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ABSTRACT
Nonsmooth composite optimization with orthogonality constraints has a wide
range of applications in statistical learning and data science. However, this prob-
lem is challenging due to its nonsmooth objective and computationally expensive,
non-convex constraints. In this paper, we propose a new approach called OBCD,
which leverages Block Coordinate Descent to address these challenges. OBCD
is a feasible method with a small computational footprint. In each iteration, it
updates k rows of the solution matrix, where k ≥ 2, by globally solving a small
nonsmooth optimization problem under orthogonality constraints. We prove that
the limiting points of OBCD, referred to as (global) block-k stationary points, of-
fer stronger optimality than standard critical points. Furthermore, we show that
OBCD converges to ϵ-block-k stationary points with an iteration complexity of
O(1/ϵ). Additionally, under the Kurdyka-Lojasiewicz (KL) inequality, we estab-
lish the non-ergodic convergence rate of OBCD. We also demonstrate how novel
breakpoint search methods can be used to solve the subproblem in OBCD. Em-
pirical results show that our approach consistently outperforms existing methods.

1 INTRODUCTION
We consider the following nonsmooth composite optimization problem under orthogonality con-
straints (‘≜’ means define):

min
X∈Rn×r

F (X) ≜ f(X) + h(X), s.t.XTX = Ir. (1)

Here, n ≥ r, n ≥ 2, and Ir is a r × r identity matrix. We do not assume convexity of f(X)
and h(X). For brevity, the orthogonality constraints XTX = Ir in Problem (1) is rewritten as
X ∈ St(n, r) ≜ {X ∈ Rn×r | XTX = Ir}, where M ≜ St(n, r) is the Stiefel manifold in the
literature (Edelman et al., 1998; Absil et al., 2008; Wen & Yin, 2013; Hu et al., 2020). We impose
the following assumptions on Problem (1) throughout this paper. (Asm-i) For any X and X+, where
X and X+ only differ at most by k rows with k ≥ 2, we assume f : Rn×r 7→ R is differentiable
and H-smooth with H ∈ Rnr×nr such that:

f(X+) ≤ Q(X+;X) ≜ f(X) + ⟨X+ −X,∇f(X)⟩+ 1
2∥X

+ −X∥2H, (2)

where ∥H∥sp ≤ Lf for some constant Lf > 0 and ∥X∥2H ≜ vec(X)THvec(X) 1. Here, ∥H∥sp
is the spectral norm of H. Notably, when H = Lf · Inr, this condition simplifies to the standard
Lf -smoothness (Nesterov, 2003). (Asm-ii) The function h(X) : Rn×r 7→ R is proper, lower
semicontinuous, and potentially non-smooth. Additionally, it is coordinate-wise separable, such
that h(X) =

∑
i,j h(Xij). Typical examples of h(X) include the ℓp norm h(X) = ∥X∥p with p ∈

{0, 1}, the capped-ℓ1 function h(X) =
∑

i,j max(|Xij |, τ) with τ > 0, and the indicator function
for non-negativity constraints h(X) = ι≥0(X). (Asm-iii) The following small-sized subproblem
can be solved exactly and efficiently:

min
V∈St(k,k)

P(V) ≜ 1
2∥V∥

2
Q̃
+ ⟨V,P⟩+ h(VZ) (3)

for any given Z ∈ Rk×r, P ∈ Rk×k, and Q̃ ∈ Rk2×k2

. Here, we employ a notational simplification
by defining h(VZ) ≜

∑
i,j h([VZ]ij), given the coordinate-wise separability of h(·). This assump-

tion is analogous to the “prox-friendly” condition in (variable-metric) proximal gradient methods
1Consider f(X) = 1

2
tr(XTCXD) = 1

2
∥X∥2H, where H = D ⊗ C, and C ∈ Rn×n, D ∈ Rr×r are

symmetric. Clearly, f(X) satisfies (2) with equality, i.e., f(X+) = Q(X+;X) for all X and X+.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(Beck & Teboulle, 2009; Raguet et al., 2013), but instead of a standard proximal operator for a
single nonsmooth term in the full space, our subproblem jointly handles two nonsmooth components
(the function h(·) and the orthogonality constraint) in a low-dimensional k × k space.

Problem (1) is an optimization framework that plays a crucial role in a variety of statistical learn-
ing and data science models, such as sparse Principal Component Analysis (PCA) (Journée et al.,
2010; Shalit & Chechik, 2014), nonnegative PCA (Zass & Shashua, 2006; Qian et al., 2021), deep
neural networks (Cogswell et al., 2016; Cho & Lee, 2017; Xie et al., 2017; Bansal et al., 2018;
Massart & Abrol, 2022; Huang & Gao, 2023), electronic structure calculation (Zhang et al., 2014;
Liu et al., 2014), Fourier transforms approximation (Frerix & Bruna, 2019), phase synchronization
(Liu et al., 2017), orthogonal nonnegative matrix factorization (Jiang et al., 2022), K-indicators
clustering (Jiang et al., 2016), and dictionary learning (Zhai et al., 2020).
1.1 MOTIVATING APPLICATIONS
Many machine learning and data science models can be cast as instances of Problem (1). Below, we
present two representative examples: L0-regularized sparse PCA and L1-regularized sparse PCA.
An additional example on nonnegative PCA is provided in Appendix Section G.1.

▶ L0-Regularized Sparse PCA. L0-regularized Sparse PCA (SPCA) is a method that uses ℓ0 norm
to produce modified principal components with sparse loadings, which helps reduce model com-
plexity and increase model interpretability (d’Aspremont et al., 2008; Chen et al., 2016). It can be
formulated as: minX∈St(n,r) −⟨X,CX⟩+ λ∥X∥0, where C = ATA ∈ Rn×n is the covariance of
the data matrix A ∈ Rm×n and λ > 0.

▶ L1-Regularized Sparse PCA. As the L1 norm provides the tightest convex relaxation for the
L0-norm over the unit ball in the sense of L∞-norm, some researchers replace the non-convex and
discontinuous L0 norm function with a convex but non-smooth function (Chen et al., 2016; Vu
et al., 2013; Lu & Zhang, 2012). This leads to the following optimization problem of L1-regularized
SPCA: minX∈St(n,r)−⟨X,CX⟩ + λ∥X∥1, where C ∈ Rn×n is the covariance matrix of the data,
and λ > 0.
1.2 RELATED WORK
We now present some related algorithms in the literature.

▶ Minimizing Smooth Functions under Orthogonality Constraints. One of the main challenges
in solving Problem (1) stems from the nonconvexity of the orthogonality constraints. Existing ap-
proaches for addressing this difficulty can be broadly grouped into four classes: (i) Geodesic-like
methods (Abrudan et al., 2008; Edelman et al., 1998; Absil et al., 2008). Computing exact geodesics
typically involves solving ordinary differential equations, which can be computationally expensive.
To avoid this, geodesic-like methods approximate the geodesic path by computing the geodesic log-
arithm using simpler linear algebraic operations. (ii) Projection-like methods (Absil et al., 2008;
Golub & Van Loan, 2013; Jiang & Dai, 2015). These include techniques such as projection onto the
nearest orthogonal matrix, polar decomposition, and QR-based projection. At each iteration, these
methods descend along the Euclidean or Riemannian gradient direction and subsequently apply a
projection step to enforce orthogonality. (iii) Multiplier correction methods (Gao et al., 2018; 2019;
Xiao et al., 2022). These methods exploit the fact that the Lagrange multiplier associated with the
orthogonality constraint is symmetric and admits a closed-form expression at first-order stationarity.
They update the multiplier after achieving sufficient decrease in the objective, resulting in efficient
feasible or infeasible first-order methods. (iv) Landing methods (Ablin & Peyré, 2022; Vary et al.;
Ablin et al., 2024). These methods avoid explicit retractions by working in the ambient Euclidean
space while adding a penalty that attracts iterates toward the orthogonal manifold. Each update com-
bines a descent direction for the objective with a corrective term that reduces constraint violation,
and, with appropriate step sizes, the iterates converge to points that are nearly orthogonal and nearly
stationary for the original problem.

▶ Minimizing Nonmooth Functions under Orthogonality Constraints. Another major challenge
in solving Problem (1) arises from the nonsmoothness of the objective function. Existing approaches
for handling this issue can be broadly categorized into four classes: (i) Subgradient methods (Hwang
et al., 2015; Li et al., 2021; Cheung et al., 2024). These methods generalize gradient descent to nons-
mooth settings. Many of the previously mentioned geodesic-like and projection-based strategies can
be incorporated into subgradient frameworks on manifolds. (ii) Proximal gradient methods (Chen
et al., 2020; Li et al., 2024b; Lyu & Li, 2025). These methods compute a descent direction by solving
a strongly convex subproblem over the tangent space, often using a semi-smooth Newton method.
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The resulting point is then mapped back onto the manifold via a retraction to preserve orthogonality.
(iii) Block Majorization Minimization (BMM) on Riemannian manifolds (Li et al., 2024b; 2023;
Breloy et al., 2021; Gutman & Ho-Nguyen, 2023). This class of methods iteratively constructs a
tangential majorizing surrogate for a block of the objective, takes an approximate descent step in
the corresponding tangent space, and retracts the iterate back to the manifold. (iv) Operator splitting
methods (Lai & Osher, 2014; Chen et al., 2016; Zhang et al., 2019). These methods reformulate
the original problem by introducing auxiliary variables and linear constraints, decomposing it into
simpler subproblems that can be solved separately and often exactly. Prominent examples include
the Alternating Direction Method of Multipliers (ADMM) (He & Yuan, 2012), Riemannian ADMM
(RADMM) (Li et al., 2024a), and Penalty-based Splitting Method (PSM) (Yuan, 2024; Chen, 2012).

▶ Block Coordinate Descent Methods. (Block) coordinate descent is a classical and powerful
algorithm that solves optimization problems by iteratively performing minimization along (block)
coordinate directions (Tseng & Yun, 2009; Xu & Yin, 2013). The BCD methods have recently
gained attention in solving nonconvex optimization problems, including sparse optimization (Yuan,
2024), k-means clustering (Nie et al., 2022), recurrent neural network (Massart & Abrol, 2022), and
multi-layer convolutional networks (Bibi et al., 2019; Zeng et al., 2019). BCD methods have also
been used in (Shalit & Chechik, 2014; Massart & Abrol, 2022) for solving optimization problems
with orthogonal group constraints. However, their column-wise BCD methods are limited only to
solve smooth minimization problems with k = 2 and r = n (Refer to Section 4.2 in (Shalit &
Chechik, 2014)). Our row-wise BCD methods can solve coordinate-wise nonsmooth problems with
k ≥ 2 and r ≤ n. The work of (Gao et al., 2019) proposes a parallelizable column-wise BCD
scheme for solving the subproblems of their proximal linearized augmented Lagrangian algorithm.
Impressive parallel scalability in a parallel environment of their algorithm is demonstrated. We stress
that our row-wise BCD methods differ from the two column-wise counterparts.

▶ Summary. Existing methods typically suffer from one or more of the following limitations: (i)
they rely on full gradient information, incurring high computational costs per iteration; (ii) they
do not accommodate coordinate-wise nonsmooth composite objectives; (iii) they lack true descent
properties and are often infeasible methods what only attain feasibility only at the limit; (iv) they
often lack rigorous last-iterate convergence guarantees; (v) they provide only weak optimality results
at critical points. ⋆ In contrast, our methods overcome these limitations by using a tailored block
coordinate descent framework for efficient composite optimization on the Stiefel manifold, with
strong optimality and convergence guarantees.

1.3 CONTRIBUTIONS AND NOTATIONS
This paper makes the following contributions. (i) Algorithmically: We propose a Block Coordi-
nate Descent (BCD) algorithm tailored for nonsmooth composite optimization under orthogonality
constraints (Section 2). (ii) Theoretically: We provide comprehensive optimality and convergence
analyses of our methods (Sections 3 and 4). (iii) Empirically: Extensive experiments demonstrate
that our methods surpass existing solutions in terms of accuracy and/or efficiency (Section 5).

We define [n] ≜ {1, 2, ..., n}, and denote the Stiefel manifold asM ≜ St(n, r). Matlab-style colon
notation is used to describe submatrices. For a matrix X ∈ Rn×r, let vec(X) ∈ Rnr×1 denote
the vector formed by stacking its columns, and let mat(x) ∈ Rn×r denote the inverse operator,
such that mat(vec(X)) = X. We use A + B and A − B to denote standard Minkowski addition
and subtraction between sets A and B, and A ⊕ B and A ⊖ B to denote element-wise addition and
subtraction, respectively. Additional notations are summarized in Appendix A.1.

2 THE PROPOSED OBCD ALGORITHM

In this section, we introduce OBCD, a Block Coordinate Descent algorithm for solving coordinate-
wise nonsmooth composite problems under Orthogonality constraints, as defined in Problem (1).

We start by presenting a new update scheme designed to maintain the orthogonality constraint.

▶ A New Constraint-Preserving Update Scheme. For any partition of the index vector [1, 2, ..., n]
into [B,Bc] with B ∈ Nk, Bc ∈ Nn−k, we define UB ∈ Rn×k and UBc ∈ Rn×(n−k) as:
(UB)ji =

{
1, Bi = j;
0, else. , (UBc)ji =

{
1, Bc

i = j;
0, else. . Therefore, we have the following variable

splitting for any X ∈ Rn×r: X = InX = (UBU
T
B + UBcUT

Bc)X = UBX(B, :) + UBcX(Bc, :),
where X(B, :) = UT

BX ∈ Rk×r and X(Bc, :) = UT
BcX ∈ R(n−k)×r.

3
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In each iteration t, the indices {1, 2, ..., n} of the rows of decision variable X ∈ St(n, r) are sepa-
rated to two sets B and Bc, where B is the working set with |B| = k and Bc = {1, 2, ..., n} \ B. To
simplify notation, we use B instead of Bt, as t can be inferred from the context. We only update k
rows of the variable X via Xt+1(B, :) ⇐ VXt(B, :) for some appropriate matrix V ∈ Rk×k. The
following equivalent expressions hold:

Xt+1(B, :) = VXt(B, :) ⇔ Xt+1 = (UBVUT
B +UBcUT

Bc)Xt (4)

⇔ Xt+1 = Xt +UB(V − Ik)U
T
BX

t. (5)

We consider the following minimization procedure to iteratively solve Problem (1):

min
V

F (X t
B(V)), s.t.X t

B(V) ∈ St(n, r), where X t
B(V) ≜ Xt +UB(V − Ik)U

T
BX

t. (6)

The following lemma shows that the orthogonality constraint for X+ = X+UB(V− Ik)U
T
BX can

be preserved by choosing suitable V and X.

Lemma 2.1. (Proof in Appendix D.1) We let B ∈ {Bi}C
k
n

i=1, where the set {B1,B2, ...,BCk
n
} denotes

all possible combinations of the index vectors choosing k items from n without repetition. We let
V ∈ St(k, k). We define X+ ≜ XB(V) ≜ X+UB(V− Ik)U

T
BX. (a) For any X ∈ Rn×r, we have

[X+]TX+ = XTX. (b) If X ∈ St(n, r), then X+ ∈ St(n, r).

Thanks to Lemma 2.1, we can now explore the following alternative formulation for Problem (6).

V̄t ∈ argmin
V

F (X t
B(V)), s.t.V ∈ St(k, k). (7)

Then the solution matrix is updated via: Xt+1 = X t
B(V̄

t).

The following lemma offers important properties for the update rule X+ = X+UB(V− Ik)U
T
BX.

Lemma 2.2. (Proof in Appendix D.2) We define X+ = X+UB(V−Ik)UT
BX. For any X ∈ St(n, r),

V ∈ St(k, k), B ∈ {Bi}C
k
n

i=1, and symmetric matrix H ∈ Rnr×nr, we have: (a) 1
2∥X

+ −X∥2H =
1
2∥V − Ik∥2Q, where Q ≜ (ZT ⊗ UB)

TH(ZT ⊗ UB), Z ≜ UT
BX ∈ Rk×r, and X ⊗ Y is the

Kronecker product of X and Y. (b) 1
2∥X

+ −X∥2F = ⟨Ik −V,UT
BXXTUB⟩. (c) 1

2∥X
+ −X∥2F ≤

1
2∥V − Ik∥2F = ⟨Ik, Ik −V⟩.

▶ The Main Algorithm. The proposed algorithm OBCD is an iterative procedure that sequentially
minimizes the objective function along block coordinate directions within a sub-manifold ofM.

Starting with an initial feasible solution, OBCD iteratively determines a working set Bt using spe-
cific strategies. It then solves the small-sized subproblem in Problem (7) through successive Ma-
jorization Minimization (MM). This method iteratively constructs a surrogate function that ma-
jorizes the objective function, driving it to decrease as expected (Mairal, 2013; Razaviyayn et al.,
2013; Sun et al., 2016; Breloy et al., 2021), and it has proven effective for minimizing complex
functions.

We now demonstrate how to derive the majorization function for F (X t
B(V)) in Problem (7). Initially,

for any Xt ∈ St(n, r) and V ∈ St(k, k), we establish following inequalities: f(X t
B(V))−f(Xt)

①
≤

⟨X t
B(V)−Xt,∇f(Xt)⟩+ 1

2∥X
t
B(V)−Xt∥2H

②
= ⟨UB(V− Ik)U

T
BX

t,∇f(Xt)⟩+ 1
2∥V− Ik∥2Q

③
≤

⟨V − Ik, [∇f(Xt)(Xt)T]BB⟩ + 1
2∥V − Ik∥2Q+αI, where step ① uses Inequality (2); step ② uses

Lemma 2.2(a); step ③ uses α > 0 and Q ⪯ Q, which can be ensured by choosing Q using one of
the following methods:

Q =Q ≜ (ZT ⊗UB)
TH(ZT ⊗UB), (8)

Q = ςI, with ∥Q∥sp ≤ ς ≤ Lf . (9)

where Z ≜ UT
BX

t. Then, we apply the MM technique to the smooth function f(X), while keep-
ing the nonsmooth component h(X) unchanged, leading to a function K(V;Xt,B) that majorizes
F (X t

B(V)) = f(X t
B(V)) + h(X t

B(V)):

F (X t
B(V)) ≤ f(Xt) + ⟨V − Ik, [∇f(Xt)(Xt)T]BB⟩+ 1

2
∥V − Ik∥2Q+αI + h(VUT

BX
t)

≤ K(V;Xt,B) ≜ 1
2
∥V − Ik∥2Q+αI + ⟨V, [∇f(Xt)(Xt)T]BB⟩+ h(VUT

BX
t) + c̈, (10)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 OBCD: Block Coordinate Descent for Problem (1)

1: Input: proximal parameter α > 0, initial feasible point X0, block size k ≥ 2, t = 0.
2: for t = 0 to T do
3: (S1) Select working set Bt ∈ {1, . . . , n}k. Let B = Bt and Bc = {1, . . . , n} \ B.
4: (S2) Choose Q ∈ Rk2×k2

using (8) or (9).
5: (S3) Define K(·, ; ·, ·) as in Equation (10). Compute V̄t as the global minimizer

V̄t ∈ argminV∈St(k,k)K(V;Xt,B) . (11)

Alternatively, find a local solution V̄t such that K(V̄t;Xt,B) ≤ K(Ik;Xt,B).
6: (S4) Xt+1(B, :)← V̄t Xt(B, :)
7: end for

where c̈ = f(Xt) + h(UT
BcXt) − ⟨Ik, [∇f(Xt)(Xt)T]BB⟩ is a constant. Here, we use the

coordinate-wise separable property of h(·) as follows: h(X t
B(V)) = h(UBcUT

BcXt+UBVUT
BX

t) =
h(UT

BcXt) + h(VUT
BX

t). We minimize the upper bound of the right-hand side of Inequality (10),
resulting in the minimization problem that V̄t ∈ argminV∈St(k,k)K(V;Xt,B), which can be effi-
ciently and exactly solved due to our assumption.

