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ABSTRACT

Nonsmooth composite optimization with orthogonality constraints has a wide
range of applications in statistical learning and data science. However, this prob-
lem is challenging due to its nonsmooth objective and computationally expensive,
non-convex constraints. In this paper, we propose a new approach called OBCD,
which leverages Block Coordinate Descent to address these challenges. OBCD
is a feasible method with a small computational footprint. In each iteration, it
updates k rows of the solution matrix, where k£ > 2, by globally solving a small
nonsmooth optimization problem under orthogonality constraints. We prove that
the limiting points of OBCD, referred to as (global) block-k stationary points, of-
fer stronger optimality than standard critical points. Furthermore, we show that
OBCD converges to e-block-k stationary points with an iteration complexity of
O(1/¢). Additionally, under the Kurdyka-Lojasiewicz (KL) inequality, we estab-
lish the non-ergodic convergence rate of OBCD. We also demonstrate how novel
breakpoint search methods can be used to solve the subproblem in OBCD. Em-
pirical results show that our approach consistently outperforms existing methods.

1 INTRODUCTION
We consider the following nonsmooth composite optimization problem under orthogonality con-
straints (‘2’ means define):

min  F(X) 2 f(X) +h(X), st. XX =1,. (1)

XERnXT

Here, n > r, n > 2, and I, is a r x r identity matrix. We do not assume convexity of f(X)
and h(X). For brevity, the orthogonality constraints X'X = I, in Problem is rewritten as
X € St(n,r) 2 {X € R**" | XTX = I,.}, where M = St(n,r) is the Stiefel manifold in the
literature (Edelman et al.| |1998; |Absil et al.l 2008; [Wen & Yinl 2013;|Hu et al., 2020). We impose
the following assumptions on Problem (1)) throughout this paper. (Asm-i) For any X and X, where
X and X7 only differ at most by k rows with k& > 2, we assume f : R**" - R is differentiable
and H-smooth with H € R""*™" such that:

FXT) < Q(XTX) £ f(X) + (XT = X, V(X)) + 11X - X|f3, 2)

where |[H||s, < L for some constant Ly > 0 and [|X[[ 2 vec(X) Hvec(X)[] Here, |[H]|s
is the spectral norm of H. Notably, when H = L - 1,,,., this condition simplifies to the standard
L ¢-smoothness (Nesterov, [2003). (Asm-ii) The function h(X) : R*™*" +— R is proper, lower
semicontinuous, and potentially non-smooth. Additionally, it is coordinate-wise separable, such
that h(X) = 3, ; h(X;). Typical examples of h(X) include the £, norm h(X) = | X[|, with p €
{0, 1}, the capped-¢; function 1(X) = 3, ; max(|X;;|,7) with 7 > 0, and the indicator function
for non-negativity constraints h(X) = ¢>(X). (Asm-iii) The following small-sized subproblem
can be solved exactly and efficiently:

i 21 2 p 7
Veréltl(r}c,k) P(V) =3 ”VHQ +(V,P) + h(VZ) 3)

for any given Z € R**" P € RF** and Q € R*****_ Here, we employ a notational simplification
by defining h(VZ) £ > M[VZ];;), given the coordinate-wise separability of h(-). This assump-
tion is analogous to the “prox-friendly” condition in (variable-metric) proximal gradient methods

'Consider f(X) = 3tr(X'CXD) = 1| X||&, where H = D ® C, and C € R"*", D € R™*" are

- 2

symmetric. Clearly, f(X) satisfies (2) with equality, i.e., f(X1) = Q(X*; X) for all X and X .
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(Beck & Teboulle, [2009; Raguet et al., [2013)), but instead of a standard proximal operator for a
single nonsmooth term in the full space, our subproblem jointly handles two nonsmooth components
(the function A(-) and the orthogonality constraint) in a low-dimensional k x k space.

Problem () is an optimization framework that plays a crucial role in a variety of statistical learn-
ing and data science models, such as sparse Principal Component Analysis (PCA) (Journée et al.,
2010; Shalit & Chechik, [2014), nonnegative PCA (Zass & Shashual 2006} |Qian et al.| 2021}, deep
neural networks (Cogswell et all 2016; |Cho & Leel 2017} [Xie et al.l 2017} Bansal et al.| 2018;
Massart & Abrol, 2022} |Huang & Gaol [2023)), electronic structure calculation (Zhang et al.| 2014;
Liu et al} 2014), Fourier transforms approximation (Frerix & Bruna, 2019)), phase synchronization
(Liu et al., 2017), orthogonal nonnegative matrix factorization (Jiang et al., 2022), K-indicators
clustering (Jiang et al.,|2016)), and dictionary learning (Zhai et al., 2020).

1.1 MOTIVATING APPLICATIONS )
Many machine learning and data science models can be cast as instances of Problem (I). Below, we

present two representative examples: Lg-regularized sparse PCA and L;-regularized sparse PCA.
An additional example on nonnegative PCA is provided in Appendix Section|[G.1}

» Lo-Regularized Sparse PCA. Ly-regularized Sparse PCA (SPCA) is a method that uses £, norm
to produce modified principal components with sparse loadings, which helps reduce model com-
plexity and increase model interpretability (d’ Aspremont et al., |2008; |(Chen et al., [2016). It can be
formulated as: minxegy(n,r) —(X, CX) + A[[X]|[o, where C = A" A € R"*" is the covariance of

the data matrix A € R™*™ and A > 0.

» [L;-Regularized Sparse PCA. As the L; norm provides the tightest convex relaxation for the
Ly-norm over the unit ball in the sense of L,-norm, some researchers replace the non-convex and
discontinuous Ly norm function with a convex but non-smooth function (Chen et al., 2016} |[Vu
et al.,|2013;|Lu & Zhang,|2012). This leads to the following optimization problem of L;-regularized
SPCA: minx eg(n,r) —(X, CX) + A||X]||1, where C € R"*™ is the covariance matrix of the data,
and A > 0.

1.2 RELATED WORK
We now present some related algorithms in the literature.

» Minimizing Smooth Functions under Orthogonality Constraints. One of the main challenges
in solving Problem stems from the nonconvexity of the orthogonality constraints. Existing ap-
proaches for addressing this difficulty can be broadly grouped into four classes: (i) Geodesic-like
methods (Abrudan et al.| 2008} [Edelman et al., 1998 |Absil et al.,[2008)). Computing exact geodesics
typically involves solving ordinary differential equations, which can be computationally expensive.
To avoid this, geodesic-like methods approximate the geodesic path by computing the geodesic log-
arithm using simpler linear algebraic operations. (ii) Projection-like methods (Absil et al., | 2008;
Golub & Van Loan| 2013} Jiang & Dai, |2015). These include techniques such as projection onto the
nearest orthogonal matrix, polar decomposition, and QR-based projection. At each iteration, these
methods descend along the Euclidean or Riemannian gradient direction and subsequently apply a
projection step to enforce orthogonality. (iii) Multiplier correction methods (Gao et al., 2018|2019
Xiao et al., 2022). These methods exploit the fact that the Lagrange multiplier associated with the
orthogonality constraint is symmetric and admits a closed-form expression at first-order stationarity.
They update the multiplier after achieving sufficient decrease in the objective, resulting in efficient
feasible or infeasible first-order methods. (iv) Landing methods (Ablin & Peyré, 2022} |Vary et al.j
Ablin et al.; |2024). These methods avoid explicit retractions by working in the ambient Euclidean
space while adding a penalty that attracts iterates toward the orthogonal manifold. Each update com-
bines a descent direction for the objective with a corrective term that reduces constraint violation,
and, with appropriate step sizes, the iterates converge to points that are nearly orthogonal and nearly
stationary for the original problem.

» Minimizing Nonmooth Functions under Orthogonality Constraints. Another major challenge
in solving Problem (1)) arises from the nonsmoothness of the objective function. Existing approaches
for handling this issue can be broadly categorized into four classes: (i) Subgradient methods (Hwang
et al.,2015; L1 et al.| 2021 |Cheung et al.,[2024). These methods generalize gradient descent to nons-
mooth settings. Many of the previously mentioned geodesic-like and projection-based strategies can
be incorporated into subgradient frameworks on manifolds. (ii) Proximal gradient methods (Chen
et al.,[2020; |Li et al.},|2024bj; Lyu & Li,[2025)). These methods compute a descent direction by solving
a strongly convex subproblem over the tangent space, often using a semi-smooth Newton method.
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The resulting point is then mapped back onto the manifold via a retraction to preserve orthogonality.
(iii) Block Majorization Minimization (BMM) on Riemannian manifolds (Li et al., [2024b; 2023;
Breloy et al.| 2021} |Gutman & Ho-Nguyen, [2023). This class of methods iteratively constructs a
tangential majorizing surrogate for a block of the objective, takes an approximate descent step in
the corresponding tangent space, and retracts the iterate back to the manifold. (iv) Operator splitting
methods (Lai & Osher, |2014; [Chen et al., 2016} Zhang et al.l 2019). These methods reformulate
the original problem by introducing auxiliary variables and linear constraints, decomposing it into
simpler subproblems that can be solved separately and often exactly. Prominent examples include
the Alternating Direction Method of Multipliers (ADMM) (He & Yuan, |[2012)), Riemannian ADMM
(RADMM) (Li et al.,|2024al)), and Penalty-based Splitting Method (PSM) (Yuan, [2024;|Chenl [2012).

» Block Coordinate Descent Methods. (Block) coordinate descent is a classical and powerful
algorithm that solves optimization problems by iteratively performing minimization along (block)
coordinate directions (Tseng & Yun, 2009; Xu & Yin, [2013). The BCD methods have recently
gained attention in solving nonconvex optimization problems, including sparse optimization (Yuan,
2024), k-means clustering (Nie et al.,[2022), recurrent neural network (Massart & Abrol,|2022), and
multi-layer convolutional networks (Bibi et al., [2019; [Zeng et al., 2019). BCD methods have also
been used in (Shalit & Chechik, 2014; [Massart & Abrol, 2022) for solving optimization problems
with orthogonal group constraints. However, their column-wise BCD methods are limited only to
solve smooth minimization problems with £k = 2 and r = n (Refer to Section 4.2 in (Shalit &
Chechik} |[2014)). Our row-wise BCD methods can solve coordinate-wise nonsmooth problems with
k > 2 and r < n. The work of (Gao et al., [2019) proposes a parallelizable column-wise BCD
scheme for solving the subproblems of their proximal linearized augmented Lagrangian algorithm.
Impressive parallel scalability in a parallel environment of their algorithm is demonstrated. We stress
that our row-wise BCD methods differ from the two column-wise counterparts.

» Summary. Existing methods typically suffer from one or more of the following limitations: (i)
they rely on full gradient information, incurring high computational costs per iteration; (ii) they
do not accommodate coordinate-wise nonsmooth composite objectives; (iii) they lack true descent
properties and are often infeasible methods what only attain feasibility only at the limit; (iv) they
often lack rigorous last-iterate convergence guarantees; (v) they provide only weak optimality results
at critical points. % In contrast, our methods overcome these limitations by using a tailored block
coordinate descent framework for efficient composite optimization on the Stiefel manifold, with
strong optimality and convergence guarantees.

1.3 CONTRIBUTIONS AND NOTATIONS

This paper makes the following contributions. (i) Algorithmically: We propose a Block Coordi-
nate Descent (BCD) algorithm tailored for nonsmooth composite optimization under orthogonality
constraints (Section [2). (if) Theoretically: We provide comprehensive optimality and convergence
analyses of our methods (Sections [3|and [). (iii) Empirically: Extensive experiments demonstrate
that our methods surpass existing solutions in terms of accuracy and/or efficiency (Section [5).

We define [n] £ {1,2,...,n}, and denote the Stiefel manifold as M £ St(n, r). Matlab-style colon
notation is used to describe submatrices. For a matrix X € R™"*", let vec(X) € R™*! denote
the vector formed by stacking its columns, and let mat(x) € R™*" denote the inverse operator,
such that mat(vec(X)) = X. We use A + B and A — B to denote standard Minkowski addition
and subtraction between sets A and B, and A ® B and A © B to denote element-wise addition and
subtraction, respectively. Additional notations are summarized in Appendix [A.1]

2 THE PROPOSED OBCD ALGORITHM

In this section, we introduce OBCD, a Block Coordinate Descent algorithm for solving coordinate-
wise nonsmooth composite problems under Orthogonality constraints, as defined in Problem (T).

We start by presenting a new update scheme designed to maintain the orthogonality constraint.

» A New Constraint-Preserving Update Scheme. For any partition of the index vector [1,2, ..., n]
into [B,B] with B € NF, B¢ € N""* we define Uz € R"™* and Up. € R*(n=k) aq:

(Up)ji = { o BEE (Upe)yi = { N eBl:e: 7. Therefore, we have the following variable

splitting for any X € R™*": X = I,,X = (UgU] + UscUL.)X = UsX(B,:) + UseX(BS,:),
where X(B,:) = Ul X € R¥*" and X(B¢,:) = UI.X € R(»—F)x7,
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In each iteration ¢, the indices {1, 2,...,n} of the rows of decision variable X € St(n, ) are sepa-
rated to two sets B and B¢, where B is the working set with |B| = k and B® = {1,2,...,n} \ B. To
simplify notation, we use B instead of B?, as ¢ can be inferred from the context. We only update k
rows of the variable X via X**1(B,:) <= VX*(B,:) for some appropriate matrix V € R¥**_ The
following equivalent expressions hold:

X!*(B,:) = VX!(B,:) & X! =(UVU] + Uz UL )X! (4)
& X =X'4U(V-1,)Ul X (5)

We consider the following minimization procedure to iteratively solve Problem (T)):
min F(XL(V)), s.t. XL (V) € St(n,r), where X! (V) & X' 4 Ug(V — I,) UL X". (6)

The following lemma shows that the orthogonality constraint for X+ = X + Ug(V — I;,) U] X can
be preserved by choosing suitable V and X.

Lemma 2.1. (Proof in Appendix We let B € {B;}Sn, where the set {By, Ba, ..., Bey } denotes

i=1’

all possible combinations of the index vectors choosing k items from n without repetition. We let

V € St(k, k). We define X+ £ X5(V) £ X + Us(V — I;)UIX. (a) For any X € R"*", we have

[XHTX+ = XTX. (b) If X € St(n,r), then X+ € St(n, 7).

Thanks to Lemma[2.T} we can now explore the following alternative formulation for Problem (€)).
V' € arg m‘i/n F(XL(V)), s.t. V € St(k, k). (7)

Then the solution matrix is updated via: X*+1 = X(V?).

The following lemma offers important properties for the update rule X+ = X + Uz(V — I;,) U] X.
Lemma 2.2. (ProofinAppendix We define X+ = X+Ug(V—I,)UI X. Forany X € St(n,r),
V e St(k, k), B € {B;}°", and symmetric matrix H € R"™ """, we have: (a) Xt - X[ =
IV = L&, where Q £ (Z7 © Up)TH(ZT ® Ug), Z £ UIX € R¥*", and X @ Y is the
Kronecker product of X and Y. (b) X — X2 = (I — V,UIXXTUg). () 3[|XT — X||Z <
IV = Lef|f = (T, T = V).

» The Main Algorithm. The proposed algorithm OBCD is an iterative procedure that sequentially
minimizes the objective function along block coordinate directions within a sub-manifold of M.

Starting with an initial feasible solution, OBCD iteratively determines a working set B! using spe-
cific strategies. It then solves the small-sized subproblem in Problem through successive Ma-
jorization Minimization (MM). This method iteratively constructs a surrogate function that ma-
jorizes the objective function, driving it to decrease as expected (Mairal, 2013; |Razaviyayn et al.,
2013 Sun et al) [2016; Breloy et al.l 2021), and it has proven effective for minimizing complex
functions.

