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ABSTRACT

Low-Rank Adaptation (LoRA) is the de-facto method for parameter-efficient fine-
tuning Vision Transformers (ViTs). However, when applied to multi-task learning,
the conventional method of training a LoRA module for each task independently
leads to misaligned feature subspaces at inference, i.e., the semantic meanings of
a feature dimension from two different LoRA modules are not aligned and may
cancel each other in bad cases. Current solutions employ parameter regularization
or feature routing, but they operate under the flawed assumption that task subspaces
are independent, which is not the case in reality, resulting in limited improve-
ments. In this paper, we first dive into the conflict problem on multiple multi-task
datasets, and have two key observations. First, we reveal that LoRA’s high singular
value components encode discriminative information, while low singular value
components accumulate noise. Second, we identify a critical source of feature
misalignment from the perspective of the gradient: attaching LoRA modules to the
wrong layers (within the attention module of ViT) may amplify conflicting gradients
during backpropagation. Based on these, we develop our own add-on, plug-and-
play solution for multi-task LoRA. Specifically, we propose 1) fine-grained routing
with 2) spectrum-aware regularization, and 3) block-level LoRA adaptation. Their
integration with the best baseline methods, such as HydraLoRA (Tian et al., 2024a),
delivers large-margin improvements and state-of-the-art results. We name our
final integrated approach mtLoRA. The efficacy of mtLoRA is validated through
extensive experiments on a variety of multi-task benchmarks. These include nat-
ural language understanding (Dolly-15K (Conover et al., 2023)), cross-domain
adaptation (DOTA (Xia et al., 2018)), and fine-grained classification (iNatural-
ist (Van Horn et al., 2018)), where it outperforms current multi-task LoRA variants.
An ablation study further elucidates that our core contributions, spectrum-aware
routing, adaptive regularization, and novel attachment locations, are instrumental
in achieving these performance improvements. Our code is at this anonymous link.

1 INTRODUCTION

Low-Rank Adaptation (LoRA) (Hu et al., 2021) has emerged as the de-facto standard of parameter-
efficient fine-tuning (PEFT), thanks to its minimal trainable parameters, zero inference latency
overhead, and modular deployment (He et al., 2022; Zhang et al., 2023; Dettmers et al., 2023;
Han et al., 2024; Ge et al.; Tian et al., 2025). Though LoRA achieves remarkable performance in
single-task adaptation (Zhang et al., 2023; Liu et al., 2024; Tian et al., 2024b), real-world applications
usually need multi-task LoRA adaptation, i.e., using multiple task-specific LoRA modules to handle
multiple tasks simultaneously (Stoica et al., 2025; Wu et al., 2024a; Ma et al., 2018). For instance,
language models need to process multiple tasks (e.g., mathematical reasoning, legal analysis, and
ethical questions) concurrently (Hendrycks et al., 2020), and vision models need to adapt across
multiple spectrums (e.g., optical and radar imagery) (Tian et al., 2024b). However, existing multi-task
LoRA adaptation methods suffer from catastrophic performance degradation as the number of tasks
increases (Tian et al., 2024a; Wu et al., 2024a; Stoica et al., 2025).

The core challenges are two kinds of misalignment: parameter misalignment and representation
misalignment (Stoica et al., 2025; Han et al., 2024). Specifically, parameter misalignment means
different LoRA modules have conflicting weight updates (i.e., weights have opposing signs and
magnitudes). To address this, existing methods use regularizations to enforce orthogonality across
LoRA parameters (Ilharco et al., 2022; Yadav et al., 2023; Yu et al., 2024). Another is representation
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Table 1: Key limitations of existing methods. (A) We evaluate the impact of orthogonality regular-
ization (λ). As λ increases, routing entropy (Ent.) steadily increases, indicating that features are less
distinguishable. (B) SVD analysis reveals LoRA’s spectral components are heterogeneous. High-SV
components (Top-10%) are highly discriminative but also cause the most parameter conflicts. (C)
Applying LoRA at the block-level outperforms component-level (e.g., apply to individual linear
layers Wq , Wk, etc). Please find detailed experimental setup in Sec 4.6.

(A) OrthoReg.

