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ABSTRACT

Nonsmooth composite optimization with orthogonality constraints has a wide
range of applications in statistical learning and data science. However, this prob-
lem is challenging due to its nonsmooth objective and computationally expensive,
non-convex constraints. In this paper, we propose a new approach called OBCD,
which leverages Block Coordinate Descent to address these challenges. OBCD
is a feasible method with a small computational footprint. In each iteration, it
updates k rows of the solution matrix, where k£ > 2, by globally solving a small
nonsmooth optimization problem under orthogonality constraints. We prove that
the limiting points of OBCD, referred to as (global) block-k stationary points, of-
fer stronger optimality than standard critical points. Furthermore, we show that
OBCD converges to e-block-k stationary points with an iteration complexity of
O(1/¢). Additionally, under the Kurdyka-Lojasiewicz (KL) inequality, we estab-
lish the non-ergodic convergence rate of OBCD. We also demonstrate how novel
breakpoint search methods can be used to solve the subproblem in OBCD. Em-
pirical results show that our approach consistently outperforms existing methods.

I INTRODUCTION
We consider the following nonsmooth composite optimization problem under orthogonality con-
straints (‘2’ means define):

min  F(X) 2 f(X) + h(X), s.t. XX =1,. (1)

XeRnxr

Here, n > r, n > 2, and I, is a r x r identity matrix. We do not assume convexity of f(X)
and h(X). For brevity, the orthogonality constraints XTX = I, in Problem is rewritten as
X € St(n,r) & {X € R | XTX = I}, where M = St(n,r) is the Stiefel manifold in the
literature (Edelman et al., |1998; |Absil et al., 2008} [Wen & Yin, 2013} [Hu et al., 2020). We impose
the following assumptions on Problem (1)) throughout this paper. (Asm-i) For any X and X+, where
X and X only differ at most by k rows with k > 2, we assume f : R"*" — R is H-smooth with
0 < H € R™*™" guch that:

FXF) < 9(XH:X) £ f(X) + (XT = X, V(X)) + 31IXT = X3, 2

where ||H||s, < Ly for some constant L; > 0 and [|X|[3; £ vec(X)THvec(X)[] Here, |H]|s, is
the spectral norm of H. Notably, when H = Ly - I,,,., this condition simplifies to the standard L -
smoothness (Nesterovl, 2003). (Asm-ii) The function A(X) : R™"*" — R is closed, proper, and lower
semicontinuous, and potentially non-smooth. Additionally, it is coordinate-wise separable, such that
h(X) = 3_, ; h(X;;). Typical examples of h(X) include the £, norm function 2 (X) = [|X||, with
p € {0, 1}, and the indicator function for non-negativity constraints h(X) = ¢>((X). (Asm-iii) The
following small-sized subproblem can be solved exactly and efficiently:
i V)£ L VIZ + (V,P) +h(VZ 3
panin | P(V) 2 4[VI4 + (V.P) + h(VE) )
for any given Z € RF*", P € R*** and Qc RF**k* Here, we employ a notational simplification
by defining h(VZ) £ Y i.; P([VZ];;), given the coordinate-wise separability of the function ().

Problem (I)) is an optimization framework that plays a crucial role in a variety of statistical learn-
ing and data science models, such as sparse Principal Component Analysis (PCA) (Journée et al.,

'We let f(X) = $tr(X"CXD) = 1||X||?;, where H=D ® C,and C € R"*" and D € R"*" are
symmetric. Clearly, f(X) satisfies (2) with equality, as f(X 1) = Q(X™; X) holds for all X and X .
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2010; [Shalit & Chechik, [2014), nonnegative PCA (Zass & Shashual 2006} |Qian et al.| [2021), deep
neural networks (Cogswell et al., |2016; |Cho & Leel [2017; [Xie et al.l [2017; |Bansal et al.| 2018;
Massart & Abrol, 2022} |Huang & Gaol [2023)), electronic structure calculation (Zhang et al.| 2014;
Liu et al [2014), Fourier transforms approximation (Frerix & Bruna, 2019)), phase synchronization
(Liu et al., 2017), orthogonal nonnegative matrix factorization (Jiang et al., [2022)), K -indicators
clustering (Jiang et al.,|2016)), and dictionary learning (Zhati et al., 2020).

1.1 MOTIVATING APPLICATIONS
Many machine learning and data science models can be formulated as Problem (I). Below, we
present two examples.

» Ly Norm-based SPCA. L norm-based Sparse PCA (SPCA) is a method that uses ¢y norm to
produce modified principal components with sparse loadings, which helps reduce model complexity
and increase model interpretability (d’ Aspremont et al., |2008} |Chen et al., 2016). It can be formu-
lated as: minxesg(n,r) —(X, CX) + A[[X[|o, where C = ATA € R™*" is the covariance of the
data matrix A € R™*™ and A > 0.

» [; Norm-based SPCA. As the L; norm provides the tightest convex relaxation for the Lg-
norm over the unit ball in the sense of L..-norm, some researchers replace the non-convex and
discontinuous L norm function with a convex but non-smooth function (Chen et al., 2016} [Vu
et al., 2013} |[Lu & Zhang| 2012). This leads to the following optimization problem of L; norm-
based SPCA: minx et (n,r) —(X, CX) + A[|X]||1, where C € R"*™ is the covariance matrix of the
data, and \ > 0.

1.2 RELATED WORK
We now present some related algorithms in the literature.

» Minimizing Smooth Functions under Orthogonality Constraints. One of the main challenges
in solving Problem (I)) stems from the nonconvexity of the orthogonality constraints. Existing ap-
proaches for addressing this difficulty can be broadly categorized into three classes: (i) Geodesic-like
methods (Abrudan et al.| 2008} [Edelman et al., 1998 |Absil et al.,[2008). Computing exact geodesics
typically involves solving ordinary differential equations, which can be computationally expensive.
To avoid this, geodesic-like methods approximate the geodesic path by computing the geodesic log-
arithm using simpler linear algebraic operations. (ii) Projection-like methods (Absil et al., |2008;
Golub & Van Loan, 2013} Jiang & Dail |2015)). These include techniques such as projection onto the
nearest orthogonal matrix, polar decomposition, and QR-based projection. At each iteration, these
methods descend along the Euclidean or Riemannian gradient direction and subsequently apply a
projection step to enforce orthogonality. (iii) Multiplier correction methods (Gao et al., 2018}, |2019;
Xiao et al., 2022). These methods exploit the fact that the Lagrange multiplier associated with the
orthogonality constraint is symmetric and admits a closed-form expression at first-order stationarity.
They update the multiplier after achieving sufficient decrease in the objective, resulting in efficient
feasible or infeasible first-order methods.

» Minimizing Nonmooth Functions under Orthogonality Constraints. Another major challenge
in solving Problem (T)) arises from the nonsmoothness of the objective function. Existing approaches
for handling this issue can be broadly categorized into four classes: (i) Subgradient methods (Hwang
et all 2015} ILi et al., |2021; |Cheung et al.l 2024). These methods generalize gradient descent to
nonsmooth settings. Many of the previously mentioned geodesic-like and projection-based strategies
can be incorporated into subgradient frameworks on manifolds. (ii) Proximal gradient methods
(Chen et al.l 2020; [Li et all [2024b). These methods compute a descent direction by solving a
strongly convex subproblem over the tangent space, often using a semi-smooth Newton method.
The resulting point is then mapped back onto the manifold via a retraction to preserve orthogonality.
(iii) Block Majorization Minimization (BMM) on Riemannian manifolds (Li et al., [2024b; 2023;
Breloy et al.| 2021 |Gutman & Ho-Nguyen, [2023). This class of methods iteratively constructs a
tangential majorizing surrogate for a block of the objective, takes an approximate descent step in
the corresponding tangent space, and retracts the iterate back to the manifold. (iv) Operator splitting
methods (Lai & Osher, 2014} |Chen et al., 2016} Zhang et al.l 2019). These methods reformulate
the original problem by introducing auxiliary variables and linear constraints, decomposing it into
simpler subproblems that can be solved separately and often exactly. Prominent examples include
the Alternating Direction Method of Multipliers (ADMM) (He & Yuan,|2012), Riemannian ADMM
(RADMM) (Li et al., [2024a)), and Smoothing Penalty Methods (SPM) (Chen, |2012).
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» Block Coordinate Descent Methods. (Block) coordinate descent is a classical and powerful
algorithm that solves optimization problems by iteratively performing minimization along (block)
coordinate directions (T'seng & Yun, [2009; [ Xu & Yin, 2013). The BCD methods have recently
gained attention in solving nonconvex optimization problems, including sparse optimization (Yuan,
2024), k-means clustering (Nie et al.,[2022), recurrent neural network (Massart & Abrol,[2022), and
multi-layer convolutional networks (Bibi et al., |2019; [Zeng et al., 2019). BCD methods have also
been used in (Shalit & Chechik} 2014} Massart & Abrol, [2022) for solving optimization problems
with orthogonal group constraints. However, their column-wise BCD methods are limited only to
solve smooth minimization problems with & = 2 and » = n (Refer to Section 4.2 in (Shalit &
Chechikl 2014)). Our row-wise BCD methods can solve general nonsmooth problems with k£ > 2
and » < n. The work of (Gao et al.,[2019) proposes a parallelizable column-wise BCD scheme for
solving the subproblems of their proximal linearized augmented Lagrangian algorithm. Impressive
parallel scalability in a parallel environment of their algorithm is demonstrated. We stress that our
row-wise BCD methods differ from the two column-wise counterparts.

» Summary. Existing solutions have one or more of the following limitations: (i) They rely on
full gradient information, incurring high computational costs per iteration. (if) They cannot han-
dle general nonsmooth composite problems. (iii) They lack descent properties, even worse, they
are infeasible methods, achieving solution feasibility only at the limit point. (iv) They often lack
rigorous convergence guarantees. (v) They only establish weak optimality at critical points. %
To our knowledge, this represents the first application of BCD methods to solve nonsmooth com-
posite optimization problems under orthogonality constraints, demonstrating strong optimality and
convergence guarantees.

1.3 CONTRIBUTIONS AND NOTATIONS

This paper makes the following contributions. (i) Algorithmically: We propose a Block Coordi-
nate Descent (BCD) algorithm tailored for nonsmooth composite optimization under orthogonality
constraints (Section [J). (ii) Theoretically: We provide comprehensive optimality and convergence
analyses of our methods (Sections [3|and [d). (iii) Empirically: Extensive experiments demonstrate
that our methods surpass existing solutions in terms of accuracy and/or efficiency (Section[5).

We define [n] = {1,2,...,n}, and denote the Stiefel manifold as M = St(n,r). Matlab-style colon
notation is used to describe submatrices. For a matrix X € R"*", let vec(X) € R""*! denote
the vector formed by stacking its columns, and let mat(x) € R™*" denote the inverse operator,
such that mat(vec(X)) = X. We use A + B and A — B to denote standard Minkowski addition
and subtraction between sets A and B, and A @ B and A © B to denote element-wise addition and
subtraction, respectively. Additional notations are summarized in Appendix [A.T]

2 THE PROPOSED OBCD ALGORITHM
In this section, we introduce OBCD, a Block Coordinate Descent algorithm for solving general
nonsmooth composite problems under Orthogonality constraints, as defined in Problem (TJ).

We start by presenting a new update scheme designed to maintain the orthogonality constraint.

» A New Constraint-Preserving Update Scheme. For any partition of the index vector [1, 2, ..., n]
into [B,B¢] with B € NF, B¢ € N" % we define Uy € R™ ¥ and Uze € R (=F) gq:
(Ug)ji = { B =T (Uge)y = { 1. B =Ji  Therefore, we have the following variable

0, else. 0, else.

splitting for any X € R™*": X = I, X = (UgU] + U UI)X = UpsX(B,:) + Use X(BS,:),
where X(B,:) = Ul X € R¥*" and X(B¢,:) = UL.X € R(»—F)xr,

In each iteration ¢, the indices {1,2,...,n} of the rows of decision variable X € St(n,r) are sepa-
rated to two sets B and B, where B is the working set with |B| = k and B¢ = {1,2,...,n} \ B. To
simplify notation, we use B instead of B, as ¢ can be inferred from the context. We only update k
rows of the variable X via X**1(B,:) <= VX*(B,:) for some appropriate matrix V € R¥*%, The
following equivalent expressions hold:

X! *(B,:) = VX!(B,:) & X! =(UVU] + UsUl)X! (4)
& X =X'4U(V-1,)UI X )
We consider the following minimization procedure to iteratively solve Problem (TJ):

m\i}n F(XL(V)), s.t. XL (V) € St(n,r), where X! (V) £ X! + Ug(V — I;) UL X", (6)
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The following lemma shows that the orthogonality constraint for X = X + Uz (V — I,)UI X can
be preserved by choosing suitable V and X.

Lemma 2.1. (Proof in Appendix We let B € {B;}°n, where the set {B, Ba, ..., Bey } denotes
all possible combinations of the index vectors choosing k items from n without repetition. We let
V € St(k, k). We define X+ £ Xx(V) £ X + Up(V — I;)UIX. (a) For any X € R"*", we have
[XHTX* = XTX. (b) If X € St(n,r), then XT € St(n, 7).

Thanks to Lemma [2.1] we can now explore the following alternative formulation for Problem (6.
Vi e arg m\i[n F(XL(V)), s.t.V € St(k, k). (7)

Then the solution matrix is updated via: X*+1 = X(V?).

The following lemma offers important properties for the update rule X+ = X + Uz(V — I;,) U] X.
Lemma 2.2. (ProofinAppendix We define X+ = X+Ux(V—1;)Ul X. ForanyX € St(n,7),
V e St(k, k), B € {B;}°n, and symmetric matrix H € R we have: (a) HIXt - X[ =
IV — L[, where Q £ (ZT © Us) 'H(ZT © Uz), Z £ UIX € R¥", and X ® Y is the
Kronecker product of X and Y. (b) X = X2 = (I — V, UL XXTUg). (¢) 3[|XT — X[ <
IV - L = (T, T, — V).

» The Main Algorithm. The proposed algorithm OBCD is an iterative procedure that sequentially
minimizes the objective function along block coordinate directions within a sub-manifold of M.

