem, as the
combinatorial diversity of defect placements creates a vast configuration space where DFT becomes
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computationally prohibitive. To address this, we propose a generative diffusion framework that
samples Bi,Te; structures under prescribed stoichiometries. Given target counts of Bi and Te atoms
in a supercell, as shown in Figure[T] the model generates diverse arrangements that explore physically
meaningful defects while retaining diffusion sampling’s inherent randomness. However, diffusion
alone does not ensure physical plausibility, motivating the adoption of three constraint types.

1. Geometric Constraints. Ensure physically-meaningful interatomic distances and periodic boundary
conditions. Physical validity requires a lower bound on interatomic distances to prevent atomic
collapse. For consistency with DFT simulations, generated structures must also satisfy periodic
boundary constraints to align with reference distributions. Thus,

lri = 74ll > dwmin, Vi#4;  fi€[0,17, €
where dyin is the minimum allowable interatomic distance between arbitrary atoms r; and 7;, and
fi is the fractional coordinate constrained to [0, 1]* to enforce periodic boundary conditions.

2. Distributional Constraints. Align radial distributions (within 5A) with reference data; This reflects
structural patterns, such as relative intensities of coordination shells. This yeilds,

D[(),RC] (pgen» pref) <e, 5

where Djy g, measures discrepancy between distributions over distances in [0, ], p denotes the
empirical distribution of pairwise distances in generated and reference structures.

3. Force Minimization. Stable structures are defined by low total forces, rendering force minimization
critical for physical plausibility. As shown in Section 4] stochastic generations often yield
high forces. We therefore introduce a soft force-minimization constraint, adding a ||force(r)||?
prediction term from a surrogate [29] to the objective (2a)), optimized at sampling.

Terminal Set Constraints. Projection-based constraint enforcement can be very effective in many
applications. Unlike post-processing, these techniques yield higher-fidelity outputs to the learned
distribution, as the score function refines samples displaced from high-density regions. Yet, projected
diffusion models rely on a stringent assumption: Constraints can be meaningfully imposed on any
@ ~ pi(xy) for an arbitrary t [19].

Often, it may be reasonable to assume that constraints can be modeled at intermediate states (e.g.,
path planning, where even noisy samples form valid trajectories) [30]]. However, this assumption does
not hold in many scientific applications such as ours, where complex dynamics require surrogates
that are unreliable on noisy samples. This challenge, studied in training-free guidance [31H33], can
lead to “misaligned gradients,” only matching the true value as t — 0, leading to compounding errors
[34,135]. Alternatively, finetuning on noisy data is often ineffective: (1) Labels are not available for
our constraints due to simulators requirements [24]], which are not only prohibitive due to runtime
but also as the DFT process fails on increasingly noisy samples. (2) Even when labels are available,
gradient inaccuracies remain a concern [36]].

Hence, designing a constraint evaluation surrogate robust to high noise levels is prohibitive for
complicated constraint sets. A more promising strategy is to relax the intermediate feasibility
assumption. To facilitate this, our framework treats the objective in Equation (2)) as a mulri-stage
optimization problem. While Equation (b)) enforces x; € C, from a multi-stage perspective only the
terminal state o must be feasible. Thus, intermediate constraints serve as a conservative proxy for
final feasibility, while earlier states may remain unconstrained if the process yields o € C.

Hence, we impose the constraints only on the final minimization of — log Py (o). This can then
be interpreted as terminal set constraints drawn from Model Predictive Control theory [37]], where
feasibility is often only enforced on final decision variables. This removes dependence on intermediate
feasibility assumptions as constraints are only imposed on clean samples within pga,.