We now demonstrate how to derive the majorization function for F'(X{(V)) in Problem (7). Initially,
for any X' € St(n,r) and V € St(k, k), we establish following inequalities: f(XL(V))— f(X?) 2
(V) = X,V FXD) + LI V) — X0 2 (Us(V — L)UTX, TF(X0) + 3V - L3, <
(V =T, [VF(X)(X) T]ee) + 51V — Iil|§ o1 Where step @ uses Inequality ; step @ uses

Lemma a); step @ uses a > 0 and Q = Q, which can be ensured by choosing Q using one of
the following methods:

Q=Q= (Z"®Us)'H(Z" ® Uy), (8)
Q =<I, with ||9Hsp <¢<Ly. 9

where Z 2 U X*. Then, we apply the MM technique to the smooth function f(X), while keep-

ing the nonsmooth component h(X) unchanged, leading to a function K(V; X?, B) that majorizes
F(X5(V)) = f(X(V)) + h(XE(V)):

F(XL(V)) < F(X") +(V = L, [VFX)X) Tes) + 2V = Lil[gsar + H(VUIXY)
<K(V;XB) 2 2V = Li[[§par + (V, [VFAX)X) ee) + H(VUIX) +¢, (10)
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Algorithm 1 OBCD: Block Coordinate Descent for Problem

1: Input: proximal parameter o > 0, initial feasible point XO, block size k > 2,t = 0.
2: fort =0to 7T do

3: (S1) Select working set B € {1,...,n}*. LetB =B and B® = {1,...,n} \ B.
4: (S2) Choose Q € RE* Xk using (8) or (9). -
5: (S3) Define (-, ; -, -) as in Equation (T0). Compute V* as the global minimizer

Vt S argminvGSt(k’k) K(V,Xt,B) (11)

Alternatively, find a local solution V* such that K(V*; X, B) < K(Ix; X, B).
6: (S4) X1 (B,:) + VI X!(B,:)
7: end for

where ¢ = f(X?) + h(ULX?Y) — (I, [Vf(X})(X!)T]zs) is a constant. Here, we use the
coordinate-wise separable property of h(-) as follows: h(X!(V)) = h(Us. UL X!+ U VU] X!) =
h(UL.X*) + h(VU] X?*). We minimize the upper bound of the right-hand side of Inequality (10},
resulting in the minimization problem that V' € arg miny gy (x,x) K(V; X, B), which can be effi-
ciently and exactly solved due to our assumption.

Two simple strategies to find the working set B with |B| = k can be considered. (i) Random strategy:
B is randomly selected from {B1, Bz, ..., Box } with equal probability 1/ CE. (ii) Cyclic strategy: B
takes all possible combinations in cyclic order, such as By — By — ... = Bgr — B — ...

The proposed OBCD algorithm is summarized in Algorithm[I] Importantly, OBCD is a partial gra-
dient method with low iterative computational complexity as it only assesses k£ rows of the Euclidean
gradient of V f(X*) and the solution X* to compute the linear term {[V f(X?)(X*)T]zs, V) =
(IVf(XH)]E [X']5,:, V), as shown in Equation . Appendix|C.3|details the complexity compari-
son between OBCD and full gradient methods for some quadratic function f(X).

» Solving the General OBCD Subproblems. The following lemma outlines key properties of the
OBCD subproblems.

Lemma 2.3. (Proof in Appendix We define Z = UIX! and P & [V f(X")(X?) zs —
mat(Qvec(Iy)) — aly. We have:

(a) The subproblem in Equation is equivalent to Problem (3)) with Q=Q+ol

(b) Assume that Formula (9) is used to choose Q. Problem (B) further reduces to the following
problem: V' € argminyesyr) P(V) £ (V,P) + h(VZ). In particular, when h(X) £ 0,
we obtain: V! = —P,((P). Here, Pp((P) is the nearest orthogonality matrix to P.

Remark 2.4. (a) By Lemma b), when k > 2, h(X) = 0, and Q is chosen to be a diagonal
matrix as in Equation (|9), the subproblem V' € arg minvy es(k,k) K(V; Xt B) in Algorithmcan
be solved exactly and efficiently due to our assumption, see Remark (b) For general k and
h(-), the subproblem may not admit a global solution. However, if a local stationary solution V'*
satisfying (V4 Xt B) < K(I; X, B) can be found, then the sufficient descent condition remains
valid, and convergence to a weaker optimality condition for the final solution X*° is still achievable

(see Inequalities ([@2), ([{4)).

» Smallest Possible Subproblems When £ = 2. We now discuss how to solve the subproblems

exactly when k = 2. The following lemma reveals an equivalent expression for any V € St(2, 2).

Lemma 2.5. (Proof in Appendix Any orthogonal matrix V. € St(2,2) can be expressed as
ro re ro cos(6) sin(6@ re — cos(0) sin(8

V=Vy torV = Vi ffor some 0 € R, where V' = (—sir(1(2)) cosi@% ); Vi t= ( sin(é)) COSEQ)) )

We have det(Viet) = 1 and det(Viet) = —1 for any 0.

Using Lemma[2.5] we can reformulate Problem (3) as the following one-dimensional problem:

0 € arg min P(V), 5.1.V € {viet viefy,

The optimal solution @ can be identified even if 2 (-) # 0 using a novel breakpoint searching method,
which is discussed later in Section [B]in the Appendix.
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Remark 2.6. (i) V}°* and Vit are called Givens rotation matrix and Jacobi reflection matrix
respectively in the literature (Sun & Bischof, 1995)). Previous research only considered {V}°*} for
solving symmetric linear eigenvalue problems (Golub & Van Loan, |2013|) and sparse PCA problems
(Shalit & Chechik, |2014)), while we use {Vget7 Vi°t} for solving Problem . (ii) We show the
necessity of using {Vg“‘f7 Vi°t} in the following two examples of 2 x 2 optimization problems with
orthogonality constraints: minyesy(a,2) F(V) £ |V — A2 and minycgyo,2) F(V) £ |V —
B||2 + 5(| V|1, where A = (%, %) and B = (19). The use of the reflection matrix Vi is
essential in these examples because it results in lower objective values. See Section [C.1| in the
Appendix for more details.

3  OPTIMALITY ANALYSIS

This section provides the optimality analysis for OBCD. First, we establish the completeness of
the proposed update scheme, showing that OBCD can reach any feasible point from an arbitrary
initialization. Second, we analyze the optimality conditions of both Problem (I]) and the associated
subproblems of OBCD. Finally, by comparing these two sets of conditions, we derive a hierarchy
of optimality, illustrating how the algorithm’s stationarity relates to that of Problem (T).

» Basis Representation of Orthogonal Matrices. The following theorem shows that any orthog-
onal matrix D € St(n,n) and any point X € St(n,r) can be generated by composing simple
2-dimensional updates.

Theorem 3.1 (Basis Representation of Orthogonal Matrices). (Proof in Appendix[E-l) Assume k =
2. Forall i € [CE), define W; £ 1, + U, (V; — I)U} = U VUL + Ug-UgL., where
V; € St(k, k). Then:

(a) Any matrix D € St(n,n) can be expressed as D = Wei. .. WaW; for suitable choice of W
(equivalently, of V;). Furthermore, if Vi, V; = 15, then D=1,

(b) For any fixed reference point X° € St(n,r), every X € St(n,r) can be expressed as X =
Wek -+ - WoWi XO for suitable W;.

The above representation for £ = 2 can in fact be extended to any block size k > 2, as stated next.
Corollary 3.2. (Proof in Appendix[E.2)) The conclusion of Theorem[3.1]extends to all k > 2.

Remark 3.3. (i) We use both Givens rotation and Jacobi reflection matrices to compute D &
St(n,n). This is necessary since a reflection matrix cannot be represented through a sequence
of rotations. (ii) The result of Corollary indicates that the proposed update scheme X+ «
X +Us(V —1)UIX with V € St(k, k) as shown in Formula can reach any orthogonal matrix
X € St(n, ) for any starting solution X° € St(n,r).

» First-Order Optimality Conditions for Problem (I). We provide the first-order optimality con-
dition of Problem (Wen & Yin, 2013} |Chen et al., [2020). We use OF'(X) to denote the limiting
subdifferential of F'(X) (Mordukhovich, [2006; Rockafellar & Wets., 2009), which is always non-
empty since F'(X) is closed, proper, and lower semicontinuous. Given f(X) is differentiable, we
have OF (X) = 9(f + h)(X) = Vf(X) 4+ 0h(X) (Rockafellar & Wets., 2009). We extend the def-
inition of limiting subdifferential to introduce O F(X) as the Riemannian limiting subdifferential
of F(X) at X, defined as I F(X) £ 0F(X) © (X[0F(X)]TX), where © is the element-wise
subtraction between sets.

Introducing a Lagrangian multiplier matrix A € R"*" for the orthogonality constraint, we define
the following Lagrangian function of Problem : L(X,A) = F(X)+ (I, — XTX, A). Notably,
the matrix A is symmetric, as XX is symmetric. We state the following definition of first-order
optimality condition.

Definition 3.4. Critical Point (Wen & Yin, 2013; (Chen et al., 2020). A solution X € St(n,r) is
a critical point of Problem (1)) if: 0 € O\ F(X) £ 0F(X) © (X[0F(X)]TX), where (0F (X) ©
X[OF(X)]™X) £ {G - XG'X |G € 0F(X)}. Moreover, the corresponding multiplier satisfies
A € [OF(X)|™X.

Remark 3.5. The critical point condition in Lemma can be equivalently expressed as (Absil
et al.}|2008; Jiang & Dai, 2015; Liu et al., 2016): 0 € Pt (OF (X)). Here, Tx M is the tangent
space to M at X € M with Tx M ={Y e R"*" | XTY + Y'X = 0}.
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» Optimality Conditions for the Subproblems. The Euclidean subdifferential of X(V; X!, BY)
wrt. 'V is given by G(V) 2 A(V) + UT[VF(X?) 4+ Oh(XH1)](XH)TUs, where A(V) =
mat((Q + aly)vec(V — Ix)) and X' = X* + Us(V — I;,)UI X', Using Lemma [3.4} we set
the Riemannian subdifferential of I(V; X, B") w.r.t. V to zero and obtain the following first-order
optimality condition for Vi: 0 € (VX! BY) £ G(V!) & VEG(VH)TVL. This inclusion
is a key ingredient in establishing the optimality hierarchy in Theorem [3.7(a) and the Riemannian
subgradient lower bound in Lemma[4.4a).

» Optimality Conditions and Their Hierarchy. We introduce the following new optimality con-
dition of block-k£ stationary points.

Definition 3.6. (Global) Block-k Stationary Point, abbreviated as BSy-point. Let o > 0 and
k > 2. A solution X € St(n,r) is called a block-k stationary point if: VB € {Bi}?jl, I, €
arg miny s (r,k) K(V; X, B), where K(-; -, ) is defined in Equation .

Remarks. BS;-point states that if we globally minimize the majorization function K(V; X, B),
there is no possibility of improving the objective function value for K(V; X, B) across all B €
(B}

The following theorem establishes the relation between BSy-points, standard critical points, and
global optimal points.

Theorem 3.7. (Proof in Appendix|[E-3) We establish the following relationships:

(a) {critical points X} D {BS,-points X }.

(b) {BSy-points X} D {global optimal points X}, where k € {2,3,...,n}.
(¢) {BSy-points X} D {BSy1-points X}, where k € {2,3,...,n —1}.

(d) The reverse of the above three inclusions may not always hold true.

Remark 3.8. (i) The optimality of BSy-points is stronger than that of standard critical points
(Wen & Yin, 2013} |Chen et al.| |2020; Absil et al., |2008). (ii) Testing whether a solution X is a
BSy.-points deterministically requires solving all C¥ subproblems. However, by randomly selecting

the working set B from the CE possible combinations {B;},;",, one can test whether X is a BSx-point
in expectation.

4 CONVERGENCE ANALYSIS

This section establishes the iteration complexity and non-ergodic (last-iterate) convergence rates of
the proposed OBCD algorithm. We first prove a sufficient descent property, followed by an ergodic
convergence rate typical in nonconvex optimization. We then analyze iteration complexity under
the Riemannian subgradient condition, commonly used in nonsmooth manifold settings. Finally, we
derive a last-iterate convergence rate based on the KL inequality.

Throughout this section, we assume that the working set is determined by a random strategy and that
the global minimizer V* € arg miny cg(x,x) K£(V; X*, BY) can be computed. The algorithm OBCD
then generates a random output (V*, X**1) for¢ = 0, 1,.. ., 0o, depending on the realization of the
random variable ¢! £ (B!, B2,..., B?). We denote X*° as an arbitrary limit point of OBCD.

4.1 ITERATION COMPLEXITY
Initially, we introduce the notation of e-BSy-point as follows.

Definition 4.1. (e-BSjy-point) Given any constant € > 0, a point X is called an e-BSj-point if:
k .

oF Zicz"l dist(I, argminy K(V; X, B;))? < ¢, where K(-; -, ) is defined in Equation 1i Here,

the set {By, Ba, ..., Bcr } denotes all possible combinations of the index vectors choosing k items

- =/

from n without repetition, and dist(Z, Z’) denotes the distance between two sets Z and Z'.
Using the optimality measure from Definition we establish the iteration complexity of OBCD.
Theorem 4.2. (Proof in Appendix We define ¢ & 2 - (F(X°) — F(X>)) > 0. We have:
(a) The following sufficient decrease condition holds for all t > 0:
SIXH = XU < SV - Liff < F(X') — F(X*H).
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(b) If the B is selected from {B;}°» randomly and uniformly, OBCD finds an e-BS;-point of

Problem li in at most 7" iterations in the sense of expectation, where 7' > [S .

Remark 4.3. Theoremd.2|shows that OBCD converges to e-block-k stationary points with an iter-
ation complexity of O(1/e), which is typical for general nonconvex optimization.

Apart from Definition 4.1} another common optimality measure relies on the Riemannian subgradi-
ent. At the point V = I, the Riemannian subdifferential of X(V;X* B") is O K(Ix; X', BY) =
Ul (DeD")Ug, where D = [V f(X!) + 0h(X?!)][X!]T. We next derive a Riemannian subgradient
lower bound in terms of the iterate gap.

Lemma 4.4. (Proof in Appendix Riemannian Subgradient Lower Bound for the Iterates
Gap) Assume that F'(-) is C'p-Lipschitz continuous on St(n,r), i.e., |G| < Cp for all X €
St(n,r) and all G € OF (X). We have:

(a) E§t+1 [diSt(O, 8MIC(Ik, XtJrl, Bt+1))} S d) . Egt [||Vt — Ik”F]’ where gf) £ 4(CF + Lf) + 2a.
(b) Ee:[dist(0, Oy F(X))] < 7 - Eee[dist (0, O K (Tx; X, BY))], where y 2 (CE /CE=2)1/2,

Remark 4.5. The important class of nonsmooth ¢1 norm function h(X) = ||X||1 (Chen et al.| 2020;
2024) satisfies the assumption made in Lemma

We establish the iteration complexity of OBCD using the optimality measure of Riemannian sub-
gradient (Chen et al|2020; |Cheung et al., [2024; [L1 et al.| |2024b).

Theorem 4.6. (Proof in Appendix We define ¢ as in Theorem and {(_é, ~} as in Lemma
OBCD finds an e-critical point of Problem , ie., Egz[dist2 (0,0 F(X*1))] < e, in at most
T + 1 iterations in expectation, where ¢ € [T'] and T’ > [@1

4.2 CONVERGENCE RATE UNDER KL INEQUALITY
We establish the non-ergodic convergence rate of OBCD using the Kurdyka-t.ojasiewicz inequality,

a key tool in non-convex analysis (Attouch et al.,|2010; Bolte et al.l 2014; [Liu et al., 2016).

Initially, we make the following additional assumption.
Assumption 4.7. The function F,(X) = F(X) 4 tpm(X) is a Kurdyka-Lojasiewicz (KL) function.