Starting with an initial feasible solution, OBCD iteratively determines a working set B using spe-
cific strategies. It then solves the small-sized subproblem in Problem (7)) through successive Ma-
jorization Minimization (MM). This method iteratively constructs a surrogate function that ma-
jorizes the objective function, driving it to decrease as expected (Mairal, 2013} [Razaviyayn et al.,
2013} Sun et al) [2016; Breloy et al.l 2021)), and it has proven effective for minimizing complex
functions.

We now demonstrate how to derive the majorization function for F'(X%(V)) in Problem (7). Initially,
for any X* € St(n,r) and V € St(k, k), we establish following inequalities: f(X:(V))— f(X?) 2
(V) = XV FXD) + LI V)~ X0 2 (Ua(V — L)UTXE, TAXD) + 3V - L3 <
(V =L, [VFA(X)(X) ez) + 51V — Tell& a1 Where step @ uses Inequality ; step @ uses

Claim (a) of Lemma step @ uses a > 0 and Q =< Q, which can be ensured by choosing Q
using one of the following methods:

Q= 9 < (ZT ® UB)TH(ZT ® UB)? (3)
Q = gIa with ||9Hsp <¢< Lf- 9

where Z = U X*. Then, we apply the MM technique to the smooth function f(X), while keep-
ing the nonsmooth component h(X) unchanged, leading to a function K(V; X?, B) that majorizes
F(X5(V)) = f(X(V)) + h(XE(V)):

F(XH(V)) < F(X") + (V= L, [VAX)X) Tez) + 2V = Iil[gsar + H(VUIXY)
<K(V;X'B) 2 3|V = Ll[drar + (V. [VAX)(X) Tze) + M(VUIX") +£,  (10)

where ¢ = f(X*) + h(ULX?Y) — (I, [Vf(X*)(X!)T]zs) is a constant. Here, we use the
coordinate-wise separable property of h(-) as follows: h(X(V)) = h(Ug. UL X!+ U VU] X!) =
h(UL.X!) + h(VUIX"). We minimize the upper bound of the right-hand side of Inequality (10},
resulting in the minimization problem that V' € arg miny egq(x,x) K(V; X, B), which can be effi-
ciently and exactly solved due to our assumption.

Two simple strategies to find the working set B with |B| = & can be considered. (i) Random strategy:
B is randomly selected from {By, Bz, ..., Box } with equal probability 1/ CE. (ii) Cyclic strategy: B
takes all possible combinations in cyclic order, suchas By — By — ... = Bcr — B — ...

The proposed OBCD algorithm is summarized in Algorithm[I] Importantly, OBCD is a partial gra-
dient method with low iterative computational complexity as it only assesses k£ rows of the Euclidean
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Algorithm 1 OBCD: Block Coordinate Descent for Problem

1: Input: initial feasible solution XO: choose k > 2; sett = 0.
2: fort =0to 7T do

3: (S1) Select working set Bt € {1,...,n}*. Let B =Bt and B¢ = {1,...,n} \ B.
4: (S2) Choose Q € R¥**** using (8) or (@). -
5: (S3) Define K(, ; -, -) as in Equation (T0). Compute V* as the global minimizer

Vit e arg minyege(x,k) K(V; Xt B). (11)

Alternatively, find a local solution V* such that K(V*; X, B) < K(Ix; X, B).
6: (S4) X1H(B,:) + VEXH(B,:)
7: end for

gradient of V f(X') and the solution X* to compute the linear term ([V f(X*)(X*)T]zs, V) =
([Vf(X")]2..[X"5,:, V), as shown in Equation . Appendix |C.3|details the complexity compari-
son between OBCD and full gradient methods for some quadratic function f(X).

» Solving the General OBCD Subproblems. The following lemma outlines key properties of the
OBCD subproblems.

Lemma 2.3. (Proof in Appendix We define P = [V f(X*)(X?)]zz — mat(Qvec(I;)) — aly,
and Z. = UL X'. We have:

(a) The subproblem Vt € arg minvyegsk,x) K(V; X B) in Algorithm|l|is equivalent to Problem
with Q = Q + oI, P = [V f(X!)(X") sz, and Z = UTX".

(b) Assume that Formula (9) is used to choose Q. Problem (B) further reduces to the following
problem: V' € argminyesyi) P(V) £ (V,P) + h(VZ). In particular, when h(X) £ 0,
we obtain: Vt = —P,(P). Here, P (P) is the nearest orthogonality matrix to P.

Remark 2.4. (a) By Claim (b) ofLemma when k > 2, h(X) = 0, and Q is chosen to be a diag-
onal matrix as in Equation @), the subproblem V! € arg miny ege(k,k) K(V; Xt B)in Algorithm
can be solved exactly and efficiently due to our assumption, see Remark[2.6] (b) For general k ana
h(-), the subproblem may not admit a global solution. However, if a local stationary solution V'*
satisfying (V% X B) < K(Ix; X', B) can be found, then the sufficient descent condition remains
valid, and convergence to a weaker optimality condition for the final solution X° is still achievable

(see Inequalities ([#2), {4)).

» Smallest Possible Subproblems When £ = 2. We now discuss how to solve the subproblems

exactly when & = 2 and h(-) # 0. The following lemma reveals an equivalent expression for any

V € St(2,2).

Lemma 2.5. (Proof in Appendix Any orthogonal matrix V. € St(2,2) can be expressed as
ro re ro s(0) sin(6 re - 0) sin(6

V = Vit or V.= VI for some 0 € R, where Vit £ (—CZirE(é))) cosieg ), Vit & ( Sic;l)(sé)) Cos((G)) ).

We have det(VEY) = 1 and det(VY) = —1 for any 6.

Using Lemma[2.3] we can reformulate Problem (3)) as the following one-dimensional problem:

0 € arg min P(V), s.t. V € {Viet Vi)

The optimal solution & can be identified even if h(-) # 0 using a novel breakpoint searching method,
which is discussed later in Section |B|in the Appendix.

Remark 2.6. (i) V}°* and Vit are called Givens rotation matrix and Jacobi reflection matrix
respectively in the literature (Sun & Bischof, 1995)). Previous research only considered {V°*} for
solving symmetric linear eigenvalue problems (Golub & Van Loan, |2013|) and sparse PCA problems
(Shalit & Chechik, 2014), while we use {Vit, Vi°t} for solving Problem (1)). (ii) We show the
necessity of using {ng, Vi°t} in the following two examples of 2 x 2 optimization problems with
orthogonality constraints: minycgya,2) F(V) £ [V — A% and minycgyo,2) F(V) £ ||V —
B||2 + 5(| V|1, where A = (%, %) and B = (19). The use of the reflection matrix Vit is
essential in these examples because it results in lower objective values. See Section in the
Appendix for more details.
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3 OPTIMALITY ANALYSIS

This section provides the optimality analysis for OBCD. First, we establish the completeness of
the proposed update scheme, showing that OBCD can reach any feasible point from an arbitrary
initialization. Second, we analyze the optimality conditions of both Problem (I]) and the associated
subproblems of OBCD. Finally, by comparing these two sets of conditions, we derive a hierarchy
of optimality, illustrating how the algorithm’s stationarity relates to that of Problem ().

» Basis Representation of Orthogonal Matrices. The following theorem is used to characterize
any orthogonal matrix D € St(n,n) and X € St(n,r).

Theorem 3.1. (Proof in Appendix|[E.1} Basis Representation of Orthogonal Matrices) Assume k =
2. For all i € [CF], we define W; = 1,, + Up, (V; — Ik)U};i = UBiV,'Ugi + UB;U;C, where
V; € St(2,2). We have:

(a) Any matrix D € St(n,n) can be expressed as D = WCQ ... Wo W using suitable W; (which
depends on V). Furthermore, if V2, V; = I, then D = 1,,.

(b) Any matrix X € St(n,r) can be expressed as X = Wcﬁ...W2W1XO using suitable W; and
any fixed constant matrix X° € St(n, r).

Remark 3.2. (i) We use both Givens rotation and Jacobi reflection matrices to compute D €
St(n,n). This is necessary since a reflection matrix cannot be represented through a sequence
of rotations. (ii) The result in Claim (b) of Theorem [3.1| indicates that the proposed update
scheme Xt < X + Ug(V — 1)U X as shown in Formula can reach any orthogonal ma-
trix X € St(n,r) for any starting solution X° € St(n,r).

» First-Order Optimality Conditions for Problem (I). We provide the first-order optimality con-
dition of Problem (Wen & Yin, 2013} |Chen et al.,[2020). We use OF (X) to denote the limiting
subdifferential of F'(X) (Mordukhovich, 2006; Rockafellar & Wets., 2009), which is always non-
empty since F'(X) is closed, proper, and lower semicontinuous. Given f(X) is differentiable, we
have OF (X) = 9(f + h)(X) = Vf(X) 4+ 0h(X) (Rockafellar & Wets.| 2009). We extend the def-
inition of limiting subdifferential to introduce O F'(X) as the Riemannian limiting subdifferential
of F(X) at X, defined as Iy F(X) = 0F(X) © (X[0F(X)]TX), where © is the element-wise
subtraction between sets.

Introducing a Lagrangian multiplier matrix A € R™*" for the orthogonality constraint, we define
the following Lagrangian function of Problem : L(X,A) = F(X)+ 5(I, - XTX, A). Notably,
the matrix A is symmetric, as XX is symmetric. We state the following definition of first-order
optimality condition.

Definition 3.3. Critical Point (Wen & Yin, 2013; (Chen et al., 2020). A solution X € St(n,r) is
a critical point of Problem (1)) if: 0 € O\ F(X) £ 0F(X) © (X[OF(X)]TX), where (0F (X) ©
X[OF(X)]™X) £ {G - XG"X |G € 9F(X)}. Furthermore, A € [0F(X)]"X.

Remark 3.4. The critical point condition in Lemma can be equivalently expressed as (Absil

et al.}|2008; Jiang & Dai, 2015; Liu et al., |2016): 0 € Pt p(OF (X)). Here, Tx M is the tangent
space to M at X € M with Tx M = {Y ¢ R"*" | XTY + YTX = 0}.

» Optimality Conditions for the Subproblems. The Euclidean subdifferential of IC(V;X?, B?)
w.rt. 'V can be computed as follows: G(V) 2 A + UT[Vf(X!) 4+ 9h(X*T1)](X?)TUg, where
A = mat((Q+aly)vec(V —1j)), and X**+1 = X? + Up(V —1,)UT X?. Using Lemma we set
the Riemannian subdifferential of K(V; X, B) w.r.t. V to zero and obtain the following first-order

optimality condition for V*: 0 € (VX BY) = G(VY) © VIG(VHTVE

» Optimality Conditions and Their Hierarchy. We introduce the following new optimality con-

dition of block-k stationary points.

Definition 3.5. (Global) Block-k Stationary Point, abbreviated as BSy-point. Let o > 0 and
. k

k > 2. A solution X € St(n,r) is called a block-k stationary point if: VB € {Bi}?:”l, I, €

arg miny g (x,k) K(V; X, B), where KC(+; -, -) is defined in Equation .
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Remarks. BSj-point states that if we globally minimize the majorization function K(V; X, B),
there is no possibility of improving the objective function value for K(V;X,B) across all B €

cr
{Bi};o.
The following theorem establishes the relation between BSy-points, standard critical points, and
global optimal points.
Theorem 3.6. (Proof in Appendix[E2) We establish the following relationships:

(a) {critical points X} D {BS,-points X }.

(b) {BS,-points X} D {global optimal points X}.

(¢) {BSk-points X} D {BSy1-points X}, where k € {2,3,...,n —1}.

(d) The reverse of the above three inclusions may not always hold true.

Remark 3.7. (i) The optimality of BSy-points is stronger than that of standard critical points

(Wen & Yin| 2013} |Chen et al.| |2020; Absil et al.| |2008). (ii) Testing whether a solution X is a
BSy-points deterministically requires solving all C¥ subproblems. However, by randomly selecting

. . L ck . .
the working set B from the C¥ possible combinations {B;} i, one can test whether X is a BSy-point
in expectation.

4 CONVERGENCE ANALYSIS

This section establishes the iteration complexity and last-iterate (non-ergodic) convergence rates of
the proposed OBCD algorithm. We first prove a sufficient descent property, followed by an ergodic
convergence rate typical in nonconvex optimization. We then analyze iteration complexity under
the Riemannian subgradient condition, commonly used in nonsmooth manifold settings. Finally, we
derive a last-iterate convergence rate based on the KL inequality.

Throughout this section, we assume that the working set is determined by a random strategy and that
the global minimizer V* € arg miny cgy(x,x) K(V; X*, B) can be computed. The algorithm OBCD
then generates a random output (V*, X**1) for¢ = 0, 1,.. ., 0o, depending on the realization of the
random variable ¢! £ (B!, B2,. .., B?). We denote X*° as an arbitrary limit point of OBCD.

4.1 ITERATION COMPLEXITY

Initially, we introduce the notation of e-BSy-point as follows.

Definition 4.1. (e-BSy-point) Given any constant € > 0, a point X is called an e-BS-point if:
C—l,; fol dist(Ij, arg miny K(V; X, B;))? < e, where K(+;-,-) is defined in Equation

the set {B1, Ba, ..., BCIE} denotes all possible combinations of the index vectors choosing k items
from n without repetition, and dist(Z, Z’) denotes the distance between two sets = and ='.

mi . Here,

Using the optimality measure from Definition we establish the iteration complexity of OBCD.
Theorem 4.2. (Proof in Appendix We define ¢ = 2 . (F(X%) — F (X)) > 0. We have:
(a) The following sufficient decrease condition holds for all t > 0:

9XH - X2 < V! - L2 < F(X!) - F(X').

k
n

(b) If the B! is selected from {B;}Sn, randomly and uniformly, OBCD finds an e-BSy-point of

Problem lb in at most T iterations in the sense of expectation, where 7' > [S

Remark 4.3. Theoremd.2|shows that OBCD converges to e-block-k stationary points with an iter-
ation complexity of O(1/¢), which is typical for general nonconvex optimization.

Apart from Definition[4.1} another common optimality measure relies on the Riemannian subgradi-
ent. To this end, we present the following lemma.