λ Ent. ↓ Acc. (%)↑ ∆

0.00 1.72 78.5 —
0.25 1.89 79.8 +1.3%
0.50 2.04 79.2 +0.7%
0.75 2.18 77.6 -0.9%
1.00 2.29 75.3 -3.2%

(B) SVD Analysis.

Freq. Band Conflict ↓ Task Disc. ↑

Top-10% 0.68 2.14
10-50% 0.31 0.98
50-100% 0.19 0.67

(C) Attaching Level.

Attach Level Acc. (%) ↑

Component 89.8

Block
Attn 90.9
FFN 91.2
Transformer 92.0

misalignment, meaning that LoRA modules’ output features are divergent, e.g., centered kernel
alignment (CKA) scores dropping to 0.09-0.37 (Stoica et al., 2025). To address this, existing methods
use dynamic routing to weigh LoRAs’ output features, i.e., by using soft-/hard-gating networks to
predict LoRA modules’ weights (Ma et al., 2018; Wu et al., 2024a; Wei et al., 2025; Tian et al.,
2024a) and then weighted-summing them together. The common limitation of existing methods is
that they address the two misalignments independently, i.e., either focus on regularization or dynamic
routing. This is problematic because parameter and representation spaces are inherently entangled.
However, combining them straightforwardly reveals a key limitation: stronger regularization
alleviates conflict, but it harms routing. Specifically, Table 1(a) shows the feature discrimination
(routing entropy, “Ent.”, i.e. the entropy of the distribution over LoRA modules implied by the router,
cf. Sec 4.6) versus regularization strength (λ). The results show that as λ increases, the accuracy
improves to 79.8 (a +1.3% increase) due to reduced conflicts. However, stronger regularization
harms feature discriminability (routing entropy increases to 2.29), resulting in a performance drop of
−3.2% (79.8 → 75.3).

This raises a key question: why does this limitation exist? We identify two root causes that stem
from how LoRA modules are treated and placed, respectively.

First, uniformly treating LoRAs ignores their spectral heterogeneity. Table 1 shows how conflict
(measured by SV similarity) and task discriminability (measured as Fisher Discrimination Ratio
(FDA, by Fisher (1936)), i.e., d(i)inter/σ

(i)
intra, where d(i)inter is mean L2 distance between task centroids and

σ
(i)
intra is intra-task variance). Results show that high singular value (high-SV) components capture the

task-discriminative knowledge, while low-SV components capture task-agnostic noise. Specifically,
top-10% spectrum contain 68% of conflicts and encodes the most discriminative information (2.14),
while bottom-50% spectrum captures negligible discriminativeness (0.67). This observation explains
the limitation: uniform regularization applies strong regularization to high-SV components; hence,
it suppresses discriminative information and harms routing. This motivates us to treat the spectral
components differently.

Second, applying LoRA to component-level matrices amplifies gradient conflicts. We argue
that applying LoRA to component-level matrices (i.e., Wq, Wk, Wv, Wo) creates a multiplica-
tive interference. Specifically, when the gradients ∇Wq and ∇Wk conflict, the resulting attention
scores Softmax(QKT ) combine both gradient errors, which then multiply with the errors ∇Wv

in the output Attn(Q,K, V ). This motivates us to apply LoRA at the block-level (e.g., to Atten-
tion/FFN/Transformer blocks).