Two simple strategies to find the working set B with |B| = k can be considered. (i) Random strategy:
B is randomly selected from {B1,B2, ...,BCk

n
} with equal probability 1/Ck

n. (ii) Cyclic strategy: Bt

takes all possible combinations in cyclic order, such as B1 → B2 → ...→ BCk
n
→ B1 → ....

The proposed OBCD algorithm is summarized in Algorithm 1. Importantly, OBCD is a partial gra-
dient method with low iterative computational complexity as it only assesses k rows of the Euclidean
gradient of ∇f(Xt) and the solution Xt to compute the linear term ⟨[∇f(Xt)(Xt)T]BB,V⟩ =
⟨[∇f(Xt)]TB,:[X

t]B,:,V⟩, as shown in Equation (10). Appendix C.3 details the complexity compari-
son between OBCD and full gradient methods for some quadratic function f(X).

▶ Solving the General OBCD Subproblems. The following lemma outlines key properties of the
OBCD subproblems.

Lemma 2.3. (Proof in Appendix D.3) We define Z = UT
BX

t and P ≜ [∇f(Xt)(Xt)T]BB −
mat(Qvec(Ik))− αIk. We have:

(a) The subproblem in Equation (11) is equivalent to Problem (3) with Q̃ = Q+ αI.
(b) Assume that Formula (9) is used to choose Q. Problem (3) further reduces to the following

problem: V̄t ∈ argminV∈St(k,k) P(V) ≜ ⟨V,P⟩ + h(VZ). In particular, when h(X) ≜ 0,
we obtain: V̄t = −PM(P). Here, PM(P) is the nearest orthogonality matrix to P.

Remark 2.4. (a) By Lemma 2.3(b), when k > 2, h(X) = 0, and Q is chosen to be a diagonal
matrix as in Equation (9), the subproblem V̄t ∈ argminV∈St(k,k)K(V;Xt,B) in Algorithm 1 can
be solved exactly and efficiently due to our assumption, see Remark 2.6. (b) For general k and
h(·), the subproblem may not admit a global solution. However, if a local stationary solution V̄t

satisfying (V̄t;Xt,B) ≤ K(Ik;Xt,B) can be found, then the sufficient descent condition remains
valid, and convergence to a weaker optimality condition for the final solution X∞ is still achievable
(see Inequalities (42), (44)).

▶ Smallest Possible Subproblems When k = 2. We now discuss how to solve the subproblems
exactly when k = 2. The following lemma reveals an equivalent expression for any V ∈ St(2, 2).
Lemma 2.5. (Proof in Appendix D.4) Any orthogonal matrix V ∈ St(2, 2) can be expressed as
V = Vrot

θ or V = Vref
θ for some θ ∈ R, where Vrot

θ ≜ (
cos(θ) sin(θ)
− sin(θ) cos(θ)

), Vref
θ ≜ (

− cos(θ) sin(θ)
sin(θ) cos(θ)

).
We have det(Vrot

θ ) = 1 and det(Vref
θ ) = −1 for any θ.

Using Lemma 2.5, we can reformulate Problem (3) as the following one-dimensional problem:

θ̄ ∈ argmin
θ
P(V), s.t.V ∈ {Vrot

θ ,Vref
θ }.

The optimal solution θ̄ can be identified even if h(·) ̸= 0 using a novel breakpoint searching method,
which is discussed later in Section B in the Appendix.
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Remark 2.6. (i) Vrot
θ and Vref

θ are called Givens rotation matrix and Jacobi reflection matrix
respectively in the literature (Sun & Bischof, 1995). Previous research only considered {Vrot

θ } for
solving symmetric linear eigenvalue problems (Golub & Van Loan, 2013) and sparse PCA problems
(Shalit & Chechik, 2014), while we use {Vref

θ , Vrot
θ } for solving Problem (1). (ii) We show the

necessity of using {Vref
θ , Vrot

θ } in the following two examples of 2× 2 optimization problems with
orthogonality constraints: minV∈St(2,2) F (V) ≜ ∥V − A∥2F, and minV∈St(2,2) F (V) ≜ ∥V −
B∥2F + 5∥V∥1, where A = ( 1 0

−1 −1 ) and B = ( 1 0
1 2 ). The use of the reflection matrix Vref

θ is
essential in these examples because it results in lower objective values. See Section C.1 in the
Appendix for more details.

3 OPTIMALITY ANALYSIS
This section provides the optimality analysis for OBCD. First, we establish the completeness of
the proposed update scheme, showing that OBCD can reach any feasible point from an arbitrary
initialization. Second, we analyze the optimality conditions of both Problem (1) and the associated
subproblems of OBCD. Finally, by comparing these two sets of conditions, we derive a hierarchy
of optimality, illustrating how the algorithm’s stationarity relates to that of Problem (1).

▶ Basis Representation of Orthogonal Matrices. The following theorem shows that any orthog-
onal matrix D ∈ St(n, n) and any point X ∈ St(n, r) can be generated by composing simple
2-dimensional updates.
Theorem 3.1 (Basis Representation of Orthogonal Matrices). (Proof in Appendix E.1) Assume k =
2. For all i ∈ [Ck

n], define Wi ≜ In + UBi
(Vi − Ik)U

T
Bi

= UBiViUT
Bi

+ UBc
i
UT

Bc
i
, where

Vi ∈ St(k, k). Then:

(a) Any matrix D ∈ St(n, n) can be expressed as D = WCk
n
...W2W1 for suitable choice ofWi

(equivalently, of Vi). Furthermore, if ∀i, Vi = I2, then D = In.
(b) For any fixed reference point X0 ∈ St(n, r), every X ∈ St(n, r) can be expressed as X =
WCk

n
· · ·W2W1X

0 for suitableWi.

The above representation for k = 2 can in fact be extended to any block size k ≥ 2, as stated next.
Corollary 3.2. (Proof in Appendix E.2) The conclusion of Theorem 3.1 extends to all k ≥ 2.
Remark 3.3. (i) We use both Givens rotation and Jacobi reflection matrices to compute D ∈
St(n, n). This is necessary since a reflection matrix cannot be represented through a sequence
of rotations. (ii) The result of Corollary 3.2 indicates that the proposed update scheme X+ ⇐
X+UB(V− Ik)U

T
BX with V ∈ St(k, k) as shown in Formula (5) can reach any orthogonal matrix

X ∈ St(n, r) for any starting solution X0 ∈ St(n, r).

▶ First-Order Optimality Conditions for Problem (1). We provide the first-order optimality con-
dition of Problem (1) (Wen & Yin, 2013; Chen et al., 2020). We use ∂F (X) to denote the limiting
subdifferential of F (X) (Mordukhovich, 2006; Rockafellar & Wets., 2009), which is always non-
empty since F (X) is closed, proper, and lower semicontinuous. Given f(X) is differentiable, we
have ∂F (X) = ∂(f + h)(X) = ∇f(X) + ∂h(X) (Rockafellar & Wets., 2009). We extend the def-
inition of limiting subdifferential to introduce ∂MF (X) as the Riemannian limiting subdifferential
of F (X) at X, defined as ∂MF (X) ≜ ∂F (X) ⊖ (X[∂F (X)]TX), where ⊖ is the element-wise
subtraction between sets.

Introducing a Lagrangian multiplier matrix Λ ∈ Rr×r for the orthogonality constraint, we define
the following Lagrangian function of Problem (1): L(X,Λ) = F (X)+ 1

2 ⟨Ir −XTX,Λ⟩. Notably,
the matrix Λ is symmetric, as XTX is symmetric. We state the following definition of first-order
optimality condition.

Definition 3.4. Critical Point (Wen & Yin, 2013; Chen et al., 2020). A solution X̌ ∈ St(n, r) is
a critical point of Problem (1) if: 0 ∈ ∂MF (X̌) ≜ ∂F (X̌) ⊖ (X̌[∂F (X̌)]TX̌), where (∂F (X̌) ⊖
X̌[∂F (X̌)]TX̌) ≜ {G − X̌GTX̌ |G ∈ ∂F (X̌)}. Moreover, the corresponding multiplier satisfies
Λ ∈ [∂F (X̌)]TX̌.
Remark 3.5. The critical point condition in Lemma 3.4 can be equivalently expressed as (Absil
et al., 2008; Jiang & Dai, 2015; Liu et al., 2016): 0 ∈ PTX̌M(∂F (X̌)). Here, TXM is the tangent
space toM at X ∈M with TXM = {Y ∈ Rn×r |XTY +YTX = 0}.

6
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▶ Optimality Conditions for the Subproblems. The Euclidean subdifferential of K(V;Xt,Bt)

w.r.t. V is given by G̈(V) ≜ ∆̈(V) + UT
B [∇f(Xt) + ∂h(Xt+1)](Xt)TUB, where ∆̈(V) =

mat((Q + αIk)vec(V − Ik)) and Xt+1 = Xt + UB(V − Ik)U
T
BX

t. Using Lemma 3.4, we set
the Riemannian subdifferential of K(V;Xt,Bt) w.r.t. V to zero and obtain the following first-order
optimality condition for V̄t: 0 ∈ ∂MK(V̄t;Xt,Bt) ≜ G̈(V̄t) ⊖ V̄tG̈(V̄t)TV̄t. This inclusion
is a key ingredient in establishing the optimality hierarchy in Theorem 3.7(a) and the Riemannian
subgradient lower bound in Lemma 4.4(a).

▶ Optimality Conditions and Their Hierarchy. We introduce the following new optimality con-
dition of block-k stationary points.
Definition 3.6. (Global) Block-k Stationary Point, abbreviated as BSk-point. Let α > 0 and

k ≥ 2. A solution Ẍ ∈ St(n, r) is called a block-k stationary point if: ∀B ∈ {Bi}
Ck

n
i=1, Ik ∈

argminV∈St(k,k) K(V; Ẍ,B), where K(·; ·, ·) is defined in Equation (10).

Remarks. BSk-point states that if we globally minimize the majorization function K(V; Ẍ,B),
there is no possibility of improving the objective function value for K(V; Ẍ,B) across all B ∈
{Bi}

Ck
n

i=1.

The following theorem establishes the relation between BSk-points, standard critical points, and
global optimal points.
Theorem 3.7. (Proof in Appendix E.3) We establish the following relationships:

(a) {critical points X̌} ⊇ {BS2-points Ẍ}.
(b) {BSk-points Ẍ} ⊇ {global optimal points X̄}, where k ∈ {2, 3, . . . , n}.
(c) {BSk-points Ẍ} ⊇ {BSk+1-points Ẍ}, where k ∈ {2, 3, . . . , n− 1}.
(d) The reverse of the above three inclusions may not always hold true.

Remark 3.8. (i) The optimality of BS2-points is stronger than that of standard critical points
(Wen & Yin, 2013; Chen et al., 2020; Absil et al., 2008). (ii) Testing whether a solution X is a
BSk-points deterministically requires solving all Ck

n subproblems. However, by randomly selecting

the working set B from the Ck
n possible combinations {Bi}

Ck
n

i=1, one can test whether X is a BSk-point
in expectation.

4 CONVERGENCE ANALYSIS
This section establishes the iteration complexity and non-ergodic (last-iterate) convergence rates of
the proposed OBCD algorithm. We first prove a sufficient descent property, followed by an ergodic
convergence rate typical in nonconvex optimization. We then analyze iteration complexity under
the Riemannian subgradient condition, commonly used in nonsmooth manifold settings. Finally, we
derive a last-iterate convergence rate based on the KL inequality.

Throughout this section, we assume that the working set is determined by a random strategy and that
the global minimizer V̄t ∈ argminV∈St(k,k)K(V;Xt,Bt) can be computed. The algorithm OBCD
then generates a random output (V̄t,Xt+1) for t = 0, 1, . . . ,∞, depending on the realization of the
random variable ξt ≜ (B1,B2, . . . ,Bt). We denote X∞ as an arbitrary limit point of OBCD.
4.1 ITERATION COMPLEXITY
Initially, we introduce the notation of ϵ-BSk-point as follows.

Definition 4.1. (ϵ-BSk-point) Given any constant ϵ > 0, a point Ẍ is called an ϵ-BSk-point if:
1
Ck

n

∑Ck
n

i=1 dist(Ik, argminV K(V; Ẍ,Bi))2 ≤ ϵ, where K(·; ·, ·) is defined in Equation (10). Here,
the set {B1,B2, ...,BCk

n
} denotes all possible combinations of the index vectors choosing k items

from n without repetition, and dist(Ξ,Ξ′) denotes the distance between two sets Ξ and Ξ′.

Using the optimality measure from Definition 4.1, we establish the iteration complexity of OBCD.

Theorem 4.2. (Proof in Appendix F.1) We define c̃ ≜ 2
α · (F (X0)− F (X∞)) ≥ 0. We have:

(a) The following sufficient decrease condition holds for all t ≥ 0:
α
2 ∥X

t+1 −Xt∥2F ≤ α
2 ∥V̄

t − Ik∥2F ≤ F (Xt)− F (Xt+1).

7
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(b) If the Bt is selected from {Bi}C
k
n

i=1 randomly and uniformly, OBCD finds an ϵ-BSk-point of
Problem (1) in at most T iterations in the sense of expectation, where T ≥ ⌈ c̃ϵ⌉.

Remark 4.3. Theorem 4.2 shows that OBCD converges to ϵ-block-k stationary points with an iter-
ation complexity of O(1/ϵ), which is typical for general nonconvex optimization.

Apart from Definition 4.1, another common optimality measure relies on the Riemannian subgradi-
ent. At the point V = Ik, the Riemannian subdifferential of K(V;Xt,Bt) is ∂MK(Ik;Xt,Bt) =
UT
Bt(D⊖DT)UBt , where D = [∇f(Xt)+∂h(Xt)][Xt]T. We next derive a Riemannian subgradient

lower bound in terms of the iterate gap.
Lemma 4.4. (Proof in Appendix F.2, Riemannian Subgradient Lower Bound for the Iterates
Gap) Assume that F (·) is CF -Lipschitz continuous on St(n, r), i.e., ∥G∥F ≤ CF for all X ∈
St(n, r) and all G ∈ ∂F (X). We have:

(a) Eξt+1 [dist(0, ∂MK(Ik;Xt+1,Bt+1))] ≤ ϕ · Eξt [∥V̄t − Ik∥F], where ϕ ≜ 4(CF + Lf ) + 2α.
(b) Eξt [dist(0, ∂MF (Xt))] ≤ γ · Eξt [dist(0, ∂MK(Ik;Xt,Bt))], where γ ≜ (Ck

n/C
k−2
n−2)

1/2.
Remark 4.5. The important class of nonsmooth ℓ1 norm function h(X) = ∥X∥1 (Chen et al., 2020;
2024) satisfies the assumption made in Lemma 4.4.

We establish the iteration complexity of OBCD using the optimality measure of Riemannian sub-
gradient (Chen et al., 2020; Cheung et al., 2024; Li et al., 2024b).
Theorem 4.6. (Proof in Appendix F.3) We define c̃ as in Theorem 4.2 and {ϕ, γ} as in Lemma 4.4.
OBCD finds an ϵ-critical point of Problem (1), i.e., Eξt̄ [dist

2(0, ∂MF (Xt̄+1))] ≤ ϵ, in at most

T + 1 iterations in expectation, where t̄ ∈ [T ] and T ≥ ⌈γ
2ϕ2c̃
ϵ ⌉.

4.2 CONVERGENCE RATE UNDER KL INEQUALITY
We establish the non-ergodic convergence rate of OBCD using the Kurdyka-Łojasiewicz inequality,
a key tool in non-convex analysis (Attouch et al., 2010; Bolte et al., 2014; Liu et al., 2016).

Initially, we make the following additional assumption.
Assumption 4.7. The function Fι(X) = F (X) + ιM(X) is a Kurdyka-Łojasiewicz (KL) function.
Remark 4.8. Semi-algebraic functions constitute a broad class of KL functions, including real
polynomials, norm functions ∥x∥p with p ≥ 0, rank functions, and indicator functions of sets such
as the Stiefel manifold and the positive semidefinite cone (Attouch et al., 2010).

We present the following useful proposition regrading to the KL function.
Proposition 4.9. (Kurdyka-Łojasiewicz Property, see, e.g.,(Attouch et al., 2010; Bolte et al.,
2014)). Let Fι : Rm×n → (−∞,+∞] be a KL function and X∞ ∈ domFι. Then there exist σ ∈
[0, 1), η ∈ (0,+∞], a neighborhood Υ of X∞, and a concave continuous function φ(t) = ct1−σ

with c > 0 and t ∈ [0, η) such that for all X′ ∈ Υ satisfying Fι(X
′) ∈ (Fι(X

∞), Fι(X
∞) + η), it

holds that dist(0, ∂Fι(X
′))φ′(Fι(X

′)− Fι(X
∞)

)
≥ 1.

Utilizing the Kurdyka-Łojasiewicz property, one can establish a finite-length property of OBCD, a
result considerably stronger than that of Theorem 4.2.

Theorem 4.10. (Proof in Appendix F.4, A Finite Length Property). We define Et+1 ≜ Eξt [∥V̄t−
Ik∥F], and Di =

∑∞
j=i Ej+1. Under the continuity assumption in Lemma 4.4, there exists a suffi-

ciently large t⋆ such that, for all t ≥ t⋆, we have

(a) It holds that (Et+1)
2 ≤ κEt(φt−φt+1), where φt ≜ φ(F (Xt)−F (X∞)), κ ≜ 2γϕ

α is a posi-
tive constant, γ ≜ (Ck

n/C
k−2
n−2)

1/2, ϕ is defined in Lemma 4.4, and φ(·) is the desingularization
function defined in Proposition 4.9.

(b) It holds that
∑∞

j=t Ej+1 ≤ Et + 2κφt. The sequence {Et}∞t=1 has the finite length property
that Dt ≜

∑∞
j=t Ej+1 is always upper-bounded by a certain constant for all t ≥ t⋆.