Lemma 4.4. (Proof in Appendix Riemannian Subgradient Lower Bound for the Iter-
ates Gap) Assume [|[Vf(X)|lsp < If,[|0R(X)|lsp < Ip for all X € St(n,r) with Iy,1, > 0.

The Riemannian subdifferential of K(V;X? B) at the point V. = I can be computed as:
OMK(X; X!, BY) = UL (D& DT)Ug:, where D = [V f(X!) + 0h(X")][X!]T. We have:

(a) EEH»I [diSt(O, 6M’C(Ik, )CH_I7 BH—I)” < ¢-E£t [||\7t —IkHF], where gb = 4(lf+lh+Lf) +2a.
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(b) Ee:[dist(0, Oy F(X))] < 7 - Eee[dist (0, O K (Ix; X, BY))], where y 2 (CE /CE=2)1/2,
Remark 4.5. The important class of nonsmooth {1 norm function h(X) = ||X||1 (Chen et al.,|2020;
2024) satisfies the assumption made in Lemma {.4]

We establish the iteration complexity of OBCD using the optimality measure of Riemannian sub-
gradient (Chen et al.2020; |Cheung et al., [2024; [Li et al., [2024b).

Theorem 4.6. (Proof in Appendix We define ¢ = 2 . (F(X°) — F(X*)), and {¢,7} as in
Lemma OBCD finds an e-critical point of Problem lb satisfying Egg[diStQ(O, OMF (X)) <
e in at most T" + 1 iterations in the sense of expectation, where 17" > [@]

4.2 CONVERGENCE RATE UNDER KL INEQUALITY
We establish the non-ergodic convergence rate of OBCD using the Kurdyka-f.ojasiewicz inequality,

a key tool in non-convex analysis (Attouch et al.||2010; Bolte et al.| 2014; [Liu et al.,|2016).

Initially, we make the following additional assumption.
Assumption 4.7. The function F,(X) = F'(X) + tp(X) is a KL function.

We present the following useful proposition, due to (Attouch et al.,[2010; |Bolte et al., 2014)).
Proposition 4.8. (Kurdyka-F.ojasiewicz Property). For a KL function F,(X) with X € dom F,,
there exists ¢ € [0,1), n € (0,40oc], a neighborhood T of X°°, and a concave continuous
function p(t) = ct'=9, ¢ > 0, t € [0,n) such that for all X’ € Y that satisfies F,(X’) €
(F,(X*), F,(X*°) 4 n), it holds that dist(0, OF, (X)) (F,(X') — F,(X*>)) > 1.

Utilizing the Kurdyka-Fojasiewicz property, one can establish a finite-length property of OBCD, a
result considerably stronger than that of Theorem

Theorem 4.9. (Proof in Appendix A Finite Length Property). We define E; 1 = E¢[|[ V! —
I;||f], and D; = Z;’il E; ;1. Based on the continuity assumption made in Lemma We have:
(a) Itholds that (E;11)? < kE, (" — '), where ! 2 p(F(X') — F(X*)), k £ 222 is a posi-
tive constant, v 2 (Ck /CE=2)1/2 4 is defined in Lemma and (+) is the desingularization
function defined in Proposition 4.8
(b) It holds that V¢ > 1, D; < E; + 2k¢p!. The sequence { F;}$°, has the finite length property

that D, £ Z;’o:t E; 4 is always upper-bounded by a certain constant for all ¢ > 1.

Finally, we establish the last-iterate convergence rate for OBCD.

Theorem 4.10. (Proof in Appendix|F:3). Based on the continuity assumption made in Lemma
there exists t' such that for all t > t', we have:

(@) If o = 0, then the sequence X' converges in a finite number of steps in expectation.

(b) If o € (0, 3], then there exist ¢ > 0 and 7 € [0, 1) such that B¢ [|| X! — X*°|[¢g] < 7.

(c) If o € (1,1), then there exist ¢ > 0 such that E¢i—1 [|| X! — X*°||¢] < O(t~(1=0)/(o—1)),
Remark 4.11. When F(X) is a semi-algebraic function and the desingularising function is p(t) =
ct'=7 for some ¢ > 0 and o € [0, 1), Theorem shows that OBCD converges in finite iterations
, 3} and sublinear convergence when o € (3,1)

| Xt — X°°||g in expectation. These results are consistent with those in (Attouch et al.|

when o = 0, with linear convergence when o € (0
for the gap
2010).

5 EXPERIMENTS

This section presents numerical comparisons between OBCD and state-of-the-art methods on both
real-world and synthetic data for Lo norm-based Sparse PCA (SPCA). Appendix Section [G.T] de-
scribes how to generate the data sets in the experiments.

» Compared Methods. We compare against three operator splitting methods: Linearized ADMM
(LADMM) (Lai & Osher, [2014; [He & Yuan, 2012), Riemannian ADMM (RADMM) (Li et al.,
2024a), and the Smoothing Penalty Method (SPM) (Lai & Osher, [2014} |Chen, 2012). Each
method is initialized with either a random or identity matrix, yielding six variants: LADMM(id),
RADMM(id), SPM(id), LADMM(rnd), RADMM (rnd), and SPM(rnd). For OBCD, we adopt a
random working set strategy with identity initialization, denoted as OBCD-R(id).
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data-m-n L.ADMM RADMM [SPM LADMM |[RADMM [SPM (?BCD-R data-m-n LADMM [RADMM [SPM LADMM [RADMM [SPM OBCD-R
(id) (id) (id) (rnd) (rnd) (rnd) (id) (id) (id) (id) (rnd) (rnd) (rnd) (id)
r =20, A = 10, time limit=30 r =20, A\ = 50, time limit=30
w1a-2477-300 199.897 219.698 199.897 259.825 239.717 259.672 199.667 wla-2477-300 999.891 1099.730 [1099.889 [1249.723 [1049.707 [1649.675 [999.667
TDT2-500-1000 199.997 359.382 199.997 389.376 269.292 389.260 199.258 TDT2-500-1000 1049.997 | 1099.288 | 999.460 1049.282 | 1249.280 | 2149.271 |999.257
20News-8000-1000 | 199.995 219.673 199.995 239.301 219.243 349.228 199.222 20News-8000-1000 | 1149.995 | 1149.501 | 999.549 3649.247 | 1049.326 | 1799.228 | 999.222
sector-6412-1000 199.980 349.793 199.980 749.996 249.813 369.651 199.649 sector-6412-1000 | 2449.886 | 1799.904 | 999.816 1549.998 | 1749.952 | 1399.651 |999.649
E2006-2000-1000 | 199.999 239.115 199.999 269.128 219.084 709.095 199.077 E2006-2000-1000 1099.283 | 1249.109 | 999.284 1849.115 | 1349.085 |2549.136 |999.077
MNIST-60000-784 | 199.985 379.893 199.985 289.917 339.910 1339.774 | 199.896 MNIST-60000-784 | 999.985 1699.913 | 2849.852 | 1399.921 |1649.905 |4349.781 |999.896
Gisette-3000-1000 | 199.980 339.979 199.980 539.979 369.981 1639.952 | 199.979 Gisette-3000-1000 | 999.980 1649.980 | 999.980 10399.983 | 2249.976 | 6899.967 | 999.979
CnnCal-3000-1000 | 199.981 429.979 199.981 689.970 379.979 909.931 199.946 CnnCal-3000-1000 | 999.981 2499.981 | 1049.969 | 4599.973 |2649.981 |3499.938 |999.946
Cifar-1000-1000 199.979 479.979 199.979 1449.982 | 429.975 2169.934 | 199.974 Cifar-1000-1000 1099.979 | 1449.978 | 999.979 2149.979 |3149.974 |4349.972 |999.974
randn-500-1000 199.980 469.980 199.980 409.980 389.980 1349.975 | 199.977 randn-500-1000 1349.980 |2449.980 | 3949.977 | 1299.981 |1749.980 |4249.976 |999.977
data-m-n LADMM [RADMM [SPM LADMM [RADMM [SPM OBCD-R data-m-n LADMM [ RADMM ‘ SPM LADMM [RADMM [SPM OBCD-R
(id) (id) (id) (rnd) (rnd) (rnd) (id) (id) (id) (id) (rnd) (rnd) (rnd) (id)
r =20, A = 100, time limit=30 r =20, A = 500, time limit=30
w1a-2477-300 2499.912 [2799.713 [2199.819 [2399.723 [2499.708 [3299.662 [ 1999.667 w1a-2477-300 11999.706 | 10999.702 T 16499.714 [ 10499.702 [9999.711 | 14499.667 | 9999.667
TDT2-500-1000 2199.515 2199302 |1999.432 |8799.310 |2699.278 |2499.257 |1999.258 TDT2-500-1000 10499.273 | 15999.294 | 10999.395 | 10499.368 | 15499.281 | 12499.256 | 9999.258
20News-8000-1000 | 2699.480 |2199.262 | 1999.440 |2099.242 |1999.230 |3999.224 |1999.222 20News-8000-1000 | 9999.347 | 11499.281 | 11499.328 | 10999.454 | 10499.258 | 14499.232 | 9999.222
sector-6412-1000 | 7799.995 |4599.977 |2099.716 |3099.999 |4399.973 |2199.651 |1999.649 sector-6412-1000 13999.997 | 16999.992 | 12999.660 | 22999.999 | 18999.986 | 13499.649 | 9999.649
E2006-2000-1000 | 2099.207 | 3199.083 | 1999.284 |2599.106 |2299.085 |4399.081 |1999.077 E2006-2000-1000 | 9999.918 | 14499.080 | 9999.284 | 26499.095 | 10499.082 | 21499.081 | 9999.077
MNIST-60000-784 | 1999.984 | 3199.904 |11799.715 | 3199.922 |3599.907 |8299.829 | 1999.896 MNIST-60000-784 | 19499.965 | 20499.886 | 39499.844 | 11999.911 | 16999.905 | 47999.705 | 9999.896
Gisette-3000-1000 | 2199.980 |4299.979 | 1999.980 |2499.982 |2799.981 |11499.971 | 1999.979 Gisette-3000-1000 | 14999.980 | 16499.979 | 9999.980 | 15499.980 | 16999.978 | 36499.977 | 9999.979
CnnCal-3000-1000 | 2499.981 | 4399.982 | 11499.907 | 4399.975 |3899.983 |6799.938 |1999.946 || CnnCal-3000-1000 |12499.980 | 33999.979 | 28999.936 | 15499.974 | 52999.977 | 26999.936 | 9999.946
Cifar-1000-1000 1999.979 14999.979 |1999.979 |5199.979 |4399.978 |8799.969 |1999.974 Cifar-1000-1000 19999.979 | 31499.980 | 9999.979 | 37999.979 | 21499.977 | 42999.953 | 9999.974
randn-500-1000 6699.980 | 4099.980 |7899.977 |2599.980 |3299.980 |9099.976 |1999.977 randn-500-1000 19499.981 | 33499.981 | 19999.979 | 19999.980 | 44999.981 | 17999.978 | 9999.977

Table 1: Comparisons of objective values for Ly norm-based SPCA. The 1%¢, 2", and 3" best
results are colored with red. ereen and blue. respectivelv.

10° = = =LADMM(id) = = = LADMM(id) . = = =LADMM(id) = = =LADMM(id)
° RADMM(d) || RADMMd) || 10 RADMM(d) [ 10° RADMM(id)
2 PADM(id) 2 PADM(id) 2 PADM(id) 2 PADM(id)
g LADMM(rnd) 'g LADMM{(rnd) g LADMM(rnd) g LADMM(rnd)
= RADMM(md)f| ‘& RADMM(md)|| & RADMM(md)|| & RADMM(md)
o) ==PADM(md) || O ==PADM(md) || O ==PADM(md) || O == PADM(rnd)
o OBCD-RGd) || 2 OBCD-R(id) || @ OBCD-R(id) || @ OBCD-R(id)
B 10 k] T 0 k]
g 10 o 3 10 ‘ 3 10° :
[id L i o« [id ‘
0 10 20 30 20 10 20 30 40 10 20 30 20 10 20 30 20
Time (seconds) Time (seconds) Time (seconds) Time (seconds)
(a) wla-2477-300 (b) TDT2-500-1000 (C) 20News-8000-1000 (d) sector-6412-100

Figure 1: The convergence curve for solving Ly norm-based SPCA with A = 100. No matter how
long the algorithms run, the other methods remain trapped in poor local minima.

» Implementations. All methods are implemented in MATLAB on an Intel 2.6 GHz CPU with
32 GB RAM. However, our breakpoint searching procedure is developed in C++ and integrated into
the MATLAB environment|’| as it requires inefficient element-wise loops in native MATLAB. Code
to reproduce the experiments can be found in the supplemental material.

» Experiment Settings. We compare objective values F'(X) for different methods after running for
30 seconds. For numerical stability in reporting the objectives, we use the count of elements with
absolute values greater than a threshold of 10~ instead of the original £y norm function || X||o. We
set « = 10~° for OBCD. Full-gradient methods have higher per-iteration complexity but require
fewer iterations, while OBCD, as a partial-gradient method, has lower per-iteration costs but needs
more iterations. Thus, we compare based on CPU time rather than iteration count.

» Experiment Results. Table[T|and Figure[T]display accuracy and computational efficiency results
for Ly norm-based SPCA, yielding the following observations: (i) OBCD-R delivers the best per-
formance. (ii) Unlike other methods where objectives fluctuate during iterations, OBCD-R mono-
tonically decreases the objective function while maintaining the orthogonality constraint. This is
because OBCD is a greedy descent method for this problem class. (iii) While other methods of-
ten get stuck in poor local minima, OBCD-R escapes from such minima and generally finds lower
objectives, aligning with our theory that our methods locate stronger stationary points.

6 CONCLUSIONS

In this paper, we introduced OBCD, a new block coordinate descent method for nonsmooth compos-
ite optimization under orthogonality constraints. OBCD operates on k rows of the solution matrix,
offering lower computational complexity per iteration for k£ > 2. We also provide a novel optimality
analysis, showing how OBCD exploits problem structure to escape bad local minima and find bet-
ter stationary points than methods focused on critical points. Under the Kurdyka-Lojasiewicz (KL)
inequality, we establish strong limit-point convergence. Additionally, we show how novel break-
point search methods can be used to solve the subproblem when & = 2. Extensive experiments
demonstrate that OBCD outperforms existing methods.