Remark 4.8. Semi-algebraic functions constitute a broad class of KL functions, including real
polynomials, norm functions ||x||, with p > 0, rank functions, and indicator functions of sets such
as the Stiefel manifold and the positive semidefinite cone (Attouch et al.||2010).

We present the following useful proposition regrading to the KL function.

Proposition 4.9. (Kurdyka-Lojasiewicz Property, see, e.g.,(Attouch et al., |2010; Bolte et al.,
2014)). Let F, : R™*™ — (—o00, +00] be a KL function and X*° € dom F,. Then there exist o €
[0,1), n € (0,+0c], a neighborhood Y of X°°, and a concave continuous function p(t) = ct! =
with ¢ > 0 and ¢ € [0,7) such that for all X € T satisfying F,(X’) € (F,(X*), F,(X*) + ), it
holds that dist(0, OF, (X")) ¢ (F,(X') — F,(X*)) > 1.

Utilizing the Kurdyka-Lojasiewicz property, one can establish a finite-length property of OBCD, a
result considerably stronger than that of Theorem4.2]

Theorem 4.10. (Proof in Appendix A Finite Length Property). We define E; 1 = E¢[[|[ V! —
I;/lf], and D; = Z;‘;Z E;+1. Under the continuity assumption in Lemma there exists a suffi-
ciently large ¢, such that, for all ¢t > ¢,, we have

(a) Itholds that (Ey11)? < KEy(pr — @et1), where o 2 o(F(X') — F(X*)), k £ 222 is a posi-
tive constant, v 2 (Ck /CF=2)1/2 ¢ is defined in Lemma and ¢(+) is the desingularization
function defined in Proposition 4.9

(b) It holds that Z;’it Ej1 < E; + 2kp;. The sequence {E;}¢2; has the finite length property

that D, £ Z;’;t E; 1 is always upper-bounded by a certain constant for all ¢ > ¢,.

Finally, we establish the last-iterate convergence rate for OBCD.

Theorem 4.11. (Proof in Appendix|[F3). Based on the continuity assumption made in Lemma
forallt > t,, we have:
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LADMM [RADMM LADMM

data-m-n SPM RADMM [ SPM OBCD-R data-m-n LADMM [RADMM [SPM LADMM [RADMM [SPM OBCD-R
(id) (id) (id) (md) (md) (md) (id) (id) (id) (id) (md) (d) (md) (id)
7= 20, \ = 10, time [imit=40 =20, A = 50, time [imit=40
w1a-2477-300 199.897 219.698 199.897 259.825 239.717 259.672 199.667 wla-2477-300 999.891 1099.730 [ 1099.889 [1249.723 1049.707 1649.675 [999.667
TDT2-500-1000 [ 199.997 |350382 | 199.997 |389.376 |269.292 [389.260 |199.258 || TDT2-500-1000 | 1049.997 |1099.288 |999.460 | 1049282 |1249.280 |2149.271 |999.257
20News-8000-1000 | 199.995 |219.673 | 199.995 [239.301 [219.243 |349.228 |199.222 || 20News-8000-1000 | 1149.995 | 1149.501 |999.549 |3649.247 | 1049326 |1799.228 |999.222
sector-6412-1000 199.980 349.793 199.980 749.996 249.813 369.651 199.649 sector-6412-1000 2449.886 | 1799.904 | 999.816 1549.998 | 1749.952 | 1399.651 |999.649
E2006-2000-1000 | 199.999 |239.115 | 199.999 | 269.128 [219.084 [709.095 [199.077 || E2006-2000-1000 | 1099.283 | 1249.109 |999.284 | 1849.115 |1349.085 |2549.136 |999.077
MNIST-60000-784 | 199.985 379.893 199.985 289.917 339.910 1339.774 | 199.896 MNIST-60000-784 | 999.985 1699.913 | 2849.852 1399.921 1649.905 | 4349.781 |999.896
Giselte-3000-1000 | 199.980 | 339979 | 199.980 | 539.979 |369.981 [1639.952 |199.979 || Gisette-3000-1000 |999.980 | 1649.980 |999.980 | 10399.983 |2249.976 |6899.967 |999.979
CnnCal-3000-1000 | 199.981 429.979 199.981 689.970 379.979 909.931 199.946 CnnCal-3000-1000 | 999.981 2499.981 1049.969 4599.973 | 2649.981 |3499.938 |999.946
Cifar-1000-1000 [ 199.979 479979 | 199.979 | 1449.982 [429.975 [2169.934 |199.974 || Cifar-1000-1000 | 1099.979 | 1449.978 |999.979 |2149.979 |3149.974 |4349.972 |999.974
randn-500-1000 199.980 469.980 199.980 409.980 389.980 1349.975 | 199.977 randn-500-1000 1349980 | 2449.980 | 3949.977 1299.981 1749.980 | 4249.976 | 999.977
data-m-n LADMM [RADMM |[SPM LADMM [RADMM [SPM OBCD-R data-m-n LADMM [RADMM [SPM LADMM [RADMM [SPM OBCD-R
(id) (id) (id) (md) (md) (md) (id) (id) (id) (id) (md) (d) (md) (id)
r = 20, A = 100, time limit=40 7 = 20, A = 500, time [imit=40
w1a-2477-300 2499912 [2799.713 [2199.819 [2399.723 [2499.708 [3299.662 [1999.667 wla-2477-300 11999.706 | 10999.702 | 16499.714 [ 10499.702 [9999.711 14499.667 [ 9999.667
TDT2-500-1000 [ 2199.515 |2199.302 |1999.432 | 8799310 |2699.278 |2499.257 |1999.258 || TDT2-500-1000 | 10499.273 | 15999.294 | 10999.395 | 10499.368 | 15499.281 | 12499.256 | 9999.258
20News-8000-1000 | 2699.480 |2199.262 | 1999.440 | 2099.242 | 1999.230 |3999.224 | 1999.222 || 20News-8000-1000 | 9999.347 | 11499.281 | 11499.328 | 10999.454 | 10499.258 | 14499.232 | 9999.222
Sector-6412-1000 [ 7799.995 |4599.977 |2099.716 | 3099.999 |4399.973 [2199.651 |1999.649 || sector-6412-1000 | 13999.997 | 16999.992 | 12999.660 | 22999.999 | 18999.986 | 13499.649 | 9999.649
E2006-2000-1000 [ 2099.207 |3199.083 |1999.284 |2599.106 |2299.085 [4399.081 |1999.077 || E2006-2000-1000 [9999.918 | 14499.080 | 9999.084 |26499.095 | 10499.082 | 21499.081 | 9999.077
MNIST-60000-784 | 1999.984 |3199.904 |11799.715 | 3199.922 |3599.907 |8299.829 |1999.896 MNIST-60000-784 | 19499.965 | 20499.886 | 39499.844 | 11999.911 | 16999.905 | 47999.705 | 9999.896
Giselte-3000-1000 [ 2199.980 |4299.979 | 1999.980 |2499.982 [2799.981 |11499.971 | 1999.979 || Gisette-3000-1000 | 14999.980 | 16499.979 | 9999.950 | 15499.980 | 16999.978 | 36499.977 | 9999.979
CnnCal-3000-1000 | 2499981 |4399.982 | 11499.907 | 4399.975 |3899.983 |6799.938 |1999.946 CnnCal-3000-1000 | 12499.980 | 33999.979 | 28999.936 | 15499.974 | 52999.977 | 26999.936 | 9999.946
Cifar-1000-1000 | 1999.979 |4999.979 | 1999.979 |5199.979 [4399.978 |8799.969 |1999.974 || Cifar-1000-1000 | 19999.979 | 31499.980 | 9999.979 |37999.979 | 21499.977 | 42999.953 | 9999.974
randn-500-1000 6699.980 | 4099.980 |7899.977 | 2599.980 | 3299.980 |9099.976 |1999.977 randn-500-1000 19499.981 | 33499.981 | 19999.979 | 19999.980 | 44999.981 | 17999.978 | 9999.977

Table 1: Comparisons of objective values for Ly-regularized SPCA. The 1°¢, 2”4, and 3"¢ best
results are colored with red, green and blue, respectively.

10° = = =LADMM(id) s = = =LADMM(id) . = = =LADMM(id) = = «LADMM(id)
° RADMM(id) || 10 RADMM(d) [ 10 RADMM(d) || 10° RADMM(id)
S PSM(id) 2 PSM(id) 2 PSM(id) S PSM(id)
E LADMM(md)|| § LADMM(md)|| 8 LADMM(md)|| § LADMM(md)
= RADMM(md)|| 5 RADMM(md)|| ‘5 RADMM(md)|| & RADMM(md)
e} =—PSM(md) ] == PSM(rnd) e} === PSM(rnd) o === PSM(md)
2. OBCD-R(d) || @ OBCD-RGd) || & OBCD-R(id) || @ OBCD-R(id)
kot K] T 10 k]
® o 10° < T T LT T LT LT 3 10°
o o o o

0 20 40 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Time (seconds) Time (seconds) Time (seconds) Time (seconds)
(a) wi1a-2477-300 (b) TDT2-500-1000 (c) 20News-8000-1000 (d) sector-6412-100

Figure 1: The convergence curve for solving Lg-regularized SPCA with A = 100. No matter how
long the algorithms run, the other methods remain trapped in poor local minima.

(a) If o = 0, then the sequence X converges in a finite number of steps in expectation.
(b) Ifo € (0, 3], then there exist ¢ > 0 and 7 € [0, 1) such that E¢e— [|| X! — X°°|[¢g] < 7.

(c) Ifo € (3,1), then there exist ¢ > 0 such that Ege—1 [| X! =X ||¢] < %, where 7 £ 3=% > 0.

= 37> 20—

Remark 4.12. When F(X) is a semi-algebraic function and the desingularising function is ¢(t) =
ct! =7 for some ¢ > 0 and o € [0, 1), Theorem shows that OBCD converges in finite iterations
when o = 0, with linear convergence when o < (0, %], and sublinear convergence when o € (%, 1)

for the gap || Xt — X || in expectation. These results are consistent with those in (Attouch et al.|
2010).

5 EXPERIMENTS

This section presents numerical comparisons between OBCD and state-of-the-art methods on both
real-world and synthetic data. We describe the application of Lg-regularized SPCA in the sequel,
while additional applications for L;-regularized SPCA and nonnegative PCA can be found in Ap-
pendix Section[G.2]

» Compared Methods on L(-Regularized SPCA. We compare against three operator splitting
methods: Linearized ADMM (LADMM) (Lai & Osher, [2014; [He & Yuan, |2012), Riemannian
ADMM (RADMM) (Li et al., | 2024a), and the Penalty-based Splitting Method (PSM) (Yuan) 2024;
Chen, 2012)). Each method is initialized with either a random or identity matrix, yielding six variants:
LADMM(id), RADMM(id), SPM(id), LADMM(rnd), RADMM (rnd), and PSM(rnd). For OBCD,
we adopt a random working set strategy with identity initialization, denoted as OBCD-R(id).

» Implementations. All methods are implemented in MATLAB on an Intel 2.6 GHz CPU with
32 GB RAM. However, our breakpoint searching procedure is developed in C++ and integrated into
the MATLAB environmentEL as it requires inefficient element-wise loops in native MATLAB. The
code for all three applications used to reproduce the experiments can be found in the supplemental
material.

2 Although we prioritize accuracy over speed, the comparisons remain fair, as the other methods based on
matrix multiplication and SVD rely on highly optimized BLAS and LAPACK libraries.
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» Experiment Settings. We compare objective values F'(X) for different methods after running for
30 seconds. For numerical stability in reporting the objectives, we use the count of elements with
absolute values greater than a threshold of 1075 instead of the original £, norm function || X||o. We
set a = 107° for OBCD. Full-gradient methods have higher per-iteration complexity but require
fewer iterations, while OBCD, as a partial-gradient method, has lower per-iteration costs but needs
more iterations. Thus, we compare based on CPU time rather than iteration count.

» Experiment Results. Table[I|and Figure[I]display accuracy and computational efficiency results
for Ly-regularized PCA, yielding the following observations: (i) OBCD-R delivers the best per-
formance. (ii) Unlike other methods where objectives fluctuate during iterations, OBCD-R mono-
tonically decreases the objective function while maintaining the orthogonality constraint. This is
because OBCD is a greedy descent method for this problem class. (i) While other methods of-
ten get stuck in poor local minima, OBCD-R escapes from such minima and generally finds lower
objectives, aligning with our theory that our methods locate stronger stationary points.

6 CONCLUSIONS

In this paper, we introduced OBCD, a new block coordinate descent method for nonsmooth compos-
ite optimization under orthogonality constraints. OBCD operates on k rows of the solution matrix,
offering lower computational complexity per iteration for k£ > 2. We also provide a novel optimality
analysis, showing how OBCD exploits problem structure to escape bad local minima and find bet-
ter stationary points than methods focused on critical points. Under the Kurdyka-Lojasiewicz (KL)
inequality, we establish strong limit-point convergence. Additionally, we show how novel break-
point search methods can be used to solve the subproblem when k£ = 2. Extensive experiments
demonstrate that OBCD outperforms existing methods.

10
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LLM USAGE

A large language model (LLM) was used to assist in refining the writing of this paper.
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Appendix

The appendix section is organized as follows.

Section E] covers notations, technical preliminaries, and relevant lemmas.

Section [B|shows how to solve the subproblem when k = 2.

Section [Coffers further discussions on the proposed algorithm.

Section [D] contains proofs from Section

Section [E]contains proofs from Section [3]

Section |[F|contains proofs from Section

Section G| presents additional experiment details and results.

A

Al

Throughout this paper, M 2 St(n,r) denotes the Stiefel manifold, which is an embedded subman-
ifold of the Euclidean space R™*". Boldfaced lowercase letters denote vectors and uppercase letters
denote real-valued matrices. We adopt the Matlab colon notation to denote indices that describe
submatrices. For given natural numbers n and k, we use {81, Ba, ..., BCQ } to denote all the possi-

ble combinations of the index vectors choosing k items from n without repetition, where C¥ is the
total number of such combinations and B; € N*, Vi € [CK]. For any one-dimensional function

p(t) : R R, we define: p(+z Fy) = min{p(x —y), p(—z +y)}. We use the following notations

NOTATIONS, TECHNICAL PRELIMINARIES, AND RELEVANT LEMMAS

NOTATIONS

in this paper.

[n]: {1,2,...,n}

Ix||: Euclidean norm: ||x|| = ||x[|2 = v/(x, %)
x;: the ¢-th element of vector x

X j or X;; : the (i, j™) element of matrix X
vec(X) : vec(X) € R™ %1, the vector formed by stacking the column vectors of X
mat(x) : mat(x) € R"*", Convert x € R""*! into a matrix with mat(vec(X)) = X
XT : the transpose of the matrix X

sign(t) : the signum function, sign(¢) = 1if t > 0 and sign(t) = —1 otherwise
det(D) : Determinant of a square matrix D € R"*"

CE : the number of possible combinations choosing k items from n without repetition
0, : A zero matrix of size n x r; the subscript is omitted sometimes

L. : I, € R™*", Identity matrix

X = 0(or > 0) : the Matrix X is symmetric positive semidefinite (or definite)

tr(A) : Sum of the elements on the main diagonal X: tr(A) =>", A;;

(X,Y) : Euclidean inner product, i.e., (X,Y) = >, X;;Y;;

X ® Y : Kronecker product of X and Y

|IX]|F : Frobenius norm: (3, X3,)"/2

IX]|sp : Operator/Spectral norm: the largest singular value of X

IX]lo: the number of non-zero elements in the matrix X

[X|[1: the absolute sum of the elements in the matrix X with || X[ = >, ;X 4]

[l max(|X],7)|l1: the capped-¢; norm of X with || max(|X]|,7)[j1 =

V f(X) : Euclidean gradient of f(X) at X
V m f(X) : Riemannian gradient of f(X) at X

,J
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e JF(X) : limiting Euclidean subdifferential of F'(X) at X
* OMmF(X) : limiting Riemannian subdifferential of F'(X) at X
* 1=(X) : the indicator function of a set = with ¢=(X) = 0 if X € E and otherwise 400

s )

* 1>0(X): indicator function of non-negativity constraint with ¢t>o(X) = { %
* P=(Z) : Orthogonal projection of Z with P=(Z) = arg minxez ||Z — X||2
* Py(Y) : Nearest orthogonal matrix of Y with Po((Y) = argmingrx—g, [|X — Y3
* dist(Z,Z') : the distance between two sets with dist(Z, =) £ infxcz x/ez | X — X[
¢ A+ B, A — B: standard Minkowski addition and subtraction between sets A and B

* A @B, A ©B: element-wise addition and subtraction between sets A and B

|[0F (X)]|f: the distance from the origin to F(X) with [|0F (X)||r = infyecorx) | Y||F

A.2 TECHNICAL PRELIMINARIES

As the function F'(-) can be non-convex and non-smooth, we introduce some tools in non-smooth
analysis (Mordukhovich, 2006 Rockafellar & Wets., [2009). The domain of any extended real-
valued function F' : R"*" — (—o0, +-00] is defined as dom(F) £ {X € R™*" : |F(X)| < +oo}.
The Fréchet subdifferential of F' at X € dom(F) is defined as

éF(X) vy {£ c R"%T . Zlgg(zl;lg( F(Z)—ﬁgf)};\ff,Z—X) > 0}7

while the limiting subdifferential of F'(X) at X € dom(F’) is denoted as
OF(X) 2 {¢ e R": IX! - X, F(X') = F(X), &' € OF(X') — €, Vt}.