Primal-Dual Projection Algorithm. As neural surrogates provide differentiable loss functions, it is
most reasonable to solve the projection mapping using a gradient-based approach. To facilitate this,
we adopt the Augmented Lagrangian representation of the constraint problem following [Liang et al.
incorporating constraints into the objective through Lagrange multipliers [38]], and yielding:

N N
i i Kk
Lly. i A ) =y — ) 15+ DA (w) + Y Fren®)® (©)
j k
where A = {\1,..., Ay} and p = {p1,..., pun} are dual variables associated with N constraint
violation functions ¢ = {ci,...,cy} and y is the solution optimized. Ensuring the strongest
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Method Config RMSD | RDF | Force (eV/A) |

16Bi+21Te  1.86+0.33 65.85 +19.75 1.85 x 10°
16Bi+22Te  1.934+0.36 82.11+29.54  3.49 x 10°

16Bi +21Te  2.54 £0.55 1.11+£0.77 8.35 x 102
16Bi +22Te 1.414+0.83 0.78 £ 0.55 7.20 x 10

16Bi +21Te  2.30 +0.40 27.25 + 28.30 8.45 x 106
16Bi+22Te  1.144+0.65 21.82+£28.09  9.29 x 10°

Ours 16Bi+21Te 0.90+0.38 0.30+0.11 7.88 x 1072
16Bi +22Te 1.02+0.70 0.35+0.18 1.44 x 1071

Conditional DM

Projected DM

Post-proc DM

Table 1: Empirical comparison across stoichiometric configurations. Extended table in Appendix [C|

relaxation of this projection, the Lagrangian dual is used to optimize the dual variables [39]:

arg max (arg min(ﬁ(y, :c(()i); A, ,u))> @)
A, 1 Yy

This converges to satisfy the distance and distributional constraints while simultaneously minimizing

the force and remaining close to the original input. Following Equation (3), we begin applying this as

our projection operator at ¢ = 0. More details are provided in Appendix [B

4 Experiments

Baselines. We compare our approach against three representative baselines: (1) conditional diffusion
models [40], where constraints are incorporated during training and sampling to bias the denoising
process toward feasible regions. (2) post-processing optimization [41]], where the final output of
an unconstrained diffusion model is projected onto the constraint set in a single step. (3) projected
diffusion models [19], which enforce constraints at every denoising step. This represents the current
state-of-the-art but relies on meaningful constraint evaluation under noisy configurations.

Evaluation. We target four categories of defects that frequently occur in Bi, Tes structure systems: Te
vacancies, Bi vacancies, Bi on Te anti-site, and Te on Bi anti-site. Additional details on the problem
setup and results are provided in Appendix [C] Our evaluation consists of the following metrics:

* RMSD (Root Mean Square Deviation): Computes positional deviation between generations and
closest reference structures by matching atoms via a Hungarian matching algorithm.

* RDF (Radial Distribution Function): Compares radial distributions for all generations within

5A to assess global geometric consistency. This indicates the accuracy of positions and heights of
nearest neighbor shell peaks under a common defect.

« Force (eV/A): Reports the total force as computed by a neural surrogate [29]. Lower force indicates
generations closer to stable states and more suitable for downstream simulations.

Interpretation. As shown in Table [1| our method achieves substantially lower deviation from
reference structures and reduced total forces. Existing approaches observe key limitations: (1)
conditional diffusion preserves structural characteristics but allows overlapping atoms, undermining
physical realism and leading to extremely high total force; (2) post-processing, while improving
over the conditional model, struggles to impose the highly nonconvex constraints in a single step, as
the final output often deviates from the constraint set significantly; (3) projected diffusion provides
the strongest baseline, but misaligned gradients at higher noise results in higher RDF deviation. In
contrast, our method preserves diffusion dynamics while ensuring feasibility. By applying constraints
on the final Langevin optimization, gradient inaccuracies are avoided (unlike projected diffusion
models), while providing a sufficient number of constrained diffusion steps to ensure feasibility
(unlike post-processing schemes). We achieve the lowest RMSD in nearly all settings, the highest
RDF similarity (by more than 2x), and lower total forces by several orders of magnitude.