7 LLM USAGE

A large language model (LLM) was used to assist in refining the writing of this paper.

2 Although we prioritize accuracy over speed, the comparisons remain fair, as the other methods based on
matrix multiplication and SVD rely on highly optimized BLAS and LAPACK libraries.
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Appendix

The appendix section is organized as follows.

Section E] covers notations, technical preliminaries, and relevant lemmas.

Section [B|shows how to solve the subproblem when k = 2.

Section [Coffers further discussions on the proposed algorithm.

Section [D] contains proofs from Section

Section [E]contains proofs from Section [3]

Section |[F|contains proofs from Section

Section G| presents additional experiment details and results.

A

Al

Throughout this paper, M £ St(n, ) denotes the Stiefel manifold, which is an embedded subman-
ifold of the Euclidean space R™*". Boldfaced lowercase letters denote vectors and uppercase letters
denote real-valued matrices. We adopt the Matlab colon notation to denote indices that describe
submatrices. For given natural numbers n and k, we use {81, Ba, ..., BC;;} to denote all the possi-

ble combinations of the index vectors choosing k items from n without repetition, where CF is the
total number of such combinations and B; € N* Vi € [CK]. For any one-dimensional function

p(t) : R R, we define: p(+z Fy) £ min{p(xz —y), p(—z + y)}. We use the following notations

NOTATIONS, TECHNICAL PRELIMINARIES, AND RELEVANT LEMMAS

NOTATIONS

in this paper.

[n]: {1,2,...,n}

Ix||: Euclidean norm: ||x|| = ||x[|2 = v/ (x, %)

x;: the i-th element of vector x

X j or X;; : the (i, jM) element of matrix X

vec(X) : vec(X) € R"*1, the vector formed by stacking the column vectors of X
mat(x) : mat(x) € R"*", Convert x € R""*! into a matrix with mat(vec(X)) = X
XT : the transpose of the matrix X

sign(t) : the signum function, sign(¢) = 1if ¢ > 0 and sign(¢) = —1 otherwise
det(D) : Determinant of a square matrix D € R™*"

CE : the number of possible combinations choosing k items from n without repetition
0, : A zero matrix of size n X r; the subscript is omitted sometimes

L. : I, € R™*", Identity matrix

X = 0(or > 0) : the Matrix X is symmetric positive semidefinite (or definite)
tr(A) : Sum of the elements on the main diagonal X: tr(A) =>", A;;

(X,Y) : Euclidean inner product, i.e., (X, Y) = >, X;;Y;

X ® Y : Kronecker product of X and Y

|IX]|F : Frobenius norm: (3, X3,)"/2

IX]|sp : Operator/Spectral norm: the largest singular value of X

IX|lo: the number of non-zero elements in the matrix X

[X|[1: the absolute sum of the elements in the matrix X with || X[l = >, X, 4]
V f(X) : Euclidean gradient of f(X) at X

V mf(X) : Riemannian gradient of f(X) at X

OF (X) : limiting Euclidean subdifferential of F'(X) at X
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* IpmF(X) : limiting Riemannian subdifferential of F'(X) at X

* 1=(X) : the indicator function of a set = with ¢=(X) = 0 if X € E and otherwise 400

s

. LZ()(X) indicator function of non-negativity constraint with ¢t>0(X) = { .

¢ P=(Z) : Orthogonal projection of Z with P=(Z) = arg minxcz ||Z — X||2

¢ Py(Y) : Nearest orthogonal matrix of Y with P((Y) = argmingrx—1, [|X — Y2

* dist(Z,Z’) : the distance between two sets with dist(Z,Z') £ infxez xez | X — X'||¢

e A + B, A — B: standard Minkowski addition and subtraction between sets A and B

* A @B, A ©B: element-wise addition and subtraction between sets A and B

o [[OF(X)||r: the distance from the origin to the set JF(X) with ||[0F(X)||r =
infycoree [V = dist(0, 0F (X))

A.2 TECHNICAL PRELIMINARIES

As the function F'(-) can be non-convex and non-smooth, we introduce some tools in non-smooth
analysis (Mordukhovich, 2006} Rockafellar & Wets., 2009). The domain of any extended real-

valued function F : R"*" — (—o00, +00] is defined as dom(F) = {X € R™*" : |F(X)| < +o0}.
The Fréchet subdifferential of F' at X € dom(F') is defined as
OF(X) 2 {&€ e R : lim inf FZ)-FX)_(£2-X) > 0},
Z—X Z#X 1Zz—XIlr
while the limiting subdifferential of F'(X) at X € dom(F’) is denoted as
OF(X) 2 {¢ eR": IX! = X, F(X}) = F(X), ¢ € F(X') — &,Vt}.
We denote VF(X) as the gradient of F(-) at X in the Euclidean space. We have the following
relation between 0F(X), 0F(X), and VF(X). (i) It holds that 0F(X) C JF(X). (ii) If the
function F'(-) is convex, OF (X) and 0F(X) essentially the classical subdifferential for convex
functions, i.e.,
OF(X) = OF(X) = {¢ e R"*" : F(Z) > F(X) + <.5 Z — X),VZ € R"*"}.
(iii) If the function F(-) is differentiable, then dF(X) = OF (X) = {VF(X)}.

We need some prerequisite knowledge in optimization with orthogonahty constraints (Absil et al.
2008). The nearest orthogonality matrix to an arbitrary matrix Y € R™*" is given by Py(Y) =
UVT, where Y = UDiag(s)VT is the singular value decomposition of Y. We use Ny (X) to
denote the limiting normal cone to M at X, leading to
NuX) =0epm(X)={Z e R"*" : (Z,X) > (Z,Y), VY € M}.

The tangent and norm space to M at X € M are denoted as Tx M and Nx M, respectively. For
agiven X € M, welet Ax(Y) £ XTY + Y™X for Y € R"*", and we have Tx M = {Y ¢
R™"|Ax(Y) = 0} and Nx M = {2XA|A = AT, A € R"™"}. For any non-convex and non-
smooth function F(X), we use I F'(X) to denote the limiting Riemannian gradient of F(X) at
X, and obtain Oy F(X) = Pr, p(0F(X)). We denote 9F(X) © X[0F(X)]"X £ {E|E =
G -XG™X,G € oF(X)}.

A.3 RELEVANT LEMMAS

We offer a set of useful lemmas, each of which stands independently of context and specific method-
ology.

i
Lemma A.1. Let k > 2 and W € R"™ ™. [f O, = UIWUg forall B € {B;};.",, then W = 0.
Here, the set {B1, Ba, ..., B } represents all possible combinations of the index vectors choosing k
items from n without repetition.

Proof. The proof is straightforward and relies on elementary reasoning.

Notably, the conclusion of this lemma does not necessarily hold if |B| = k& = 1. This is because
any matrix W € R"*" with W;; = 0 for all ¢ € [n] satisfies the condition of this lemma but is not
necessary a zZero matrix. O
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Lemma A.2. For any matrices A € R**¥ and C € R¥*F, we have: ||A — AT||r < 2||A — Cl|r +
IC—CT[r.

®
Proof. We derive: ||[A — AT||f = H( C)+(C-CH+(CT-AN<||A-Cl+]|C—
CTle+ICT — AT|[g =2[|A - C|r + HC CT||r, where step @ uses the triangle inequality.

O
Lemma A.3. Let 7 € R, and A € R?*? be any skey-symmetric matrix with AT = —A. The matrix
Q = [(I2 + ZA) ' (Ix — ZA)] is always a rotation matrix with det(Q) = 1.

Proof. Since A is a two dimensional matrix, it can be expressed in the form: A = (%, &) for some
a € R. Letting b = Ja, we derive:

Q=L+3A) ' G- 2 (L) (020000 = o (1552 f_i’é)’

where step @ uses A = (% }); step @ uses the fact that (¢ 4)~! = —L— (4 _ab)71 for all
@ 2 2 _ b2 b2 b2)2
a,b,c,d € R. We further obtain: det(Q) = 1+22 : ng - 1%2 : 1+2bb2 = U (Hb;)r;l = Sibz;z =1

where step @ uses the fact that det(? %) = ad — be forall a, b, c,d € R.
O

Lemma A4. For any W € R™ ™, we have Zg‘l |IW(B;,B)) || = CE=2 %", > Wi

k ECk >, W2. Here, the set {B1,Bs, ... s Baw } represents all possible combinations of the index
vectors choosmg k items from n without repetltlon

Proof. For any matrix W € R"*"_ we define: w £ diag(W) € R", and W/ £ W — Diag(w).
We have: W = Diag(w) + W/, this leads to the following decomposition:
ck ck .
il |U£1 = i ||U£1 (Diag(w) + W’)
ck . ck
%% ||US, Diag(w)Us 2 + Y%, [UL, W'Ug 2. (12)

Fl F2

We first focus on the term I';. We have:
ck . D Ck )
Iy =327 U Diag(w)Up, [ = 3252 ws, I3 = CF - & - [lwll3 = Cy - £ 35, W2, (13)
where step @ uses the fact that ||BTDiag(w)B||2 = ||[Diag(w )]BBH2 = ||ws]||2 forany B € {B;}%" ;
k

(CE-%) times, which

step @ uses the observation that w; appears in the term Z
can be deduced using basic induction.

We now focus on the term I's. Notlclng that W/, = 0 for all i € [n], we have:
Iy = S0 UR, W =3 E]#[Cfi BWL) 2 CEE Y 0 (Wa)  (14)

where step @ uses the fact that the term 27 L [[U, W'Ug, || comprises CF=2 distinct patterns,
each including {4, j} with ¢ # j; step @ uses ZM#(W )2 = ZM#(WQJ) .

In view of Equalities (T2)), (I3)), and (I4), we complete the proof of this lemma. O

Lemma A.5. Assume QR = X € R"*", where Q € St(n,n) and R is a lower triangular matrix
withR,; ; = 0 forall i < j. If X € St(n,n), then R is a diagonal matrix with R, ; € {—1,+1} for
alli € [n].

Proof. We derive: RRT £ (QX)(QX)T = QXXTQT 2 I, where step @ uses R = QTX; step
@ uses X € St(n,n) and Q € St(n,n). First, given |R(1,:)|| = 1 and R(1,2 : n) = 0, we have
Ry 1 € {—1,+1}. Second, we have |R(2,:)|| = 1 and R(1,:)TR(:,2) = 0, leading to Ry 5 = 0
and Ry o € {—1,+1}. Finally, using similar recursive strategy, we conclude that R is a diagonal
matrix with R, ; € {—1,+1} forall i € [n]. O
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Lemma A.6. We define Tx M £ {Y € R™*" | Ax(Y) =0} and Ax(Y) £ XY + Y'X. For
any G € R"" and X € St(n, k), we have: (G — $XAx(G)) = argminyer,m |[Y — G2

Proof. The conclusion of this lemma can be found in (Absil et al., 2008)). For completeness, we
present a short proof.

Consider the convex problem: Y = argminy |[Y — G||Z, s.£. XTY + Y'X = 0. Introduc-
ing a multiplier A € R"*" for the linear constraints leads to the following Lagrangian function:
LY;A) = |[Y — G| + (XTY + YTX,A). We derive the subsequent first-order optimal-
ity condition: 2(Y — G) + X(A + AT) = 0, and XY + Y'X = 0. Given A is sym-
metric, we have Y = G — XA. Incorporating this result into XY + YTX = 0, we obtain:
XT(G—-XA)+(G—-XA)™X = 0. Given X € St(n,7), wehave XTG - A+ G'X - AT =0,
leading to: A = %(XTG + GTX). Therefore, the optimal solution Y can be computed as
Y=G-XA=G-1iX(XTG+G'X).

O

Lemma A.7. Consider the following problem: minx F,(X) £ F(X) + iy(X), where F(X) is
defined in Equation (). For any X € St(n,r), it holds that dist(0, 0F,(X)) < dist(0, OrF(X)).

Proof. Welet G € 0F(X) and define Ax(G) 2 X'G + GTX.

Recall that the following first-order optimality conditions are equivalent for all X € St(n,r):
(0 € 9F,(X)) < (0 € Ppy m(0F (X))). Therefore, we derive:

dist(0, 9F, (X))

infyeor, x) Y [IF = infyer . w 0r) Y F

L P (G)|F

2 G- iXAx(G)[r

2 G- iX(XTG + GTX)||r

2 @-iXXT)(G - XGTX)|
< |G- XGTX|f,

where step @ uses G € 0F(X); step @ uses Lemma step ® uses the definition of Ax(G);
step @ uses the identity that G — $X(XTG + GTX) = (I - 3XXT)(G - XGTX); step ® uses

the norm inequality and fact that the matrix I — 7XXT only contains eigenvalues that are 5 or 1.

O
Lemma A.8. Assume cos(0) # 0. Any pair of trigonometric functions (cos(6),sin(0)) can be
represented as follows:

_ 1 . _ tan(0)

a) cos(f) = Wit and sin(0) Wit
_ . — tan(6

b) COS(Q) = m, and sm(@) = Pﬁ?iar(ﬁ)@.

Proof. For all values of 6 where cos(f) # 0 the trlgonometnc functions {sin(#), cos(6), tan(9)}

are well-defined. Utilizing the identity sin®(6) + cos?(f) = 1 and tan(f )cos( ) = sin(f), we
e , 2 20\ — .

derive: (tan() - cos())? 4 cos*(8) = 1. Consequently, we find: cos(6) = — 2(9) =. Finally, we

can express sin(f) as sin() = tan(6) - cos(f) = \/%.
O
Lemma A.9. Let A € R and B € R. The minimizer of the following one-dimensional problem:
0 € arg moinh(ﬁ) = Acos(#) + Bsin(0) (15)

will be achieved at 0, where cos(f) = —\/ﬁ, sin(f) = —\/ﬁ, and h(0) = —/ A2 + B2
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Proof. Initially, we consider the special case when cos(f) = 0 or A = 0. Problem reduces to:
0 € arg min h(0) = Bsin(0).