Given these insights, we propose mtLoRA–a novel method that reconfigures LoRA modules. We
introduce three key designs: 1) spectral-aware regularization, 2) fine-grained routing, and 3) block-
level adaptation. First, we design spectral-aware regularization. We apply strong orthogonalization
to low-SV components (bottom 50%, which contribute minimal discrimination but accumulate as
noise) to prevent interference, while preserving high-SV components (top 10%, containing 2.14×
discriminative information) to preserve task-specific information. We achieve this through a masking
function m(σ) = 1− exp(−σ/σ̄), where σ is the singular value and σ̄ is the average of all singular
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values. For noise components (i.e., σ ≪ σ̄), m(σ) approaches 0, this enforces strong orthogonality;
for discriminative components (i.e., σ ≫ σ̄), m(σ) approaches 1, maintaining task-specific expression.
Second, we propose fine-grained routing. Unlike standard routing that assigns one scalar weight
per LoRA (forcing uniform combination across all dimensions), We use a router network to produce
a d-dimensional weight vector per LoRA. This addresses our observed heterogeneous conflict pattern
(i.e., in Table 1(b) conflicts concentrate in certain dimensions while others remain compatible).
Consider an example, given Dolly-15k’s prompt "Write a creative story about why the sky is blue
with scientific accuracy" and two task LoRAs: brainstorm LoRA and QA LoRA. Answering this
prompt requires more of the “creativity” dimension from brainstorm LoRA and more of the “accuracy”
dimension from QA LoRA, respectively. However, traditional methods (Tian et al., 2024a; Wu et al.,
2024a) use a scalar weight for all dimensions of each LoRA module, e.g., all the dimensions are
weighted combination of p% brainstorm and (1− p)% QA LoRAs. Our fine-grained routing breaks
this constraint. For example, the 256th dimension (handling metaphors) assigns weight 0.9 to
brainstorming LoRA for vivid imagery, while the 384th dimension (handling scientific terms) assigns
weight 0.9 to QA LoRA for factual correctness. Third, we propose block-level adaptation. To
resolve the multiplicative effect of gradient conflicts, we apply LoRA to block-level (e.g., attention
block, FFN block or entire transformer block). Specifically, for block F , our module is applied
directly as F (x) + ∆(x), where ∆ learns block-level input-output mapping. This avoids going
through attention’s Softmax normalization. Table 1 validates this design. Block-level adaptation (e.g.,
transformer-level reaches 92.0%) outperforms component-level (89.8%).

We validate mtLoRA on three benchmarks across vision and NLP domains. We establish three
key findings. First, our block-level adaptation largely eliminates gradient conflict amplification.
Specifically, Table 1 shows Transformer-level (92.0%) outperforms component-level (89.8%) on
DOTA. Second, fine-grained routing captures dimension-specific task requirements. Table 5 shows
channel-wise routing improves MMLU accuracy from 44.5% to 47.1%. Third, even vanilla orthogonal
regularization, when combined with dynamic routing, improves performance (Table 2: 78.5%→79.8%
on iNat2018). For extreme multi-task scenarios (N=25 for iNat2018, N=16 for Dolly-15k), mtLoRA
surpasses SOTA by 3.4% and 4.4% respectively (Table 2: 81.9% vs. 78.5% for iNat2018, 47.1% vs.
42.7% for Dolly-15k).

Our contributions are three-fold. 1) We identify spectral heterogeneity as the key limitation in multi-
task LoRA: high singular value components encode both conflicts and critical task discrimination. 2)
We make three key technical contributions. Spectral-aware regularization selectively orthogonalizes
low-SV noise while preserving high-SV discrimination, fine-grained routing assigns dimension-
specific weights instead of scalar weights, and block-level adaptation mitigates gradient conflict
amplification. 3) We demonstrate consistent improvements across vision (DOTA, iNat2018) and
language (Dolly-15k) benchmarks with 15-25 tasks, achieving up to 4.4% absolute performance
improvement over state-of-the-art.

2 RELATED WORKS

Multi-Task LoRA Adaptation. Multi-task LoRA adapation aims to compose multiple task-specific
LoRA modules to handle multiple tasks, simultaneously. The key challenge is the misalignment
between LoRA modules. Such misalignment can be categorised into parameter misalignment or
representation misalignment. Existing studies can be categorised into regularization methods and
dynamic routing methods, tackling the two misalignments respectively. Specificially, Regularization
methods addresses the parameter misaglinment issue. Existing methods impose regularization to
enforce orthogonality across LoRA parameters (Ilharco et al., 2022; Yadav et al., 2023; Yu et al.,
2024). For instance, Task Arithmetic (Ilharco et al., 2022) linearly combines task vectors; TIES-
Merging (Yadav et al., 2023) resolves sign conflicts through majority voting; DARE (Yu et al., 2024)
applies stochastic masking to enforce sparsity. However, these methods are input-independent and
ignore input dynamics. Dynamic routing methods address representation misaglinment, existing
methods use dynamic routing to route LoRA’s output features. Such methods rely on a soft-/hard-
gating network to predict combination weights for LoRA modules. MMoE (Ma et al., 2018) first
proposed gating networks for expert selection. MoLE (Wu et al., 2024a) extends this to LoRA
adaptation, introducing Top-K routing and balancing losses to prevent degeneration (i.e., 68%
probability on single LoRA module). HydraLoRA (Tian et al., 2024a) combines routing with
asymmetric LoRA structure (i.e., a single shared A, with multiple task-specific Bk). LoRAMoE force
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part of LoRA experts to maintain the foundation model’s knowledge to guard against catastrophyic
forgetting. However, existing works only offer independent, partial solutions. Our preliminary study
shows that combination of the two methods could be beneficial. Based on our insights, we the first to
propose joint regularization and dynamic routing.