5 Conclusion

Motivated by the real-world importance of thermoelectric defect structure modeling, this paper
addresses existing barriers by integrating constraints into the sampling process through tractable
functions and neural surrogate models. Building upon a primal-dual projection algorithm, this
work provides effectively enforces feasibility while addressing challenges with misaligned gradients.
Across six representative defect configurations in Biy Tes, our approach provides state-of-the-art per-
formance in producing physically realistic structures, highlighting the significance of our framework
for complex material systems.
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A Related Work

Constraint Conditioning [40] 42] enables controllable generation by incorporating a conditioning
variable to bias the posterior which is sampled. Accomplished either explicitly through the addition
of classifier-derived gradient signals or implicitly by training the denoiser with specific conditioning
labels, these techniques provide soft guidance towards particular subdistributions. Notably, these
methods have been applied to improve constraint adherence in a variety of applications including
[fill in references]. Yet, while constraint conditioning can improve feasibility rates in specific cases,
it is unreliable when exact satisfaction is required. Particularly when constraint sets are complex,
conditioning methods have been shown ineffective in providing viable outputs, a challenge that is
demonstrated in our empirical analysis.

Post-Processing Optimization [41] provides an alternative approach which injects constraints
following the denoising process. These approaches leverage a generative model to produce a starting
structure x, after which domain-specific corrections are applied. For material structure generations,
this often consists of running DFT simulators [24] to relax the atomic configurations, ensuring
stability as the structure is refined to reach equilibrium. Yet, these approaches are inherently void
of distributional information, and the optimization procedure may drive the samples away from the
learned distribution. While the original candidate structure will fall within pqa,, Without access to the
learned score function or likelihood estimates, post-processing can degrade sample quality, resulting
in an output distribution that is constrained but no longer resembles the training data.
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B Augmented Lagrangian Method

In our settings, projection is required to ensure a collection of physical constraints. Unlike standard
convex projection operators, these constraints are often highly non-convex and some are evaluated
through surrogate models, such as pretrained MACE model. This makes exact projection onto feasible
set intractable. To overcome this, we rely on the Augmented Lagrangian Method (ALM) [38]]. Instead
of attempting to solve the constrained problem in a closed form, Lagrangian relaxation converts these
into differentiable residuals. By combining linear multipliers A and quadratic penalties p, ALM
provides a mechanism to gradually enforce feasibility.

Let g denote the current sample produced by the diffusion process, and let y be the projected
candidate. We aim to find y that remains close to x; while reducing constraint violations. The
approach introduces a relaxed objective by embedding constraint residuals into the optimization
problem:

N N
L (7)>\7 = o @)2 I 2 Nics & 2 8
o)) =y = =1+ Worce) I + 3 i)+ 3 ) ®

where {c1,...,cn} denotes a series of differentiable violation residual of constraints. Additionally,

we treat the force prediction provided by MACE [29] as a minimization term (scaled by w) rather
than as a hard constraint, due to runtime considerations and surrogate predictive accuracy. This
formulation transforms the constrained projection into a differentiable optimization problem that can
be solved iteratively alongside diffusion sampling. Algorithm [I]summarizes the procedure: starting
from the diffusion output x;, we iteratively compute constraint residuals, update the augmented
objective, take a gradient step, and adjust multipliers and penalties.

I~n our implementation, the residual vector Algorithm 1: Augmented Lagrangian Projection

¢(y) collects VIOIE}UOI‘]S from three. major Input: x;, Lagrange multiplier: A, quadratic penalty: p,
C]as‘ses O'f Cons_tramts; (1) geqmetnc an— scaling constant: «, step size: -, tolerance: §
straints, including minimum interatomic Y — @y

distances and periodic boundaries; (ii) dis-  while 3 ;ci(y) < ddo
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Our model is trained on full DFT relaxation trajectories. The training dataset consists of approxi-
mately 13,000 structures from DFT trajectories. Each structure is represented by atom types and
corresponding 3D coordinates in Cartesian space. Our generative model starts from Gaussian noise
and progressively denoises toward physically relaxed structures under the targeted defect configu-
rations. Each of the six stoichiometric configurations was evaluated with 100 generated samples,
resulting in 600 structures per method. These six configurations were chosen because they are
the most prevalent in our training trajectories and serve as representative cases of the four major
defect categories considered [43]]. All methods are evaluated under a shared random seeds to ensure
comparability.