We denote VF(X) as the gradient of F(-) at X in the Euclidean space. We have the following
relation between OF(X), dF(X), and VF(X). (i) It holds that OF(X) C dF(X). (ii) If the
function F(-) is convex, OF(X) and OF(X) essentially the classical subdifferential for convex
functions, i.e.,

IF(X) = OF(X) = {€ e R™" : F(Z) > F(X) + (§,Z — X),VZ € R"*"}.

(iii) If the function F(-) is differentiable, then dF(X) = OF (X) = {VF(X)}.
We need some prerequisite knowledge in optimization with orthogonality constraints (Absil et al.,

2008). The nearest orthogonality matrix to an arbitrary matrix Y € R™*" is given by Py((Y) =

UVT, where Y = UDiag(s)V7 is the singular value decomposition of Y. We use Ny (X) to
denote the limiting normal cone to M at X, leading to

Nu(X) = dom(X) = {Z € R 2 (Z,X) > (Z,Y), VY € M.

The tangent and norm space to M at X € M are denoted as Tx.M and Nx .M, respectively. For
agiven X € M, we let Ax(Y) 2 XTY + Y™X for Y € R"*", and we have Tx M = {Y ¢
R"™"|Ax(Y) = 0} and Nx M = {2XA|A = AT, A € R"™*"}. For any non-convex and non-
smooth function F(X), we use I F'(X) to denote the limiting Riemannian gradient of F(X) at
X, and obtain Oy F(X) = Pr, m(0F(X)). We denote 0F(X) © X[0F(X)]"X £ {E|E =
G - XG™X,G € 9F(X)}.

A.3 RELEVANT LEMMAS
We offer a set of useful lemmas, each of which stands independently of context and specific method-
ology.

k
Lemma A.1. Let k > 2 and W € R™". [f Oy, = UIWUg forall B € {B;}.",, then W = 0.
Here, the set {B1,Ba, ..., B } represents all possible combinations of the index vectors choosing k
items from n without repetition.
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Proof. The proof is straightforward and relies on elementary reasoning.

Notably, the conclusion of this lemma does not necessarily hold if |B| = & = 1. This is because
any matrix W € R"*" with W, = 0 for all ¢ € [n] satisfies the condition of this lemma but is not
necessary a zero matrix. O

Lemma A.2. For any matrices A € R*** and C € R¥**, we have:
IA —AT|[r < 2|A = Cl|r +[|C ~ CT|r.

@
Proof. We derive: |[A — AT =|(A-C)+(C—-C") +(CT—AN|<||A-Clf+]|C—
CTl[r+||ICT — AT||r = 2||A — CJ|¢ + ||C — CT||f, where step @ uses the triangle inequality.

O

Lemma A.3. Let 7 € R, and A € R?*? be any skey-symmetric matrix with AT = —A. We have:
det (I + ZA) "Iy — ZA)) = 1.

Proof. Since A isa two dimensional matrix, it can be expressed in the form: A = ( %, &) for some
a € R. Letting b = Za, we derive:

Q2 (L+3A) L -34) 2 (407 () 2 e (0 () = e (5 72).

where step @ uses ZA = (% }); step @ uses the fact that (¢ %)~ = —L_ (4 ’ab)71 for all
2 2 _ b2 2 b2 b2 2
a, b, c,d € R. We further obtain: det(Q) 2 1+£2 . 1+22 - 1_2:;2 . 1+2bb2 ~a (1+)b;)rf = Eilﬂ;? =1,
where step @ uses the fact that det(¢ %) = ad — bc for all a, b, ¢, d € R.
O
Lemma A.4. For any W € R™*" we have
Ck:
2 IW@EB)IE =it ) > Wi+ 50> Wi
(N i

Here, the set {B1, Ba, ..., Bar } represents all possible combinations of the index vectors choosing k
items from n without repetition.

Proof. For any matrix W € R™*", we define: w £ diag(W) € R", and W/ = W — Diag(w).
We have: W = Diag(w) + W/, this leads to the following decomposition:

ck ck .
> U5, WU, |12 > | Ug, (Diag(w) + W')Usg, |12

ck . ck
= > |[Ug Diag(w)Usg, |} + X7 U5 W'Ug, . (12)
Fl FZ
We first focus on the term I';. We have:
ck . D ~Cr
= B,iDla’g(W)UBi”g =2 fz : % : HWH% = Z WW (13)

where step @ uses the fact that ||BT Diag(w)B||Z = ||[Diag(w)]zs||2 = ||WB||2 forany B € {B;}", ;

|wp, ||2 a total of (CF - £) times, which

. . ck
step @ uses the observation that w; appears in the term » .’ "

can be deduced using basic induction.

We now focus on the term I's. Noticing that W/, = 0 for all ¢ € [n], we have:
® - ®
Iy = Zi:l BlwlUBiHIQ: = Zz Zj;ﬁi[ci—%(wg]’y] = Ci—% Zz Zj,jyﬁi(w’ij)Qa (14)

k
where step @ uses the fact that the term ZS;I U5, W'Ug, || comprises CF~2 distinct patterns,
each including {4, j} with i # j; step @ uses >, ., (Wi;)* =32, ., (W)

In view of Equalities (12), (I3)), and (I4), we complete the proof of this lemma. O
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Lemma A.5. Assume QR = X € R™"*", where Q € St(n,n) and R is a lower triangular matrix
withR; ; = 0 foralli < j. If X € St(n,n), then R is a diagonal matrix with R, ; € {—1,+1} for
all i € [n].

Proof. We derive: RRT 2 (QX)(QX)T = QXXTQT 2 1, where step @ uses R = QTX; step
@ uses X € St(n,n) and Q € St(n,n). First, given ||R(1,:)|| = 1 and R(1,2 : n) = 0, we have
Ry 1 € {—1,+1}. Second, we have |R(2,:)|| = 1 and R(1,:)TR(:,2) = 0, leading to Ry 5 = 0
and Ry 2 € {—1,+1}. Finally, using similar recursive strategy, we conclude that R is a diagonal
matrix with R, ; € {—1,+1} forall ¢ € [n]. O

Lemma A.6. We define Tx M £ {Y € R™*" | Ax(Y) =0} and Ax(Y) £ XY + Y'X. For
any G € R"™*" and X € St(n, k), we have:

_1 - i _ 2
(G - 5XAx(G)) = arg min Y — G|g.

Proof. The conclusion of this lemma can be found in (Absil et al., 2008)). For completeness, we
present a short proof.

Consider the convex problem: Y = argminy ||[Y — G||Z, s.£. XTY + Y'X = 0. Introduc-
ing a multiplier A € R™ " for the linear constraints leads to the following Lagrangian function:
LIY;A) = |[Y — G| + (XTY + YTX,A). We derive the subsequent first-order optimal-
ity condition: 2(Y — G) + X(A + AT) = 0, and XY + Y'X = 0. Given A is sym-
metric, we have Y = G — XA. Incorporating this result into XTY + YTX = 0, we obtain:
XT(G—-XA)+(G—-XA)"™X = 0. Given X € St(n,7), wehave XTG—A+G'X - AT =0,
leading to: A = %(XTG + GTX). Therefore, the optimal solution Y can be computed as
Y=G-XA=G-1iX(XTG+G'X).

O

Lemma A.7. Consider the following problem: minx F,(X) £ F(X) + 1y(X), where F(X) is
defined in Equation . For any X € St(n, 1), it holds that

dist(0,0F, (X)) < dist(0, Ip F(X)).

Proof. We let G € OF(X) and define Ax(G) £ X'G + GTX.

Recall that the following first-order optimality conditions are equivalent for all X € St(n,r):
(0 € OF,(X)) < (0 € Ppy m(OF (X))). Therefore, we derive:

dist(0,0F,(X)) = infyeor,(x) | YIlF = infyep r@rx) [[YIlF
]
= [Perxr (Gl
@
= |G- 3XAx(G)|r
2 G- 1X(XTG+GTX)|¢
L I-3XXT)(G - XGTX)||r
®
< |G - XGTX]F,

where step @ uses G € JF(X); step @ uses Lemma step ® uses the definition of Ax(G);
step @ uses the identity that G — :X(XTG + G™X) = (I - ;XX")(G — XGTX); step ® uses
the norm inequality and fact that the matrix I — %XXT only contains eigenvalues that are % or 1.

O

Lemma A.8. Assume cos(0) # 0. Any pair of trigonometric functions (cos(6),sin(0)) can be
represented as follows:

. an(6
a) cos(f) = \/ﬁ, and sin(f) = \/ﬁtiiiniw)'
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— : — tan(6
b) cos(0) = \/ﬁ, and sin(f) = \/N:T%)(G)'

Proof. For all values of 6§ where cos(6) # O the trlgonometnc functions {sln( ,cos(6), tan(G)}

are well-defined. Utilizing the identity sin®(6) + cos?(d) = 1 and tan(d cosgﬁ = sin(0), we
v , 2 2() —

derive: (tan(6) - cos(#))? 4 cos*(#) = 1. Consequently, we find: cos(f) = o Finally, we

can express sin(f) as sin(6) = tan(0) - cos(#) = %.
an
O

Lemma A.9. Assume (Eyy1)? < Ey(py — pey1) and py > piy1, where {Ey, pi}$2, are two non-
negative sequences. For all 1 > 1, we have: Z:; By < Ep 4+ 2p;.

Proof. We define w; 2 p; — py1. Welet1 <i < T.

First, for any ¢+ > 1, we have:

T T @
Zt:i wy = Zt:i(pt - pt+1) =p; — pr+1 < Diy (15)
where step @ uses p; > 0 for all 4.

Second, we obtain:

B VEw;
V5 (Er)? + (w)2/(200), Yo > 0
\/g'Et+wt\/m, Ya > 0. (16)

Here, step @ uses (Fyy1)? < Ey(p; — pir1) and wy 2 py — pyyq; step @ uses the fact that ab <
%a2 + ibQ for all & > 0; step @ uses the fact that va + b < v/a + Vb for all a,b>0.

INe IN® INe

Assume 1 — \/g > 0. Telescoping Inequality over ¢t from ¢ to 7', we have:

S wey/1/(20)
T & (T
> {3 i Bl — /S B}
={Bra+ Y B} — f{E +Z ' By}
=Ero—/SE+(1-/3) t:i "B
@ _
> - /5B + (- VXS B,

where step @ uses Fpy1 > 0and 1 — \/g > (. This leads to:

1B R S

Ei -+ 2 23;7 Wi

\g
[
IS
+
e IA

IN®

Ei + 2pl7

step @ uses the fact that (1 — /$)"'-(/$ =1and (1—/5)"" /55 =2 whena = 3;step @

uses Inequalities (T3)). Letting ' — oo, we conclude this lemma.

O

Lemma A.10. Assume that [D;]" ™! < a(Dy_1 — Dy), where T,a > 0, and {D;}{°, is a nonnega-
tive sequence. We have: Dy < O(T~/7).
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Proof. We let k > 1 be any constant. We define h(s) = s~7~!, where 7 > 0.
We consider two cases for 7* = h(D;)/h(D;_1).
Case (1). r* < k. We define h(s) £ —1 .77, We derive:

I < Dy — D)~ h(Dy
E a(Dis— D)) kh(Dy_y)
< an [0 n(s)ds
L k- (( 1) — h(Dy))

lle

ak - = - ([De]™7 = [Dy1]77),

where step @ uses [D;|™"! < a(D;_; — Dy); step @ uses h(D;) < kh(D;_1); step ® uses the fact
that h(s) is a nonnegative and increasing function that (a—b)h(a) < [," h(s)ds foralla,b € [0, 00);
step @ uses the fact that VA (s) = h(s); step ® uses the definition of A(-). This leads to:

[De] ™" = [Dea] 7 = % (17)
Case (2). ' > k. We have:
h(Dy) > kh(Di—1) = [Dy]~0FD > k- [Dy_y]THY
2 (D]~ (T+1))7+1 > mL - ([Dy 71]7(T+1))TL+1
= [D™ " > /{m [Deq] 7T, (18)
where step @ uses the definition of h(-); step @ uses the fact thatif a > b > 0, then a” > b7 for any
exponent 7 = =1 € (0,1). For any ¢t > 1, we derive:

(D" = [Dia]™ > (7 —1)-[D, 4]

Ve Ve

(k71 —1) - [Do]™T, (19)
where step @ uses Inequality (I8); step @ uses 7 > 0 and D;_; < Dy forall ¢ > 1.
In view of Inequalities and (19), we have:

(D)™ = [Dy_1]™™ > min(Z, (571 —1) - [Dg] ™). (20)

Telescoping Inequality over t from 1 to 7', we have:
[Dr]™" = [Do] ™7 = T¢.
This leads to:
Dr = ([Df]7)"VT <oV,

B SOLVING THE SUBPROBLEM WHEN & = 2

This section presents a novel Breakpoint Searching Method (BSM) to find the global optimal solu-
tion of Problem (3) when k = 2.

Initially, Problem (3)) boils down to the following one-dimensional subproblem:

n 3| VI +(V,P)+h(VZ), s.t.V € {Vy>', V'],
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which can be further rewritten as:

o . =+ cos(0) sin(
0 € argmin vee(V)TQuec(V) + (V,P) + h(VZ), s.t. V £ (50 =),

where Q € RY4, P € R?*2 and Z € R**". Given h(-) is coordinate-wise separable, we have the
following equivalent optimization problem:

m@in h (cos(f)x + sin(f)y) + a cos(f) + bsin(d)
+ccos?(6) + dcos(6) sin(f) + esin?(6), (21)

where @ = Poo £ P11, 0 = P1oFPa1, ¢ = 0.5(Q11 + Qu4) £ Q14, d = —Q12 £ Q13 F Qa4+ Qa4
e=0.5(Qa + Q33) F Quz, v = +Z(1,:), s = Z(2,:), p = Z(2,:),u = FZ(1,:),x = [r;p] €
R27*! andy £ [s;u] € R?"¥1,

Our key strategy is to perform a variable substitution to convert Problem (2I)) into an equivalent
problem that depends on the variable tan(f) = t. The substitution is based on the trigonometric

identities that cos(f) = £1/4/1 + tan?(f) and sin(f) = + tan(6)/+/1 + tan?().