Finally, we establish the last-iterate convergence rate for OBCD.
Theorem 4.11. (Proof in Appendix F.5). Based on the continuity assumption made in Lemma 4.4,
for all t ≥ t⋆, we have:

8
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data-m-n LADMM RADMM SPM LADMM RADMM SPM OBCD-R
(id) (id) (id) (rnd) (rnd) (rnd) (id)

r = 20, λ = 10, time limit=40
w1a-2477-300 199.897 219.698 199.897 259.825 239.717 259.672 199.667
TDT2-500-1000 199.997 359.382 199.997 389.376 269.292 389.260 199.258
20News-8000-1000 199.995 219.673 199.995 239.301 219.243 349.228 199.222
sector-6412-1000 199.980 349.793 199.980 749.996 249.813 369.651 199.649
E2006-2000-1000 199.999 239.115 199.999 269.128 219.084 709.095 199.077
MNIST-60000-784 199.985 379.893 199.985 289.917 339.910 1339.774 199.896
Gisette-3000-1000 199.980 339.979 199.980 539.979 369.981 1639.952 199.979
CnnCal-3000-1000 199.981 429.979 199.981 689.970 379.979 909.931 199.946
Cifar-1000-1000 199.979 479.979 199.979 1449.982 429.975 2169.934 199.974
randn-500-1000 199.980 469.980 199.980 409.980 389.980 1349.975 199.977

data-m-n LADMM RADMM SPM LADMM RADMM SPM OBCD-R
(id) (id) (id) (rnd) (rnd) (rnd) (id)

r = 20, λ = 50, time limit=40
w1a-2477-300 999.891 1099.730 1099.889 1249.723 1049.707 1649.675 999.667
TDT2-500-1000 1049.997 1099.288 999.460 1049.282 1249.280 2149.271 999.257
20News-8000-1000 1149.995 1149.501 999.549 3649.247 1049.326 1799.228 999.222
sector-6412-1000 2449.886 1799.904 999.816 1549.998 1749.952 1399.651 999.649
E2006-2000-1000 1099.283 1249.109 999.284 1849.115 1349.085 2549.136 999.077
MNIST-60000-784 999.985 1699.913 2849.852 1399.921 1649.905 4349.781 999.896
Gisette-3000-1000 999.980 1649.980 999.980 10399.983 2249.976 6899.967 999.979
CnnCal-3000-1000 999.981 2499.981 1049.969 4599.973 2649.981 3499.938 999.946
Cifar-1000-1000 1099.979 1449.978 999.979 2149.979 3149.974 4349.972 999.974
randn-500-1000 1349.980 2449.980 3949.977 1299.981 1749.980 4249.976 999.977

data-m-n LADMM RADMM SPM LADMM RADMM SPM OBCD-R
(id) (id) (id) (rnd) (rnd) (rnd) (id)

r = 20, λ = 100, time limit=40
w1a-2477-300 2499.912 2799.713 2199.819 2399.723 2499.708 3299.662 1999.667
TDT2-500-1000 2199.515 2199.302 1999.432 8799.310 2699.278 2499.257 1999.258
20News-8000-1000 2699.480 2199.262 1999.440 2099.242 1999.230 3999.224 1999.222
sector-6412-1000 7799.995 4599.977 2099.716 3099.999 4399.973 2199.651 1999.649
E2006-2000-1000 2099.207 3199.083 1999.284 2599.106 2299.085 4399.081 1999.077
MNIST-60000-784 1999.984 3199.904 11799.715 3199.922 3599.907 8299.829 1999.896
Gisette-3000-1000 2199.980 4299.979 1999.980 2499.982 2799.981 11499.971 1999.979
CnnCal-3000-1000 2499.981 4399.982 11499.907 4399.975 3899.983 6799.938 1999.946
Cifar-1000-1000 1999.979 4999.979 1999.979 5199.979 4399.978 8799.969 1999.974
randn-500-1000 6699.980 4099.980 7899.977 2599.980 3299.980 9099.976 1999.977

data-m-n LADMM RADMM SPM LADMM RADMM SPM OBCD-R
(id) (id) (id) (rnd) (rnd) (rnd) (id)

r = 20, λ = 500, time limit=40
w1a-2477-300 11999.706 10999.702 16499.714 10499.702 9999.711 14499.667 9999.667
TDT2-500-1000 10499.273 15999.294 10999.395 10499.368 15499.281 12499.256 9999.258
20News-8000-1000 9999.347 11499.281 11499.328 10999.454 10499.258 14499.232 9999.222
sector-6412-1000 13999.997 16999.992 12999.660 22999.999 18999.986 13499.649 9999.649
E2006-2000-1000 9999.918 14499.080 9999.284 26499.095 10499.082 21499.081 9999.077
MNIST-60000-784 19499.965 20499.886 39499.844 11999.911 16999.905 47999.705 9999.896
Gisette-3000-1000 14999.980 16499.979 9999.980 15499.980 16999.978 36499.977 9999.979
CnnCal-3000-1000 12499.980 33999.979 28999.936 15499.974 52999.977 26999.936 9999.946
Cifar-1000-1000 19999.979 31499.980 9999.979 37999.979 21499.977 42999.953 9999.974
randn-500-1000 19499.981 33499.981 19999.979 19999.980 44999.981 17999.978 9999.977

Table 1: Comparisons of objective values for L0-regularized SPCA. The 1st, 2nd, and 3rd best
results are colored with red, green and blue, respectively.
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Figure 1: The convergence curve for solving L0-regularized SPCA with λ = 100. No matter how
long the algorithms run, the other methods remain trapped in poor local minima.

(a) If σ = 0, then the sequence Xt converges in a finite number of steps in expectation.
(b) If σ ∈ (0, 1

2 ], then there exist ċ > 0 and τ̇ ∈ [0, 1) such that Eξt−1 [∥Xt −X∞∥F] ≤ ċτ̇ t.
(c) If σ ∈ ( 12 , 1), then there exist ċ > 0 such that Eξt−1 [∥Xt−X∞∥F] ≤ ċ

tτ̇ , where τ̇ ≜ 1−σ
2σ−1 > 0.

Remark 4.12. When F (X) is a semi-algebraic function and the desingularising function is φ(t) =
ct1−σ for some c > 0 and σ ∈ [0, 1), Theorem 4.11 shows that OBCD converges in finite iterations
when σ = 0, with linear convergence when σ ∈ (0, 1

2 ], and sublinear convergence when σ ∈ ( 12 , 1)
for the gap ∥Xt −X∞∥F in expectation. These results are consistent with those in (Attouch et al.,
2010).

5 EXPERIMENTS
This section presents numerical comparisons between OBCD and state-of-the-art methods on both
real-world and synthetic data. We describe the application of L0-regularized SPCA in the sequel,
while additional applications for L1-regularized SPCA and nonnegative PCA can be found in Ap-
pendix Section G.2.

▶ Compared Methods on L0-Regularized SPCA. We compare against three operator splitting
methods: Linearized ADMM (LADMM) (Lai & Osher, 2014; He & Yuan, 2012), Riemannian
ADMM (RADMM) (Li et al., 2024a), and the Penalty-based Splitting Method (PSM) (Yuan, 2024;
Chen, 2012). Each method is initialized with either a random or identity matrix, yielding six variants:
LADMM(id), RADMM(id), SPM(id), LADMM(rnd), RADMM (rnd), and PSM(rnd). For OBCD,
we adopt a random working set strategy with identity initialization, denoted as OBCD-R(id).

▶ Implementations. All methods are implemented in MATLAB on an Intel 2.6 GHz CPU with
32 GB RAM. However, our breakpoint searching procedure is developed in C++ and integrated into
the MATLAB environment 2, as it requires inefficient element-wise loops in native MATLAB. The
code for all three applications used to reproduce the experiments can be found in the supplemental
material.

2Although we prioritize accuracy over speed, the comparisons remain fair, as the other methods based on
matrix multiplication and SVD rely on highly optimized BLAS and LAPACK libraries.
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▶ Experiment Settings. We compare objective values F (X) for different methods after running for
30 seconds. For numerical stability in reporting the objectives, we use the count of elements with
absolute values greater than a threshold of 10−6 instead of the original ℓ0 norm function ∥X∥0. We
set α = 10−5 for OBCD. Full-gradient methods have higher per-iteration complexity but require
fewer iterations, while OBCD, as a partial-gradient method, has lower per-iteration costs but needs
more iterations. Thus, we compare based on CPU time rather than iteration count.

▶ Experiment Results. Table 1 and Figure 1 display accuracy and computational efficiency results
for L0-regularized PCA, yielding the following observations: (i) OBCD-R delivers the best per-
formance. (ii) Unlike other methods where objectives fluctuate during iterations, OBCD-R mono-
tonically decreases the objective function while maintaining the orthogonality constraint. This is
because OBCD is a greedy descent method for this problem class. (iii) While other methods of-
ten get stuck in poor local minima, OBCD-R escapes from such minima and generally finds lower
objectives, aligning with our theory that our methods locate stronger stationary points.

6 CONCLUSIONS
In this paper, we introduced OBCD, a new block coordinate descent method for nonsmooth compos-
ite optimization under orthogonality constraints. OBCD operates on k rows of the solution matrix,
offering lower computational complexity per iteration for k ≥ 2. We also provide a novel optimality
analysis, showing how OBCD exploits problem structure to escape bad local minima and find bet-
ter stationary points than methods focused on critical points. Under the Kurdyka-Lojasiewicz (KL)
inequality, we establish strong limit-point convergence. Additionally, we show how novel break-
point search methods can be used to solve the subproblem when k = 2. Extensive experiments
demonstrate that OBCD outperforms existing methods.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

LLM USAGE

A large language model (LLM) was used to assist in refining the writing of this paper.
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Appendix
The appendix section is organized as follows.

Section A covers notations, technical preliminaries, and relevant lemmas.

Section B shows how to solve the subproblem when k = 2.

Section C offers further discussions on the proposed algorithm.

Section D contains proofs from Section 2.

Section E contains proofs from Section 3.

Section F contains proofs from Section 4.

Section G presents additional experiment details and results.

A NOTATIONS, TECHNICAL PRELIMINARIES, AND RELEVANT LEMMAS

A.1 NOTATIONS

Throughout this paper,M ≜ St(n, r) denotes the Stiefel manifold, which is an embedded subman-
ifold of the Euclidean space Rn×r. Boldfaced lowercase letters denote vectors and uppercase letters
denote real-valued matrices. We adopt the Matlab colon notation to denote indices that describe
submatrices. For given natural numbers n and k, we use {B1,B2, ...,BCk

n
} to denote all the possi-

ble combinations of the index vectors choosing k items from n without repetition, where Ck
n is the

total number of such combinations and Bi ∈ Nk, ∀i ∈ [Ck
n]. For any one-dimensional function

p(t) : R 7→ R, we define: p(±x∓ y) ≜ min{p(x− y), p(−x+ y)}. We use the following notations
in this paper.

• [n]: {1, 2, ..., n}
• ∥x∥: Euclidean norm: ∥x∥ = ∥x∥2 =

√
⟨x,x⟩

• xi: the i-th element of vector x
• Xi,j or Xij : the (ith, jth) element of matrix X

• vec(X) : vec(X) ∈ Rnr×1, the vector formed by stacking the column vectors of X
• mat(x) : mat(x) ∈ Rn×r, Convert x ∈ Rnr×1 into a matrix with mat(vec(X)) = X

• XT : the transpose of the matrix X

• sign(t) : the signum function, sign(t) = 1 if t ≥ 0 and sign(t) = −1 otherwise
• det(D) : Determinant of a square matrix D ∈ Rn×n

• Ck
n : the number of possible combinations choosing k items from n without repetition

• 0n,r : A zero matrix of size n× r; the subscript is omitted sometimes
• Ir : Ir ∈ Rr×r, Identity matrix
• X ⪰ 0(or ≻ 0) : the Matrix X is symmetric positive semidefinite (or definite)
• tr(A) : Sum of the elements on the main diagonal X: tr(A) =

∑
i Ai,i

• ⟨X,Y⟩ : Euclidean inner product, i.e., ⟨X,Y⟩ =
∑

ij XijYij

• X⊗Y : Kronecker product of X and Y

• ∥X∥F : Frobenius norm: (
∑

ij X
2
ij)

1/2

• ∥X∥sp : Operator/Spectral norm: the largest singular value of X
• ∥X∥0: the number of non-zero elements in the matrix X

• ∥X∥1: the absolute sum of the elements in the matrix X with ∥X∥1 =
∑

i,j |Xi,j |
• ∥max(|X|, τ)∥1: the capped-ℓ1 norm of X with ∥max(|X|, τ)∥1 =

∑
i,j max(|Xi,j |, τ)

• ∇f(X) : Euclidean gradient of f(X) at X
• ∇Mf(X) : Riemannian gradient of f(X) at X
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• ∂F (X) : limiting Euclidean subdifferential of F (X) at X
• ∂MF (X) : limiting Riemannian subdifferential of F (X) at X
• ιΞ(X) : the indicator function of a set Ξ with ιΞ(X) = 0 if X ∈ Ξ and otherwise +∞
• ι≥0(X): indicator function of non-negativity constraint with ι≥0(X) = { 0, X ≥ 0;

∞, else. }

• PΞ(Z) : Orthogonal projection of Z with PΞ(Z) = argminX∈Ξ ∥Z−X∥2F
• PM(Y) : Nearest orthogonal matrix of Y with PM(Y) = argminXTX=Ir ∥X−Y∥2F
• dist(Ξ,Ξ′) : the distance between two sets with dist(Ξ,Ξ′) ≜ infX∈Ξ,X′∈Ξ′ ∥X−X′∥F
• A+ B, A− B: standard Minkowski addition and subtraction between sets A and B
• A⊕ B, A⊖ B: element-wise addition and subtraction between sets A and B
• ∥∂F (X)∥F: the distance from the origin to ∂F (X) with ∥∂F (X)∥F = infY∈∂F (X) ∥Y∥F

A.2 TECHNICAL PRELIMINARIES

As the function F (·) can be non-convex and non-smooth, we introduce some tools in non-smooth
analysis (Mordukhovich, 2006; Rockafellar & Wets., 2009). The domain of any extended real-
valued function F : Rn×r → (−∞,+∞] is defined as dom(F ) ≜ {X ∈ Rn×r : |F (X)| < +∞}.
The Fréchet subdifferential of F at X ∈ dom(F ) is defined as

∂̂F (X) ≜
{
ξ ∈ Rn×r : lim

Z→X
inf
Z̸=X

F (Z)−F (X)−⟨ξ,Z−X⟩
∥Z−X∥F

≥ 0
}
,

while the limiting subdifferential of F (X) at X ∈ dom(F ) is denoted as

∂F (X) ≜
{
ξ ∈ Rn : ∃Xt → X, F (Xt)→ F (X), ξt ∈ ∂̂F (Xt)→ ξ,∀t

}
.

We denote ∇F (X) as the gradient of F (·) at X in the Euclidean space. We have the following
relation between ∂̂F (X), ∂F (X), and ∇F (X). (i) It holds that ∂̂F (X) ⊆ ∂F (X). (ii) If the
function F (·) is convex, ∂F (X) and ∂̂F (X) essentially the classical subdifferential for convex
functions, i.e.,

∂F (X) = ∂̂F (X) =
{
ξ ∈ Rn×r : F (Z) ≥ F (X) + ⟨ξ,Z−X⟩,∀Z ∈ Rn×r

}
.

(iii) If the function F (·) is differentiable, then ∂̂F (X) = ∂F (X) = {∇F (X)}.
We need some prerequisite knowledge in optimization with orthogonality constraints (Absil et al.,
2008). The nearest orthogonality matrix to an arbitrary matrix Y ∈ Rn×r is given by PM(Y) =

ÛV̂T, where Y = ÛDiag(s)V̂T is the singular value decomposition of Y. We use NM(X) to
denote the limiting normal cone toM at X, leading to

NM(X) = ∂ιM(X) = {Z ∈ Rn×r : ⟨Z,X⟩ ≥ ⟨Z,Y⟩, ∀Y ∈M}.

The tangent and norm space toM at X ∈ M are denoted as TXM and NXM, respectively. For
a given X ∈ M, we let AX(Y) ≜ XTY + YTX for Y ∈ Rn×r, and we have TXM = {Y ∈
Rn×r|AX(Y) = 0} and NXM = {2XΛ |Λ = ΛT,Λ ∈ Rr×r}. For any non-convex and non-
smooth function F (X), we use ∂MF (X) to denote the limiting Riemannian gradient of F (X) at
X, and obtain ∂MF (X) = PTXM(∂F (X)). We denote ∂F (X) ⊖ X[∂F (X)]TX ≜ {E |E =
G−XGTX,G ∈ ∂F (X)}.

A.3 RELEVANT LEMMAS

We offer a set of useful lemmas, each of which stands independently of context and specific method-
ology.

Lemma A.1. Let k ≥ 2 and W ∈ Rn×n. If 0k,k = UT
BWUB for all B ∈ {Bi}

Ck
n

i=1, then W = 0.
Here, the set {B1,B2, ...,BCk

n
} represents all possible combinations of the index vectors choosing k

items from n without repetition.
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Proof. The proof is straightforward and relies on elementary reasoning.

Notably, the conclusion of this lemma does not necessarily hold if |B| = k = 1. This is because
any matrix W ∈ Rn×n with Wii = 0 for all i ∈ [n] satisfies the condition of this lemma but is not
necessary a zero matrix.

Lemma A.2. For any matrices A ∈ Rk×k and C ∈ Rk×k, we have:

∥A−AT∥F ≤ 2∥A−C∥F + ∥C−CT∥F.

Proof. We derive: ∥A−AT∥F = ∥(A−C) + (C−CT) + (CT −AT)∥F
①
≤ ∥A−C∥F + ∥C−

CT∥F + ∥CT −AT∥F = 2∥A−C∥F + ∥C−CT∥F, where step ① uses the triangle inequality.

Lemma A.3. Let τ ∈ R, and A ∈ R2×2 be any skey-symmetric matrix with AT = −A. We have:

det
(
(I2 +

τ
2A)−1(Ik − τ

2A)
)
= 1.

Proof. Since A is a two-dimensional matrix, it can be expressed in the form: A = ( 0 a
−a 0 ) for some

a ∈ R. Letting b = τ
2a, we derive:

Q ≜ (I2 +
τ
2A)−1(Ik − τ

2A)
①
=

(
1 b
−b 1

)−1 ( 1 −b
b 1

) ②
= 1

1+b2

(
1 −b
b 1

) (
1 −b
b 1

)
= 1

1+b2

(
1−b2 −2b
2b 1−b2

)
,

where step ① uses τ
2A = ( 0 b

−b 0 ); step ② uses the fact that ( a b
c d )

−1 = 1
ad−bc

(
d −b
−c a

)−1
for all

a, b, c, d ∈ R. We further obtain: det(Q)
①
= 1−b2

1+b2 ·
1−b2

1+b2−
2b

1+b2 ·
−2b
1+b2 = (1−b2)2+4b2

(1+b2)2 = (1+b2)2

(1+b2)2 = 1,
where step ① uses the fact that det( a b

c d ) = ad− bc for all a, b, c, d ∈ R.

Lemma A.4. For any W ∈ Rn×n, we have
Ck

n∑
i=1

∥W(Bi,Bi)∥2F = Ck−2
n−2

∑
i

∑
j,j ̸=i

W2
ij +

k
nC

k
n

∑
i

W2
ii.

Here, the set {B1,B2, ...,BCk
n
} represents all possible combinations of the index vectors choosing k

items from n without repetition.

Proof. For any matrix W ∈ Rn×n, we define: w ≜ diag(W) ∈ Rn, and W′ ≜ W −Diag(w).