Clearly, we have: sin(f) = \BI cos(f) = 0, and h(f) = —|B|. The conclusion of this lemma
holds.
We now assume that A # 0 and cos(d) # 0 for all §. Using the fact that tan(f) = ::;EZ% and
cos(#)? + sin(#)? = 1, we have the following two cases for cos(#) and sin(f):
=1 i _ _ tan(®)
a) cos(f) = WOk and sin(6) = WiEEI)
N 1 . _ = tan(6)
b) cos(f) = T and sin(6) NreOR
Therefore, Problem (I3) reduces to the following equivalent minimization problem:
7] € arg min +A+tan(0)B
6 +/1+tan2(0)

Using the variable substitution that tan(f) = ¢, we have the following equivalent problem:

. . A +(A+BY)
t € argmin h(t) = T

For any optimal solution ¢, we have the following necessary first-order optimality condition:

+BVIF T (A+BD)-(1+83) V2%
0 € 0h(t) = T

72— (A+Bht
= 0e€exBV1+t?F Vieee

D (A+Bf)t
= BvV1+t Viresl

Therefore, we have: = £ = tan(f). The optimal solution pair [cos(6), sin(6)] for Problem
can be computed as one of the following two cases:

a) cos(f) = \/ﬁ, and sin () = \/ﬁ.

b) cos(f) = ﬁ, and sin(0) = ﬁ.
In view of the original problem 6 = argming h(f) = Acos(f) + Bsin(f), we conclude that
cos() = \/ﬁ, and sin(f) = ﬁ.

O

Lemma A.10. Assume (Et+1)2 < Ey(pt — p'tt) and pt > p'tt, where {Ey, p'}i2, are two
nonnegative sequences. For alli > 1, we have: Y ,° . Eyy1 < E; + 2p

Proof. We define w; 2 pt — p'tt. Welet1 <i < T.
First, for any ¢+ > 1, we have:
) ®
Ywe =Y (pt = ptt) = pt = pT < pl, (16)
where step @ uses p* > 0 for all i.

Second, we obtain:
VEwy
VS (ED)? + (we)?/(2a), Ya >0

\/g-Et+wt\/1/(2a),Va>O. (17)

Here, step @ uses (Fy41)? < Ey(pt — p'™!) and wy £ pt — pt+!; step @ uses the fact that ab <
2a + 5 L b2 for all o > 0; step @ uses the fact that va + b < v/a + Vb for all a,b>0.

EtJrl

IN® IN® |IN©
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Assume 1 — \/g > 0. Telescoping Inequality over ¢t from ¢ to 7', we have:
T
D wiy/1/(20)
T & T
>{> i B} — /51X B}
7{ET+1+Zt i Et+1} f{E +Z Et+1}
=Ery —/SE+(1-/%) T B
@
(e} (e} T—
> -~ VSEA+(1- VT B,

where step @ uses Fpy1 > 0and 1 — \/g > (. This leads to:

;&11:71'1 EtJFl é ( % {\/>E + \/ 2(1 Zt zwt}
g El + 2 Zt:i Wi
@ .
S Ei + 2pz7

step @ uses the fact that (1 — /$)™' - /5 =1land (1 —/5)"" /55 =2 whena = 3;step @

uses Inequalities (T6). Letting ' — oo, we conclude this lemma.

O
Lemma A.11. Assume that [D;]"1 < a(Dy_1 — Dy), where 7,a > 0, and { D;}{2,, is a nonnega-
tive sequence. We have: Dy < O(T~1/7).
Proof. We let k > 1 be any constant. We define h(s) = s~7~!, where 7 > 0.
We consider two cases for 7t £ h(D;)/h(D;_1).

Case (1). ' < k. We define /i(s) £ —L - s77. We derive:

1 g a(Di—1 — Dy) - h(Dy)
2 CL(Dt 1 7D[») K,h(Dt 1)
@ D
< ak [ h(s)ds
< an-(h (Dt 1) = h(Dy))

l®

ar - 2+ ([Di] 77 = [Dea]77),
where step @ uses [D;]"*! < a(D;_1 — D;); step @ uses h(Dt) < Hh(Dt 1); step ® uses the fact

that h(s) is a nonnegative and increasing function that (a—b)h(a) < [;* h b s)ds forall a,b € [0,00);
step @ uses the fact that VA(s) = h(s); step ® uses the deﬁmtlon of h(- ) This leads to:
(D77 = [Dra] ™7 = 55 (18)

Case (2). ' > k. We have:
[Dt]f(ﬂrl) > k- [Dt_l]f(ﬂrl)

([Dt]f(ﬂrl))fﬁ > ,{TLH . ([Dt_l]*(TJFl))TL—H

h(Dt) > K?h(Dt_l) :®>
@
=
= [Dy 7 > wTHL - [Dy o], (19)

where step @ uses the definition of A(-); step @ uses the fact thatif a > b > 0, then a” > b7 for any
exponent 7 = 1 €(0,1). Forany ¢t > 1, we derive:

[De]™" = [Dya] ™7 g (/W‘TH —1)-[Dyq]7
> (k7H — 1) [Do] ™7, (20)
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where step @ uses Inequality (T9); step @ uses 7 > 0 and D;_; < D forall ¢ > 1.
In view of Inequalities and (20), we have:

(D]~ — [Di_y] ™" > min(Z, (5751 — 1) - [Do] 7). Q1)

A ..
=cC

Telescoping Inequality (2I)) over ¢ from 1 to T', we have:
[Dr]™" — [Do]" ™ > T¢.
This leads to:
Dr = ([Df]7)"VT <oV,

B SOLVING THE SUBPROBLEM WHEN £k = 2

This section presents a novel Breakpoint Searching Method (BSM) to find the global optimal solu-
tion of Problem (3) when k& = 2.

Initially, Problem (3) boils down to the following one-dimensional subproblem: ming %HVH%2 +
(V,P) + h(VZ),st.V € {VP', Vil which can be further rewritten as: 6 €
argming Svec(V)TQuec(V) + (V,P) + h(VZ), st. V2 (2 ;Orf((g)) jgggg ), where Q € R**4,
P € R**2, and Z € R?**". Given h(-) is coordinate-wise separable, we have the following equiva-
lent optimization problem:

mein h (cos(0)x + sin(0)y) + a cos() + bsin(#) + ccos®() + d cos(6) sin(f) + esin?(6), (22)

where a = P+ P11, b = P1oFPa1, ¢ = 0.5(Q11 + Qua) T Qua, d = — Q12+ Q13 F Qas + Qaa,
e=0.5(Qa + Q33) F Quz, v = +Z(1,:), s = Z(2,:), p = Z(2,:),u = ¥Z(1,:),x = [r;p] €
R27*1! andy £ [s;u] € R?"¥1,

Our key strategy is to perform a variable substitution to convert Problem (22) into an equivalent
problem that depends on the variable tan() = ¢. The substitution is based on the trigonometric

identities that cos(f) = +1/4/1 + tan®() and sin(#) = + tan(#)/+/1 + tan?(0).

The following lemma provides a characterization of the global optimal solution for Problem (22)).
Lemma B.1. We define F(,3) £ aé + b3 + ¢® + dés + e3% + h (éx + 8y), and w 2 ¢ — e. The
optimal solution 0 to can be computed as: [cos(0),sin(f)] € argminy. 5 F(c,s), s.t.[c,s] €

{[Clasl]?[02782]7[()’1])[0371]}’ where C1 £ L S1 = - C2 £ —1

Jiraor P T e i and
A —t_

59 = \/ﬁ Furthermore, t and t_ are respectively defined as:

£y € argming p(f) £ L 4 SElL 4 p( ), (23)
t_ € argmin; p(t) 2 71%; + w4 h(*ﬁ%g). (24)

Proof. We define w £ ¢ — e. We define F'(¢, 5) £ aé + b3 + & + dés + €52 + h(éx + 3y).

Initially, using sin?(f) = 1 — cos?(6), we obtain the following problem, which is equivalent to
Problem (22):

f € arg ngnacos(ﬁ) + bsin(#) 4 w cos®(A) + d cos(6) sin(0) + e + h(cos(f)x + sin(h)y). (25)

We assume cos(f) # 0. Using Lemma we consider the two cases for (cos(),sin(d)) in
Problem (23).
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— 1 : _ _ tan(d) .
Case a). cos(0) = i)’ and sin(0) = oo Problem (22)) reduces to:
) . a+tan(0)b w—+tan(0)d x+tan(0)y
01 € arg mgm V/1+tan2(6) t 1+tan?(6) T h(\/utan?(a))'

Defining t = tan(f), we have the following equivalent problem:

a+bt + w—+dt + h( x+yt )

by € argmin J55 + T + (U5

Therefore, the optimal solution # can be computed as:

COS(g_A,_) = m, Sin(é.;,.) = \/ﬁﬁ (26)
Case b). cos(f) = \/ﬁw, and sin(9) = \/%. Problem boils down to:

0 . —a—tan(6)b w+tan(6)d —x—tan()y
o€ argn \/1+tan()2 ~ 1+tan(6)? + (\/1+tan(9)2)'

Defining ¢t = tan(@), we have the following equivalent problem:

n . —a—bt wdt —x—yt
t- € argmin A=p + T —|—h(\/1+7ty2).
Therefore, the optimal solution #_ can be computed as:
oo\ 1 s p N —1_
cos(f_) = Wirecat sin(f_) = T (27)

In view of (26) and , when cos(f) # 0, the optimal solution @ for Problem is computed as:
[cos(8),sin(0)] € argmin,, s F(c,s), s.t. [c, s] € {[cos(0),sin(f)], [cos(f_),sin(f_)]}. Taking
into account the case when cos() = 0, the optimal solution ¢ for Problem is computed as:

[cos(0),sin(f)] € arg min F(c,s),
st.[e,s] € {[eos(@ ), sin(8,)], [cos(@_ ), sin(@_)],[0, 1], [0, ~1]}.
Notably, {cos(f),sin(#)} uniquely determines §. Moreover, since the objective function in Problem

(22)) solely depends on {cos(f),sin(6)}, computing the exact values of 6., for (26) and §_ for
is unnecessary.

O

We describe our BSM to solve Problem (23); our approach can be naturally extended to tackle
Problem (24). BSM first identifies all the possible breakpoints / critical points ©, and then picks the
solution that leads to the lowest value as the optimal solution ¢, i.e., ¢ € arg min; p(t), s.t.t € ©.

We assume y; # 0. If this is not true and there exists y; = 0 for some 4, then {x;,y;} can be
removed since it does not affect the minimizer of the problem.

» Finding the Breakpoint Set for h(x) = \||x||o

Since the function h(x) = A||x||o is scale-invariant and symmetric with || & tx||o = ||x||o for all
t > 0, Problem reduces to the following problem:
minp(t) & HE + L+ Mx + tyo- (28)

Given the limiting subdifferential of the £y norm function can be computed as J|t|lop €
{ Tf()}’ ‘=% } (see Appendix , we consider the following two cases. (i) We assume

else.
Xi

v There are

(x + ty); = 0 for some i. Then the solution ¢ can be determined using ¢
2r breakpoints {Xt X2 Xor

T } for this case. (ii)) We now assume (x + ty); # 0 for all .
Then A||x + tyllo = 2rA becomes a constant. Setting the subgradient of p(t) to zero yields:
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= Vp(t) = [b(1 +t2) — (a + bt)t] - VI +12-t° + [d(1 + %) — (w + dt)(2t)] - t°, where
t° = (14 t?)72. Since t° > 0, we obtain: d(1 + #?) — (w + dt)2t = —(b — at) - V1 + ¢2.
Squaring both sides, we obtain the following quartic equation: c,t* + c3t3 + cot? + c1t +co = 0
for some suitable cy4, c3, c2, ¢1 and cg. Solving this equation analytically using Lodovico Ferrari’s
method (WikiContributors), we obtain all its real roots {t1, 2, ...,¢;} with 1 < j < 4. There are
at most 4 breakpoints for this case. Therefore, Problem (28)) contains at most 2r + 4 breakpoints

{Y1 yas ’y2 it .t )
» Finding the Breakpoint Set for (x) 2 Alx1

Since the function h(x) = \|x||; is symmetric, Problem reduces to the following problem:

7 : A _atbt wadt | Alx+tylh
t € arg mtlnp(t) =S metie T oA (29)

Setting the subgradient of p(-) to zero yields: 0 € dp(t) = t°[d(1 + t?) — (w + dt)2t + (b — at) -

VI+ 2]+ 1N V1 + 2 [(sign(x + ty), y) (1 +t2) — [[x + ty]1t], where t° = (1 + ¢*)72. We
consider the following two cases. (i) We assume (x + ty); = 0 for some . Then the solution ¢

can be determined using ¢ = ﬁ There are 2r breakpoints %, ;‘—; x”} for this case. (ii) We
now assume (x + ty); # 0 for all i. We define z = {+— BT R R el SIS

R4 and sort z in non-descending order. Given ¢ # z; for all i in this case, the domain p(t)
can be divided into (4r + 1) non-overlapping intervals: (—o0,2z1), (21, 22), ..., (Z4r, +00). In each
interval, sign(x + ty) = o can be determined. Combining with the fact that > > 0 and ||x +
ty|l = (0,x + ty), the first-order optimality condition reduces to: 0 = [d(1 + t?) — (w + dt)2t +
(b—at) - V1+t2]+ X-V1+2-[{0,y)(1 + t?) — (0,x + ty)t], which can be simplified as:
(at—b)- V1412 —X-v/1+2-[(0,y —tx)] = [d(1+*) — (w + dt)2t]. We square both sides and
then solve the quamc equation. We obtain obtain all its real roots {t1,¢2,...,¢;} with 1 < j < 4.
Therefore, Problem (29) contains at most 27 + (47 + 1) x 4 breakpoints.