LoRA Placement Strategies. Prior work explores where to place LoRA modules in transformers.
Ada-Merging (Yang et al., 2024) and MoLE (Wu et al., 2024a) assign different merging weights
to different layers. They find that uniform treatment across layers is suboptimal. MTLoRA (Agiza
et al., 2024) places task-irrelevant modules early and task-specific modules late in the network.
MixLoRA (Wu et al., 2024b) only inserts LoRA into FFN blocks, avoiding attention layers com-
pletely. However, all these methods apply LoRA to individual weight matrices (Wq, Wk, Wv,
Wo). When multiple LoRAs update these matrices, gradients conflict occurs and amplifies through
attention’s Softmax. Instead, we apply LoRA at block-level (i.e., around entire blocks like Atten-
tion/FFN/Transformer).

3 METHOD

In this section, we provide problem formulation for multi-task LoRA adaptation in Sec 3.1, and
three key designs of our mtLoRA: Spectral-aware regularization in Sec. 3.2, fine-grained routing in
Sec. 3.3, and block-level adaptation in 3.4

3.1 PROBLEM FORMULATION

We address the challenge of multi-task LoRA adaptation. Specifically, consider a frozen pretrained
model with parameters W0, we have N task-specific LoRA modules {∆N}, where each module ∆i

is a low-rank update of W0 parameterized as ∆i = BiAi. For an input x, multi-task LoRA adaptation
combines these LoRA modules:

f(x) = fW0
(x) +

N∑
i=1

πi(x) ·∆i(x). (1)

Existing methods can be categorised as two kinds. 1) Dynamic routing uses a soft-/hard-gated
network g(·) to weigh LoRA modules, i.e., π(x) = Softmax (g(x)). 2) Orthogonal regular-
ization forces parameter orthogonality during training. A basic orthogonal regularization is
Lortho = λ

∑
i<j ∥∆T

i ∆j∥2F , where ∥ · ∥F is the Frobenius norm. Note that it is impractical to
calculate on the full-size update (∆). In our implementation, we apply the regularization directly to
the B matrices (following (Tian et al., 2024a)).

3.2 SPECTRAL-AWARE REGULARIZATION

Our key insight is that not all parameters contribute equally to conflicts or discrimination. Standard
orthogonal regularization suppresses all parameters equally, harming both conflicts and task-specific
information (as explained in the introduction). We apply selective regularization based on LoRA
modules’ singular value magnitude. For LoRA module ∆i with SVD decomposition

∆i = UiΣiV
T
i , (2)

we define regularization strength as w(σ) = exp(−σ/σ̄), where σ̄ is the mean singular value. Low-
SV components (noise) get strong regularization (w → 1), while high-SV components (task-specific)
are preserved (w → 0). The spectral-aware loss thus becomes:

Lspectral = λ
∑
i<j

∑
k

w(σk) · (u⃗T
i,ku⃗j,k)

2 (3)

where u⃗i,k is the k-th singular vector of module i.
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3.3 FINE-GRAINED ROUTING

Unlike conventional dynamic routing that assigns one weight per LoRA (πi ∈ R), we assign
dimension-specific weights Πi ∈ Rd/g , where g is group size. The combination becomes:

f(x) = fW0(x) +

N∑
i=1

Πi(x)⊙∆i(x), (4)

where ⊙ denotes grouped element-wise multiplication after broadcasting. This allows different
dimensions to use different LoRA combinations.

3.4 BLOCK-LEVEL ADAPTATION

Instead of modifying individual weight matrices within each transformer block (e.g., Wq,Wk,Wv),
we apply LoRA as a residual adapter at the block-level, operating on the entire block’s input-output
transformation (i.e., Attention block, FFN block, or entire Transformer block).