The following lemma provides a characterization of the global optimal solution for Problem (1))
Lemma B.1. We define F'(¢,3) £ aé + b3 + ¢ + dés + €32 + h (éx + 3y), and w 2 ¢ — e. The
optimal solution 6 to can be computed as:

[cos(f),sin(0)] € arg r[mr]l Fle,s), sit.[e,s] € {le1, 51, [e2, 52, [0, 1], [0, —1] },

)

where c1 £ L1 S = fiﬂ, ) £ =L and S9 £ _7% Furthermore, ﬁ_ and
V1+(t4)? V1+(t4)? VI1+(E-)? V1+(E-)2

t_ are respectively defined as:

t, € argmin, p(t) £ ;j% + wtd h(j%) (22)
t_ € argmin; p(t) = :/‘11;—3 ﬁ’iﬁt + h( \/ﬁ) (23)
Proof. We define w £ ¢ — e, and F(¢,3) £ aé + b3 + ¢é® + dés + 3% + h(ex + 3y).
With the identity sin?(0) = 1 — cos?(6), Problem (21)) can be equivalently written as:
0 € arg rrbin h(cos(8)x + sin(0)y) + a cos(#) + bsin(0)
+w cos?(6) + d cos(9) sin(0) + e. (24)

We first consider the case cos(6) # 0. By Lemma | there are two possible parameterizations for
(cos(6), sin(6)) in Problem (24)).

Case a). cos(f) = \/ﬁT@) and sin(f) = %. Then Problem (21)) becomes:

a+tan(0)b w+tan(0)d

x+tan(0)y
i@ T e A )

\/1+tan2(9) ’

0, € arg mm

Setting ¢ = tan(#), we have the equivalent problem:

a+bt w+dt xX+yt
ty € argmln e T et h(m)

Hence the corresponding optimal trigonometric pair is

0\ — 1 0\ i.
COS(0+) = W’ Sln(9+) = \/ﬁ (25)
Case b). cos(9) = \/H_;i:w and sin(f) = %. In this case, Problem (21)) reduces to

—a—tan(0)b w+tan(6)d + (7x7tan(9)y>
\/1+tan()2 ~ 1+tan(6)? \/1+tan(8)2”"

0_ € arg mm
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Again letting t = tan 6, we obtain

n i —a—bt +dt —x—yt
t- € argmin T e +h(m)

Thus, the corresponding optimal trigonometric pair is

cos(0_) = \/ﬁ, sin(f_) = \/% (26)

Combining and (26), when cos(6) # 0 the optimal solution @ to (24) satisfies [cos(f), sin(f)] €
argmin, s F(c,s), s.t.[c,s] € {[cos(A),sin(f)], [cos(A_),sin(f_)]}. Including the case
cos(#) = 0, that is, [c, s] € {[0,1],[0, —1]}, the final selection rule for the optimal pair is

[cos(0), sin(f)] € argmin F(c, s),

s.t.[c,s] € {[cos(64),sin(6)], [cos(F-),sin(F-)],[0,1], [0, —1] }.

Note that {cos(f),sin(f)} uniquely determines 6, and the objective in Problem depends only
on {cos(#),sin(#)} for some #. Thus, it is not necessary to explicitly recover the angles 6 and 6_;
it suffices to work with their cosine—sine representations.

O
We describe our BSM to solve Problem (22); our approach can be naturally extended to tackle

Problem (23). BSM first identifies all the possible breakpoints / critical points ©, and then picks the
solution that leads to the lowest value as the optimal solution ¢, i.e., ¢ € arg min; p(t), s.t. t € ©.

We assume y; # 0. If this is not true and there exists y; = 0 for some 4, then {x;,y;} can be
removed since it does not affect the minimizer of the problem.

» Finding the Breakpoint Set for h(x) £ \||x||o

Since the function h(x) £ A||x||o is scale-invariant and symmetric with || + tx||o = ||x]|o for all
t > 0, Problem (22) reduces to the following problem:
mtinp(t) £ \;‘% + Tifgt + Allx + tyllo- 27)

Given the limiting subdifferential of the £y norm function can be computed as J||t|lo €
{ H{%}, te” 1 (see Appendix , we consider the following two cases. (i) We assume

else.
Xi

(x + ty); = 0 for some i. Then the solution ¢ can be determined using ¢ = v+ There are

2r breakpoints %, ;—27 e ;jr} for this case. (i) We now assume (x + ty); 7& 0 for all 7.

Then A||x + ty|lo = 2r\ becomes a constant. Setting the subgradient of p(t) to zero yields:
0=Vpt) =B+t —(a+bt)t] - V1I+12-t° + [d(1 + t?) — (w + dt)(2t)] - t°, where
t° = (1 + t?)~2. Since t° > 0, we obtain: d(1 + t?) — (w + dt)2t = —(b — at) - V1 + 2.
Squaring both sides, we obtain the following quartic equation: c4t* + c3t> + cot?> + 1t +co =0
for some suitable cy4, c3, co, ¢1 and cg. Solving this equation analytically using Lodovico Ferrari’s
method (WikiContributors), we obtain all its real roots {¢1,?o,...,t;} with 1 < j < 4. There are
at most 4 breakpoints for this case. Therefore, Problem contains at most 2r + 4 breakpoints
0 = {%7 %, ceny ;z: , 1,12, ...,tj}.

» Finding the Breakpoint Set for /(x) £ \||x||;

Since the function h(x) £ \||x||; is symmetric, Problem reduces to the following problem:

7 ; A _atbt | wtdt | Alxttyls
t € arg mtlnp(t) = A Te vt aae (28)

Setting the subgradient of p(-) to zero yields: 0 € dp(t) = t°[d(1 + t?) — (w + dt)2t + (b — at) -
VI 82+ X - V1 + 12 [(sign(x + ty), y)(1 + t2) — ||x + ty||1t], where t° = (1 + t?)~2. We

consider the following two cases. (i) We assume (x + ty); = 0 for some 4. Then the solution ¢

can be determined using ¢ = ’y‘— There are 2r breakpoints %, ;—2, ey ;ir} for this case. (ii) We
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(>

now assume (x + ty); # 0 for all i. We define z

X1 __ X1 X2 _ X2 Xor _ Xor
{+Y1’ y1’+y2’ Y2""’+y2r’ yzr} €

R*">1 and sort z in non-descending order. Given ¢ # z; for all i in this case, the domain p(t)
can be divided into (47 + 1) non-overlapping intervals: (—o0, z1), (21, 22), ..., (Z4r, +00). In each
interval, sign(x + ty) £ o can be determined. Combining with the fact that > > 0 and |x +
ty|l; = (0,x + ty), the first-order optimality condition reduces to: 0 = [d(1 + %) — (w + dt)2t +
(b—at) - V1+t2] + X-V1+t2- [(0,y)(1 +t?) — (0,x + ty)t], which can be simplified as:
(at—b)-V1I+12—=X-V1+12-[(0,y —tx)] = [d(1+t?) — (w + dt)2t]. We square both sides and
then solve the quartic equation. We obtain obtain all its real roots {¢1, %2, ...,¢;} with 1 < j < 4.
Therefore, Problem contains at most 2r + (4r + 1) x 4 breakpoints.

» Finding the Breakpoint Set for h(x) £ I>(x)

Since the function h(x) £ 1>0(x) is scale-invariant with h(tx) = h(x) forall ¢ > 0, Problem
reduces to the following problem:

te argmtinp(t) = \‘/l% + Tfitdf, st.x+ty > 0. (29)

We define I = {ily; > 0} and J = {i|y; < 0}. Itis not difficult to verity that {z + ty > 0} <
(=3 <ttt <=3t e {b = max(—31) < ¢ < min(—32) £ ub}. When Ib > ub, we can
directly conclude that the problem has no solution for this case. Now we assume ub > [b and define
P(t) £ min(ub, max(t,1b)). We omit the bound constraint and set the gradient of p(t) to zero,
which yields: 0 = Vp(t) = [b(1 +t?) — (a + bt)t] - V1 + 12 - t° + [d(1 + t?) — (w + dt)(2t)] - t°,
where t° = (1 + ¢?)~2. We obtain all its real roots {f1, 2, ...,{;} with 1 < j < 4 after squaring

both sides and solving the quartic equation. Combining with the bound constraints, we conclude that
Problem (29) contains at most (4 + 2) breakpoints { P(Z1), P(2), ..., P(t;),1b,ub} with 1 < j < 4.

C ADDITIONAL DISCUSSIONS

This section encompasses various discussions, covering topics such as: (i) simple examples for the
optimality hierarchy, (if) computation of the matrix Q, (iif) complexity comparison between OBCD
and full gradient methods, (iv) generalization to multiple row updates, and (v) the subdifferential of
the cardinality function.

C.1 SIMPLE EXAMPLES FOR THE OPTIMALITY HIERARCHY

To demonstrate the strong optimality of BSs-points and the advantages of the proposed method, we
examine the following simple examples of 2 x 2 optimization problems mentioned in the paper:

i F(V)2 |V - A3 with A= (1 %). 30
veléltl(%,z) V)= [, wi (51 -1) (30)

; L 2 3 — (10
eréltl(gz) F(V)£|V=BJg+5|Vl|i, withB=(19). (31

Figure [2] shows the geometric visualizations of Problems (30) and (BI) using the relation
ming min(F(V*Y), F(Vih)) = minyesy(2,2) F(V). The two objective functions exhibit period-
icity with a period of 27r. Within the interval [0, 2), each of them contains one unique BSy-point,
while the two respective examples contain 4 and 8 critical points. Therefore, the optimality condition
of BSy-points might be much stronger than that of critical points.

BS;-points vs. Critical Point: Algorithm Instance Study. We briefly review methods that seek
critical points of Problem and demonstrate that they may lead to suboptimal solutions for Prob-
lem (30). As a representative example, we consider the well-known feasible method based on the
Cayley transform (Wen & Yinl 2013)). According to Equation (7) in (Wen & Yinl 2013)), the update
rule is:

X <= QX! Q2 (I + ZA) ML, — TA)], (32)
where 7 € R, and A € R2*2 js a suitable skew-symmetric matrix. Lemma shows that the
matrix Q is always a rotation matrix. Consequently, if X° is initialized as a rotation matrix with

det(Q) = 1, all iterates X'™! remain rotation matrices, which in general do not coincide with the
optimal solution.
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Figure 2: Geometric Visualizations of Two Examples of 2 x 2 Optimization Problems with Orthog-
onality Constraints with A = (1} % )and B = (19).

C.2 COMPUTING THE MATRIX Q

Computing the matrix Q € RF**k* a5 in (8) can be a challenging task because it involves the matrix
H € R™*™" However, in practice, H often has some special structure that enables fast matrix
computation. For example, H might take a diagonal matrix that is equal to LI,,, for some L > 0
or has a Kronecker structure where H = H; ® Hs for some H; € R"™*" and Hy, € R™"*". The
lemmas provided below demonstrate how to compute the matrix Q.

Lemma C.1. Assume (8) is used to find Q. (a) If H = H; @ Hy, we have: Q = Q1 ®@ Qq,
where Q; = ZH,Z" € R*** and Q, = UTH,Uz € R¥** (b)) If H = LI,,, we have Q =
(LZZT) ® 1.

Proof. Recall that for any matrices A_, ]3, C, D of suitable dimensions, we have the following equal-
ity: (A® B)(C®D) =(AC) ® (BD).

(@) If H = H;®H,, we derive: Q £ (ZToU:)TH(ZToUs) = (Z2ToUs)T(H;®H,)(ZToUs) =
(ZT X UB)T[(leT) X (HQUB)] = (ZleT) X (UgHzUB) =Q1 ®Qs.

(b) IfH = LI, we have: Q = (ZT @ Ux)'H(Z" ® Ug) = L(ZT @ Ux)(Z"T @ Ug) =
L(ZZT) ® 1.

Lemma C.2. Assume @) is used to find Q. (a) f H = H; @ Hy, we have Q = || Q1||sp - || Q2]lsp - L
where Q1 and Qs are defined in Lemma (b) IfH = L1,,, we have Q = L||Z||Z, - 1.

Proof. (a) Using the results Lemma a), we have: (ZT @ Us)TH(ZT @ Uz) = Q1 ® Qy =<
||Q1H5p ! ||Q2Hsp - L

(b) Using the results in Claim (b) of Lemma|C.1| we have: (ZT®@Ug)"H(Z"®U;) = LZZ" 1}
Ljz|z, -1

IA

C.3 COMPLEXITY COMPARISON BETWEEN OBCD AND FULL GRADIENT METHODS

We present a computational complexity comparison with full gradient methods using the linear
eigenvalue problem: minx F(X) £ (X, CX), s.t. XTX = I, where C € R"*" is given.

We first examine full gradient methods such as the Riemannian gradient method (Jiang & Dail |2015}
Liu et al., 2016). The computation of the Riemannian gradient V,F(X) = CX — X[CX]'X
requires O(n“r) time, while the retraction step using SVD, QR, or polar decomposition demands

24



Under review as a conference paper at ICLR 2026

O(nr?). Consequently, the overall complexity for Riemannian gradient method is Ny x O(n?r),
where N is the number of iterations required for convergence.

‘We now consider the proposed OBCD method where the matrix Q is chosen to be a diagonal matrix
as in Equality (9). (i) We adopt an incremental update strategy for computing the Euclidean gradient
VF(X) = CX, maintaining the relationship Y = CX! for all t. The initialization Y° = CX°
occurs only once. When X! is updated via a k-row change, resulting in X™! = X + Uy (V —
1)U X?, we efficiently reconstruct CX*+! by updating Y*! = Y? + CUz(V — I)UIX? in
O(nr) time. (i) Computing the matrix P as shown in (3) involves matrix multiplication between
matrices [V f(X?)]z. € R¥*" and [[X']z.]T € R"**, which can be done in O(rk?). (iii) Solving
the subproblem using small-size SVD takes O(k3) time. Thus, the total complexity for OBCD is
Ny x O(nr + rk? + k3), with Ny denoting the number of OBCD iterations.

C.4 GENERALIZATION TO MULTIPLE ROW UPDATES

The proposed OBCD algorithm can be generalized to multiple row updates scheme.

Assume that n is an even number, and k£ = 2. As mentioned in Lemma[2.3] when (9) is used to find
Q, the subproblem V' € arg miny gk, k) K(V; X* B) in Algorithm [1{reduces to:

. t 0T t
i (VL (VXX ez) + h(VUX). (33)

One can independently solve (n/2) subproblems, each formulated as follows:
minyese(2,2)(V, (V(X)[X]T)zz) + h(VUX') with B = [1,2].
minyese(2,2)(V, (V(X)[X]T)zz) + h(VUX') with B = [3,4].

minyesi(2.2) (Vs (VX)X )zs) + A(VU:X) with B = [n — 1, 7).

This approach, known as the Jacobi update in the literature, allows for the parallel update of n rows
of the matrix X.

Notably, one can consider & = |B| > 2 when h(-) = 0, and the associated subproblems can be
solved using SVD.

C.5 LIMITING SUBDIFFERENTIAL OF THE CARDINALITY FUNCTION

We demonstrate how to calculate the limiting subdifferential of the cardinality function h(X) =
[IX]lo- Given that h(X) = ||X]|o is coordinate-wise separable, we focus only on the scalar function

h(x) = |zlo. where |zfo = { T & * }-

A

The Fréchet subdifferential of the function h(z) = |z|o at € dom(h) is defined as Hh(z)
{€ € R : lim, ., inf,, MEREZEE20 > 0} while the limiting subdifferential of h(z) at z €
dom(h) is denoted as dh(z) £ {¢ € R : Jat — z, h(zt) — h(z), & € dh(a?) — &, Vi}. We con-
sider the following two cases. (i) x # 0. We have: 3h(a:) ={{ e R:lim, . inf,4, _g’f;‘” >

0} = {0}. (i) = = 0. We have: Oh(z) = {€ € R : lim,_,, inf,, Elo—&2=0) > gy — (¢ e R -

E==
lim ., infary 552 > 0} = R.