» Finding the Breakpoint Set for 1(x) £ I>(x)

Since the function h(x) £ 1>0(x) is scale-invariant with h(tx) = h(x) forall ¢ > 0, Problem
reduces to the following problem:

r : A a+bt w+dt
te argmtmp(t) = et g stxtty = 0. (30)

We define I = {ily; > 0} and J = {i]y; < 0}. Itis not difficult to verity that {z + ty > 0} <
(<t -y e (b £ max(—31) < ¢ < min(—3%) £ ub}. When Ib > ub, we can
directly conclude that the problem has no solution for this case. Now we assume ub > [b and define
P(t) £ min(ub, max(t,1b)). We omit the bound constraint and set the gradient of p(t) to zero,
which yields: 0 = Vp(t) = [b(1 + %) — (a + bt)t] - V1 + 2 - ° + [d(1 + t2) — (w + dt)(2t)] - t°
where ¢° = (1 4 ¢?)72. We obtain all its real roots {f1,%s,...,t;} with 1 < j < 4 after squaring

both sides and solving the quartic equation. Combining with the bound constraints, we conclude that
Problem contains at most (4 + 2) breakpoints { P(t1), P(t2), ..., P(¢;),1b,ub} with 1 < j < 4.

C ADDITIONAL DISCUSSIONS

This section encompasses various discussions, covering topics such as: (i) simple examples for the
optimality hierarchy, (if) computation of the matrix Q, (iif) complexity comparison between OBCD
and full gradient methods, (iv) generalization to multiple row updates, and (v) the subdifferential of
the cardinality function.

C.1 SIMPLE EXAMPLES FOR THE OPTIMALITY HIERARCHY

To demonstrate the strong optimality of BSs-points and the advantages of the proposed method, we
examine the following simple examples of 2 x 2 optimization problems mentioned in the paper:

minyesi(2,2) F(V) 2 |V —A|, with A = (1 9). 31)
minyesi(2,2) F(V) £ [V = B|Z+5[|V|1, withB = (19). (32)
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Figure 2: Geometric Visualizations of Two Examples of 2 x 2 Optimization Problems with Orthog-
onality Constraints with A = (1} % )and B = (19).

Figure [2] shows the geometric visualizations of Problems (3I) and (32) using the relation
ming min(F(VeY), F(VyT)) = minyesi(2,2) F(V). The two objective functions exhibit period-
icity with a period of 27. Within the interval [0, 27), each of them contains one unique BSq-point,
while the two respective examples contain 4 and 8 critical points. Therefore, the optimality condition
of BSs-points might be much stronger than that of critical points.

BS,-points vs. Critical Point: Algorithm Instance Study. We briefly analyze methods that find
critical points of Problem (3T)), and demonstrate how they may lead to suboptimal results for Problem
(3T). We illustrate this with the notable feasible method based on the Cayley transformation (Wen
& Yin, [2013). According to Equation (7) from (Wen & Yin, [2013), the update rule is defined as:
X! = QX' where Q = [(Io + 2A) "' (I, — ZA)]. Here, 7 € R, and Q € R?*? is a suitable
skew-symmetric matrix. Lemma@ shows that the matrix QQ consistently functions as a rotation
matrix. Consequently, if X° is initialized as a rotation matrix, the resulting solution X**! will
remain confined to this rotation matrix for all ¢.

C.2 COMPUTING THE MATRIX Q

Computing the matrix Q € RF**** 45 in (8) can be a challenging task because it involves the matrix
H € R™>™"  However, in practice, H often has some special structure that enables fast matrix
computation. For example, H might take a diagonal matrix that is equal to LI,,, for some L > 0
or has a Kronecker structure where H = H; ® Hy for some H; € R"*" and Hy € R™*™. The
lemmas provided below demonstrate how to compute the matrix Q.

Lemma C.1. Assume (8) is used 1o find Q. (a) If H = Hy ® Hs, we have: Q = Q1 ® Qq,
where Q; = ZH,Z" € R*** and Q, = UTH,Uz € R¥** (b)) If H = LI,,, we have Q =
(LZZT) ® 1.

Proof. Recall that for any matrices A, B, C, D of suitable dimensions, we have the following equal-
ity: (A®B)(C®D) =(AC) ® (BD).

(a) IfH = H;®H,, we derive: Q £ (ZT@Us)TH(ZT®Us) = (Z2"0Us)T(H10H,)(ZT®Us) =
(Z"T®Up)"[(H1Z7) ® (HaUg)] = (ZH1Z") ® (UTH,Uz) = Q1 ® Qo.

b)IfH = LI, wehave: Q £ (Z" @ Ux)TH(ZT ® Uz) = L(ZT ® Up)"(Z"T ® Ug) =
L(ZZ") @ 1;.

R

Lemma C.2. Assume (9) is used to find Q. (a) If H = Hy @ Ha, we have Q = || Q1 lsp - [|Q2]|sp -
where Q1 and Qg are defined in Lemma (b) IfH = L1,,,, we have Q = L||Z||Z, - 1.
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Proof. (a) Using the results in Claim (a) of Lemma we have: (Z" @ Ug)TH(Z" @ Us)
Ql & Q2 j HQlep : ||Q2Hsp L

(b) Using the results in Claim (b) of Lemma|C.1} we have: (ZT®Uz)TH(Z"®@Uy) = LZZT®1,
L||z|3, - L.

PN

C.3 COMPLEXITY COMPARISON BETWEEN OBCD AND FULL GRADIENT METHODS

We present a computational complexity comparison with full gradient methods using the linear
eigenvalue problem: minx F(X) £ (X, CX), s.t. XTX = I, where C € R"*" is given.

We first examine full gradient methods such as the Riemannian gradient method (Jiang & Dail |2015}
Liu et al., 2016). The computation of the Riemannian gradient V4 F(X) = CX — X[CX]'X
requires O(n*r) time, while the retraction step using SVD, QR, or polar decomposition demands
O(nr?). Consequently, the overall complexity for Riemannian gradient method is N; x O(n?r),
where N is the number of iterations required for convergence.

We now consider the proposed OBCD method where the matrix Q is chosen to be a diagonal matrix
as in Equality (9). (i) We adopt an incremental update strategy for computing the Euclidean gradient
VF(X) = CX, maintaining the relationship Y = CX! for all t. The initialization Y° = CX°
occurs only once. When X' is updated via a k-row change, resulting in X!t = X* + Ug(V —
1)U X?, we efficiently reconstruct CX!*! by updating Y!*! = Y! + CUg(V — I)UI X! in
O(nr) time. (i) Computing the matrix P as shown in (3) involves matrix multiplication between
matrices [V f(X!)]s. € R**" and [[X!]s.]T € R"**, which can be done in O(rk?). (iii) Solving
the subproblem using small-size SVD takes O(k3) time. Thus, the total complexity for OBCD is
Ny x O(nr + rk? + k?), with Ny denoting the number of OBCD iterations.

C.4 GENERALIZATION TO MULTIPLE ROW UPDATES

The proposed OBCD algorithm can be generalized to multiple row updates scheme.
Assume that n is an even number, and k£ = 2. As mentioned in Lemma[2.3] when (9) is used to find
Q. the subproblem V* € arg minvy cgy(x,x) K£(V; X*, B) in Algorithm [1{reduces to:

. t T t
i (VL (VXX ez) + h(VUX). (33)

One can independently solve (n/2) subproblems, each formulated as follows:
minvESt(Q’Q) <V7 (vf(Xt)[Xt]T)BB> + h(VUBXt) with B = [1, 2]
minvyesy(2,2)(V, (VF(X)[X])zz) + A(VU:X") with B = [3,4].

minyese(2,2)(V, (VX)X )es) + H(VUX") with B = [n — 1,n].
This approach, known as the Jacobi update in the literature, allows for the parallel update of n rows
of the matrix X.

Notably, one can consider & = |B| > 2 when h(-) = 0, and the associated subproblems can be
solved using SVD.

C.5 LIMITING SUBDIFFERENTIAL OF THE CARDINALITY FUNCTION

We demonstrate how to calculate the limiting subdifferential of the cardinality function h(X) =

[IX]lo. Given that h(X) = ||X]|o is coordinate-wise separable, we focus only on the scalar function
h(z) = |z|o, where [z]o ={ I &o " }-

else.

The Fréchet subdifferential of the function h(z) = |z|o at z € dom(h) is defined as dh(zx) 2

{€ € R :lim, ,, inf,,, MEZREEEI > 0} while the limiting subdifferential of h(x) at z €
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dom(h) is denoted as dh(x) 2 {€ € R : Jat — z, h(zt) — h(x), &' € dh(z?) — &, Vt}. We con-
sider the following two cases. (i) x # 0. We have: 3h(a:) ={¢ e R:lim,_,,inf, 4, 7<é’_z;‘z> >

0} = {0}. (i) = 0. We have: Oh(z) = {€ € R : lim, , inf., Eo-E20 > 0} = {c € R
lim, . inf, ., 1=es) > 0} =R.

2]

Xii =% Yforalli € [n] and j € [r].

else.

We therefore conclude that [0]/X]|0):,; € { Hf(’)},

D PROOF FOR SECTION 2]

D.1 PROOF FOR LEMMA [2.1]

Proof. Part (a). Forany V € R*** and B € {B,}°" , we have:

[XF)TXT - XX

X+ Us(V - TL)UIX]T[X + U (V - I,)UIX] - XTX

= X"Up(V-T,)UX + [Us(V = L) UIX]"X + [Us(V — 1)UL X]T[Us(V - I;,) U X]
XTUs (V=T + V' — L) + (V-L) U Us(V - )| UL X

£ XU [(V-T,+V —L) + (V-T,)T(V-1,)] UIX
= X'Upg(V-L+V -L+V' V-V -V 4+I,)UIX
= X'Up(-I,+ VTV)UIX

2 X"Uu,-0-UTX

= 0,

where step @ uses X+ = X + U (V — I, )UI X; step @ uses Ul U = I;,; step @ uses VIV = I.
Part (b). Obvious.
O

D.2 PROOF OF LEMMA [2.2]

Proof. We define X+ £ X + Up(V —I,)UIX, Q£ (Z"® Us)"H(Z" ® Ug), and Z = U X.

Part (a). We derive the following results:

@
IX* =Xl = Us(V-1)Z|%
2 vec(Ug(V — I;)Z) " Hvec(Us(V — 1;)Z)
2 vee(V—1,)T(Z2T @ Us)TH(ZT @ Ug)vec(V — I)
@
= V- IkH?ZT®UB)TH(ZT®UB)

e

IV = Lill,

where step @ uses Xt £ X + Ux(V — I,)Z; step @ uses ||X||% = vec(X) Hvec(X); step @
uses (ZT ® R)vec(U) = vec(RUZ) for all R, Z, and U of suitable dimensions; step @ uses
X3 = vec(X)THvec(X) again; step ® uses the definition of Q.

Part (b). We derive the following equalities:

]
IX*=X[lf = [Us(V—-L)Z|
@
= [(V-T)Z|?
= ((V-1)7(V-1)),227)
& oL, - V,ZZ") + (V-VT,ZZ").
L oL, - V,ZZ") +o0.
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where step @ uses X+ £ X + Ug(V — I;)Z; step @ uses the fact that [|[Us V(|2 = || V|2 for any
V e Rkxk, step @ uses

(V-I)"(V-IL) =L -V - V4, =2, - V) + (V-VT);
step @ uses the fact that (V,ZZ") = (VT (ZZ")T) = (VT ,ZZ") which holds true as the matrix
Z7" is symmetric.

Part (c). We have:

IXT—X[E = [Us(V-TI)UiX|}
[©]
< UsllZ, - (V= T)UL X2
@
< Ul - IV = LellE - U2, - 1X12,
&)
= |V I}
@
= 2(Ik—V,Ik>7

where step @ and step @ uses the norm inequality that ||[AX|/r < ||Allf - ||X]|sp for any A and
X; step ® uses [|Usllsp = ||UT||Sp = | X]|sp = 1 for any X € St(n,r); step @ uses the following
equalities for any V € St(k,

IV - L2 = V]2 + HIkHF ~ 2T V) = T2+ TR - 20T V) = 20T, T - V),

D.3 PROOF OF LEMMA [2.3]
Proof. We define C(V; X", B) £ J||[V — Li||g 01 + A(VZ) + (V, [V f(X')(X")T]za) + é where
Z 2 UlX! and é = h(UL.X?) + f(X) — (I, [Vf(X*)(X?)T]zs) is a constant.

Part (a). Using the definition of C(V; X*, B), we have the following equalities for all V' € St(k, k):
K(V; X! B)

2 G 1V - Tl yar, + (VL IVIXD) X Tee) + h(VE)
= G MV Tl SV - TR (VL VAKX e + A(VE)
S G4 VIR — (V.mat(Quee(LL))) + AILlIZ + ol I = V) + (V, [VAX)(X) Tss) + (V)

[|®

é+ VI + (V. [VF(X)(X') ]ea — mat(Quec(Iy)) — aly) + h(VZ) + 5| L[|,
ip

where step @ uses Claim (c) of Lemmanthat 2|V — I||2 = aly, Iy — V); step @ uses the
definition of P.

Part (b). We consider the case that Q is chosen to be a diagonal matrix that Q = ¢Iy, where ¢
is defined in Equation (@) Using V € St(k, k), the term %HVHQQ simplifies to a constant with

31 VI = $k. We can deduce from (3 '

A
V'€ arg Verglﬁl(r; k)P(V) £ (V,P) + h(X). (34)

In particular, when h(X) = 0, Problem (34] . ) becomes the nearest orthogonality matrix problem and
can be solved analytically, yielding a closed-form solution that:

Ve V - (-P)[Z =Pm(-P) = ~Py(P) = -UV".
argve%n(%k)zll (—P)lIF m(—P) m(P)

Here, P = UDiag(s) VT is the singular value decomposition of P with U,V & St(k, k), s € R,
ands > 0.

Notably, the multiplier for the orthogonality constraint VTV = I, can be computed as: A =

B ) . ®
—pTvt 2 [UDlag( YVTT. [-UVT] = VDiag(s )UTUVT VDiag(s)V' = 0, where step
® uses P = UDiag(s)VT and V! = —UVT; step @ uses UTU = I;; step ® uses s > 0.