Metric computation For pairwise RMSD similarity, given a generated structure and the set of
relaxed references under the same stoichiometric composition. Before measuring, both structures are
centered, and atoms are matched by species. Within each species, we form the pairwise Eucluidean
distance matrix between generated and reference coordinates and solve an optimal one to one
assignment using the Hungarian algorithm[44]]. The final RMSD is taken under this assignment and
reported at the structure level of the sampling set.

The RDF characterizes the radial number density of neighbors, i.e., the probability density of finding
another atom at distance r[45]. We compute g(r) for generated structures under a 5A local cutoff.
Among relaxed references of the same composition, we then identify the nearest reference in RDF
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space by minimizing the RMSD between RDF profiles. The result is recorded as the sample’s
distributional deviation. This procedure provides a global distribution check that is independent of
the previous RMSD assignment.

To assess proximity to locally stable states, we estimate total forces for all generated samples with a
pretrained surrogate and summarize each structure by the magnitude of its total forces. Lower values
indicate that the generated configuration lies closer to an equilibrium basin and is more suitable
as an input to downstream relaxation. We report mean total forces over the sampled set to enable
comparison across methods.

Method Config RMSD | RDF | Force (eV/A) |
16Bi+21Te 1.86+0.33 65.85+19.75  1.85 x 10°
16Bi +22Te  1.934+0.36 82.11+29.54  3.49 x 10°

: 9

Conditional DM 18Bi +22Te 210=0.38 87903020 164 10°
14Bi +26Te  1.22+0.60 40.63+41.77  1.28 x 10
14Bi+24Te  0.754+081 27.41+4446 552 x 10°
13Bi+24Te  0.95+0.51 22.17+3353  3.90 x 108
16Bi +21Te 2544055 1114077  8.35 x 102
16Bi+22Tc 1.414+083 0.78+0.55  7.20 x 10!

: 3

Projected DM 18Bi+22Te  L8ELIT 1455162 585 10°
14Bi+26Te 1.43+0.78 1.00+0.67  5.04 x 10
14Bi +24Te  2.35+045 0944049 550 x 10!
13Bi+24Te  2.934+0.39  1.44+0.38 1.17 x 102
16Bi+21Te  2.30+0.40 27.25+28.30  8.45 x 10°
16Bi +22Te  1.14+0.65 21.824+28.09  9.29 x 10°

) 18Bi+22Te 1.414+0.45 63.27+3558  1.69 x 10°

Post-proc DM b 1 96Te 1.16+£0.62 5000 £35.32  6.54 x 107
14Bi +24Te  2.17+0.38 37.37+2829  1.61 x 107
13Bi+24Te  2.754+0.34 59.24 +28.05  1.76 x 107
16Bi +21Te 0904038 030+011  7.88 x 102
16Bi+22Te 1.024+0.70 0.35+018  1.44 x 10~

Ours 18Bi+22Te 1.224+042 047+0.22  3.00 x 10~
14Bi+26Te 1.004+0.39 0.28+019  1.67 x 10~
14Bi +24Te  0.68+0.56 0.30+0.11  1.80 x 10~
13Bi +24Te 0994049 0.36+0.06  1.93 x 10-!

Table 2: Complete experimental results across all six stoichiometric configurations in four defect
categories: Te vacancies (16Bi + 22Te, 16Bi + 21Te), Bi vacancies (14Bi + 24Te, 13Bi + 24Te), Bi in
Te antisites (18Bi + 22Te), and Te in Bi antisites (14Bi + 26Te).
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