We have: W = Diag(w) +W′, this leads to the following decomposition:∑Ck
n

i=1 ∥UT
Bi
WUBi∥2F =

∑Ck
n

i=1 ∥UT
Bi
(Diag(w) +W′)UBi∥2F

=
∑Ck

n
i=1 ∥UT

Bi
Diag(w)UBi

∥2F︸ ︷︷ ︸
Γ1

+
∑Ck

n
i=1 ∥UT

Bi
W′UBi

∥2F︸ ︷︷ ︸
Γ2

. (12)

We first focus on the term Γ1. We have:

Γ1 =
∑Ck

n
i=1 ∥UT

Bi
Diag(w)UBi∥2F

①
=

∑Ck
n

i=1 ∥wBi∥22
②
= Ck

n · kn · ∥w∥
2
2 = Ck

n · kn ·
∑

i W
2
ii, (13)

where step ① uses the fact that ∥BTDiag(w)B∥2F = ∥[Diag(w)]BB∥2F = ∥wB∥22 for any B ∈ {Bi}C
k
n

i=1 ;

step ② uses the observation that wi appears in the term
∑Ck

n
i=1 ∥wBi

∥22 a total of (Ck
n · kn ) times, which

can be deduced using basic induction.

We now focus on the term Γ2. Noticing that W′
ii = 0 for all i ∈ [n], we have:

Γ2 =
∑Ck

n
i=1 ∥UT

Bi
W′UBi

∥2F
①
=

∑
i

∑
j ̸=i[C

k−2
n−2(W

′
ij)

2]
②
= Ck−2

n−2

∑
i

∑
j,j ̸=i(Wij)

2, (14)

where step ① uses the fact that the term
∑Ck

n
i=1 ∥UT

Bi
W′UBi

∥2F comprises Ck−2
n−2 distinct patterns,

each including {i, j} with i ̸= j; step ② uses
∑

i,j ̸=i(Wij)
2 =

∑
i,j ̸=i(W

′
ij)

2.

In view of Equalities (12), (13), and (14), we complete the proof of this lemma.
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Lemma A.5. Assume QR = X ∈ Rn×n, where Q ∈ St(n, n) and R is a lower triangular matrix
with Ri,j = 0 for all i < j. If X ∈ St(n, n), then R is a diagonal matrix with Ri,i ∈ {−1,+1} for
all i ∈ [n].

Proof. We derive: RRT ①
= (QX)(QX)T = QXXTQT ②

= I, where step ① uses R = QTX; step
② uses X ∈ St(n, n) and Q ∈ St(n, n). First, given ∥R(1, :)∥ = 1 and R(1, 2 : n) = 0, we have
R1,1 ∈ {−1,+1}. Second, we have ∥R(2, :)∥ = 1 and R(1, :)TR(:, 2) = 0, leading to R1,2 = 0
and R2,2 ∈ {−1,+1}. Finally, using similar recursive strategy, we conclude that R is a diagonal
matrix with Ri,i ∈ {−1,+1} for all i ∈ [n].

Lemma A.6. We define TXM ≜ {Y ∈ Rn×r | AX(Y) = 0} and AX(Y) ≜ XTY +YTX. For
any G ∈ Rn×r and X ∈ St(n, k), we have:

(G− 1
2XAX(G)) = arg min

Y∈TXM
∥Y −G∥2F.

Proof. The conclusion of this lemma can be found in (Absil et al., 2008). For completeness, we
present a short proof.

Consider the convex problem: Ȳ = argminY ∥Y − G∥2F, s.t.XTY + YTX = 0. Introduc-
ing a multiplier Λ ∈ Rr×r for the linear constraints leads to the following Lagrangian function:
L̃(Y;Λ) = ∥Y − G∥2F + ⟨XTY + YTX,Λ⟩. We derive the subsequent first-order optimal-
ity condition: 2(Y − G) + X(Λ + ΛT) = 0, and XTY + YTX = 0. Given Λ is sym-
metric, we have Y = G − XΛ. Incorporating this result into XTY + YTX = 0, we obtain:
XT(G−XΛ)+ (G−XΛ)TX = 0. Given X ∈ St(n, r), we have XTG−Λ+GTX−ΛT = 0,
leading to: Λ = 1

2 (X
TG + GTX). Therefore, the optimal solution Ȳ can be computed as

Ȳ = G−XΛ = G− 1
2X(XTG+GTX).

Lemma A.7. Consider the following problem: minX Fι(X) ≜ F (X) + ιM(X), where F (X) is
defined in Equation (1). For any X ∈ St(n, r), it holds that

dist(0, ∂Fι(X)) ≤ dist(0, ∂MF (X)).

Proof. We let G ∈ ∂F (X) and define AX(G) ≜ XTG+GTX.

Recall that the following first-order optimality conditions are equivalent for all X ∈ St(n, r):
(0 ∈ ∂Fι(X))⇔ (0 ∈ PTXM(∂F (X))). Therefore, we derive:

dist(0, ∂Fι(X)) = infY∈∂Fι(X) ∥Y∥F = infY∈P(TXM)(∂F (X)) ∥Y∥F
①
= ∥P(TXM)(G)∥F
②
= ∥G− 1

2XAX(G)∥F
③
= ∥G− 1

2X(XTG+GTX)∥F
④
= ∥(I− 1

2XXT)(G−XGTX)∥F
⑤
≤ ∥G−XGTX∥F,

where step ① uses G ∈ ∂F (X); step ② uses Lemma A.6; step ③ uses the definition of AX(G);
step ④ uses the identity that G− 1

2X(XTG+GTX) = (I− 1
2XXT)(G−XGTX); step ⑤ uses

the norm inequality and fact that the matrix I− 1
2XXT only contains eigenvalues that are 1

2 or 1.

Lemma A.8. Assume cos(θ) ̸= 0. Any pair of trigonometric functions (cos(θ), sin(θ)) can be
represented as follows:

a) cos(θ) = 1√
1+tan2(θ)

, and sin(θ) = tan(θ)√
1+tan2(θ)

.
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b) cos(θ) = −1√
1+tan2(θ)

, and sin(θ) = − tan(θ)√
1+tan2(θ)

.

Proof. For all values of θ where cos(θ) ̸= 0, the trigonometric functions {sin(θ), cos(θ), tan(θ)}
are well-defined. Utilizing the identity sin2(θ) + cos2(θ) = 1 and tan(θ) cos(θ) = sin(θ), we
derive: (tan(θ) · cos(θ))2+cos2(θ) = 1. Consequently, we find: cos(θ) = ±1√

tan2(θ)+1
. Finally, we

can express sin(θ) as sin(θ) = tan(θ) · cos(θ) = tan(θ)√
tan2(θ)+1

.

Lemma A.9. Assume (Et+1)
2 ≤ Et(pt − pt+1) and pt ≥ pt+1, where {Et, pt}∞t=0 are two non-

negative sequences. For all i ≥ 1, we have:
∑∞

t=i Et+1 ≤ Ei + 2pi.

Proof. We define wt ≜ pt − pt+1. We let 1 ≤ i < T .

First, for any i ≥ 1, we have:∑T
t=i wt =

∑T
t=i(pt − pt+1) = pi − pT+1

①
≤ pi, (15)

where step ① uses pi ≥ 0 for all i.

Second, we obtain:

Et+1

①
≤
√
Etwt

②
≤

√
α
2 (Et)2 + (wt)2/(2α), ∀α > 0

③
≤

√
α
2 · Et + wt

√
1/(2α), ∀α > 0. (16)

Here, step ① uses (Et+1)
2 ≤ Et(pt − pt+1) and wt ≜ pt − pt+1; step ② uses the fact that ab ≤

α
2 a

2 + 1
2αb

2 for all α > 0; step ③ uses the fact that
√
a+ b ≤

√
a+
√
b for all a, b ≥ 0.

Assume 1−
√

α
2 > 0. Telescoping Inequality (16) over t from i to T , we have:∑T

t=i wt

√
1/(2α)

≥ {
∑T

t=i Et+1} −
√

α
2 {

∑T
t=i Et}

= {ET+1 +
∑T−1

t=i Et+1} −
√

α
2 {Ei +

∑T−1
t=i Et+1}

= ET+1 −
√

α
2Ei + (1−

√
α
2 )

∑T−1
t=i Et+1

①
≥ −

√
α
2Ei + (1−

√
α
2 )

∑T−1
t=i Et+1,

where step ① uses ET+1 ≥ 0 and 1−
√

α
2 > 0. This leads to:∑T−1

t=i Et+1 ≤ (1−
√

α
2 )

−1 · {
√

α
2Ei +

√
1
2α

∑T
t=i wt}

①
= Ei + 2

∑T
t=i wt

②
≤ Ei + 2pi,

step ① uses the fact that (1−
√

α
2 )

−1 ·
√

α
2 = 1 and (1−

√
α
2 )

−1 ·
√

1
2α = 2 when α = 1

2 ; step ②

uses Inequalities (15). Letting T →∞, we conclude this lemma.

Lemma A.10. Assume that [Dt]
τ+1 ≤ a(Dt−1 −Dt), where τ, a > 0, and {Dt}∞t=0 is a nonnega-

tive sequence. We have: DT ≤ O(T−1/τ ).
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Proof. We let κ > 1 be any constant. We define h(s) = s−τ−1, where τ > 0.

We consider two cases for rt ≜ h(Dt)/h(Dt−1).

Case (1). rt ≤ κ. We define h̆(s) ≜ − 1
τ · s

−τ . We derive:

1
①
≤ a(Dt−1 −Dt) · h(Dt)
②
≤ a(Dt−1 −Dt) · κh(Dt−1)
③
≤ aκ

∫Dt−1

Dt
h(s)ds

④
= aκ · (h̆(Dt−1)− h̆(Dt))
⑤
= aκ · 1τ · ([Dt]

−τ − [Dt−1]
−τ ),

where step ① uses [Dt]
τ+1 ≤ a(Dt−1 −Dt); step ② uses h(Dt) ≤ κh(Dt−1); step ③ uses the fact

that h(s) is a nonnegative and increasing function that (a−b)h(a) ≤
∫ a

b
h(s)ds for all a, b ∈ [0,∞);

step ④ uses the fact that ∇h̆(s) = h(s); step ⑤ uses the definition of h̆(·). This leads to:

[Dt]
−τ − [Dt−1]

−τ ≥ τ
κα . (17)

Case (2). rt > κ. We have:

h(Dt) > κh(Dt−1)
①⇒ [Dt]

−(τ+1) > κ · [Dt−1]
−(τ+1)

②⇒ ([Dt]
−(τ+1))

τ
τ+1 > κ

τ
τ+1 · ([Dt−1]

−(τ+1))
τ

τ+1

⇒ [Dt]
−τ > κ

τ
τ+1 · [Dt−1]

−τ , (18)

where step ① uses the definition of h(·); step ② uses the fact that if a > b > 0, then aτ̇ > bτ̇ for any
exponent τ̇ ≜ τ

τ+1 ∈ (0, 1). For any t ≥ 1, we derive:

[Dt]
−τ − [Dt−1]

−τ
①
≥ (κ

τ
τ+1 − 1) · [Dt−1]

−τ

②
≥ (κ

τ
τ+1 − 1) · [D0]

−τ , (19)

where step ① uses Inequality (18); step ② uses τ > 0 and Dt−1 ≤ D0 for all t ≥ 1.

In view of Inequalities (17) and (19), we have:

[Dt]
−τ − [Dt−1]

−τ ≥ min( τ
κα , (κ

τ
τ+1 − 1) · [D0]

−τ )︸ ︷︷ ︸
≜c̈

. (20)

Telescoping Inequality (20) over t from 1 to T , we have:

[DT ]
−τ − [D0]

−τ ≥ T c̈.

This leads to:

DT = ([DT ]
−τ )−1/τ ≤ O(T−1/τ ).

B SOLVING THE SUBPROBLEM WHEN k = 2

This section presents a novel Breakpoint Searching Method (BSM) to find the global optimal solu-
tion of Problem (3) when k = 2.

Initially, Problem (3) boils down to the following one-dimensional subproblem:

min
θ

1
2∥V∥

2
Q + ⟨V,P⟩+ h(VZ), s.t.V ∈ {Vrot

θ ,Vref
θ },
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which can be further rewritten as:

θ̄ ∈ argmin
θ

1
2vec(V)TQvec(V) + ⟨V,P⟩+ h(VZ), s.t.V ≜ (± cos(θ) sin(θ)

∓ sin(θ) cos(θ)
),

where Q ∈ R4×4, P ∈ R2×2, and Z ∈ R2×r. Given h(·) is coordinate-wise separable, we have the
following equivalent optimization problem:

min
θ

h (cos(θ)x+ sin(θ)y) + a cos(θ) + b sin(θ)

+c cos2(θ) + d cos(θ) sin(θ) + e sin2(θ), (21)

where a = P22±P11, b = P12∓P21, c = 0.5(Q11+Q44)±Q14, d = −Q12±Q13∓Q24+Q34,
e = 0.5(Q22 +Q33) ∓Q23, r = ±Z(1, :), s = Z(2, :), p = Z(2, :), u = ∓Z(1, :), x ≜ [r;p] ∈
R2r×1, and y ≜ [s;u] ∈ R2r×1.

Our key strategy is to perform a variable substitution to convert Problem (21) into an equivalent
problem that depends on the variable tan(θ) ≜ t. The substitution is based on the trigonometric
identities that cos(θ) = ±1/

√
1 + tan2(θ) and sin(θ) = ± tan(θ)/

√
1 + tan2(θ).

The following lemma provides a characterization of the global optimal solution for Problem (21).

Lemma B.1. We define F̆ (c̃, s̃) ≜ ac̃+ bs̃+ cc̃2 + dc̃s̃+ es̃2 + h (c̃x+ s̃y), and w ≜ c− e. The
optimal solution θ̄ to (21) can be computed as:

[cos(θ̄), sin(θ̄)] ∈ argmin
[c,s]

F̆ (c, s), s.t. [c, s] ∈
{
[c1, s1], [c2, s2], [0, 1], [0,−1]

}
,

where c1 ≜ 1√
1+(t̄+)2

, s1 = t̄+√
1+(t̄+)2

, c2 ≜ −1√
1+(t̄−)2

, and s2 ≜ −t̄−√
1+(t̄−)2

. Furthermore, t̄+ and

t̄− are respectively defined as:

t̄+ ∈ argmint p(t) ≜ a+bt√
1+t2

+ w+dt
1+t2 + h( x+ty√

1+t2
), (22)

t̄− ∈ argmint p̃(t) ≜ −a−bt√
1+t2

+ w+dt
1+t2 + h(−x−ty√

1+t2
). (23)

Proof. We define w ≜ c− e, and F̆ (c̃, s̃) ≜ ac̃+ bs̃+ cc̃2 + dc̃s̃+ es̃2 + h(c̃x+ s̃y).

With the identity sin2(θ) = 1− cos2(θ), Problem (21) can be equivalently written as:

θ̄ ∈ argmin
θ

h(cos(θ)x+ sin(θ)y) + a cos(θ) + b sin(θ)

+w cos2(θ) + d cos(θ) sin(θ) + e. (24)

We first consider the case cos(θ) ̸= 0. By Lemma A.8, there are two possible parameterizations for
(cos(θ), sin(θ)) in Problem (24).

Case a). cos(θ) = 1√
1+tan2(θ)

and sin(θ) = tan(θ)√
1+tan2(θ)

. Then Problem (21) becomes:

θ̄+ ∈ argmin
θ

a+tan(θ)b√
1+tan2(θ)

+ w+tan(θ)d
1+tan2(θ) + h( x+tan(θ)y√

1+tan2(θ)
).

Setting t = tan(θ), we have the equivalent problem:

t̄+ ∈ argmin
t

a+bt√
1+t2

+ w+dt
1+t2 + h( x+yt√

1+t2
).

Hence the corresponding optimal trigonometric pair is

cos(θ̄+) =
1√

1+(t̄+)2
, sin(θ̄+) =

t̄+√
1+(t̄+)2

. (25)

Case b). cos(θ) = −1√
1+tan(θ)2

and sin(θ) = − tan(θ)√
1+tan(θ)2

. In this case, Problem (21) reduces to

θ̄− ∈ argmin
θ

−a−tan(θ)b√
1+tan(θ)2

+ w+tan(θ)d
1+tan(θ)2 + h(−x−tan(θ)y√

1+tan(θ)2
).
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Again letting t = tan θ, we obtain

t̄− ∈ argmin
t

−a−bt√
1+t2

+ w+dt
1+t2 + h(−x−yt√

1+t2
).

Thus, the corresponding optimal trigonometric pair is

cos(θ̄−) =
−1√

1+(t̄−)2
, sin(θ̄−) =

−t̄−√
1+(t̄−)2

(26)

Combining (25) and (26), when cos(θ) ̸= 0 the optimal solution θ̄ to (24) satisfies [cos(θ̄), sin(θ̄)] ∈
argminc,s F̆ (c, s), s.t. [c, s] ∈ {[cos(θ̄+), sin(θ̄+)], [cos(θ̄−), sin(θ̄−)]}. Including the case
cos(θ) = 0, that is, [c, s] ∈ {[0, 1], [0,−1]}, the final selection rule for the optimal pair is

[cos(θ̄), sin(θ̄)] ∈ argmin
c,s

F̆ (c, s),

s.t. [c, s] ∈
{
[cos(θ̄+), sin(θ̄+)], [cos(θ̄−), sin(θ̄−)], [0, 1], [0,−1]

}
.

Note that {cos(θ̄), sin(θ̄)} uniquely determines θ̄, and the objective in Problem (21) depends only
on {cos(θ), sin(θ)} for some θ. Thus, it is not necessary to explicitly recover the angles θ̄+ and θ̄−;
it suffices to work with their cosine–sine representations.

We describe our BSM to solve Problem (22); our approach can be naturally extended to tackle
Problem (23). BSM first identifies all the possible breakpoints / critical points Θ, and then picks the
solution that leads to the lowest value as the optimal solution t̄, i.e., t̄ ∈ argmint p(t), s.t. t ∈ Θ.

We assume yi ̸= 0. If this is not true and there exists yi = 0 for some i, then {xi,yi} can be
removed since it does not affect the minimizer of the problem.

▶ Finding the Breakpoint Set for h(x) ≜ λ∥x∥0

Since the function h(x) ≜ λ∥x∥0 is scale-invariant and symmetric with ∥ ± tx∥0 = ∥x∥0 for all
t > 0, Problem (22) reduces to the following problem:

min
t

p(t) ≜ a+bt√
1+t2

+ w+dt
1+t2 + λ∥x+ ty∥0. (27)

Given the limiting subdifferential of the ℓ0 norm function can be computed as ∂∥t∥0 ∈
{ R, t = 0;

{0}, else. } (see Appendix C.5), we consider the following two cases. (i) We assume
(x + ty)i = 0 for some i. Then the solution t̄ can be determined using t̄ = xi

yi
. There are

2r breakpoints {x1

y1
, x2

y2
, ..., x2r

y2r
} for this case. (ii) We now assume (x + ty)i ̸= 0 for all i.