O
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D.4 PROOF OF LEMMA [2.3]

Proof. Any 2 x 2 matrix takes the form V. = (¢ 2) The orthogonality constraint implies that
V € St(2,2) meets the following three equations: 1 = a? + b2, 1 = ¢® + d?, 0 = ac + bd.
Without loss of generality, we let ¢ = sin(6) and d = cos(#) with § € R. Then we obtain either (i)
a = cos(#),b = —sin(0) or (if) a = — cos(d), b = sin(f). Therefore, we have the following Givens
rotation matrix V}°* and Jacobi reflection matrix V(rff:

rot & |cos(f) —sin(6) rof & |—cos(f) sin(6)
Vo© = {sin(&) cos(f) ] A { sin(f)  cos(9)

Note that for any a,b,c,d € R, we have: det( 2 ) = ad — be. Therefore, we obtain: det(Vj°') =
cos?(6) + sin?(#) = 1 and det (V) = — cos?() — sin*(#) = —1 for any 6§ € R.

O
E PROOF FOR SECTION[3]

function [Q,R] = JacobiGivensQR (X) 1
n = size(X,1); Q = eye(n); R = X; 2
for j=1:n 3
for i=n:-1:(j+1) 4

B = [i-1;i]; V = Givens(R(i-1,3),R(i,3)); 5
R(B,:) = V' *R(B,:); Q(:,B) = Q(:,B)*V; 6

if (i==7J+1 && R (], J)<0) 7
v=1[-120; 0-11; $ or V= [-1 0; 0 17]; 8

R(B,:) = V' *R(B,:); Q(:,B) = Q(:,B)*V; 9
end 10

end 11
end 12
if (R(n,n)<0) 13
V = [1 0;0 -1]; R(B,:) = V'xR(B,:); Q(:,B) = Q(:,B)x*V; 14
end 15
16

function V = Givens(a,b) 17
% Find a Givens rotation that V’x*[a;b] = [r;0] 18
if (b==0) 19
@ = 1g 8 = 0f 20
else 21
if (abs(b) > abs(a)) 22

tau = -a/b; s = 1/sqgrt(l+tau”2); c = sxtau; 23
else 24
tau = -b/a; ¢ = 1/sqgrt(l+tau”2); s = cxtau; 25
end 26
end 27
V = [c s;-s c]; 28

Listing 1: Matlab implementation for our Jacobi-Givens-QR algorithm.

E.1 PROOF OF THEOREM [3.1]

Proof. Part (a). First, recall the classical Givens-QR algorithm, which is detailed in Section 5.2.5
of (Golub & Van Loan, [2013)). This algorithm can decompose any matrix X € R™*" (not neces-
sarily orthogonal) into the form X = QR, where Q is an orthogonal matrix (Q € St(n,n)) and
R is a lower triangular matrix with R;; = 0 for all i < j, achieved through C2 = @ Givens
rotation steps.

Combining the result from Lemma[A.5] we can conclude that classical Givens-QR algorithm can
decompose any orthogonal matrix into the form X = QR, where Q € St(n,n) and R is diagonal
matrix with R, ; € {—1,+1} forall i € [n].
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We introduce a modification to the Givens-QR algorithm, resulting in our Jacobi-Givens-QR al-
gorithm as presented in Listing This algorithm can decompose any matrix X € St(n, n) into the
form X = QR, where Q = X and R = I,,, using a sequence of C’fL Givens rotation or Jacobi
reflection steps.

Please take note of the following four important points in Listing

a) When we remove Lines 7-10 and Lines 13-15 from Listing|[T} it essentially reverts to the clas-
sical Givens-QR algorithm. Givens-QR operates by selecting an appropriate Givens rotation

matrix V = [ “3(® 501 it a suitable rotation angle 6 to zero-out the matrix element
— sin(0) cos(0)

R,;; systematically from left to right (j = 1 — n) and bottom to top (i = n — (j + 1)) within
every pair of neighboring columns.

b) Lines 7-10 and Lines 13-15 can be viewed as correction steps to ensure that the entries R ; =
1forall j =n.

¢) Line 7-10 is executed for (n — 2) times. In Line 7-10, when Jacobi-Givens-QR detects a
negative entry R;_; ;1 withi = j + 1, it applies a rotation matrix V = ( Bl _01 ) to the two
rows B = [i — 1, ] to ensure thaRi,Li,l =1.

d) Line 13-15 is executed only once when det(X) = —1. In such cases, we have Rz = (§ %)
and det(Rgg) = —1, where B = [n — 1, n] is the two indices for the final rotation or reflection
step. To ensure that the resulting Rgg is an identify matrix, Jacobi-Givens-QR employs a
reflection matrix V = ( °,), leading to VT Rz = I.

Therefore, we establish the conclusion that any orthogonal matrix X € St(n,n) can be expressed
as D = Wey .. WoWi, where W; = Ug, ViUgi + UB§U£¢, and V; € St(2,2) is a suitable matrix
associated with B;. Furthermore, if Vi, V; = I, we have Vbi, W; =1, leading to D = I,,. This
concludes the proof of the first part of this theorem.

Part (b). For any given X € St(n,7) and X° € St(n,r), we let:
D = Psy(nn) (XX, (35)
where Psg(,n) (Y) denotes the nearest orthogonality matrix to the given matrix Y.

Assume that the matrix X[X°]T has the following singular value decomposition:

X(X%)T = UDiag(z)V', z € {0,1}", U € St(n,n), V € St(n,n).
Therefore, we have the following equalities:
Diag(z) = UTX[X™V. (36)
D = UVT eStn,n). (37)
Furthermore, we derive the following results:
z € {0,1}"

Diag(z)" = Diag(z)Diag(z)"

U[Diag(z)" — Diag(z)Diag(z)'JUTX =0

UVTXXTU - UTX(X)TVVTX’XTUJU™X =0

UV XXTUU™X - UUX(X)TVVTX’XTUUTX =0
UV'X’-X=0

= D-X'-X=0,

where step @ uses ; step@uses UUT =1, VVT =1, X"X =I,, and [X"]TX" = I,; step
® uses . We conclude that, for any given X € St(n,r) and X° € St(n,r), we can always find
a matrix D € St(n, n) such that DX = X.

oo | Jo | 4

Since the matrix D € St(n,n) can be represented as D = Wegi..WoW,, where W; =
Upg, VZ-U-Z; + U35U£¢ for some suitable V; € St(2,2) (as established in the first part of this

? Alternatively, one can use the reflection matrix V £ (! 9) instead of the rotation matrix V = (' )

to ensure that R;—1 ;-1 = 1.
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theorem), we can conclude that any matrix X € St(n,r) can be expressed as X = DX? =
Wcﬁ...WgVVlXO.

E.2 PROOF FOR THEOREM[3.6]

Proof. We use X, X, and X to denote a global optimal point, a BSy-point, and a critical point of
Problem (TJ), respectively.

Setting the Riemannian subgradient of K(V;X,B) w.rt. V to zero, we have 0 € dpK(V; X B)
G(V) © VI[G(V)]TV, where G(V) = a(V — I,) + Ul [mat(Hvec(Xt — X)) + Vf(X) +
On(XH)XTUg and X+ = X + Ug(V — I,)UTX. Letting V = I, we have the following
necessary but not sufficient condition for any BSy-point:

ve e (8,17, 0= UT(GXT — XGT)U,, with G € Vf(X) + 0n(X). (38)
Part (a). We now show that {critical points X} D {BSj-points X} for all k > 2. We let G €
Vf(X) + dh(X). Using Lemma we have:

0,,=GX" - XGT (0, -X)=(GXT -XG"X
0,,=G-XG'X, (39)
X".0,,=X"(G-XG'X)
0.,=X'G-G'X
0., =X(X'G - GTX)X"
0. = XXTGX - XGTX X",
£GT £G

where steps @ and @ use XTX = I,; step ® uses Equality that G = XGTX. We conclude
that the necessary condition in Equation (38)) is equivalent to the optimality condition of critical
points.

Jo | o | {e |

Part (b). We now show that {BS,-points X} 2 {global optimal points X}. We define X5 (V) £
X+Us(V-I) U X, and K(V; X, B) £ f(X) +(V ~Li, [V A(X)(X) Te) + 5V = Til[§ar, +

h(UZ.X) + h(VULX). We let V ;) € St(2,2) and B; € {l’)’l‘,~lcz”kl1 We derive:

K(Iy; X, B;), VB;
2 FX) =hX)+ f(X)
2 h(X)+ f(X),¥X € St(n,r)
£ WX 1 Us (Vi - LULX) + f(X 1 Us (Vi) - L)UL X), ¥V 0, VB,
= WX, (Vi) + (X5, (Vi) ¥V ), ¥Bi

lle

K(V i) X, Bi), YV i, VB;

= minVeSt(2,2) K(V; Xa B;), VB, (40)
where step @ uses the definition of K(V;X,B) £ f(X) + (V — I, [V f(X)(X) zs) + 3|V —
L)l §sar, + h(UI.X) + (VU] X); step @ uses the definition of X; step ® uses the basis repre-

sentation of orthogonal matrices when k = 2, as shown in Theorem 3.1} step @ uses the definition
of X3 (V); step ® uses the same strategy as in deriving Inequality . This leads to:

I, carg min  K(V;X,B;), VB;.
Vest(2,2)

The inclusion above implies that {BS,-points X} D {global optimal points X}.
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Part (c). We now show that { BSy-points X} D {BSk.1-points X} It is evident that the subproblem
of finding BSi-points is encompassed within that of finding BSy;1-points stationary point. Thus,
we conclude that the optimality of the latter is stronger.

Part (d). The inclusion {critical points X} C {BSj-points X} may not always hold true. This
can be illustrated through simple examples of 2 X 2 optimization problems under orthogonality
constraints (see Appendix Section [C.T|for more details). Lastly, it is also evident that the inclusions

{BSz-points X} C {global optimal points X} and {BS\-points X} C {BSkt1-points X} may
not always hold true.

O

F PROOF FOR SECTION [4]

F.1 PROOF FOR THEOREM [4.2]

Proof. We define K(V; X', B) £ 1|V —Li[1g a1, + M(VZ)+(V, [V f(X")(X")T]es) 4 ¢ where
Z = UIX*and é = h(ULX?) + f(X') — (I, [VF(XH)(X*)T]gz) is a constant.

We define ¢ £ 2 - (F(X%) — F(X>)).

Part (a). First, we have the following equalities:

h(XHH1) — i(X') £ h(UpVIUTX? + Upe ULX?) — R(UsUF X! + Upe UL XY)
h(Us VU X?) + h(Up. UL X?) — h(UzUIX?) — h(Ug UL XY)
h

(VIUI Xt — h(UTXY), 41)

e

lle

where step @ uses X! = Uy VUIX? + Uz UL.X* as in (4) and I, = UgU! + Uz UL; step @
and step ® use the coordinate-wise separable structure of A(-).

Second, since V! € arg minyesq k) K(V; X', B), it follows that £(V*; X, B) < K(I;; X', B).
This further leads to:

MVAUTX) 4 2V TR, + (V! L (VX (X)) < A(UIXY). @)
Third, we denote X**! = X!(V*) and derive:

)
FXE) — (XY £ (V) = XL VAXD) + LV — X
£ (Us(V! = L)UIX, V(X)) + 3V = L}

® _

< (V=T VX)X Tee) + 5V - LG, 43)
where step @ uses Inequality ; step @ uses Claim (a) of Lemma step @ uses Q = Q.
Adding (#1)), @#2), and together, we obtain the following sufficient decrease condition:

_ @
FX'™ = F(X') < =4IV = L[]} < 51X = X3, (44)
where step @ uses Claim (c¢) of Lemma|2.2

Part (b). We assume that B is selected from {BZ}CE1 randomly and uniformly.

Taking the expectation for Inequality (#4), we obtain a lower bound on the expected progress made
by each iteration:

Ee [F(XTH)] = F(X) < —Eee[$[|V* — Li|].
Telescoping the inequality above over t = 0, 1, ..., T, we have:

Eer[3 31 [V = Li|3] < Eer[F(XO) — F(XTH)] < Eer[F(X0) — F(X™)],

30



Under review as a conference paper at ICLR 2026

where X°° denotes the limit point of Algorithm As aresult, there exists an index £ with0 < ¢ < T'
such that

Eer[|V' — Tull2) < = [F(X0) - F(X*)] = 757 (45)

Furthermore, for any ¢, V' is the optimal solution of the following minimization problem at X':
V! € argminy K(V; X!, B?). Since V* is a random output matrix that depends on the observed
realization of the random variable B?, we directly obtain the following equality:

& 3% dist(Iy, arg miny K(V; X, B;)? = Eee[[V! — T, 2], (46)

Combining {@3) and (@6), we conclude that there exists an index ¢ with ¢ € [0, 7] such that the
associated solution X! qualifies as an e-BSj-point of Problem , provided that 7' is sufficiently

large such that TLH < €. We conclude that OBCD finds an e-BSy-point of Problem in at most

T iterations deterministically, where T > (S —17.
O

F.2 PROOF OF LEMMA [4.4]

Proof. For notation simplicity, we define: ||0F(X)[|r = infycorx) [| Y[ = dist(0, 0F(X)).
We define A © B as the element-wise subtraction between sets A and B.

We let H L € Oh(XF1), and define:

Qo
0
Qs

Ugt [Vf(Xt-H) + ]HH_l} [Xt+1]TUBt c kak, (47)
UL [VA(XF) + H[X U € RPF, 48)
UL[VA(X") = VAXFH] X Uge € RFE (49)

> 1> >

Part (a). First, using the optimality of V' for the subproblem, we have:

0pp = G VIGTV!
where G = mat((Q + aly)vec(V! — I,)) + UL [V f(X?) + HF (XY U

éTl é’r2

Using the relation that G = T + Y, we obtain the following results from the above equality:

Ok = (Y1 +T2) — V(L1 + To)TV?
2 0 =T+ D +Q— V(T + Q) + Q) TV
= Ql = Vt(Tl + Ql + Qg)Tvt — Tl — QQ, (50)
where step @ uses Yo = 1 + Qo.