We therefore conclude that [0]|X||o]i,; € { D{Qg)}’

Xij =
else.

% Yforalli € [n]and j € [r].
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D PROOF FOR SECTION 2]

D.1 PROOF FOR LEMMA 2.]]
Proof. Part (a). Forany V € R*** and B € {B;}" , we have:
[XF)™X+ - XX

2 X+ Us(V - L)UIX]|T[X + U (V — I,)UTX] - XTX

= X'Ug(V = L)UIX + [Us(V = L)UL X]"X + [Us(V — L) U X] T[Ug(V — L) UZ X]
= XU [(V-L+ V' —I)+ (V-I)TUTU(V - I,)] UIX

L XTU[(V-T,+ VT —T,) + (V-1,)T(V - 1,)] UIX

= X'Us(V-L;+ V' L, +VIV-VT -V +1,)U/X

= X'Up(-I,+VTV)UIX

2 X"Uy-0-UTX

= 0

)

where step @ uses X = X + Ug(V — Ik)UgX; step @ uses UgUB = I;; step @ uses V'V =1,.
Part (b). Obvious.
O

D.2 PROOF OF LEMMA 2.2]

Proof. We define Xt 2 X 4+Upy(V-I,)U/X, Q2 (Z"®U:)"H(Z" ® Uy),and Z £ U X.
B il B

Part (a). We derive the following results:

@
IX* =X = [Us(V-To)Z|f
£ vec(Us(V — I,)Z) "Hvec(Us (V — I,)Z)
2 Vee(V-1;)"(Z2T ® Uy) "H(ZT @ Up)vec(V — I)
@
= ||V - IkH%zTe@UB)TH(ZT@UB)

lle

IV - L,

where step @ uses Xt £ X + Ug(V — I1,)Z; step @ uses ||X||% = vec(X) Hvec(X); step @
uses (ZT ® R)vec(U) = vec(RUZ) for all R, Z, and U of suitable dimensions; step @ uses
X3 = vec(X)THvec(X) again; step ® uses the definition of Q.

Part (b). We derive the following equalities:

IX*-X|2 £ |[Us(V - L)z}
2 (v -1z}
= (V-I)"(V-1),2Z")
S 21, —V,ZZT) + (V- VT, ZZ7).
& oL, - V,ZZ") +o0.

where step @ uses X £ X + Ug(V — I;,)Z; step @ uses the fact that |[UsV||2 = || V|2 for any
V € Rkxk, step @ uses

(V-I)"(V-I1,) =0, -V = V41, =2, - V) + (V-VT);
step @ uses the fact that (V,ZZT) = (VT (ZZ")T) = (VT ZZ") which holds true as the matrix

Z7" is symmetric.
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Part (c). We have:

IXF X2 = [UL(V - T UIX|2
< U3 - IV — TOUT X2
S Ul - IV = T2 - VT - I3,
= VoL
L o921, - V. I,

where step @ and step @ uses the norm inequality that ||[AX||r < ||Allf - ||X]|sp for any A and
X; step @ uses ||Us|lsp = ||UT||sp = || X||lsp = 1 for any X € St(n,r); step @ uses the following
equalities for any V € St(k,

IV = Lill2 = VIR + [150l2 = 20, V) = [Tef12 + [Tl - 208, V) = 20T, T - V).

D.3 PROOF OF LEMMA[2.3]

Proof. We define K(V; X", B) 2 1|V — L[, op + h(VZ) + (V,[V(X")(X") |as) + & where

Z £ UIX? and ¢ = h(ULX?) + f(X?) — (I, [VF(X!)(X!)T]zz) is a constant.

Part (a). Using the definition of C(V; X’ B), we have the following equalities for all V € St(k, k):
K(V; X! B)

2 Gt MV - Tl yar, + (VL IVIXD) X Tee) + h(VE)
= e MV Tl SV - TR (VL VAKX s + A(VE)
S G4 VIR — (V.mat(Quee(L,))) + AILlIZ + ol I = V) + (V, [VA(X)(X) ss) + (V)

[|®

E+ VI + (V. [VF(X)(X) ]az — mat(Quec(Iy)) — aly) + h(VZ) + 5| L[|,
ip
where step @ uses Lemmac) that: 3 ||V —I;||2 = (I, Iy — V); step @ uses the definition of P.

Part (b). We consider the case that Q is chosen to be a diagonal matrix that Q = ¢I, where ¢
is defined in Equation @) Using V € St(k, k), the term %HVH?Q simplifies to a constant with

31IV[[§ = 35k. We can deduce from (3 :

& V) £ (V,P) + h(X). 34
cargmin  P(V)£ (V.P) +h(X) (34)

In particular, when h(X) = 0, Problem (34] . ) becomes the nearest orthogonality matrix problem and
can be solved analytically, yielding a closed-form solution that:

Vi€ arg ml(r]i o LIV = (-P)|} =Pm(-P) = -Py(P) = -UV".

Here, P = UDiag(s) VT is the singular value decomposition of P with U,V e St(k, k), s € R,
ands > 0.

Notably, the multiplier for the orthogonality constraint VTV = I, can be computed as: A =

_ - - - - __ 0
—pTvt 2 —[UDiag(s s)VTT. [-0OVT]| = VDiag(s)UTIJVT 2 VDiag(s)V' = 0, where step
@ uses P = UDiag(s )VT and Vi = —UVT; step @ uses UTU = I; step ® uses s > 0.

O

D.4 PROOF OF LEMMA [2.3]

Proof. Any 2 x 2 matrix takes the form V = (2%). The orthogonality constraint implies that
V € St(2,2) meets the following three equations: 1 = a? + %, 1 = ¢2 + d?, 0 = ac + bd.
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Without loss of generality, we let ¢ = sin(6) and d = cos(#) with § € R. Then we obtain either (i)
a = cos(0),b = —sin(f) or (ii) a = — cos(), b = sin(f). Therefore, we have the following Givens
rotation matrix V}°* and Jacobi reflection matrix Vgef:

rot & |cos(f) —sin(6) ref o |—cos(f) sin(6)
Vi© = {sin(e) cos(f) ] A { sin(f)  cos(9)

Note that for any a, b, ¢, d € R, we have: det( ¢ %) = ad — be. Therefore, we obtain: det(V°') =
cos?(6) + sin®(#) = 1 and det(V°t) = — cos?() — sin*(f) = —1 for any 6§ € R.

]
E PROOF FOR SECTION

function [Q,R] = JacobiGivensQR (X) 1
n = size(X,1); Q = eye(n); R = X; 2
for j=1:n 3
for i=n:-1:(j+1) 4

B = [i-1;i]; V = Givens(R(i-1,3),R(i,3)); 5
R(B,:) = V' *R(B,:); Q(:,B) = Q(:,B)*V; 6

if (i==j+1 && R(J, j)<0) 7
V=1[-10; 0-1]; $orV=1[-10; 01]; 8

R(B,:) = V'*R(B,:); Q(:,B) = Q(:,B)*V; 9
end 10

end 11
end 12
if (R(n,n)<0) 13
V =1[10;0 -1]; R(B,:) = V'*xR(B,:); QO(:,B) = Q(:,B)*V; 14
end 15
16
function V = Givens(a,b) 17
% Find a Givens rotation that V’/=x[a;b] = [r;0] 18
if (b==0) 19
c=1; s = 0; 20
else 21
if (abs(b) > abs(a)) 22
tau = -a/b; s = 1/sqgrt(l+tau”2); c = s*tau; 23
else 24
tau = -b/a; ¢ = 1/sqgrt(l+tau”2); s = cxtau; 25
end 26
end 27
V = [c s;-s cl; 28

Listing 1: Matlab implementation for our Jacobi-Givens-QR algorithm.

E.1 PROOF OF THEOREM [3.1]

Proof. Part (a). First, recall the classical Givens-QR algorithm, which is detailed in Section 5.2.5
of (Golub & Van Loan| [2013))). This algorithm can decompose any matrix X € R™*" (not neces-
sarily orthogonal) into the form X = QR, where Q is an orthogonal matrix (Q € St(n,n)) and
R is a lower triangular matrix with R;; = 0 for all i < j, achieved through C2 = @ Givens
rotation steps.

Combining the result from Lemma we can conclude that classical Givens-QR algorithm can
decompose any orthogonal matrix into the form X = QR, where Q € St(n,n) and R is diagonal
matrix with R, ; € {—1,+1} forall i € [n].

We introduce a modification to the Givens-QR algorithm, resulting in our Jacobi-Givens-QR al-
gorithm as presented in Listing This algorithm can decompose any matrix X € St(n, n) into the
form X = QR, where Q = X and R = I,,, using a sequence of C* Givens rotation or Jacobi
reflection steps.
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Please take note of the following four important points in Listing T}
a) When we remove Lines 7-10 and Lines 13-15 from Listing[I] it essentially reverts to the clas-
sical Givens-QR algorithm. Givens-QR operates by selecting an appropriate Givens rotation
matrix V. = [f‘;?é?z)) Z;’;((g))] with a suitable rotation angle 6 to zero-out the matrix element
R;; systematically from left to right (j = 1 — n) and bottom to top (i = n — (j + 1)) within
every pair of neighboring columns.

b) Lines 7-10 and Lines 13-15 can be viewed as correction steps to ensure that the entries R; ; =
1 forall j = n.

¢) Line 7-10 is executed for (n — 2) times. In Line 7-10, when Jacobi-Givens-QR detects a
negative entry R;_q ;1 with ¢ = j + 1, it applies a rotation matrix V 2 _01 91 ) to the two
rows B = [i — 1, ] to ensure thaﬂRi_l,i_l =1.

d) Line 13-15 is executed only once when det(X) = —1. In such cases, we have Rgz = (§ %))
and det(Rgg) = —1, where B = [n — 1, n] is the two indices for the final rotation or reflection
step. To ensure that the resulting Ry is an identify matrix, Jacobi-Givens-QR employs a
reflection matrix V = (; °, ), leading to VT Rz = Is.

Therefore, we establish the conclusion that any orthogonal matrix X € St(n,n) can be expressed
as D = Wepr .. WaWy, where W; = Ug, ViUIai + UlgicUgf, and V; € St(2, 2) is a suitable matrix
associated with B;. Furthermore, if Vi, V; = I, we have Vi, W; = I,,, leading to D = I,,. This
concludes the proof of the first part of this theorem.

Part (b). For any given X € St(n,r) and X° € St(n,r), we let:
D = Py, (X[X°]T), (35)
where Pgq (.5, (Y) denotes the nearest orthogonality matrix to the given matrix Y.

Assume that the matrix X[X°]T has the following singular value decomposition:

X(X%T = Ubiag(z)V'", z € {0,1}", U € St(n,n), V € St(n,n).
Therefore, we have the following equalities:
Diag(z) = UTX[X°|"V. (36)
D = UVT eStn,n). (37)

Furthermore, we derive the following results:

z € {0,1}"

Diag(z)" = Diag(z)Diag(z)"

U[Diag(z)" — Diag(z)Diag(z)"|[U'X = 0

UVTXXTU - UTX(X)TVVTX’XTUJUT™X =0
UVTXXTUU™X - UU™X(X")TVVTX’XTUU'™X =0
UV'X’-X=0

D-X°-X=0,

where step @ uses ; step@uses UUT =1,,, VVT =1,, X"X =1, and [X°]TX" = I,; step
® uses . We conclude that, for any given X € St(n,r) and X° € St(n,r), we can always find
a matrix D € St(n, n) such that DX? = X.

Je do | Yo | 4

Since the matrix D € St(n,n) can be represented as D = Wci...WaW, where W, =
Up,ViUk 4 U Ug. for some suitable V; € St(2,2) (as established in the first part of this
theorem), we can conclude that any matrix X € St(n,r) can be expressed as X = DX? =
Wor .. WaWy X0,

O

? Alternatively, one can use the reflection matrix V £ (! 9) instead of the rotation matrix V £ (' %))

to ensure that R;—1 ;1 = 1.

29



Under review as a conference paper at ICLR 2026

E.2 PROOF OF COROLLARY [3.2]

Proof. We denote e; as the i-th canonical basis vector in R™.

We denote the set {51, Ba, ..., Bcﬁ} as all possible combinations of the index vectors choosing &
items from n without repetition.

Part (a). Fix any £ > 2. By Theorem a) for the case k = 2, for every D € St(n,n) there exist
index pairs (p;, ¢;) and matrices VfQ) € St(2,2) such that
D =W W,

where

WP =1, + U (VP L) US|, UY = [, e € RV
We let

A (VP o
V; & ( 0 I, 2) € St(k,k), Wi 2L, +Ug (V; —1;)Ug,.

By construction, W; acts as V§2) on the two coordinates p;, q; and as the identity on all other

coordinates, hence W; = Wj@ as linear operators on R". Therefore
D= ngj"'W1(2) = Wez - Wi,

which proves the first part of this corollary for any £ > 2.

Part (b). A similar argument to that used in the proof of Theorem [3.I|b) yields the second part of
this corollary.

O

E.3 PROOF FOR THEOREM[3.]]

Proof. We use X, X, and X to denote a global optimal point, a BSy-point, and a critical point of
Problem (IJ), respectively.

Setting the Riemannian subgradient of K(V; X, B) w.rit. V to zero, we have 0 € 9 MKV X ,B) =
G(V) & V[G(V)]TV, where G(V) = a(V — I,) + Ul [mat(Hvec(X — X)) + VF£(X) +
Oh(XH)XTUg and X+ = X + Ug(V — I,)UIX. Letting V = T, we have the following
necessary but not sufficient condition for any BS-point:

vB € {B;1%, 0= UT(GXT - XGT)Us, with G € V/(X) + 9h(X). (38)

Part (a). We now show that {critical points X} DO {BSk-points X} forall k > 2. Welet G €
V f(X) + 0h(X). Using Lemma we have:

0,,=GX" - XGT (0., -X)=(GXT -XG")X

0,,=G-XG'X, (39)
XT.0,,=X"(G-XG'X)
0,,=X'G-G'X
0, = X(XTG - GTX)XT
0,,=XX"GX" -XGTXXT,

AQT EYel

Jo | o | Yo |

where steps @ and @ use XTX = I,; step ® uses Equality that G = XGTX. We conclude
that the necessary condition in Equation (38) is equivalent to the optimality condition of critical
points.
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Part (b). We now show that {BSy-points X} D {globaloptimal points X} for all k& €
{2,3,...,n}. We define X*(V) 2 X + Ug(V — I;)UIX, and K(V;X,B) 2 f(X) + (V —
L, [VA(X)(X) Tee) + 31V = Ll &0, + AULX) + A(VUIX). Welet V;) € St(k, k) and

B; € {l”ﬁ'z}zcj1 We derive:
]C(Iz; XvBi)» VB;
F(X) = h(X) + f(X)

e

h(X) + f(X),VX € St(n,r)

WX +Up, (Vi) — L) UE,X) + f(X + Up, (Vi) — L) U, X), ¥V i), VB

W (Vi) + £, (Vo)) WV o VB,

K(V i X, By), YV 3y, VB;

minyegsk, k) K(V; X, B;), VB;, (40)

where step @ uses the definition of K(V;X,B) £ f(X) + (V — I, [V f(X)(X)]ss) + 3[|V —
LG ar, + M(ULX) + A(VUIX); step @ uses the definition of X; step ® uses the basis repre-
sentation of orthogonal matrices for all £ > 2, as shown in Corollary [3.2} step @ uses the definition
of XF(V); step ® uses the same strategy as in deriving Inequality his leads to:

I, carg min K(V;X,B;), VB5;.
VeSt(k,k)

® IN® IN®

&

IN

The inclusion above implies that {BSy-points X} D {global optimal points X}.

Part (¢). We now show that {BSy-points X} D {BSk41-points X} It is evident that the subproblem
of finding BSy-points is encompassed within that of finding BSy_1-points stationary point. Thus,
we conclude that the optimality of the latter is stronger.