Specifically, for a frozen Transformer block W : hin → hout, we create a parallel residual path that

hout = W (hin) + ∆(hin), where∆(hin) = BA · hin. (5)

Here, A ∈ Rr×d and B ∈ Rd×r form a low-rank bottleneck. Unlike traditional LoRA that decom-
poses weight updates, our proposed block-level adaptation learns a direct input-to-output mapping.

Why does our design work? Compared with conventional LoRA, our block-level adaptation offers
a key advantage: it avoids gradient conflicts rooted in attention. In traditional LoRA, gradients
flow through the Softmax in attention. This creates cross-token dependencies. Changing attention
to one token position affects all other positions through normalization. This effect amplifies task
conflicts. For example, consider the input "The bank is steep". For finance tasks, the model
needs high attention on "bank"→"money". For geography tasks, the model needs "bank"→"river".
These conflicting attention patterns interfere through Softmax. In traditional LoRA, updating B
to increase "bank"→"money" attention automatically decreases "bank"→"river" attention due to
Softmax normalization, as they compete for the same probability mass. Our block-level adaptation
avoids this competition. The two adapters can add the “money” and “river” feature independently to
“bank” representation.

4 EXPERIMENTS

We validate mtLoRA through comprehensive experiments across vision and NLP benchmarks,
demonstrating that our three key designs, spectral-aware regularization, fine-grained routing, and
block-level adaptation, collectively address the multi-task collapse problem.

4.1 DATASETS

We evaluate on three benchmarks spanning vision and NLP domains: DOTA (Xia et al., 2018)
for cross-domain adaptation (15 tasks), iNaturalist 2018 (Van Horn et al., 2018) for fine-grained
classification (25-100 tasks), and Dolly-15k (Conover et al., 2023) for instruction following (16
tasks).

iNat2018 (Fine-Grained Classification) To simulate a high-conflict scenario with a large number
of fine-grained classes, we construct a benchmark from the iNat2018 dataset. Our methodology is
designed to be principled and reproducible, leveraging the dataset’s inherent biological taxonomy
to create semantically coherent yet potentially conflicting tasks. 1) Hierarchical Task Definition:
We define each LoRA expert’s task at the taxonomic rank of Order. This is a principled choice,
as classes within the same order (e.g., different species of songbirds) are visually similar and thus
create high inter-task conflict, while being semantically distinct from other orders (e.g., raptors). 2)
Data Partitioning: We first select a high-level super-category, the class Aves, to ensure all tasks are
within the same broad domain. We then identify the N most populous Orders within this class (e.g.,
Passeriformes, Accipitriformes, Charadriiformes). For each of these N Orders, we assign all of its
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constituent species-level classes to a single corresponding LoRA expert. This creates N disjoint sets
of classes for training. 3) Training and Evaluation: Each LoRA expert is trained exclusively on
the images of species belonging to its assigned Order. The composed model is then evaluated on
its ability to classify species across the union of all N Orders, using a unified classification head
on a held-out test set. This setup directly tests the model’s ability to resolve conflicts among many
fine-grained, visually similar experts.

Dolly-15k (Natural Language Understanding) For the language domain, we use the Dolly-15k
instruction-following dataset. To create distinct experts, we perform K-Means clustering on the
instruction embeddings to group them into N semantically related categories (e.g., summarization,
creative writing, question-answering). Each LoRA is then trained on the data from one cluster,
making it an expert in a specific type of instruction.

4.2 IMPLEMENTATION DETAILS

Spectral-Aware Regularization. Computing SVD on full ∆ = BA is expensive. We apply SVD
to B matrices as proxy: Bi = UiΣiV

T
i . We construct weighted matrices B′

i = UiΣ
′
iV

T
i where

Σ′
kk =

√
w(σk) ·σk, then compute Lspectral = λ

∑
i<j ∥(B′

i)
TB′

j∥2F . SVD is performed every epoch.

Fine-Grained Routing. The router is a 2-layer MLP: g(x) = Linear2(ReLU(Linear1(h̄)))
where h̄ is mean-pooled input. Output dimension is N × (d/g), reshaped and normalized:
Π = Softmax(reshape(g(x)), dim = 0). Each row Πi is broadcast by repeating elements g times
before multiplication with ∆i(x). Larger g means finer grained routing.