Then λ∥x + ty∥0 = 2rλ becomes a constant. Setting the subgradient of p(t) to zero yields:
0 = ∇p(t) = [b(1 + t2) − (a + bt)t] ·

√
1 + t2 · t◦ + [d(1 + t2) − (w + dt)(2t)] · t◦, where

t◦ = (1 + t2)−2. Since t◦ > 0, we obtain: d(1 + t2) − (w + dt)2t = −(b − at) ·
√
1 + t2.

Squaring both sides, we obtain the following quartic equation: c4t4 + c3t
3 + c2t

2 + c1t + c0 = 0
for some suitable c4, c3, c2, c1 and c0. Solving this equation analytically using Lodovico Ferrari’s
method (WikiContributors), we obtain all its real roots {t̄1, t̄2, ..., t̄j} with 1 ≤ j ≤ 4. There are
at most 4 breakpoints for this case. Therefore, Problem (27) contains at most 2r + 4 breakpoints
Θ = {x1

y1
, x2

y2
, ..., x2r

y2r
, t̄1, t̄2, ..., t̄j}.

▶ Finding the Breakpoint Set for h(x) ≜ λ∥x∥1

Since the function h(x) ≜ λ∥x∥1 is symmetric, Problem (22) reduces to the following problem:

t̄ ∈ argmin
t

p(t) ≜ a+bt√
1+t2

+ w+dt
1+t2 + λ∥x+ty∥1√

1+t2
. (28)

Setting the subgradient of p(·) to zero yields: 0 ∈ ∂p(t) = t◦[d(1 + t2) − (w + dt)2t + (b − at) ·√
1 + t2] + t◦λ ·

√
1 + t2 · [⟨sign(x+ ty),y⟩(1 + t2)− ∥x+ ty∥1t], where t◦ = (1 + t2)−2. We

consider the following two cases. (i) We assume (x + ty)i = 0 for some i. Then the solution t̄
can be determined using t̄ = xi

yi
. There are 2r breakpoints {x1

y1
, x2

y2
, ..., x2r

y2r
} for this case. (ii) We
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now assume (x + ty)i ̸= 0 for all i. We define z ≜ {+x1

y1
,−x1

y1
,+x2

y2
,−x2

y2
, ...,+x2r

y2r
,−x2r

y2r
} ∈

R4r×1, and sort z in non-descending order. Given t̄ ̸= zi for all i in this case, the domain p(t)
can be divided into (4r + 1) non-overlapping intervals: (−∞, z1), (z1, z2), ..., (z4r,+∞). In each
interval, sign(x + ty) ≜ o can be determined. Combining with the fact that t◦ > 0 and ∥x +
ty∥1 = ⟨o,x+ ty⟩, the first-order optimality condition reduces to: 0 = [d(1 + t2)− (w + dt)2t+

(b − at) ·
√
1 + t2] + λ ·

√
1 + t2 · [⟨o,y⟩(1 + t2) − ⟨o,x + ty⟩t], which can be simplified as:

(at− b) ·
√
1 + t2−λ ·

√
1 + t2 · [⟨o,y− tx⟩] = [d(1+ t2)− (w+dt)2t]. We square both sides and

then solve the quartic equation. We obtain obtain all its real roots {t̄1, t̄2, ..., t̄j} with 1 ≤ j ≤ 4.
Therefore, Problem (28) contains at most 2r + (4r + 1)× 4 breakpoints.

▶ Finding the Breakpoint Set for h(x) ≜ I≥0(x)

Since the function h(x) ≜ ι≥0(x) is scale-invariant with h(tx) = h(x) forall t ≥ 0, Problem (22)
reduces to the following problem:

t̄ ∈ argmin
t

p(t) ≜ a+bt√
1+t2

+ w+dt
1+t2 , s.t.x+ ty ≥ 0. (29)

We define I ≜ {i|yi > 0} and J ≜ {i|yi < 0}. It is not difficult to verity that {x + ty ≥ 0} ⇔
{−xI

yI
≤ t, t ≤ −xJ

yJ
} ⇔ {lb ≜ max(−xI

yI
) ≤ t ≤ min(−xJ

yJ
) ≜ ub}. When lb > ub, we can

directly conclude that the problem has no solution for this case. Now we assume ub ≥ lb and define
P (t) ≜ min(ub,max(t, lb)). We omit the bound constraint and set the gradient of p(t) to zero,
which yields: 0 = ∇p(t) = [b(1 + t2)− (a+ bt)t] ·

√
1 + t2 · t◦ + [d(1 + t2)− (w + dt)(2t)] · t◦,

where t◦ = (1 + t2)−2. We obtain all its real roots {t̄1, t̄2, ..., t̄j} with 1 ≤ j ≤ 4 after squaring
both sides and solving the quartic equation. Combining with the bound constraints, we conclude that
Problem (29) contains at most (4+2) breakpoints {P (t̄1), P (t̄2), ..., P (t̄j), lb, ub} with 1 ≤ j ≤ 4.

C ADDITIONAL DISCUSSIONS

This section encompasses various discussions, covering topics such as: (i) simple examples for the
optimality hierarchy, (ii) computation of the matrix Q, (iii) complexity comparison between OBCD
and full gradient methods, (iv) generalization to multiple row updates, and (v) the subdifferential of
the cardinality function.

C.1 SIMPLE EXAMPLES FOR THE OPTIMALITY HIERARCHY

To demonstrate the strong optimality of BS2-points and the advantages of the proposed method, we
examine the following simple examples of 2× 2 optimization problems mentioned in the paper:

min
V∈St(2,2)

F (V) ≜ ∥V −A∥2F, with A = ( 1 0
−1 −1 ). (30)

min
V∈St(2,2)

F (V) ≜ ∥V −B∥2F + 5∥V∥1, with B = ( 1 0
1 2 ). (31)

Figure 2 shows the geometric visualizations of Problems (30) and (31) using the relation
minθ min(F (Vrot

θ ), F (Vref
θ )) = minV∈St(2,2) F (V). The two objective functions exhibit period-

icity with a period of 2π. Within the interval [0, 2π), each of them contains one unique BS2-point,
while the two respective examples contain 4 and 8 critical points. Therefore, the optimality condition
of BS2-points might be much stronger than that of critical points.

BS2-points vs. Critical Point: Algorithm Instance Study. We briefly review methods that seek
critical points of Problem (30) and demonstrate that they may lead to suboptimal solutions for Prob-
lem (30). As a representative example, we consider the well-known feasible method based on the
Cayley transform (Wen & Yin, 2013). According to Equation (7) in (Wen & Yin, 2013), the update
rule is:

Xt+1 ⇐ QXt, Q ≜ [(I2 +
τ
2 Ã)−1(I2 − τ

2 Ã)], (32)

where τ ∈ R, and Ã ∈ R2×2 is a suitable skew-symmetric matrix. Lemma A.3 shows that the
matrix Q is always a rotation matrix. Consequently, if X0 is initialized as a rotation matrix with
det(Q) = 1, all iterates Xt+1 remain rotation matrices, which in general do not coincide with the
optimal solution.
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(a) minV∈St(2,2) F (V) ≜ ∥V − A∥2
F

-5 0 5

15

20

25

30

(b) minV∈St(2,2) F (V) ≜ ∥V − B∥2
F + 5∥V∥1

Figure 2: Geometric Visualizations of Two Examples of 2× 2 Optimization Problems with Orthog-
onality Constraints with A = ( 1 0

−1 −1 ) and B = ( 1 0
1 2 ).

C.2 COMPUTING THE MATRIX Q

Computing the matrix Q ∈ Rk2×k2

as in (8) can be a challenging task because it involves the matrix
H ∈ Rnr×nr. However, in practice, H often has some special structure that enables fast matrix
computation. For example, H might take a diagonal matrix that is equal to LInr for some L ≥ 0
or has a Kronecker structure where H = H1 ⊗H2 for some H1 ∈ Rr×r and H2 ∈ Rn×n. The
lemmas provided below demonstrate how to compute the matrix Q.

Lemma C.1. Assume (8) is used to find Q. (a) If H = H1 ⊗ H2, we have: Q = Q1 ⊗ Q2,
where Q1 = ZH1Z

T ∈ Rk×k and Q2 = UT
BH2UB ∈ Rk×k. (b) If H = LInr, we have Q =

(LZZT)⊗ Ik.

Proof. Recall that for any matrices Ā, B̄, C̄, D̄ of suitable dimensions, we have the following equal-
ity: (Ā⊗ B̄)(C̄⊗ D̄) = (ĀC̄)⊗ (B̄D̄).

(a) If H = H1⊗H2, we derive: Q ≜ (ZT⊗UB)
TH(ZT⊗UB) = (ZT⊗UB)

T(H1⊗H2)(Z
T⊗UB) =

(ZT ⊗UB)
T[(H1Z

T)⊗ (H2UB)] = (ZH1Z
T)⊗ (UT

BH2UB) = Q1 ⊗Q2.

(b) If H = LInr, we have: Q ≜ (ZT ⊗ UB)
TH(ZT ⊗ UB) = L(ZT ⊗ UB)

T(ZT ⊗ UB) =
L(ZZT)⊗ Ik.

Lemma C.2. Assume (9) is used to find Q. (a) If H = H1⊗H2, we have Q = ∥Q1∥sp · ∥Q2∥sp · I,
where Q1 and Q2 are defined in Lemma C.1. (b) If H = LInr, we have Q = L∥Z∥2sp · I.

Proof. (a) Using the results Lemma C.1(a), we have: (ZT ⊗ UB)
TH(ZT ⊗ UB) = Q1 ⊗ Q2 ⪯

∥Q1∥sp · ∥Q2∥sp · I.

(b) Using the results in Claim (b) of Lemma C.1, we have: (ZT⊗UB)
TH(ZT⊗UB) = LZZT⊗Ik ⪯

L∥Z∥2sp · I.

C.3 COMPLEXITY COMPARISON BETWEEN OBCD AND FULL GRADIENT METHODS

We present a computational complexity comparison with full gradient methods using the linear
eigenvalue problem: minX F (X) ≜ 1

2 ⟨X,CX⟩, s.t.XTX = Ir, where C ∈ Rn×n is given.

We first examine full gradient methods such as the Riemannian gradient method (Jiang & Dai, 2015;
Liu et al., 2016). The computation of the Riemannian gradient ∇MF (X) = CX − X[CX]TX
requires O(n2r) time, while the retraction step using SVD, QR, or polar decomposition demands
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O(nr2). Consequently, the overall complexity for Riemannian gradient method is N1 × O(n2r),
where N1 is the number of iterations required for convergence.

We now consider the proposed OBCD method where the matrix Q is chosen to be a diagonal matrix
as in Equality (9). (i) We adopt an incremental update strategy for computing the Euclidean gradient
∇F (X) = CX, maintaining the relationship Yt = CXt for all t. The initialization Y0 = CX0

occurs only once. When Xt is updated via a k-row change, resulting in Xt+1 = Xt + UB(V −
I)UT

BX
t, we efficiently reconstruct CXt+1 by updating Yt+1 = Yt + CUB(V − I)UT

BX
t in

O(nr) time. (ii) Computing the matrix P as shown in (3) involves matrix multiplication between
matrices [∇f(Xt)]B: ∈ Rk×r and [[Xt]B:]

T ∈ Rr×k, which can be done in O(rk2). (iii) Solving
the subproblem using small-size SVD takes O(k3) time. Thus, the total complexity for OBCD is
N2 ×O(nr + rk2 + k3), with N2 denoting the number of OBCD iterations.

C.4 GENERALIZATION TO MULTIPLE ROW UPDATES

The proposed OBCD algorithm can be generalized to multiple row updates scheme.

Assume that n is an even number, and k = 2. As mentioned in Lemma 2.3, when (9) is used to find
Q, the subproblem V̄t ∈ argminV∈St(k,k)K(V;Xt,B) in Algorithm 1 reduces to:

min
V∈St(2,2)

⟨V, (∇f(Xt)[Xt]T)BB⟩+ h(VUBX
t). (33)

One can independently solve (n/2) subproblems, each formulated as follows:

minV∈St(2,2)⟨V, (∇f(Xt)[Xt]T)BB⟩+ h(VUBX
t) with B = [1, 2].

minV∈St(2,2)⟨V, (∇f(Xt)[Xt]T)BB⟩+ h(VUBX
t) with B = [3, 4].

. . .

minV∈St(2,2)⟨V, (∇f(Xt)[Xt]T)BB⟩+ h(VUBX
t) with B = [n− 1, n].

This approach, known as the Jacobi update in the literature, allows for the parallel update of n rows
of the matrix X.

Notably, one can consider k ≜ |B| > 2 when h(·) = 0, and the associated subproblems can be
solved using SVD.

C.5 LIMITING SUBDIFFERENTIAL OF THE CARDINALITY FUNCTION

We demonstrate how to calculate the limiting subdifferential of the cardinality function h(X) =
∥X∥0. Given that h(X) = ∥X∥0 is coordinate-wise separable, we focus only on the scalar function
h(x) = |x|0, where |x|0 = { 0, x = 0;

1, else. }.

The Fréchet subdifferential of the function h(x) = |x|0 at x ∈ dom(h) is defined as ∂̂h(x) ≜
{ξ ∈ R : limz→x infz ̸=x

h(z)−h(x)−⟨ξ,z−x⟩
|z−x| ≥ 0}, while the limiting subdifferential of h(x) at x ∈

dom(h) is denoted as ∂h(x) ≜ {ξ ∈ R : ∃xt → x, h(xt)→ h(x), ξt ∈ ∂̂h(xt)→ ξ, ∀t}. We con-
sider the following two cases. (i) x ̸= 0. We have: ∂̂h(x) = {ξ ∈ R : limz→x infz ̸=x

−⟨ξ,z−x⟩
|z−x| ≥

0} = {0}. (ii) x = 0. We have: ∂̂h(x) = {ξ ∈ R : limz→x infz ̸=x
|z|0−⟨ξ,z−x⟩

|z−x| ≥ 0} = {ξ ∈ R :

limz→x infz ̸=x
1−⟨ξ,z⟩

|z| ≥ 0} = R.

We therefore conclude that [∂∥X∥0]i,j ∈ { R, Xi,j = 0;
{0}, else. } for all i ∈ [n] and j ∈ [r].

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D PROOF FOR SECTION 2

D.1 PROOF FOR LEMMA 2.1

Proof. Part (a). For any V ∈ Rk×k and B ∈ {Bi}C
k
n

i=1, we have:

[X+]TX+ −XTX
①
= [X+UB(V − Ik)U

T
BX]T[X+UB(V − Ik)U

T
BX]−XTX

= XTUB(V − Ik)U
T
BX+ [UB(V − Ik)U

T
BX]TX+ [UB(V − Ik)U

T
BX]T[UB(V − Ik)U

T
BX]

= XTUB

[
(V − Ik +VT − Ik) + (V − Ik)

TUT
BUB(V − Ik)

]
UT
BX

②
= XTUB

[
(V − Ik +VT − Ik) + (V − Ik)

T(V − Ik)
]
UT
BX

= XTUB(V − Ik +VT − Ik +VTV −VT −V + Ik)U
T
BX

= XTUB(−Ik +VTV)UT
BX

③
= XTUB · 0 ·UT

BX

= 0,

where step ① uses X+ = X+UB(V− Ik)U
T
BX; step ② uses UT

BUB = Ik; step ③ uses VTV = Ik.

Part (b). Obvious.

D.2 PROOF OF LEMMA 2.2

Proof. We define X+ ≜ X+UB(V − Ik)U
T
BX, Q ≜ (ZT ⊗UB)

TH(ZT ⊗UB), and Z ≜ UT
BX.

Part (a). We derive the following results:

∥X+ −X∥2H
①
= ∥UB(V − Ik)Z∥2H
②
= vec(UB(V − Ik)Z)

THvec(UB(V − Ik)Z)
③
= vec(V − Ik)

T(ZT ⊗UB)
TH(ZT ⊗UB)vec(V − Ik)

④
= ∥V − Ik∥2(ZT⊗UB)TH(ZT⊗UB)

⑤
= ∥V − Ik∥2Q,

where step ① uses X+ ≜ X + UB(V − Ik)Z; step ② uses ∥X∥2H = vec(X)THvec(X); step ③

uses (ZT ⊗ R)vec(U) = vec(RUZ) for all R, Z, and U of suitable dimensions; step ④ uses
∥X∥2H = vec(X)THvec(X) again; step ⑤ uses the definition of Q.

Part (b). We derive the following equalities:

∥X+ −X∥2F
①
= ∥UB(V − Ik)Z∥2F
②
= ∥(V − Ik)Z∥2F
= ⟨(V − Ik)

T(V − Ik),ZZ
T⟩

③
= 2⟨Ik −V,ZZT⟩+ ⟨V −VT,ZZT⟩.
④
= 2⟨Ik −V,ZZT⟩+ 0.

where step ① uses X+ ≜ X + UB(V − Ik)Z; step ② uses the fact that ∥UBV∥2F = ∥V∥2F for any
V ∈ Rk×k; step ③ uses

(V − Ik)
T(V − Ik) = Ik −VT −V + Ik = 2(Ik −V) + (V −VT);

step ④ uses the fact that ⟨V,ZZT⟩ = ⟨VT, (ZZT)T⟩ = ⟨VT,ZZT⟩ which holds true as the matrix
ZZT is symmetric.
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Part (c). We have:

∥X+ −X∥2F = ∥UB(V − Ik)U
T
BX∥2F

①
≤ ∥UB∥2sp · ∥(V − Ik)U

T
BX∥2F

②
≤ ∥UB∥2sp · ∥V − Ik∥2F · ∥UT

B∥2sp · ∥X∥2sp
③
= ∥V − Ik∥2F
④
= 2⟨Ik −V, Ik⟩,

where step ① and step ② uses the norm inequality that ∥AX∥F ≤ ∥A∥F · ∥X∥sp for any A and
X; step ③ uses ∥UB∥sp = ∥UT

B∥sp = ∥X∥sp = 1 for any X ∈ St(n, r); step ④ uses the following
equalities for any V ∈ St(k, k):

∥V − Ik∥2F = ∥V∥2F + ∥Ik∥2F − 2⟨Ik,V⟩ = ∥Ik∥2F + ∥Ik∥2F − 2⟨Ik,V⟩ = 2⟨Ik, Ik −V⟩.

D.3 PROOF OF LEMMA 2.3

Proof. We define K(V;Xt,B) ≜ 1
2∥V− Ik∥2Q+αI + h(VZ) + ⟨V, [∇f(Xt)(Xt)T]BB⟩+ c̈, where

Z ≜ UT
BX

t, and c̈ = h(UT
BcXt) + f(Xt)− ⟨Ik, [∇f(Xt)(Xt)T]BB⟩ is a constant.

Part (a). Using the definition ofK(V;Xt,B), we have the following equalities for all V ∈ St(k, k):

K(V;Xt,B)

≜ c̈+ 1
2∥V − Ik∥2Q+αIk

+ ⟨V, [∇f(Xt)(Xt)T]BB⟩+ h(VZ)

= c̈+ 1
2∥V − Ik∥2Q + α

2 ∥V − Ik∥2F + ⟨V, [∇f(Xt)(Xt)T]BB⟩+ h(VZ)

①
= c̈+ 1

2∥V∥
2
Q − ⟨V,mat(Qvec(Ik))⟩+ 1

2∥Ik∥
2
Q + α⟨Ik, Ik −V⟩+ ⟨V, [∇f(Xt)(Xt)T]BB⟩+ h(VZ)

②
= c̈+ 1

2∥V∥
2
Q + ⟨V, [∇f(Xt)(Xt)T]BB −mat(Qvec(Ik))− αIk︸ ︷︷ ︸

≜P

⟩+ h(VZ) + 1
2∥Ik∥

2
Q,

where step ① uses Lemma 2.2(c) that: 1
2∥V− Ik∥2F = ⟨Ik, Ik−V⟩; step ② uses the definition of P.