Part (d). The inclusion {critical points X} C {BSy-points X} may not always hold true. This
can be illustrated through simple examples of 2 X 2 optimization problems under orthogonality
constraints (see Appendix Section [C.I]for more details). Lastly, it is also evident that the inclusions

{BS,-points X} C {global optimal points X} and {BSy-points X} C {BSy,1-points X} may
not always hold true.

O

F PROOF FOR SECTION 4]

F.1 PROOF FOR THEOREM[4.2]
Proof. We define K(V; X', B) £ 1|V —Li|g , ar, + M(VZ)+(V, [V f(X")(X")T]es) + ¢ where
Z = UIX*and é = h(ULX?) + f(X!) — (I, [V F(X")(X*)T]gz) is a constant.
We define ¢ £ 2 - (F(X%) — F(X>)).
Part (a). First, we have the following equalities:
A(XIHY) = h(XY) £ WU VIUTX! + Upe ULXY) — h(UsUTX! 4 Upe UL XY)
2 WU VIUTX?) + h(Use ULXY) — R(UzUTX!) — h(Ug UL X?)
£ p(VIUIX!) — n(UTXY), (41)

where step @ uses X!t = Uy VU] X* + Ug. UL X" as in (4) and I, = UgU] + Ug-UL; step @
and step ® use the coordinate-wise separable structure of A(-).

Second, since V! € arg minyesex, k) K(V; XF, B), it follows that £(V; X, B) < K(I; X, B).
This further leads to:

BVIUTXY) 4 LV~ L3 ar, + (V) ~ T [VAX) (X)) < A(UTXY. (42)
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Third, we denote X**! = X!(V*) and derive:
® _ _
FXF) = (X)) < (V) = XL VAXD) + 511X (V) = XI5
@ — —
= (Us(V' =L)UIX", V(X)) + 31V' — Lillg

® _

< (V=L VX)X ee) + 51V = Tl (43)
where step @ uses Inequality ; step @ uses Lemma a); step @ uses Q = Q.
Adding @1)), (#2), and (@3) together, we obtain the following sufficient decrease condition:

_ @
F(X™) = F(X') < =4 V" = L < - 51X = X713, (44)
where step @ uses Lemma[2.2]c).
Part (b). We assume that B’ is selected from {Bi}f;kll randomly and uniformly.

Taking the expectation for Inequality (#4), we obtain a lower bound on the expected progress made
by each iteration:

Eg [F(XH)] = F(X') < —Ee [§ V" — Lel[Z]-
Telescoping the inequality above over t = 0, 1, ..., T', we have:
[ T \/ 00
Eer[§ 3 [V = Li[f] < Eer [F(XO) — F(XTH)] < Eer [F(XP) — F(X>)],

where X°° denotes the limit point of Algorithm As aresult, there exists anindex f with0 < ¢t < T
such that

Eer[|VF - L[|f] < 725 [F(X°) — F(X™)] = 755 (45)

Furthermore, for any ¢, V? is the optimal solution of the following minimization problem at X*:
V! € argminy K(V; X! BY). Since V! is a random output matrix that depends on the observed
realization of the random variable B, we directly obtain the following equality:

& 35 dist(T, arg miny K(V; X!, B;))? = Eee[[V! — T, 2], (46)

Combining ([@3) and @6), we conclude that there exists an index ¢ with £ € [0, 7] such that the
associated solution X! qualifies as an e-BSj-point of Problem , provided that 7" is sufficiently

large such that Tf_l <e

O

F.2 PROOF OF LEMMA [4.4]

Proof. We define A & B as the element-wise subtraction between sets A and B.

We let H € Oh(X!*t1), and define:
QO Ugt [Vf(XtJrl) + Ht_.—l} [Xt+1]TUBt c kak, (47)
oh UL V(X + BHHX]Use € R, (48)
Q UL[VF(X") = VAXFY] X Uge € RFE (49)

> 1> >

Part (a). First, using the optimality of V' for the subproblem, we have:
0pp = G — VIGTV!
where G = mat((Q + alj)vec(V! — I;)) 4+ UL [V £(X?) + HH (X T U .

é’rl é’r2

Using the relation that G =T + Y, we obtain the following results from the above equality:
Orr = (T1+To) — VH(YTy + Ty)TVE

Ok = T1+ Q5 +Q — V(T + 0 +Qy)TV

= U =VI{(T +Q%+)V -1 —Q,, (50)

e
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where step @ uses To = 2y + Q.

Second, since both B and B+ are randomly and dependently selected from {B;}» with replace-
ment, each with an equal probability of %, for any A € R™*", we have:

~ Ck ~ ~
]EBH»l [||Ugt+1 AUBt+1 ||2 = é Zi:nl ||U—IB—11AI_TB7 ||2 = EBt HU;AUBt ||%
Using the definition ¢ £ (B!, B2, ..., B?), we have:
Eert1[[|USess AUger1 ||E = Eee|[UL AUg: |2 (51)

Third, we derive the following results:

Eges1[dist(0, Op (T X B )] = Egera [ Op (T XL B ||

[}

= Een[|ULp {OFXTH X © X OF (X T Ugria ||f]

@

= Ee[|ULA{OF (XX © X OF (X )] T} Upe [|f]

® T

< Eefl|Q0 — Qo lIF]

@

< 2B [0 — Q] + Eee |2 — Q1 [IF]

£ 2 [|Q — Q] + Ee[[|VH(T1 + Q1+ Q2)TVE = Ty — Q5 — Q] ]

[l®

2Bt [|[Q0 — Qullf] + Eee [[ VYTV = T[] + Ee [ V'Q V! — Q][]
HE [V V' — Dse] (52)
where step @ uses the definition of I, KC(V; Xt B at the point V = I; step @ uses Equality

with A = 9F (XIH1)(XHHT o XL (GF (X)) T, step @ uses the definition of 0 in Equa-
tion (@7); step @ uses Lemma([A.2} step ® uses Equality (50); step ® uses the triangle inequality.

We now establish individual bounds for each term in Inequality (52). For the first term 2K [[|Qo —
Q1|¢] in (52), we have:

2Ee: [[|€20 — €[]

< 2B [JJUL V(X + HAX — X Upe[|f]

2 9B [|UL [V (X)) + HF[Us (V! — 1) Use X! TUse |

@ _

< 20pEe |V = Li|le], (53)

where step @ uses X'T! = X! 4 Ug(V* — I,,)UT X?; step @ uses the inequality | XY || <
[IX||e|IY]|sp for all X and Y repeatedly, and the fact that |G||r < Cr for all X € St(n,r) and all
G € OF(X).

For the second term E¢: [||[ VIYT V! — T4 ||¢] in (52), we have::

Ee:[[[VXTV! = T1]|e]

< e[ VOTTVYle] + Eel |11 ]

>~ 5‘ 1 F Et 1||F

@

< 2Eee [T lf]

2 e [|lmat((Q + ali)vee(VE —1,))|¢]

< 21Q+akLils - Eer[|[ V! ~ L)l

@ _

< 2(Ls+ @) B[ VE = Ti) [[¥] (54)

where step @ uses the triangle inequality; step @ uses the inequality || XY ||r < || X||r||'Y||sp for all
X and Y; step @ uses the definition of 2 in (@8); step @ uses the fact that [|Q||s, < Ly.
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For the third term E¢: [||VIQ] V! — QT ||¢] in (52), we have:

Ee [ VIQ{ V' — Q7 [¢]

L B VIQT (V! — L) + (V! — )T [|F]

@ _

< 2B ]| Qe - [(VE = T)F)

@ _

< e[| VFX) + HA gy - (V= L) ]

< 2CpEe[[|(VF — L) ] (55)

where step @ uses the fact that —V*QI T, + VIQ] = 0; step @ uses the norm inequality; step ®
uses the fact that [|Q1]jsp = [|[UL [V F(X'T1) + HH) X Ut ||sp < |[VAXTY) + HF g, <
|V f(X+1) + H!*L||¢ which can be derived using the norm inequality.

For the fourth term E¢: [||[ VIQI V! — Qs |¢] in (52), we have:

e[| VIQ; V" — Qalf]

o 7 tOT\7t

< Ea[[V'QIV ] + E[| )]

@

< 2B |

®

2 9B [|ULIVAXY) = VF(XH) X Uy ]
@ ty t+1

< 2B [|VAXY) - VX))

®

< 2B X! - X

® _

< 2L;Ee[|V! - L), (56)

where step @ uses the triangle inequality; step @ uses the norm inequality; step @ uses the definition
of Qo = UL [V f(X!) — Vf(X!)][X!]TUg: in ; step @ uses the norm inequality; step ® uses
the fact that V f(X) is L s-Lipschitz continuous; step ® uses Lemma c).

In view of (33), (54), (53), (56)., and (52), we have:
]EEHrl [||8MIC(Ik, )(tJrl7 Bt+1)|||:] S (01 + Co + C3 + 04) 'Egt H|Vt — Ik|||:],
2¢

where ¢; = 2Cp, ca = 2(Ly + «), ¢ = 2Cp, and ¢4 = 2Ly.

Part (b). we show that E¢: [dist(0, InF(X))] < 7 - Ege[dist(0, O K (Ix; XY, BY))], where v £
(Ck/CE=2)1/2, For all D* £ 9F(X!)[XY]T © X![0F(X")]T, we obtain:

IDYF = ZiZj;ﬁi(ng)2+ZiZj:i(D§j)2
@
= ZiZj;ﬁi(ng)z
® k
= o= i UL D Us i
®
2 CEEw[|ULD Vst
= 7’Ee || UL D Uee |13, (7)

where step @ uses the fact that D!, = 0 for all i € [n]; step @ uses Claim (@) of this lemma with
k
D!, = 0 forall i € [n]; step ® uses Ege[[|[UT, WU 2] = & Z?:"l U5, WUg,

% as B! are
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chosen from {B;}°» randomly and uniformly; @ uses the definition of ~. We further derive:

Eet[|OmF(XY)||r

l0F(X*) & X [OF(X)]"X" ¢

2 oF(XH[XYTX! © XHOF (X)X ||r
< JOP(XHXYT © XHF (XY
© B [JUT{OF (X)X © X OF (X} Ust ]

lle

Y OMKE(Tx; X, BY) | (58)

where step @ uses the definition of I F'(X")); step @ uses [Xt]TXt = Ik, step @ uses the inequal-
ity that ||AXH2 < HA||2 for all X € St(n,r); step @ uses Equality (57); step ® uses the definition
of DK (Iy; X, BY).

O
F.3 PROOF OF THEOREM 4.6
Proof. We derive the following results:

Egr[dist?(0, 0p F(X™H)] £ 32 Egra [dist?(0, K (T X+, BT

767 Eer VT — 1]

INe IN®

2 2 ¢
Y ¢ 'T-Ci-17

where step @ uses Lemma[.4[b); step @ uses Lemma[4.4{a); step @ uses Inequality ([@3).

Therefore, we conclude that there exists an index # with ¢ € [0,77] such that the associated solu-
tion X* qualifies as an e-critical point of Problem (EI) satlsfymg Eét [dist?(0, Ay F(XH1))] < e,
provided that T is sufficiently large to ensure 2 ¢2

O

F.4 PROOF OF THEOREM 4,10

Proof. By Theorem a) and Theorem the composite function F,(X) £ F(X) + tp(X) is
monotonically non-increasing, i.e., F,(X'™1) < F,(X?!). Moreover, the sequence {X'}2°, has a
limit point X*°.

Since F,(X) £ F(X) + tp((X) is a KL function by assumption, Propositionimplies that there
exists an index ¢, € N such that, for all ¢t > ¢,,

< dist(0, F, (X")). (59)

1
@' (FL(XH) = F (X))

Since (-) is a concave desingularization function, we have: ¢(b) + (a —b)¢'(a) < ¢(a). Applying
the inequality above with @ = F(X!) — F(X*) and b = F(X!*1) — F(X°°), we have:

(F(X!) = F(X*))g' (F(X') = F(X>))
< @(F(X') = F(X%)) — p(F(X™) - F(X*)). (60)

A
=Pt
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Part (a). We derive the following inequalities:

~ ®
(Biy1)? 2B [V = Lff] < 2 Eg[F(X') — F(X*)]

@ 2 1

< 5 Beller — o) e —roe=yy)

@

< 2 Eee[(pr — i) - dist(0,9F, (X))

®

< 2. Eel(or — prr1) - 1OMF (XY |F]

®

< 2 Beef(or — 040 710mKTk; XF, BY) ]

¢ 2 ot—1

< L Eea(or — 0i1)v0ll VT — IillF]

®

= 2.9¢-(pr— p111) - B,

A

=K

where step @ uses the sufficient decrease condition as shown in Theorem step @ uses Inequality

(60); step ® uses Inequality (39); step @ uses Lemma[A7} step ® uses Inequality (58); step ® uses
Lemmad.4} step @ uses the definitions of {x, ¢y, F}.

Part (b). Applying Lemma[A9| with p; = k¢, with p; > pyyq, forall i > 1, we have:
Z;; Ej 1 < E; + 2p;.

Using the definition of D; £ 327, Ej; and letting ¢ = ¢, we obtain:

® ® ®
Dy < Ey +2p; = Ey + 26 < Ey + 2601 < 2VE + 261,

where step © uses p; = Kipy; step @ uses @; < p1; step @ uses By £ Eqr [[|[ VI — L[] <
Eeer [[ VI [e]+ [Tk lle < VE+VE. We conclude that Dy £ 3772, E; 14 is always upper-bounded.

Using the fact that [|X!*1 — X*||2 < ||V! — I,||Z as shown in Lemma [2.2{c), we conclude that
Yoo Ee[[|[ X! — X||] is also always upper-bounded.

O

F.5 PROOF OF THEOREM [A.T1]
Proof. We define ¢; = ¢(st), where st £ F(X!) — F(X>).
We define By = Ee [|[|[VP — Ti[|¢), and Dy = 3272 By

We have: D, 1 — D; = E, < 2Vk & 7.

First, we have:

@ . .
IXT = X®e < X7l IX7 - XIH e

@ _

< iV =Ll

® o

g DT7

where step @ uses the triangle inequality; step @ uses || X'™! — X2 < |[V? — I;||2, as shown in
Lemma c); step ® uses the definition of F,1; step @ uses the definition of Dp. Therefore, it
suffices to establish the convergence rate of Dr.
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Second, we obtain the following results:

|dist(0, OF,(X"))||r

[OMF(XY)||F
Ee: [[|0mK(Tx; X, BY)|[|F
Ee: [y V™' — Li|le

V(bEta

where step @ uses uses Proposition [4.9] that dist(0, 0F, (X'))¢’(F,(X') — F,(X*)) > 1; step @
uses LemmalA.7} step ® uses Inequality (58); step @ uses the Riemannian subgradient lower bound
for the iterates gap in Lemma step ® uses the definition of E; = Ege—1 [|[VI~1 — I ||].

IN® IN® IN® IN® NS

Third, using the definition of D;, we derive:

Dt é Z;)if Ei+1
@
< Ei+ 260
& Bt oke-{[s1°) o
l1—0o
2 B+ 2kc- {c(1-0)- f(lst)}T
1—0o
2 E; +2kc-{c(1—0) ypE:} o
® 1-0o
= Di 1 —Di+2kc-{c(1—0) -vp(Di—1 — D)} o
1-0 1-0
= Di 1 —Di+2kc-[c(1—0)yp] ¢ {Diy —D:} o , (61)

A ..
=K

where step @ uses Z;’it Eiv1 < E; + 2K, as shown in Theorem b); step @ uses the def-
initions that ¢; = ¢(s?), and @(s) = cs'~7; step ® uses ¢'(s) = ¢(1 — o) - [s]77, leading to
[s']7 = c(1 —0) - ﬁ; step @ uses Inequality ; step ® uses the fact that £y = D;_1 — D;.