Second, since both B! and B! are randomly and dependently selected from {Bz}czl1 with replace-
ment, each with an equal probability of cik’ for any A € R™*", we have:

2 = Eoe|UT, AU |2

~ Ck ~
EBHI[HU;HAUBf“ I = Ciﬁ 2t ||UgiAUBi
Using the definition &' £ (B!, B2, ..., B?), we have:

Eeett [|USir1 AUger [|f = Eee UL AUse |2 (51)
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Third, we derive the following results:

E£t+1 [diSt(O, 8MIC(Ik, )(tJrl7 Bt+1))} = E§t+l [H(?MIC(I]C, XtJrl, Bt+1) HF}

®
= Eeen [|[UL {0F (XX © X (X T} Ui [|]

®

= Ee[|ULA{OF (X [XHT o XFOF (X T} Upe [|f]

® T

< Eet[[[Q0 — Q9 [|F]

®

< 2R [0 — Q] + Eee |21 — Qf [IF]

2 2Ee: [[|Q0 — ] + Eee [ VH(T1 + Q1 + Q2) TV = Ty — Qo — Q] ||f]

[l®

2E¢: (|| — Qufle) + Eee[[ VTV = T[] + Eee [ VIQTVE — O [Ie]
HE[[[VIQI V! = Qs ] (52)
where step @ uses the definition of dK(V; Xt B!F1) at the point V = Ij; step @ uses Equality

with A = 9F (X!T1)(X*)T o XH1(QF (X)) T; step @ uses the definition of Qg in Equa-
tion (@7); step @ uses LemmalA.2} step ® uses Equality (50); step ® uses the triangle inequality.

We now establish individual bounds for each term in Inequality . For the first term 2[E¢: [||Q —
Q1]/¢] in (52), we have:

2Ee: [[|€20 — €2 ][]

< 2B [UL[V (XY + HHXH — X Use|le]

2 2B [[UL[VAXH) + HA[Ug(V? — 1) Use X Use||e]

@ _

< 2y 4 1p)Eee [V — L[|, (53)

where step @ uses X! = X! + Up(V* — I}, )UI X! step @ uses the inequality || XY |r <
[IX|[e|IY]|sp for all X and Y repeatedly, and the fact that VX, ||V f(X)|lsp < I7, |OR(X)]lsp < In.

For the second term E¢: [|[ VIYT V! — T4 ||¢] in (52), we have::
Ee:[[ VYTV = T4 |e]

< Ee[[VOXTV ] + Eee[[ X1 []

>~ £t 1 F £t 1||F

)]

< 2B ]| T ]

E e [|mat((Q + aLy)vee(V' — 1,))|¢]

< 2Q+ aTifsp - Ee IV — T ]

@ _

< 2(Lg+a) Eaf|VE—1L)|] (54)

where step @ uses the triangle inequality; step @ uses the inequality || XY || < || X||¢||'Y ||sp for all
X and Y; step @ uses the definition of 2 in (@8)); step @ uses the fact that [|Q||sp < Ly.

For the third term E¢: [|[VIQ] V! — QT||¢] in (52), we have:
Ee [ V'Q{ V' — Q7 [¢]

L B [[VIQI (V! — L) + (V! — L)Q] ||e]

S B[ IV — T 6]

S e[|V AXH) + HH g | (VE = o))

< 2y + (V! — L] (55)

where step @ uses the fact that —V*QT T, + V*QT = 0; step @ uses the norm inequality; step ® uses
the fact that |1 [|sp = ||UL [V (X)) + B X Ut ||sp < [|Vf (X)) + H |, which can
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be derived using the norm inequality; step @ uses the fact that VX, |V f(X)|lsp < I, [[OM(X)|sp <
I

For the fourth term E¢: [||[VEQI VT — Qs]¢] in (52), we have:
3 2

Ee [ VIQ3V* — Qale]

) _ _

< Ee[|VQIVY|e] + E[Q]f]

< 2B [|9I

2 9 [|UL[VA(X!) — V(X)X Upe |
2 [IVF(XE) — VAXF)|¢]

2 2LgEa X" — X g]

ll®

2L Eee [V — T[], (56)

where step @ uses the triangle inequality; step @ uses the norm inequality; step @ uses the definition
of Qo = UL [V f(X') — Vf(XH)][X]TUg: in ; step @ uses the norm inequality; step ® uses
the fact that V f(X) is L ¢-Lipschitz continuous; step ® uses Claim (c) of Lemma

In view of (33), (34), (33), (36), and (32), we have:
Eges [[[OmK (T X B[] < (e1 + 2 + 3 + ca) Bee [ V! = i ],

A

=

where ¢; = Q(Zf + lh), Co = Q(Lf + OL), c3 = 2(lf + lh), and ¢4 = 2Lf.

Part (b). we show that E¢« [dist(0, Oy F(XY))] < v - Ege[dist(0, Op K (1x; XY, BY))], where v £
(Ck/CF=2)1/2 For all D! £ 9F(X4)[X!T © X![0F(X)]T, we obtain:

IDYF = D2 zi(DE)?+ 32,30, (DE)?
2 Y Y, L(D0)?
£ G T ULD U, I
L oz CEn[ULD ]
& 2R, [||UT, D U |3, (57)

where step @ uses the fact that D!, = 0 for all i € [n]; step @ uses Claim (@) of this lemma with
k
D!, = 0 forall i € [n]; step ® uses Ege[[|[UT, WU 2] = & Z?:"l U5 WU3,

chosen from {ZS’Z}CE1 randomly and uniformly; @ uses the definition of y. We further derive:

Z as B! are

Eee[[omF(X)¢

l0F(X") & X [OF(X)]"X" ¢

2 oF(XY[XYTX! & XHOF (X)X ||r
< JOR(XHXYT & XHF (XY
© B [JUT{OF (X)X © X [OF(XY)] T} st ]

lle

YOME(Tx; X, BY) | (58)

where step @ uses the definition of I F(X?)); step @ uses [X!]TX? = Ij; step @ uses the inequal-
ity that || AX |2 < ||A||2 for all X € St(n,r); step @ uses Equality ; step ® uses the definition
of I K (Iy; X!, BY).

O
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F.3 PROOF OF THEOREM [4.6]
Proof. We derive the following results:
Eer [dist?(0, 0p F(XTH))] 2 42 Eeri [dist?(0, O K (T XTH BTH))]

767 Eer[[VT = 1]

INe IN®

2 42 &
Y ¢ TTr1
where step @ uses Lemma.4[b); step @ uses Lemmad.4{a); step @ uses Inequality (@3).

Therefore, we conclude that there exists an index ¢ with ¢ € [0, T] such that the associated solu-
tion X! qualifies as an e-critical point of Problem (1)) satisfying Ii?,gz[dist2 (0, 0 F (X)) < e,

. . . 2 2
provided that 7' is sufficiently large to ensure 7= - ¢~ - 757 < €.

O

F.4 PROOF OF THEOREM (4.9
Proof. Tnitially, given F,(X) £ F(X) + 1t,(X) is a KL function by our assumption, we can
conclude, from Proposition @8] that:

< dist(0, OF,(X")). (59)

1
‘P,(Fl«(xt)fFL(Xoo))

Since (-) is a concave desingularization function, we have: ¢(b) + (a — b)¢’(a) < ¢(a). Applying
the inequality above with @ = F(X!) — F(X*) and b = F(X!*1) — F(X°°), we have:

(F(X') = P(X*))g! (F(X') = F(X%)) < p(F(X') - F(X*)) —p(F(X'™) — F(X*)). (60)

1>

Pt

Part (a). We derive the following inequalities:

(Boi)? B[V —T2] € 2. Ee[F(X!) — F(XH)
S 2Rl - oY) o)
S 2Rl — o) - dist(0,0F,(X"))]
S 2 Bt - o) JOmEXY)]]
S 2 El(p! — o)y 0T XY, B ]
< ZiEaa(¢t - eV - Lie]
2 w-w — " By,

=K

where step @ uses the sufficient decrease condition as shown in Theorem step @ uses Inequality

(60); step ® uses Inequality (39); step @ uses Lemma[A7} step ® uses Inequality (58); step ® uses
Lemma step @ uses the definitions of {x, ¢t, E;}.

Part (b). Applying Lemma with pt = k! with p > p'*+1, for all i > 1, we have:
Z(;iz Ej+1 S Ez + 2])1

Using the definition of Dy £ Z]oit E; 14 and letting ¢ = ¢, we obtain:
t @ ¢ 2 1 8 1
D, < Ey + 2p' = Ey + 269" < Ey + 260" < 2VE + 259",
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where step @ uses pt = Kp'; step @ uses ¢! < @l step @ uses By £ Eqr [[|[VITL — L[] <
Eeer [[ VI [e]+ [Tk lle < VE+VE. We conclude that Dy £ 3772, E; 14 is always upper-bounded.

Using the fact that [|X!*1 — X!||2 < ||V — I,||Z as shown in Lemma [2.2]c), we conclude that
Yoo Ee[[| X! — X||] is also always upper-bounded.

O

F.5 PROOF OF THEOREM |4.10)
Proof. We define ! £ (s?), where s & F(X?) — F(X>).
We define By = Ee [|[|[VP — Ti[|e), and Dy = 3272 By

First, we have:

) . .
IXT = X=[p < 371X =X e

@ _ .

< Xir V7 - Lifle

®

= Z;‘;TEj+1

g DT7

where step @ uses the triangle inequality; step @ uses || X!T! — X*||2 < |[V? — I;||2, as shown in
Lemma c); step @ uses the definition of F;1; step @ uses the definition of Dp. Therefore, it
suffices to establish the convergence rate of Dr.

Second, we obtain the following results:

|dist(0, OF,(X")) ¢

@’ (s*)
[OMmF (X*) |l

Ee: | 0m K (L X', B) e
Ee o V!~ — Lie

FYQSEta

where step @ uses uses Proposition [4.8] that dist(0, 0F, (X'))¢/(F,(X') — F,(X*)) > 1; step @
uses Lemmal[A.7} step ® uses Inequality (58); step @ uses the Riemannian subgradient lower bound
for the iterates gap in Lemma step ® uses the definition of By £ Eg—1 [|[VI™! — I,|2].

IN® IN® IN® IN®e |Ne

Third, using the definition of D;, we derive:

D, £ Ezoit Ei+1
o
< B+ 2rp
@ tlo 1
= E,+2kc-{[s"7} @
l—0o
g Et—FQHC'{C(l—O')' Lp/(lst)}T
l—0o
£ Ei+2kc-{c(1-0) v¢E} @
® P
= Di 1 —Di+2kc-{c(1 —0) -vp(Di—1 — D)} o
1-0c 1-0c
= Dt—l — Dt + 2kc - [C(l — O')"}/d)] g '{Dt—l — Dt} g (61)
L5

where step @ uses Zit E; 11 < Ey+2k¢pt, as shown in Theoremb); step @ uses the definitions

that ¢f = gagst), and ¢(s) = cs'77; step ® uses ¢'(s) = ¢(1 — o) - [s] 77, leading to [s!]” =
e(l—o)- 77y step @ uses Inequality ; step ® uses the fact that £y = D;_1 — D;.
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We consider three cases for o € [0, 1).
Part (a). We consider o = 0. We have from Inequality (61):
1
0 < —Zim ok

e

~ e ek
—% T 0B, (62)
where step @ uses ¢’(s) = ¢(1 — o) - [s]77; step @ uses 0 =0 and £y = D;_1 — Ds.

ll®

Since E; — 0, and v, ¢, ¢ > 0, Inequality results in a contradiction E; > ﬁ > 0. Therefore,
there exists ¢’ such that Dy = 0 for all ¢ > ¢/, ensuring that the algorithm terminates in a finite
number of steps.

Part (b). We consider o € (0, 3]. Welett £ {i|D;_y — D; < 1}. Forall ¢ > t', we have from
Inequality (61)):

1o
Dy < Dyy—Di+ (Dy1—Dy) o -k
@
< Dy1 =D+ (D1 —Dy) -k
< Doy, )

where step @ uses the fact that z(1=)/7 < gz for all 0 € (0, %], and z = Dy—y — Dy € [0,1].
Therefore, we have:

NI
DTng-(%) .

Part (c). We consider o € (3,1). We definew £ =2 € (0,1),and 7 £ 1/w — 1 € (0, 00).
We let R be any positive constant such that £, < R forall ¢ > 1.
For all t > 2, we have from Inequality (61)):

1-o
Dy, < Di1—Di+k- (D1 —Dy) o
@ . w w —w
= i(Di—1 — D))" + (D1 — D)™ - (Ey)*
®
< E(Dy—1 — Dy)¥ 4 (Dy—q1 — D) - RV

(De1 = Do)" - (i + R'™),

13

K

where step @ uses the definition of w and the fact that D;_1 — D; = Ej; step @ uses the fact that
max,e,p 2 Y < R ifw € (0,1) and R > 0. We further obtain:

(D" < (Dy_y — Dy) - &M,

——
=D+

Applying Lemma with a = £'/%, we have:

2o e = o ),

1—0o

1
Dy < @(Tfl/T) ) O(T T/w-T1)

where step @ uses 7 = 1/w — 1; step @ uses w =

G ADDITIONAL EXPERIMENT DETAILS AND RESULTS

In this section, we present additional experiment details and results on the £y norm-based SPCA.
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Figure 3: The convergence curve for solving Ly norm-based SPCA with A = 10.

G.1 DATA SETS

To generate the data matrix A, we consider 10 publicly available real-world or randomly gener-
ated data sets: ‘wla’, ‘TDT2’, ‘20News’, ‘sector’, ‘E2006’, ‘MNIST’, ‘Gisette’, ‘Caltech’, ‘Cifar’,
‘randn’. We randomly select a subset of examples from the original data set. The size of A € R™*"
is chosen from the following set (m,n)e{(2477,300), (500, 1000), (8000, 1000), (6412,1000),

(2000, 1000), (60000, 784), (3000, 1000), (1000,1000), (500,1000)}. We scale the matrix A to

have unit Frobenius norm by setting A = 0 :\IF .

G.2 ADDITIONAL EXPERIMENT RESULTS

Figures 3] {] [5] and [6]show the convergence curves of the compared methods for solving Lo-norm-
based SPCA with A € {10, 50, 100, 500}, respectively. The results confirm that the proposed OBCD
consistently achieves lower objective values than other methods, reinforcing the conclusions pre-
sented in the main paper.
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Figure 4: The convergence curve for solving Ly norm-based SPCA with A = 50.
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Figure 5: The convergence curve for solving Ly norm-based SPCA with A = 100.
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Figure 6: The convergence curve for solving Ly norm-based SPCA with A = 500.
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