Part (b). We consider the case that Q is chosen to be a diagonal matrix that Q = ςIk, where ς
is defined in Equation (9). Using V ∈ St(k, k), the term 1

2∥V∥
2
Q simplifies to a constant with

1
2∥V∥

2
Q = 1

2 ςk. We can deduce from (3):

V̄t ∈ arg min
V∈St(k,k)

P(V) ≜ ⟨V,P⟩+ h(X). (34)

In particular, when h(X) = 0, Problem (34) becomes the nearest orthogonality matrix problem and
can be solved analytically, yielding a closed-form solution that:

V̄t ∈ arg min
V∈St(k,k)

1
2∥V − (−P)∥2F = PM(−P) = −PM(P) = −ŨṼT.

Here, P = ŨDiag(s)ṼT is the singular value decomposition of P with Ũ, Ṽ ∈ St(k, k), s ∈ Rk,
and s ≥ 0.

Notably, the multiplier for the orthogonality constraint VTV = Ik can be computed as: Λ =

−PTV̄t ①
= −[ŨDiag(s)ṼT]T · [−ŨṼT] = ṼDiag(s)ŨTŨṼT ②

= ṼDiag(s)ṼT
③
⪰ 0, where step

① uses P = ŨDiag(s)ṼT and V̄t = −ŨṼT; step ② uses ŨTŨ = Ik; step ③ uses s ≥ 0.

D.4 PROOF OF LEMMA 2.5

Proof. Any 2 × 2 matrix takes the form V = ( a b
c d ). The orthogonality constraint implies that

V ∈ St(2, 2) meets the following three equations: 1 = a2 + b2, 1 = c2 + d2, 0 = ac + bd.
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Without loss of generality, we let c = sin(θ) and d = cos(θ) with θ ∈ R. Then we obtain either (i)
a = cos(θ), b = − sin(θ) or (ii) a = − cos(θ), b = sin(θ). Therefore, we have the following Givens
rotation matrix Vrot

θ and Jacobi reflection matrix Vref
θ :

Vrot
θ ≜

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, Vref

θ ≜

[
− cos(θ) sin(θ)
sin(θ) cos(θ)

]
.

Note that for any a, b, c, d ∈ R, we have: det( a b
c d ) = ad− bc. Therefore, we obtain: det(Vrot

θ ) =

cos2(θ) + sin2(θ) = 1 and det(Vrot
θ ) = − cos2(θ)− sin2(θ) = −1 for any θ ∈ R.

E PROOF FOR SECTION 3

1function [Q,R] = JacobiGivensQR(X)
2n = size(X,1); Q = eye(n); R = X;
3for j=1:n
4for i=n:-1:(j+1)
5B = [i-1;i]; V = Givens(R(i-1,j),R(i,j));
6R(B,:) = V’*R(B,:); Q(:,B) = Q(:,B)*V;
7if (i==j+1 && R(j,j)<0)
8V = [-1 0; 0 -1]; % or V = [-1 0; 0 1];
9R(B,:) = V’*R(B,:); Q(:,B) = Q(:,B)*V;
10end
11end
12end
13if(R(n,n)<0)
14V = [1 0;0 -1]; R(B,:) = V’*R(B,:); Q(:,B) = Q(:,B)*V;
15end
16
17function V = Givens(a,b)
18% Find a Givens rotation that V’*[a;b] = [r;0]
19if (b==0)
20c = 1; s = 0;
21else
22if (abs(b) > abs(a))
23tau = -a/b; s = 1/sqrt(1+tauˆ2); c = s*tau;
24else
25tau = -b/a; c = 1/sqrt(1+tauˆ2); s = c*tau;
26end
27end
28V = [c s;-s c];

Listing 1: Matlab implementation for our Jacobi-Givens-QR algorithm.

E.1 PROOF OF THEOREM 3.1

Proof. Part (a). First, recall the classical Givens-QR algorithm, which is detailed in Section 5.2.5
of (Golub & Van Loan, 2013)). This algorithm can decompose any matrix X ∈ Rn×n (not neces-
sarily orthogonal) into the form X = QR, where Q is an orthogonal matrix (Q ∈ St(n, n)) and
R is a lower triangular matrix with Rij = 0 for all i < j, achieved through C2

n = n(n−1)
2 Givens

rotation steps.

Combining the result from Lemma A.5, we can conclude that classical Givens-QR algorithm can
decompose any orthogonal matrix into the form X = QR, where Q ∈ St(n, n) and R is diagonal
matrix with Ri,i ∈ {−1,+1} for all i ∈ [n].

We introduce a modification to the Givens-QR algorithm, resulting in our Jacobi-Givens-QR al-
gorithm as presented in Listing 1. This algorithm can decompose any matrix X ∈ St(n, n) into the
form X = QR, where Q = X and R = In, using a sequence of Ck

n Givens rotation or Jacobi
reflection steps.
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Please take note of the following four important points in Listing 1.
a) When we remove Lines 7-10 and Lines 13-15 from Listing 1, it essentially reverts to the clas-

sical Givens-QR algorithm. Givens-QR operates by selecting an appropriate Givens rotation
matrix V = [ cos(θ) sin(θ)

− sin(θ) cos(θ)
] with a suitable rotation angle θ to zero-out the matrix element

Rij systematically from left to right (j = 1→ n) and bottom to top (i = n→ (j+1)) within
every pair of neighboring columns.

b) Lines 7-10 and Lines 13-15 can be viewed as correction steps to ensure that the entries Rj,j =
1 for all j = n.

c) Line 7-10 is executed for (n − 2) times. In Line 7-10, when Jacobi-Givens-QR detects a
negative entry Ri−1,i−1 with i = j + 1, it applies a rotation matrix V ≜ (−1 0

0 −1 ) to the two
rows B = [i− 1, i] to ensure that3 Ri−1,i−1 = 1.

d) Line 13-15 is executed only once when det(X) = −1. In such cases, we have RBB = ( 1 0
0 −1 )

and det(RBB) = −1, where B = [n−1, n] is the two indices for the final rotation or reflection
step. To ensure that the resulting RBB is an identify matrix, Jacobi-Givens-QR employs a
reflection matrix V = ( 1 0

0 −1 ), leading to VTRBB = I2.
Therefore, we establish the conclusion that any orthogonal matrix X ∈ St(n, n) can be expressed
as D =WCk

n
...W2W1, whereWi = UBi

ViUT
Bi

+UBc
i
UT

Bc
i
, and Vi ∈ St(2, 2) is a suitable matrix

associated with Bi. Furthermore, if ∀i, Vi = I2, we have ∀i, Wi = In, leading to D = In. This
concludes the proof of the first part of this theorem.

Part (b). For any given X ∈ St(n, r) and X0 ∈ St(n, r), we let:

D̄ = PSt(n,n)(X[X0]T), (35)

where PSt(n,n)(Y) denotes the nearest orthogonality matrix to the given matrix Y.

Assume that the matrix X[X0]T has the following singular value decomposition:

X(X0)T = UDiag(z)VT, z ∈ {0, 1}n, U ∈ St(n, n), V ∈ St(n, n).

Therefore, we have the following equalities:

Diag(z) = UTX[X0]TV. (36)

D̄ = UVT ∈ St(n, n). (37)

Furthermore, we derive the following results:

z ∈ {0, 1}n

⇒ Diag(z)T = Diag(z)Diag(z)T

⇒ U[Diag(z)T −Diag(z)Diag(z)T]UTX = 0
①⇒ U[VTX0XTU−UTX(X0)TVVTX0XTU]UTX = 0

⇒ UVTX0XTUUTX−UUTX(X0)TVVTX0XTUUTX = 0
②⇒ UVTX0 −X = 0
③⇒ D̄ ·X0 −X = 0,

where step ① uses (36); step ② uses UUT = In, VVT = In, XTX = Ir, and [X0]TX0 = Ir; step
③ uses (37). We conclude that, for any given X ∈ St(n, r) and X0 ∈ St(n, r), we can always find
a matrix D̄ ∈ St(n, n) such that D̄X0 = X.

Since the matrix D̄ ∈ St(n, n) can be represented as D̄ = WCk
n
...W2W1, where Wi =

UBiViUT
Bi

+ UBc
i
UT

Bc
i

for some suitable Vi ∈ St(2, 2) (as established in the first part of this
theorem), we can conclude that any matrix X ∈ St(n, r) can be expressed as X = D̄X0 =
WCk

n
...W2W1X

0.

3Alternatively, one can use the reflection matrix V ≜ (−1 0
0 1 ) instead of the rotation matrix V ≜ (−1 0

0 −1 )
to ensure that Ri−1,i−1 = 1.
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E.2 PROOF OF COROLLARY 3.2

Proof. We denote ei as the i-th canonical basis vector in Rn.

We denote the set {B1,B2, ...,BCk
n
} as all possible combinations of the index vectors choosing k

items from n without repetition.

Part (a). Fix any k ≥ 2. By Theorem 3.1(a) for the case k = 2, for every D ∈ St(n, n) there exist
index pairs (pi, qi) and matrices V(2)

i ∈ St(2, 2) such that

D =W(2)
C2

n
· · ·W(2)

2 W
(2)
1 ,

where
W(2)

i = In +U
(2)
Bi

(
V(2)
j − I2

)
[U

(2)
Bi

]⊤, U
(2)
Bi

= [epi
, eqi ] ∈ Rn×2.

We let

Vi ≜
(
V(2)
i 0
0 Ik−2

)
∈ St(k, k), Wi ≜ In +UBi

(
Vi − Ik

)
U⊤

Bi
.

By construction, Wj acts as V(2)
j on the two coordinates pj , qj and as the identity on all other

coordinates, henceWj =W(2)
j as linear operators on Rn. Therefore

D =W(2)
C2

n
· · ·W(2)

1 =WC2
n
· · ·W1,

which proves the first part of this corollary for any k ≥ 2.

Part (b). A similar argument to that used in the proof of Theorem 3.1(b) yields the second part of
this corollary.

E.3 PROOF FOR THEOREM 3.7

Proof. We use X̄, Ẍ, and X̌ to denote a global optimal point, a BSk-point, and a critical point of
Problem (1), respectively.

Setting the Riemannian subgradient of K(V; Ẍ,B) w.r.t. V to zero, we have 0 ∈ ∂MK(V; Ẍ,B) =
G̈(V) ⊖ V[G̈(V)]TV, where G̈(V) = α(V − Ik) + UT

B [mat(Hvec(X+ − Ẍ)) + ∇f(Ẍ) +

∂h(X+)]ẌTUB and X+ = Ẍ + UB(V − Ik)U
T
B Ẍ. Letting V = Ik, we have the following

necessary but not sufficient condition for any BSk-point:

∀B ∈ {Bi}
Ck

n
i=1, 0 = UT

B (GẌT − ẌGT)UB, with G ∈ ∇f(Ẍ) + ∂h(Ẍ). (38)

Part (a). We now show that {critical points X̌} ⊇ {BSk-points Ẍ} for all k ≥ 2. We let G ∈
∇f(Ẍ) + ∂h(Ẍ). Using Lemma A.1, we have:

0n,n = GẌT − ẌGT ⇒ (0n,n · Ẍ) = (GẌT − ẌGT)Ẍ

①⇒ 0n,r = G− ẌGTẌ, (39)

⇒ ẌT · 0n,r = ẌT(G− ẌGTẌ)

②⇒ 0r,r = ẌTG−GTẌ

⇒ 0n,n = Ẍ(ẌTG−GTẌ)ẌT

③⇒ 0n,n = Ẍ ẌTGẌT︸ ︷︷ ︸
≜GT

− ẌGTẌ︸ ︷︷ ︸
≜G

ẌT,

where steps ① and ② use ẌTẌ = Ir; step ③ uses Equality (39) that G = ẌGTẌ. We conclude
that the necessary condition in Equation (38) is equivalent to the optimality condition of critical
points.
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Part (b). We now show that {BSk-points Ẍ} ⊇ {global optimal points X̄} for all k ∈
{2, 3, . . . , n}. We define X ⋆

B (V) ≜ X̄ + UB(V − Ik)U
T
B X̄, and K(V;X,B) ≜ f(X) + ⟨V −

Ik, [∇f(X)(X)T]BB⟩ + 1
2∥V − Ik∥2Q+αIk

+ h(UT
BcX) + h(VUT

BX). We let V(i) ∈ St(k, k) and

Bi ∈ {Bi}
Ck

n
i=1. We derive:

K(I2; X̄,Bi), ∀Bi
①
= F (X̄) = h(X̄) + f(X̄)
②
≤ h(X) + f(X), ∀X ∈ St(n, r)
③
≤ h(X̄+UBi(V(i) − Ik)U

T
Bi
X̄) + f(X̄+UBi(V(i) − Ik)U

T
Bi
X̄), ∀V(i), ∀Bi

④
= h(X ⋆

Bi
(V(i))) + f(X ⋆

Bi
(V(i))), ∀V(i), ∀Bi

⑤
= K(V(i); X̄,Bi), ∀V(i), ∀Bi
≤ minV∈St(k,k)K(V; X̄,Bi), ∀Bi, (40)

where step ① uses the definition of K(V;X,B) ≜ f(X) + ⟨V − Ik, [∇f(X)(X)T]BB⟩ + 1
2∥V −

Ik∥2Q+αIk
+ h(UT

BcX) + h(VUT
BX); step ② uses the definition of X̄; step ③ uses the basis repre-

sentation of orthogonal matrices for all k ≥ 2, as shown in Corollary 3.2; step ④ uses the definition
of X ⋆

B (V); step ⑤ uses the same strategy as in deriving Inequality (10). This leads to:

Ik ∈ arg min
V∈St(k,k)

K(V; X̄,Bi), ∀Bi.

The inclusion above implies that {BSk-points Ẍ} ⊇ {global optimal points X̄}.

Part (c). We now show that {BSk-points Ẍ} ⊇ {BSk+1-points Ẍ}. It is evident that the subproblem
of finding BSk-points is encompassed within that of finding BSk+1-points stationary point. Thus,
we conclude that the optimality of the latter is stronger.

Part (d). The inclusion {critical points X̌} ⊆ {BSk-points Ẍ} may not always hold true. This
can be illustrated through simple examples of 2 × 2 optimization problems under orthogonality
constraints (see Appendix Section C.1 for more details). Lastly, it is also evident that the inclusions
{BS2-points Ẍ} ⊆ {global optimal points X̄} and {BSk-points Ẍ} ⊆ {BSk+1-points Ẍ} may
not always hold true.

F PROOF FOR SECTION 4

F.1 PROOF FOR THEOREM 4.2

Proof. We defineK(V;Xt,B) ≜ 1
2∥V− Ik∥2Q+αIk

+h(VZ)+ ⟨V, [∇f(Xt)(Xt)T]BB⟩+ c̈, where
Z ≜ UT

BX
t and c̈ = h(UT

BcXt) + f(Xt)− ⟨Ik, [∇f(Xt)(Xt)T]BB⟩ is a constant.

We define c̃ ≜ 2
α · (F (X0)− F (X∞)).

Part (a). First, we have the following equalities:

h(Xt+1)− h(Xt)
①
= h(UBV̄

tUT
BX

t +UBcUT
BcXt)− h(UBU

T
BX

t +UBcUT
BcXt)

②
= h(UBV̄

tUT
BX

t) + h(UBcUT
BcXt)− h(UBU

T
BX

t)− h(UBcUT
BcXt)

③
= h(V̄tUT

BX
t)− h(UT

BX
t), (41)

where step ① uses Xt+1 = UBVUT
BX

t + UBcUT
BcXt as in (4) and Ik = UBU

T
B + UBcUT

Bc ; step ②
and step ③ use the coordinate-wise separable structure of h(·).
Second, since V̄t ∈ argminV∈St(k,k)K(V;Xt,B), it follows that K(V̄t;Xt,B) ≤ K(Ik;Xt,B).
This further leads to:

h(V̄tUT
BX

t) + 1
2∥V̄

t − Ik∥2Q+αIk
+ ⟨V̄t − Ik, [∇f(Xt)(Xt)T]BB⟩ ≤ h(UT

BX
t). (42)
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Third, we denote Xt+1 = X t
B(V̄

t) and derive:

f(Xt+1)− f(Xt)
①
≤ ⟨X t

B(V̄
t)−Xt,∇f(Xt)⟩+ 1

2∥X
t
B(V̄

t)−Xt∥2H
②
= ⟨UB(V̄

t − Ik)U
T
BX

t,∇f(Xt)⟩+ 1
2∥V̄

t − Ik∥2Q
③
≤ ⟨V̄t − Ik, [∇f(Xt)(Xt)T]BB⟩+ 1

2∥V̄
t − Ik∥2Q, (43)

where step ① uses Inequality (2); step ② uses Lemma 2.2(a); step ③ uses Q ≽ Q.

Adding (41), (42), and (43) together, we obtain the following sufficient decrease condition:

F (Xt+1)− F (Xt) ≤ −α
2 ∥V̄

t − Ik∥2F
①
≤ −α

2 ∥X
t+1 −Xt∥2F, (44)

where step ① uses Lemma 2.2(c).

Part (b). We assume that Bt is selected from {Bi}C
k
n

i=1 randomly and uniformly.

Taking the expectation for Inequality (44), we obtain a lower bound on the expected progress made
by each iteration:

Eξt [F (Xt+1)]− F (Xt) ≤ −Eξt [
α
2 ∥V̄

t − Ik∥2F].
Telescoping the inequality above over t = 0, 1, ..., T , we have:

EξT [
α
2

∑T
t=0 ∥V̄t − Ik∥2F] ≤ EξT [F (X0)− F (XT+1)] ≤ EξT [F (X0)− F (X∞)],

where X∞ denotes the limit point of Algorithm 1. As a result, there exists an index t̄ with 0 ≤ t̄ ≤ T
such that

EξT [∥V̄t̄ − Ik∥2F] ≤ 2
α(T+1) [F (X0)− F (X∞)] = c̃

T+1 . (45)

Furthermore, for any t, V̄t is the optimal solution of the following minimization problem at Xt:
V̄t ∈ argminV K(V;Xt,Bt). Since V̄t is a random output matrix that depends on the observed
realization of the random variable Bt, we directly obtain the following equality:

1
Ck

n

∑Ck
n

i=1 dist(Ik, argminV K(V;Xt,Bi))2 = Eξt [∥V̄t − Ik∥2F]. (46)

Combining (45) and (46), we conclude that there exists an index t̄ with t̄ ∈ [0, T ] such that the
associated solution Xt̄ qualifies as an ϵ-BSk-point of Problem (1), provided that T is sufficiently
large such that c̃

T+1 ≤ ϵ.