We consider three cases for o € [0,1).
Part (a). We consider ¢ = 0. We have from Inequality (61):
0 < —ﬁ +9E;

e

~ e e

—% T 0B, (62)
where step @ uses ¢'(s) = ¢(1 — o) - [s]7; step @ uses 0 = 0 and By = D,_1 — D;.

[1®

Since E; — 0, and 7, ¢, ¢ > 0, Inequality results in a contradiction E; > ﬁ > 0. Therefore,

there exists ¢’ such that D; = 0 for all ¢ > ¢/, ensuring that the algorithm terminates in a finite
number of steps.

Part (b). We consider o € (0, 3]. We define w = £ > 1. We have from Inequality :
Dy < Diy=Di+(Dioy = Dy)” i
2 Di_1 —Dy+ (Di_1 — D) - 7471 &
< Diw Ry (63)

where step @ uses the fact that 2 < z -7~ forall o € (0,1], and 2 = D,y — D, € [0,7].
Therefore, we have:
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Part (c). We consider o € (3,1). We definew £ =2 € (0,1), and 7 £ 1/w — 1 € (0,00). We
have from Inequality (61):

1-0
Di < Dy i —Di+E-(Di1—Dy) o
2 i(Dy—1 — Dy)" + (Dy—y — D) - (Ey)' ™"
@
< B(Diy — D)V + (Dy_q — Dy)¥ -7V

= (Dim1 = Dy)¥ - (B +717Y),

A .
=K

where step @ uses the definition of w and the fact that D;_; — D; = FE;; step @ uses the fact that
max, ez " <7 if w € (0,1). We further obtain:

(DY < (Dy_1 — Dy) - &M,

——
=[D,]7+1

Applying Lemma with a = £'/*, we have:

®
|
q
—
|
Q

1
Dr <O M) O T ) 2O 1o ) = 01 2T),

where step @ uses 7 = 1/w — 1; step @ uses w = 1=2

G ADDITIONAL EXPERIMENT DETAILS AND RESULTS

This section provides additional experimental details and results for our proposed methods. We
first introduce nonnegative PCA as an additional application, describe the datasets and experimental
settings, and specify the compared baselines for ¢;-regularized SPCA and nonnegative PCA. We
then report extended results on ¢y-regularized SPCA, /¢;-regularized SPCA, and nonnegative PCA,
demonstrating the effectiveness and robustness of our algorithms across these settings.

G.1 ADDITIONAL APPLICATION: NONNEGATIVE PCA

Nonnegative PCA is an extension of PCA that imposes nonnegativity constraints on the principal
vector (Zass & Shashual [2006; (Qian et al., [2021). This constraint leads to a nonnegative represen-
tation of loading vectors and it helps to capture data locality in feature selection. Nonnegative PCA
can formulated as: minxesg(n,r) f%(CX,X% s.t.X > 0, where C € R™*" is the covariance
matrix of the data.

G.2 DATA SETS

To generate the data matrix A € R™*", we consider 10 publicly available real-world or randomly
generated data sets: ‘wla’, “TDT2’, ‘20News’, ‘sector’, ‘E2006°, ‘MNIST’, ‘Gisette’, ‘Caltech’,
‘Cifar’, ‘randn’. We randomly select a subset of examples from the original data set. The size
of A € R™*™ is chosen from the following set (m,n)€{(2477,300), (500, 1000), (8000, 1000),
(6412, 1000), (2000, 1000), (60000, 784), (3000, 1000), (1000, 1000), (500, 1000)}. We scale the
matrix A to have unit Frobenius norm by setting A = ﬁ andlet C = ATA € R™*",

G.3 ADDITIONAL EXPERIMENT SETTINGS

» Compared Methods on L;-Regularized SPCA. We benchmark OBCD against the following
state-of-the-art algorithms: (i) Randomized Submanifold Subgradient Method (RSSM) (Cheung
et al., [2024); (ii) Linearized Alternating Direction Method of Multiplier (LADMM) (He & Yuan,
2012); (iii) Riemannian Subgradient Method (RSubGrad) (Li et al., 2021); (iv) ADMM (Lai &
Osher, 2014); (v) Manifold Proximal Gradient Method (ManPG) (Chen et al., [2020). For RSSM
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and RSubGrad, the subgradient G' € 9F (X') at iterate X" is taken as G' = —CX" + Asign(X?),
since sign(X) is a valid subgradient of || X||;. All competing methods are initialized with a random
matrix, producing five variants: RSSM(rnd), LADMM(rnd), RSubGrad(rnd), ADMM(rnd), and
ManPG(rnd). For OBCD, we employ a random working-set rule with identity initialization, denoted
by OBCD-R(d).

» Compared Methods on Nonnegative PCA. For Nonnegative PCA, we compare OBCD with
two leading infeasible approaches: (i) Linearized ADMM (LADMM) (He & Yuan, Lai &
[2014), (ii) Penalty-based Splitting Method (PSM) (Yuan| [2024; |Chen| [2012), and (iii) Rie-
mannian ADMM (RADMM) [20244d). Since LADMM, PSM, and RADMM are infeasible
methods and may violate the nonnegativity constraints, we evaluate the quality of intermediate solu-
tions using a surrogate objective, f(X) + 1000|| min(0, X)||¢ with X € St(n,r), which penalizes
any violation of feasibility.

G.4 ADDITIONAL EXPERIMENT RESULTS

» Results on Lj-Regularized SPCA. For A\ € {10, 50,100,500}, Figures present the con-
vergence curves of the compared methods on Ly-regularized SPCA. Across all setting, OBCD-R
consistently achieves lower objective values than competing methods, further reinforcing the con-
clusions drawn in the main paper.

» Results on L;-Regularized SPCA. For A € {10, 50, 100, 500}, Table and Figuresreport
objective values obtained by all methods with » = 20. Two observations follow. (i) ManPG is
generally faster than LADMM, ADMM and RSubGrad, which aligns with the findings reported
in (Chen et al 2020). (ii) OBCD-R consistently achieves lower objective values compared with
{LADMM, ADMM, RSubGrad, ManPG}, demonstrating its superior solution quality.

» Results on Nonnegative PCA. For r € {10, 20,40, 80}, Table I reports objective values and

feasibility violations measured by || min(0, X)||¢, while Figures show the surrogate objective
f£(X) + 1000} min(0, X)||¢. Two key conclusions can be drawn. (i) The proposed methods gener-
ally achieve the best overall performance, and OBCD-R often substantially outperforms LADMM,
PSM, and RADMM by locating stronger stationary points.
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Figure 3: The convergence curve for solving Ly-regularized SPCA with A = 10.
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Figure 4: The convergence curve for solving Lg-regularized SPCA with A = 50.
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Figure 5: The convergence curve for solving Ly-regularized SPCA with A = 100.
= = =LADMM(id) = = *LADMM(id) = = =LADMM(id) = = =LADMM(id)
RADMM(id) (| s RADMM(id) || 405 RADMM(Gd) || 5 RADMM(id)
= = PSM(id) 20 = = PSM(id) = = = PSM(id) 210 3 = = PSM(id)
~—LADMM(md){{ ~—LADMM(md)|{| ~—LADMM(md)|| < LADMM(md)
== RAD] = o “|==RADMM(md)|| T ==RADMM(md)f| 5 g == RADMM(rnd),
== PSM(rnd) [e} == PSM(rd) e} == PSM(rnd) [e] == PSM(rnd)
~——OBCDR(Gd) || 2 == OBCD-R(d) || ¢ ~=OBCD-R(d) || £ == OBCD-R(id)
B0 B 10 k]
3 10 310 B 10°
i « o«
0 0 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Time (seconds) Time (seconds) Time (seconds) Time (seconds)
(a) ‘wla’ (b) ‘TDT2’ (C) ‘20News’ (d) ‘sector’
= = = LADMM(id) = = * LADMM(id) = = = LADMM(id) = = *LADMM(id)
RADMM(d) || o 10° RADMM(d) || . 10° RADMM(id) || ;05 RADMM(id)
= = PSM(id) 2 = = PSM(id) 2 = = PSM(id) 2 = = PSM(id)
~LADMM(rnd) g ~LADMM{(rnd) g ~ LADMM(rnd) § =4 = LADMM(rnd)
=|{==RADMM(md)|| & ~=RADMM(md)|| 3 ~=RADMM(md)|| 3 == RADMM(mnd),
=== PSM(rnd) e} === PSM(rmd) e} == PSM(rnd) o === PSM(md)
~=OBCD-R(d) || & == OBCD-R(d) || .o ~=OBCD-R(id) || £ == OBCD-R(id)
2 10 210 =
© © © 10
.............. E ] T)
o« o o«
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Time (seconds) Time (seconds) Time (seconds) Time (seconds)
(e) ‘E2006’ (f) ‘MNIST’ (g) “Gisette’ (h) “CanCaltech’
= = *LADMM(id) = = =LADMM(id)
© 10° RADMM(Gd) || 10° RADMM(id)
= = = PSM(id) 2 = = PSM(id)
‘g ~~LADMM(rnd) ‘g ~LADMM(rnd)
=5 ==RADMM(md)|| 7 == RADMM(rnd)
o === PSM(rnd) o ===PSM(rnd)
210° ~=OBCD-RGd) || 2 10° = OBCD-R(id)
5 k]
@ - samammninmns &
¢ k .
1078 10°°
10 20 30 40 50 60 10 20 30 40 50 60

Time (seconds)

(i) “Cifar

Time (seconds)

(]) ‘randn’

Figure 6: The convergence curve for solving Ly-regularized SPCA with A = 500.
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data-m-n RSSM LADMM | RSubGrad | ADMM ManPG OBCD-R data-m-n ‘ RSSM LADMM | RSubGrad | ADMM ‘ ManPG OBCD-R
(rnd) (rnd) (rnd) (rnd) (rnd) (id) (rnd) (rnd) (rnd) (rnd) (rnd) (id)
r = 20, A = 10, time limit=60 r = 20, A = 50, time limit=60

w1a-2477-300 1676.362 [ 199.961 207918 648.546 199.949 199.833 w1a-2477-300 11896.991 [ 1017.039 [1014.312 [1948.020 [999.949 999.833
TDT2-500-1000 4798.905 | 199.997 376.695 2756.315 | 199.999 199.636 TDT2-500-1000 24811.350 | 1142.577 |5689.161 | 13596.188 | 999.999 999.643
20News-8000-1000 5099.667 | 203.159 458.525 2976.634 | 199.997 199.673 20News-8000-1000 25660.045 | 1085.026 | 4852.847 | 15234.296 | 999.997 999.673
sector-6412-1000 5088.999 | 211.558 257.937 2646.919 | 199.990 199.848 sector-6412-1000 25685.661 | 1076 5056.712 | 13985.491 | 999.990 999.834
E2006-2000-1000 4791.094 | 201.933 240.895 2873.292 | 200.000 199.541 E2006-2000-1000 23945.851 | 1085 4102.980 | 13800.413 | 1000.000 | 999.933
MNIST-60000-784 4491.492 | 199.990 304.146 3077.644 | 199.992 199.950 MNIST-60000-784 22829.255 | 1036.685 | 3035.519 | 15166.657 | 999.992 999.949
Gisette-3000-1000 5096.530 597 361.631 3054.472 | 199.990 199.989 Gisette-3000-1000 25696.928 | 1125.509 | 4866.266 | 15083.925 | 999.990 999.989
CnnCaltech-3000-1000 | 5274.750 | 203.177 287.583 2952.906 | 199.990 199.977 CnnCaltech-3000-1000 | 26443.995 | 1075.923 | 5648.585 | 14435.979 | 999.990 999.977
Cifar-1000-1000 5326.610 | 199.990 452.860 3007.068 | 199.990 199.987 Cifar-1000-1000 26174.415 | 1101.272 | 6080.349 | 14828.673 | 999.990 999.987
randn-500-1000 5299.246 | 207.757 267.307 2908.559 | 199.990 199.988 randn-500-1000 25917.437 | 1237.580 | 4616.156 | 14999.881 | 999.990

data-men RSSM LADMM | RSubGrad | ADMM ManPG OBCD-R data-m-n RSSM LADMM | RSubGrad | ADMM ManPG

(rnd) (rnd) (rnd) (rnd) (rnd) (id) (rnd) (rnd) (rnd) (rnd) (rnd)
r = 20, A = 100, time limit=60 7 = 20, A = 500, time [imit=60

wla-2477-300 25212.531 2142.546 [4172.640 [1999.949 [1999.833 wla-2477-300 144765.556 9999.940 [26452.425 [ 14711.906 | 9999.949 [ 9999.834
TDT2-500-1000 49303.568 13770.257 | 27221.640 | 1999.999 | 1999.636 TDT2-500-1000 243550.365 11006.292 | 177896.188 137815.999 9999.999 | 9999.636
20News-8000-1000 52028.247 12741.678 | 30561.467 | 1999.997 | 1999.673 20News-8000-1000 257513.893 10188.884 | 193633.121 152343.022 9999.997 | 9999.675
sector-6412-1000 51434.623 17521.186 | 27816.620 | 1999.990 | 1999.834 sector-6412-1000 260801.229 9999.915 | 199887.443 138927.601) 9999.990 | 9999.834
E2006-2000-1000 48063.148 11210.402 | 27411.269 | 2000.000 | 1999.933 E2006-2000-1000 236514.992 10535.514 | 135563.372 143898.383 10000.000 | 9999.933
MNIST-60000-784 46090.059 11107.393 | 30906.421 | 1999.992 | 1999.949 MNIST-60000-784 228035.432 10306.371 | 146677.728 145588.79¢ 9999.992 | 9999.948
Gisette-3000-1000 51396.503 )2.300 | 15971.871 | 30698.736 | 1999.990 | 1999.989 Gisette-3000-1000 261983.904 10313.107 | 202913.350( 152724.051) 9999.990 | 9999.989
CnnCaltech-3000-1000 | 53046.484 | 2230.728 | 9917.898 | 29326.239 | 1999.990 | 1999.977 CnnCaltech-3000-1000 | 259056.451| 10418.351 | 166856.613 149325.559 9999.990 | 9999.977
Cifar-1000-1000 52183.021 | 2282.490 | 16736.350 | 30070.764 | 1999.990 | 1999.987 Cifar-1000-1000 262258.151) 10874.860 | 195776.73() 150353.857 9999.990 | 9999.987
randn-500-1000 52275431 | 2309.568 | 14891.818 | 30522.549 | 1999.990 | 1999.988 randn-500-1000 257825.619 10219.431 | 80831.264 | 137050.323 9999.990 | 9999.988

Table 2: Comparisons of objective values for L;-regularized SPCA. The 1%¢, 2"¢, and 37 best
results are colored with red, green and blue, respectively.
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Figure 7: The convergence curve for solving L;-regularized SPCA with A = 10.
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Figure 8: The convergence curve for solving L;-regularized SPCA with A = 50.
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Figure 9: The convergence curve for solving L;-regularized SPCA with A = 100.
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Figure 10: The convergence curve for solving L;-regularized SPCA with A = 500.
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Table 3: Comparisons of objective values and the violation of the nonnegative constraints
(]| min(0, X)||¢) for nonnegative PCA for all the compared methods. The 15¢, 2%, and 37 best
results are colored with red, green and blue, respectively.
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Figure 11: The convergence curve of the surrogate objective f(X) + 1000]| min(0, X)|| with X €
St(n, r) for solving the nonnegative PCA problem with r = 10.
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Figure 12: The convergence curve of the surrogate objective f(X) 4 1000|| min(0, X)||r with X €
St(n, r) for solving the nonnegative PCA problem with r = 20.
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Figure 13: The convergence curve of the surrogate objective f(X) + 1000]| min(0, X)||¢ with X €
St(n, r) for solving the nonnegative PCA problem with r = 40.
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Figure 14: The convergence curve of the surrogate objective f(X) 4 1000|| min(0, X)||r with X €
St(n, r) for solving the nonnegative PCA problem with r = 80.
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