F.2 PROOF OF LEMMA 4.4

Proof. We define A⊖ B as the element-wise subtraction between sets A and B.

We let Ht+1 ∈ ∂h(Xt+1), and define:

Ω0 ≜ UT
Bt [∇f(Xt+1) +Ht+1][Xt+1]TUBt ∈ Rk×k, (47)

Ω1 ≜ UT
Bt [∇f(Xt+1) +Ht+1][Xt]TUBt ∈ Rk×k, (48)

Ω2 ≜ UT
Bt [∇f(Xt)−∇f(Xt+1)][Xt]TUBt ∈ Rk×k. (49)

Part (a). First, using the optimality of V̄t for the subproblem, we have:

0k,k = G̃− V̄tG̃TV̄t

where G̃ = mat((Q+ αIk)vec(V̄
t − Ik))︸ ︷︷ ︸

≜Υ1

+UT
Bt [∇f(Xt) +Ht+1](Xt)TUBt︸ ︷︷ ︸

≜Υ2

.

Using the relation that G̃ = Υ1 +Υ2, we obtain the following results from the above equality:

0k,k = (Υ1 +Υ2)− V̄t(Υ1 +Υ2)
TV̄t

①⇒ 0k,k = Υ1 +Ω1 +Ω2 − V̄t(Υ1 +Ω1 +Ω2)
TV̄t

⇒ Ω1 = V̄t(Υ1 +Ω1 +Ω2)
TV̄t −Υ1 − Ω2, (50)
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where step ① uses Υ2 = Ω1 +Ω2.

Second, since both Bt and Bt+1 are randomly and dependently selected from {Bi}C
k
n

i=1 with replace-
ment, each with an equal probability of 1

Ck
n

, for any Ã ∈ Rn×n, we have:

EBt+1 [∥UT
Bt+1ÃUBt+1∥2F = 1

Ck
n

∑Ck
n

i=1 ∥UT
Bi
ÃUBi∥2F = EBt∥UT

BtÃUBt∥2F.

Using the definition ξt ≜ (B1,B2, . . . ,Bt), we have:

Eξt+1 [∥UT
Bt+1ÃUBt+1∥2F = Eξt∥UT

BtÃUBt∥2F. (51)

Third, we derive the following results:

Eξt+1 [dist(0, ∂MK(Ik;Xt+1,Bt+1))] = Eξt+1 [∥∂MK(Ik;Xt+1,Bt+1)∥F]
①
= Eξt+1 [∥UT

Bt+1{∂F (Xt+1)[Xt+1]T ⊖Xt+1[∂F (Xt+1)]T}UBt+1∥F]
②
= Eξt [∥UT

Bt{∂F (Xt+1)[Xt+1]T ⊖Xt+1[∂F (Xt+1)]T}UBt∥F]
③
≤ Eξt [∥Ω0 − ΩT

0 ∥F]
④
≤ 2Eξt [∥Ω0 − Ω1∥F] + Eξt [∥Ω1 − ΩT

1 ∥F]
⑤
= 2Eξt [∥Ω0 − Ω1∥F] + Eξt [∥V̄t(Υ1 +Ω1 +Ω2)

TV̄t −Υ1 − Ω2 − ΩT
1 ∥F]

⑥
= 2Eξt [∥Ω0 − Ω1∥F] + Eξt [∥V̄tΥT

1 V̄
t −Υ1∥F] + Eξt [∥V̄tΩT

1 V̄
t − ΩT

1 ∥F]
+Eξt [∥V̄tΩT

2 V̄
t − Ω2∥F] (52)

where step ① uses the definition of ∂MK(V;Xt+1,Bt+1) at the point V = Ik; step ② uses Equality
(51) with Ã = ∂F (Xt+1)(Xt+1)T⊖Xt+1(∂F (Xt+1))T; step ③ uses the definition of Ω0 in Equa-
tion (47); step ④ uses Lemma A.2; step ⑤ uses Equality (50); step ⑥ uses the triangle inequality.

We now establish individual bounds for each term in Inequality (52). For the first term 2Eξt [∥Ω0 −
Ω1∥F] in (52), we have:

2Eξt [∥Ω0 − Ω1∥F]
≤ 2Eξt [∥UT

Bt [∇f(Xt+1) +Ht+1][Xt+1 −Xt]TUBt∥F]
①
= 2Eξt [∥UT

Bt [∇f(Xt+1) +Ht+1][UB(V̄
t − Ik)UBtXt]TUBt∥F]

②
≤ 2CFEξt [∥V̄t − Ik∥F], (53)

where step ① uses Xt+1 = Xt + UB(V̄
t − Ik)U

T
BX

t; step ② uses the inequality ∥XY∥F ≤
∥X∥F∥Y∥sp for all X and Y repeatedly, and the fact that ∥G∥F ≤ CF for all X ∈ St(n, r) and all
G ∈ ∂F (X).

For the second term Eξt [∥V̄tΥT
1 V̄

t −Υ1∥F] in (52), we have::

Eξt [∥V̄tΥT
1 V̄

t −Υ1∥F]
①
≤ Eξt [∥V̄tΥT

1 V̄
t∥F] + Eξt [∥Υ1∥F]

②
≤ 2Eξt [∥Υ1∥F]
③
= 2Eξt [∥mat((Q+ αIk)vec(V̄

t − Ik))∥F]
≤ 2∥Q+ αIk∥sp · Eξt [∥V̄t − Ik)∥F]
④
≤ 2(Lf + α) · Eξt [∥V̄t − Ik)∥F] (54)

where step ① uses the triangle inequality; step ② uses the inequality ∥XY∥F ≤ ∥X∥F∥Y∥sp for all
X and Y; step ③ uses the definition of Ω1 in (48); step ④ uses the fact that ∥Q∥sp ≤ Lf .
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For the third term Eξt [∥V̄tΩT
1 V̄

t − ΩT
1 ∥F] in (52), we have:

Eξt [∥V̄tΩT
1 V̄

t − ΩT
1 ∥F]

①
= Eξt [∥V̄tΩT

1 (V̄
t − Ik) + (V̄t − Ik)Ω

T
1 ∥F]

②
≤ 2Eξt [∥Ω1∥sp · ∥(V̄t − Ik)∥F]
③
≤ 2Eξt [∥∇f(Xt+1) +Ht+1∥sp · ∥(V̄t − Ik)∥F]
≤ 2CFEξt [∥(V̄t − Ik)∥F] (55)

where step ① uses the fact that −V̄tΩT
1 Ik + V̄tΩT

1 = 0; step ② uses the norm inequality; step ③
uses the fact that ∥Ω1∥sp = ∥UT

Bt [∇f(Xt+1) + Ht+1][Xt]TUBt∥sp ≤ ∥∇f(Xt+1) + Ht+1∥sp ≤
∥∇f(Xt+1) +Ht+1∥F which can be derived using the norm inequality.

For the fourth term Eξt [∥V̄tΩT
2 V̄

t − Ω2∥F] in (52), we have:

Eξt [∥V̄tΩT
2 V̄

t − Ω2∥F]
①
≤ Eξt [∥V̄tΩT

2 V̄
t∥F] + E[∥Ω2∥F]

②
≤ 2Eξt [∥Ω2∥F]
③
= 2Eξt [∥UT

Bt [∇f(Xt)−∇f(Xt+1)][Xt]TUBt∥F]
④
≤ 2Eξt [∥∇f(Xt)−∇f(Xt+1)∥F]
⑤
≤ 2LfEξt [∥Xt −Xt+1∥F]
⑥
≤ 2LfEξt [∥V̄t − Ik∥F], (56)

where step ① uses the triangle inequality; step ② uses the norm inequality; step ③ uses the definition
of Ω2 = UT

Bt [∇f(Xt)−∇f(Xt+1)][Xt]TUBt in (49); step ④ uses the norm inequality; step ⑤ uses
the fact that ∇f(X) is Lf -Lipschitz continuous; step ⑥ uses Lemma 2.2(c).

In view of (53), (54), (55), (56), and (52), we have:

Eξt+1 [∥∂MK(Ik;Xt+1,Bt+1)∥F] ≤ (c1 + c2 + c3 + c4)︸ ︷︷ ︸
≜ϕ

·Eξt [∥V̄t − Ik∥F],

where c1 = 2CF , c2 = 2(Lf + α), c3 = 2CF , and c4 = 2Lf .

Part (b). we show that Eξt [dist(0, ∂MF (Xt))] ≤ γ · Eξt [dist(0, ∂MK(Ik;Xt,Bt))], where γ ≜
(Ck

n/C
k−2
n−2)

1/2. For all Dt ≜ ∂F (Xt)[Xt]T ⊖Xt[∂F (Xt)]T, we obtain:

∥Dt∥2F =
∑

i

∑
j ̸=i(D

t
ij)

2 +
∑

i

∑
j=i(D

t
ij)

2

①
=

∑
i

∑
j ̸=i(D

t
ij)

2

②
= 1

Ck−2
n−2

∑Ck
n

i=1 ∥UT
Bi
DtUBi∥2F

③
= 1

Ck−2
n−2

· Ck
nEBt [∥UT

BtDtUBt∥2F]

④
= γ2EBt [∥UT

BtDtUBt∥2F], (57)

where step ① uses the fact that Dt
ii = 0 for all i ∈ [n]; step ② uses Claim (a) of this lemma with

Dt
ii = 0 for all i ∈ [n]; step ③ uses EBt [∥UT

BtWUBt∥2F] = 1
Ck

n

∑Ck
n

i=1 ∥UT
Bi
WUBi∥2F as Bt are

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

chosen from {Bi}C
k
n

i=1 randomly and uniformly; ④ uses the definition of γ. We further derive:

Eξt∥∂MF (Xt)∥F
①
= ∥∂F (Xt)⊖Xt[∂F (Xt)]TXt∥F
②
= ∥∂F (Xt)[Xt]TXt ⊖Xt[∂F (Xt)]TXt∥F
③
≤ ∥∂F (Xt)[Xt]T ⊖Xt[∂F (Xt)]T∥F
④
= γEBt [∥UT

Bt{∂F (Xt)[Xt]T ⊖Xt[∂F (Xt)]T}UBt∥F]
⑤
= γ∥∂MK(Ik;Xt,Bt)∥F (58)

where step ① uses the definition of ∂MF (Xt)); step ② uses [Xt]TXt = Ik; step ③ uses the inequal-
ity that ∥AX∥2F ≤ ∥A∥2F for all X ∈ St(n, r); step ④ uses Equality (57); step ⑤ uses the definition
of ∂MK(Ik;Xt,Bt).

F.3 PROOF OF THEOREM 4.6

Proof. We derive the following results:

EξT [dist
2(0, ∂MF (XT+1))]

①
= γ2 · EξT+1 [dist2(0, ∂MK(Ik;XT+1,BT+1))]

②
≤ γ2 · ϕ2 · EξT [∥V̄T − Ik∥2F]
③
≤ γ2 · ϕ2 · c̃

T+1 ,

where step ① uses Lemma 4.4(b); step ② uses Lemma 4.4(a); step ③ uses Inequality (45).

Therefore, we conclude that there exists an index t̄ with t̄ ∈ [0, T ] such that the associated solu-
tion Xt̄ qualifies as an ϵ-critical point of Problem (1) satisfying Eξt̄ [dist

2(0, ∂MF (Xt̄+1))] ≤ ϵ,
provided that T is sufficiently large to ensure γ2 · ϕ2 · c̃

T+1 ≤ ϵ.

F.4 PROOF OF THEOREM 4.10

Proof. By Theorem 4.2(a) and Theorem 4.6, the composite function Fι(X) ≜ F (X) + ιM(X) is
monotonically non-increasing, i.e., Fι(X

t+1) ≤ Fι(X
t). Moreover, the sequence {Xt}∞t=1 has a

limit point X∞.

Since Fι(X) ≜ F (X) + ιM(X) is a KL function by assumption, Proposition 4.9 implies that there
exists an index t⋆ ∈ N such that, for all t ≥ t⋆,

1
φ′(Fι(Xt)−Fι(X∞)) ≤ dist(0, ∂Fι(X

t)). (59)

Since φ(·) is a concave desingularization function, we have: φ(b)+(a− b)φ′(a) ≤ φ(a). Applying
the inequality above with a = F (Xt)− F (X∞) and b = F (Xt+1)− F (X∞), we have:

(F (Xt)− F (Xt+1))φ′(F (Xt)− F (X∞))

≤ φ(F (Xt)− F (X∞))︸ ︷︷ ︸
≜φt

− φ(F (Xt+1)− F (X∞)). (60)
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Part (a). We derive the following inequalities:

(Et+1)
2 ≜ Eξt [∥V̄t − Ik∥2F]

①
≤ 2

α · Eξt [F (Xt)− F (Xt+1)]

②
≤ 2

α · Eξt [(φt − φt+1) · 1
φ′(F (Xt)−F (X∞)) ]

③
≤ 2

α · Eξt [(φt − φt+1) · dist(0, ∂Fι(X
t))]

④
≤ 2

α · Eξt [(φt − φt+1) · ∥∂MF (Xt)∥F]
⑤
≤ 2

α · Eξt [(φt − φt+1)γ∥∂MK(Ik;Xt,Bt)∥F]
⑥
≤ 2

α · Eξt−1 [(φt − φt+1)γϕ∥V̄t−1 − Ik∥F]
⑦
= 2

α · γϕ︸ ︷︷ ︸
≜κ

·(φt − φt+1) · Et,

where step ① uses the sufficient decrease condition as shown in Theorem 4.2; step ② uses Inequality
(60); step ③ uses Inequality (59); step ④ uses Lemma A.7; step ⑤ uses Inequality (58); step ⑥ uses
Lemma 4.4; step ⑦ uses the definitions of {κ, φt, Et}.
Part (b). Applying Lemma A.9 with pt = κφt with pt ≥ pt+1, for all i ≥ 1, we have:∑∞

j=i Ej+1 ≤ Ei + 2pi.

Using the definition of Dt ≜
∑∞

j=t Ej+1 and letting i = t, we obtain:

Dt ≤ Et + 2pt
①
= Et + 2κφt

②
≤ Et + 2κφ1

③
≤ 2
√
k + 2κφ1,

where step ① uses pt = κφt; step ② uses φt ≤ φ1; step ③ uses Et ≜ Eξt−1 [∥V̄t−1 − Ik∥F] ≤
Eξt−1 [∥V̄t−1∥F]+∥Ik∥F ≤

√
k+
√
k. We conclude that Dt ≜

∑∞
j=t Ej+1 is always upper-bounded.

Using the fact that ∥Xt+1 − Xt∥2F ≤ ∥V̄t − Ik∥2F as shown in Lemma 2.2(c), we conclude that∑∞
i=1 Eξi [∥Xi+1 −Xi∥F] is also always upper-bounded.

F.5 PROOF OF THEOREM 4.11

Proof. We define φt ≜ φ(st), where st ≜ F (Xt)− F (X∞).

We define Et+1 ≜ Eξt [∥V̄t − Ik∥F], and Di =
∑∞

j=i Ej+1.

We have: Dt−1 −Dt = Et ≤ 2
√
k ≜ r.

First, we have:

∥XT −X∞∥F
①
≤

∑∞
j=T ∥Xj −Xj+1∥F

②
≤

∑∞
j=T ∥V̄j − Ik∥F

③
=

∑∞
j=T Ej+1

④
= DT ,

where step ① uses the triangle inequality; step ② uses ∥Xt+1 −Xt∥2F ≤ ∥V̄t − Ik∥2F, as shown in
Lemma 2.2(c); step ③ uses the definition of Et+1; step ④ uses the definition of DT . Therefore, it
suffices to establish the convergence rate of DT .
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Second, we obtain the following results:

1
φ′(st)

①
≤ ∥dist(0, ∂Fι(X

t))∥F
②
≤ ∥∂MF (Xt)∥F
③
≤ Eξt [γ∥∂MK(Ik;Xt,Bt)∥F
④
≤ Eξt [γϕ∥V̄t−1 − Ik∥F
⑤
≤ γϕEt,

where step ① uses uses Proposition 4.9 that dist(0, ∂Fι(X
′))φ′(Fι(X

′) − Fι(X
∞)) ≥ 1; step ②

uses Lemma A.7; step ③ uses Inequality (58); step ④ uses the Riemannian subgradient lower bound
for the iterates gap in Lemma 4.4; step ⑤ uses the definition of Et ≜ Eξt−1 [∥V̄t−1 − Ik∥2F].
Third, using the definition of Dt, we derive:

Dt ≜
∑∞

i=t Ei+1

①
≤ Et + 2κφt

②
= Et + 2κc · {[st]σ}

1−σ
σ

③
= Et + 2κc · {c(1− σ) · 1

φ′(st)}
1−σ
σ

④
= Et + 2κc · {c(1− σ) · γϕEt}

1−σ
σ

⑤
= Dt−1 −Dt + 2κc · {c(1− σ) · γϕ(Dt−1 −Dt)}

1−σ
σ

= Dt−1 −Dt + 2κc · [c(1− σ)γϕ]
1−σ
σ︸ ︷︷ ︸

≜κ̈

·{Dt−1 −Dt}
1−σ
σ , (61)

where step ① uses
∑∞

i=t Ei+1 ≤ Et + 2κφt, as shown in Theorem 4.10(b); step ② uses the def-
initions that φt ≜ φ(st), and φ(s) = cs1−σ; step ③ uses φ′(s) = c(1 − σ) · [s]−σ , leading to
[st]σ = c(1− σ) · 1

φ′(st) ; step ④ uses Inequality (61); step ⑤ uses the fact that Et = Dt−1 −Dt.

We consider three cases for σ ∈ [0, 1).

Part (a). We consider σ = 0. We have from Inequality (61):

0 ≤ − 1
φ′(st) + γϕEt

①
= − 1

c(1−σ)·[st]−σ + γϕEt

②
= − 1

c + γϕEt, (62)

where step ① uses φ′(s) = c(1− σ) · [s]−σ; step ② uses σ = 0 and Et = Dt−1 −Dt.

Since Et → 0, and γ, ϕ, c > 0, Inequality (62) results in a contradiction Et ≥ 1
cγϕ > 0. Therefore,

there exists t′ such that Dt = 0 for all t > t′, ensuring that the algorithm terminates in a finite
number of steps.

Part (b). We consider σ ∈ (0, 1
2 ]. We define w ≜ 1−σ

σ ≥ 1. We have from Inequality (61):

Dt ≤ Dt−1 −Dt + (Dt−1 −Dt)
w · κ̈

①
≤ Dt−1 −Dt + (Dt−1 −Dt) · rw−1 · κ̈
≤ Dt−1 · r

w−1·κ̈+1
rw−1·κ̈+2

, (63)

where step ① uses the fact that xw ≤ x · rw−1 for all σ ∈ (0, 1
2 ], and x = Dt−1 − Dt ∈ [0, r].

Therefore, we have:

DT ≤ D1 ·
(

rw−1·κ̈+1
rw−1·κ̈+2

)T−1

.
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Part (c). We consider σ ∈ ( 12 , 1). We define w ≜ 1−σ
σ ∈ (0, 1), and τ ≜ 1/w − 1 ∈ (0,∞). We

have from Inequality (61):

Dt ≤ Dt−1 −Dt + κ̈ · (Dt−1 −Dt)
1−σ
σ

①
= κ̈(Dt−1 −Dt)

w + (Dt−1 −Dt)
w · (Et)

1−w

②
≤ κ̈(Dt−1 −Dt)

w + (Dt−1 −Dt)
w · r1−w

= (Dt−1 −Dt)
w · (κ̈+ r1−w)︸ ︷︷ ︸

≜κ̇

,

where step ① uses the definition of w and the fact that Dt−1 −Dt = Et; step ② uses the fact that
maxx∈(0,r] x

1−w ≤ r1−w if w ∈ (0, 1). We further obtain:

[Dt]
1/w︸ ︷︷ ︸

=[Dt]τ+1

≤ (Dt−1 −Dt) · κ̇1/w.

Applying Lemma A.10 with a = κ̇1/w, we have:

DT ≤ O(T−1/τ )
①
= O(T− 1

1/w−1 )
②
= O(T

− 1
σ

1−σ−1
) = O(T− 1−σ

2σ−1 ),

where step ① uses τ ≜ 1/w − 1; step ② uses w ≜ 1−σ
σ .

G ADDITIONAL EXPERIMENT DETAILS AND RESULTS

This section provides additional experimental details and results for our proposed methods. We
first introduce nonnegative PCA as an additional application, describe the datasets and experimental
settings, and specify the compared baselines for ℓ1-regularized SPCA and nonnegative PCA. We
then report extended results on ℓ0-regularized SPCA, ℓ1-regularized SPCA, and nonnegative PCA,
demonstrating the effectiveness and robustness of our algorithms across these settings.

G.1 ADDITIONAL APPLICATION: NONNEGATIVE PCA

Nonnegative PCA is an extension of PCA that imposes nonnegativity constraints on the principal
vector (Zass & Shashua, 2006; Qian et al., 2021). This constraint leads to a nonnegative represen-
tation of loading vectors and it helps to capture data locality in feature selection. Nonnegative PCA
can formulated as: minX∈St(n,r) − 1

2 ⟨CX,X⟩, s.t.X ≥ 0, where C ∈ Rn×n is the covariance
matrix of the data.

G.2 DATA SETS

To generate the data matrix A ∈ Rm×n, we consider 10 publicly available real-world or randomly
generated data sets: ‘w1a’, ‘TDT2’, ‘20News’, ‘sector’, ‘E2006’, ‘MNIST’, ‘Gisette’, ‘Caltech’,
‘Cifar’, ‘randn’. We randomly select a subset of examples from the original data set. The size
of A ∈ Rm×n is chosen from the following set (m,n)∈{(2477, 300), (500, 1000), (8000, 1000),
(6412, 1000), (2000, 1000), (60000, 784), (3000, 1000), (1000, 1000), (500, 1000)}. We scale the
matrix A to have unit Frobenius norm by setting A = A

∥A∥F
and let C = ATA ∈ Rn×n.

G.3 ADDITIONAL EXPERIMENT SETTINGS

▶ Compared Methods on L1-Regularized SPCA. We benchmark OBCD against the following
state-of-the-art algorithms: (i) Randomized Submanifold Subgradient Method (RSSM) (Cheung
et al., 2024); (ii) Linearized Alternating Direction Method of Multiplier (LADMM) (He & Yuan,
2012); (iii) Riemannian Subgradient Method (RSubGrad) (Li et al., 2021); (iv) ADMM (Lai &
Osher, 2014); (v) Manifold Proximal Gradient Method (ManPG) (Chen et al., 2020). For RSSM
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and RSubGrad, the subgradient Gt ∈ ∂F (Xt) at iterate Xt is taken as Gt = −CXt + λsign(Xt),
since sign(X) is a valid subgradient of ∥X∥1. All competing methods are initialized with a random
matrix, producing five variants: RSSM(rnd), LADMM(rnd), RSubGrad(rnd), ADMM(rnd), and
ManPG(rnd). For OBCD, we employ a random working-set rule with identity initialization, denoted
by OBCD-R(id).

▶ Compared Methods on Nonnegative PCA. For Nonnegative PCA, we compare OBCD with
two leading infeasible approaches: (i) Linearized ADMM (LADMM) (He & Yuan, 2012; Lai &
Osher, 2014), (ii) Penalty-based Splitting Method (PSM) (Yuan, 2024; Chen, 2012), and (iii) Rie-
mannian ADMM (RADMM) (Li et al., 2024a). Since LADMM, PSM, and RADMM are infeasible
methods and may violate the nonnegativity constraints, we evaluate the quality of intermediate solu-
tions using a surrogate objective, f(X) + 1000∥min(0,X)∥F with X ∈ St(n, r), which penalizes
any violation of feasibility.

G.4 ADDITIONAL EXPERIMENT RESULTS

▶ Results on L0-Regularized SPCA. For λ ∈ {10, 50, 100, 500}, Figures 3-6 present the con-
vergence curves of the compared methods on L0-regularized SPCA. Across all setting, OBCD-R
consistently achieves lower objective values than competing methods, further reinforcing the con-
clusions drawn in the main paper.

▶ Results on L1-Regularized SPCA. For λ ∈ {10, 50, 100, 500}, Table 2 and Figures 7-10 report
objective values obtained by all methods with r = 20. Two observations follow. (i) ManPG is
generally faster than LADMM, ADMM and RSubGrad, which aligns with the findings reported
in (Chen et al., 2020). (ii) OBCD-R consistently achieves lower objective values compared with
{LADMM, ADMM, RSubGrad, ManPG}, demonstrating its superior solution quality.

▶ Results on Nonnegative PCA. For r ∈ {10, 20, 40, 80}, Table 3 reports objective values and
feasibility violations measured by ∥min(0,X)∥F, while Figures 11-14 show the surrogate objective
f(X) + 1000∥min(0,X)∥F. Two key conclusions can be drawn. (i) The proposed methods gener-
ally achieve the best overall performance, and OBCD-R often substantially outperforms LADMM,
PSM, and RADMM by locating stronger stationary points.
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Figure 3: The convergence curve for solving L0-regularized SPCA with λ = 10.
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Figure 4: The convergence curve for solving L0-regularized SPCA with λ = 50.
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Figure 5: The convergence curve for solving L0-regularized SPCA with λ = 100.
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Figure 6: The convergence curve for solving L0-regularized SPCA with λ = 500.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

data-m-n RSSM LADMM RSubGrad ADMM ManPG OBCD-R
(rnd) (rnd) (rnd) (rnd) (rnd) (id)

r = 20, λ = 10, time limit=60
w1a-2477-300 1676.362 199.961 207.918 648.546 199.949 199.833
TDT2-500-1000 4798.905 199.997 376.695 2756.315 199.999 199.636
20News-8000-1000 5099.667 203.159 458.525 2976.634 199.997 199.673
sector-6412-1000 5088.999 211.558 257.937 2646.919 199.990 199.848
E2006-2000-1000 4791.094 201.933 240.895 2873.292 200.000 199.541
MNIST-60000-784 4491.492 199.990 304.146 3077.644 199.992 199.950
Gisette-3000-1000 5096.530 203.597 361.631 3054.472 199.990 199.989
CnnCaltech-3000-1000 5274.750 203.177 287.583 2952.906 199.990 199.977
Cifar-1000-1000 5326.610 199.990 452.860 3007.068 199.990 199.987
randn-500-1000 5299.246 207.757 267.307 2908.559 199.990 199.988

data-m-n RSSM LADMM RSubGrad ADMM ManPG OBCD-R
(rnd) (rnd) (rnd) (rnd) (rnd) (id)

r = 20, λ = 50, time limit=60
w1a-2477-300 11896.991 1017.039 1014.312 1948.020 999.949 999.833
TDT2-500-1000 24811.350 1142.577 5689.161 13596.188 999.999 999.643
20News-8000-1000 25660.045 1085.026 4852.847 15234.296 999.997 999.673
sector-6412-1000 25685.661 1076.243 5056.712 13985.491 999.990 999.834
E2006-2000-1000 23945.851 1085.356 4102.980 13800.413 1000.000 999.933
MNIST-60000-784 22829.255 1036.685 3035.519 15166.657 999.992 999.949
Gisette-3000-1000 25696.928 1125.509 4866.266 15083.925 999.990 999.989
CnnCaltech-3000-1000 26443.995 1075.923 5648.585 14435.979 999.990 999.977
Cifar-1000-1000 26174.415 1101.272 6080.349 14828.673 999.990 999.987
randn-500-1000 25917.437 1237.580 4616.156 14999.881 999.990 999.988

data-m-n RSSM LADMM RSubGrad ADMM ManPG OBCD-R
(rnd) (rnd) (rnd) (rnd) (rnd) (id)

r = 20, λ = 100, time limit=60
w1a-2477-300 25212.531 2024.330 2142.546 4172.640 1999.949 1999.833
TDT2-500-1000 49303.568 2210.215 13770.257 27221.640 1999.999 1999.636
20News-8000-1000 52028.247 2204.356 12741.678 30561.467 1999.997 1999.673
sector-6412-1000 51434.623 2222.103 17521.186 27816.620 1999.990 1999.834
E2006-2000-1000 48063.148 2140.058 11210.402 27411.269 2000.000 1999.933
MNIST-60000-784 46090.059 2057.976 11107.393 30906.421 1999.992 1999.949
Gisette-3000-1000 51396.503 2202.300 15971.871 30698.736 1999.990 1999.989
CnnCaltech-3000-1000 53046.484 2230.728 9917.898 29326.239 1999.990 1999.977
Cifar-1000-1000 52183.021 2282.490 16736.350 30070.764 1999.990 1999.987
randn-500-1000 52275.431 2309.568 14891.818 30522.549 1999.990 1999.988

data-m-n RSSM LADMM RSubGrad ADMM ManPG OBCD-R
(rnd) (rnd) (rnd) (rnd) (rnd) (id)

r = 20, λ = 500, time limit=60
w1a-2477-300 144765.556 9999.940 26452.425 14711.906 9999.949 9999.834
TDT2-500-1000 243550.365 11006.292 177896.188 137815.999 9999.999 9999.636
20News-8000-1000 257513.893 10188.884 193633.121 152343.022 9999.997 9999.675
sector-6412-1000 260801.229 9999.915 199887.443 138927.601 9999.990 9999.834
E2006-2000-1000 236514.992 10535.514 135563.372 143898.385 10000.000 9999.933
MNIST-60000-784 228035.432 10306.371 146677.728 145588.796 9999.992 9999.948
Gisette-3000-1000 261983.906 10313.107 202913.350 152724.051 9999.990 9999.989
CnnCaltech-3000-1000 259056.451 10418.351 166856.613 149325.559 9999.990 9999.977
Cifar-1000-1000 262258.151 10874.860 195776.730 150353.857 9999.990 9999.987
randn-500-1000 257825.619 10219.431 80831.264 137050.323 9999.990 9999.988

Table 2: Comparisons of objective values for L1-regularized SPCA. The 1st, 2nd, and 3rd best
results are colored with red, green and blue, respectively.
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Figure 7: The convergence curve for solving L1-regularized SPCA with λ = 10.
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Figure 8: The convergence curve for solving L1-regularized SPCA with λ = 50.
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Figure 9: The convergence curve for solving L1-regularized SPCA with λ = 100.
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Figure 10: The convergence curve for solving L1-regularized SPCA with λ = 500.

data-m-n ADMM PSM RADMM OBCD-R(id)
(rnd) (rnd) (rnd) (id)

r = 10, time limit=60
w1a-2477-300 -4.08e-02, 0e+00 -4.71e-02, 0e+00 -1.11e-02, 0e+00 -1.67e-01, 7e-15
TDT2-500-1000 -1.64e-01, 0e+00 -6.70e-02, 0e+00 -2.82e-03, 0e+00 -3.32e-01, 4e-15
20News-8000-1000 -4.82e-02, 0e+00 -9.14e-02, 0e+00 -8.43e-03, 0e+00 -3.49e-01, 2e-14
sector-6412-1000 -5.70e-03, 0e+00 -5.84e-03, 0e+00 -3.30e-03, 0e+00 -1.21e-01, 1e-15
E2006-2000-1000 -3.13e-01, 0e+00 -3.39e-01, 0e+00 -6.71e-03, 0e+00 -4.42e-01, 1e-14
MNIST-60000-784 -3.57e-02, 0e+00 -9.10e-02, 0e+00 -3.00e-02, 0e+00 -2.78e-01, 2e-14
Gisette-3000-1000 -1.41e-01, 0e+00 -2.34e-01, 0e+00 -6.84e-02, 0e+00 -3.72e-01, 2e-18
CnnCaltech-3000-1000 -2.28e-02, 0e+00 -6.58e-02, 0e+00 -2.10e-02, 0e+00 -1.38e-01, 0e+00
Cifar-1000-1000 -1.73e-01, 0e+00 -2.91e-01, 0e+00 -7.86e-02, 0e+00 -4.47e-01, 0e+00
randn-500-1000 -4.91e-03, 0e+00 -5.10e-03, 0e+00 -4.77e-03, 0e+00 -1.24e-02, 2e-14

data-m-n ADMM PSM RADMM OBCD-R
(rnd) (rnd) (rnd) (id)

r = 20, time limit=60
w1a-2477-300 -3.73e-02, 0e+00 -5.36e-02, 0e+00 -3.68e-02, 0e+00 -2.17e-01, 3e-15
TDT2-500-1000 -1.73e-03, 0e+00 -9.53e-02, 0e+00 -5.01e-03, 0e+00 -3.71e-01, 2e-15
20News-8000-1000 -1.31e-03, 0e+00 -3.14e-02, 0e+00 -7.71e-03, 0e+00 -3.78e-01, 4e-15
sector-6412-1000 -9.91e-03, 0e+00 -1.55e-02, 0e+00 -1.17e-02, 0e+00 -1.67e-01, 4e-15
E2006-2000-1000 -1.20e-03, 0e+00 -3.56e-01, 0e+00 -1.55e-03, 0e+00 -4.62e-01, 1e-14
MNIST-60000-784 -1.70e-02, 0e+00 -9.40e-02, 0e+00 -3.47e-02, 0e+00 -2.95e-01, 2e-14
Gisette-3000-1000 -2.23e-02, 0e+00 -2.31e-01, 0e+00 -6.05e-02, 0e+00 -3.80e-01, 7e-19
CnnCaltech-3000-1000 -1.05e-02, 0e+00 -6.87e-02, 0e+00 -3.34e-02, 0e+00 -1.52e-01, 2e-26
Cifar-1000-1000 -2.37e-02, 0e+00 -2.87e-01, 0e+00 -1.12e-01, 0e+00 -4.54e-01, 0e+00
randn-500-1000 -1.00e-02, 0e+00 -9.90e-03, 0e+00 -9.55e-03, 0e+00 -2.11e-02, 2e-14

data-m-n ADMM PSM RADMM OBCD-R
(rnd) (rnd) (rnd) (id)

r = 40, time limit=60
w1a-2477-300 -6.45e-02, 0e+00 -1.07e-01, 0e+00 -8.56e-02, 0e+00 -3.00e-01, 7e-15
TDT2-500-1000 -3.50e-02, 0e+00 -9.89e-02, 0e+00 -3.57e-02, 0e+00 -4.09e-01, 6e-15
20News-8000-1000 -1.92e-02, 0e+00 -3.43e-02, 0e+00 -1.11e-01, 0e+00 -4.14e-01, 2e-14
sector-6412-1000 -8.70e-02, 0e+00 -2.38e-02, 0e+00 -3.70e-02, 0e+00 -2.25e-01, 4e-15
E2006-2000-1000 -8.36e-03, 0e+00 -3.64e-01, 0e+00 -2.68e-02, 0e+00 -4.75e-01, 2e-14
MNIST-60000-784 -2.09e-02, 0e+00 -1.09e-01, 0e+00 -4.67e-02, 0e+00 -2.89e-01, 3e-14
Gisette-3000-1000 -2.59e-02, 0e+00 -2.63e-01, 0e+00 -1.47e-01, 0e+00 -3.69e-01, 6e-20
CnnCaltech-3000-1000 -2.03e-02, 0e+00 -8.75e-02, 0e+00 -4.74e-02, 0e+00 -1.49e-01, 0e+00
Cifar-1000-1000 -2.65e-02, 0e+00 -3.25e-01, 0e+00 -1.60e-01, 0e+00 -4.43e-01, 0e+00
randn-500-1000 -2.01e-02, 0e+00 -2.03e-02, 0e+00 -2.00e-02, 0e+00 -3.08e-02, 5e-16

data-m-n ADMM PSM RADMM OBCD-R
(rnd) (rnd) (rnd) (id)

r = 80, time limit=60
w1a-2477-300 -1.28e-01, 0e+00 -1.70e-01, 0e+00 -1.34e-01, 0e+00 -3.90e-01, 1e-16
TDT2-500-1000 -9.80e-02, 0e+00 -4.97e-02, 0e+00 -4.55e-02, 0e+00 -4.49e-01, 2e-14
20News-8000-1000 -2.93e-02, 0e+00 -3.04e-02, 0e+00 -2.23e-02, 0e+00 -4.47e-01, 3e-14
sector-6412-1000 -7.99e-02, 0e+00 -3.82e-02, 0e+00 -3.39e-02, 0e+00 -2.96e-01, 5e-15
E2006-2000-1000 -3.09e-03, 0e+00 -3.31e-01, 0e+00 -1.39e-01, 0e+00 -4.89e-01, 2e-14
MNIST-60000-784 -5.06e-02, 0e+00 -9.95e-02, 0e+00 -8.13e-02, 0e+00 -3.03e-01, 3e-14
Gisette-3000-1000 -6.51e-02, 0e+00 -2.64e-01, 0e+00 -2.35e-01, 0e+00 -3.56e-01, 0e+00
CnnCaltech-3000-1000 -4.77e-02, 0e+00 -1.02e-01, 0e+00 -8.91e-02, 0e+00 -1.61e-01, 0e+00
Cifar-1000-1000 -6.69e-02, 0e+00 -3.21e-01, 0e+00 -2.29e-01, 0e+00 -4.24e-01, 0e+00
randn-500-1000 -4.03e-02, 0e+00 -4.02e-02, 0e+00 -3.95e-02, 0e+00 -5.31e-02, 3e-14

Table 3: Comparisons of objective values and the violation of the nonnegative constraints
(∥min(0,X)∥F) for nonnegative PCA for all the compared methods. The 1st, 2nd, and 3rd best

results are colored with red, green and blue, respectively.
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Figure 11: The convergence curve of the surrogate objective f(X) + 1000∥min(0,X)∥F with X ∈
St(n, r) for solving the nonnegative PCA problem with r = 10.
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Figure 12: The convergence curve of the surrogate objective f(X) + 1000∥min(0,X)∥F with X ∈
St(n, r) for solving the nonnegative PCA problem with r = 20.
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Figure 13: The convergence curve of the surrogate objective f(X) + 1000∥min(0,X)∥F with X ∈
St(n, r) for solving the nonnegative PCA problem with r = 40.
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Figure 14: The convergence curve of the surrogate objective f(X) + 1000∥min(0,X)∥F with X ∈
St(n, r) for solving the nonnegative PCA problem with r = 80.
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