4.3 MAIN RESULTS

mtLoRA achieves state-of-the-art performance across all benchmarks, with particularly strong gains
in extreme multi-task scenarios.

Performance under extreme multi-tasking. Table 2 shows our main results. mtLoRA improves
over HydraLoRA baseline by 3.4% on iNat2018 (25 tasks) and 4.4% on Dolly-15k (16 tasks). The
gains are most pronounced when all three components work together: orthogonal regularization,
block-level scope, and channel-wise routing achieve 81.9% on iNat2018 and 47.1% on Dolly-15k.

Table 2: SOTA Comparison. We compare against the baseline (i.e., uniformly weighted combination)
and HydraLoRA (Tian et al., 2024a). Our method builds upon HydraLoRA by adding Orthogonality
Regularization (Orth. Reg.), Block-level Scope (Scope), and Channel-wise Routing (Channel). All
tasks are measured in average accuracy (%).

Method Dyn. Routing Orth. Reg. Scope Channel DOTA iNat2018 Dolly-15K

Baseline 18.0 8.5 19.5
HydraLoRA ✓ 89.1 78.5 42.7

mtLoRA (Ours)
✓ ✓ 89.8 79.8 43.5
✓ ✓ ✓ 92.0 81.3 44.5
✓ ✓ ✓ ✓ 91.0 81.9 47.1

Addressing the collapse problem. Table 3 reveals the severity of multi-task collapse. Naive
averaging catastrophically fails as tasks increase: accuracy drops from 88.2% to 2.0% on DOTA
when scaling from 5 to 15 tasks. The conflict score reaches 97.9%, indicating severe parameter
interference. mtLoRA maintains stable performance even with 100 tasks on iNat2018.

4.4 COMPONENT ANALYSIS

We ablate each design choice to understand their individual and combined contributions.

6
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Table 3: Performance Collapse Issue. Results reported on Vision (ViT-B/16→{DOTA, iNat2018})
and NLP (LLaMA2-7B→Dolly-15k) tasks. Model collapses as the number of LoRA modules (N)
increase.

ViT-B/16 → DOTA ViT-B/16 → INat2018 LLaMA2-7B → Dolly-15k

5 10 15 15 25 80 100 4 8 16

Single LoRA 94.5% 94.5% 94.5% 87.0% 87.0% 87.0% 87.0% 45.45% 45.45% 45.45%
Naive Averaging 88.2% 12.0% 2.0% 3.5% 1.0% 0.5% 0.3% 46.14% 40.50% 16.03%

Conflict Score 6.7% 87.3% 97.9% 96.0% 98.9% 99.4% 99.7% −1.5% 10.9% 64.7%

Spectral heterogeneity drives design choices. Table 1(B) validates our core insight: LoRA’s
spectral components are heterogeneous. Top-10% singular values contain 68% of conflicts but also
3.2× higher task discriminability (2.14 vs 0.67). This motivates selective regularization: preserving
high-SV components while orthogonalizing low-SV noise.

Regularization helps only with routing. Table 1(A) shows the regularization-routing interaction.
Moderate regularization (λ = 0.25) improves accuracy (+1.3%), but stronger regularization (λ = 1.0)
causes -3.2% drop. The routing entropy increases from 1.72 to 2.29, indicating reduced feature
discriminability. Table 4 confirms that regularization benefits disappear without dynamic routing—
orthogonal regularization alone achieves only 20.5% on DOTA versus 89.8% with routing.

Table 4: Compare Uniform and Dynamic Routing. We ablate combination strategies on the high-
conflict DOTA (N=15), the extreme-conflict iNat2018 (N=25), and the Dolly-15k (N=16) settings.
The results highlight the pivotal role of Dynamic Routing across domains.

Method DOTA iNat2018 Dolly-15k

Uniform Routing
HydraLoRA† 18.0 8.5 19.5

+ Sparsity Reg. 16.5 7.2 18.0
+ Orthogonality Reg. 20.5 10.1 21.0

Dynamic Routing
HydraLoRA 89.1 78.5 42.7

+ Sparsity Reg. 87.9 77.2 41.5
+ Orthogonality Reg. 89.8 79.8 43.5

†Implemented with static, uniform weight.

Fine-grained routing captures dimension-specific patterns. Table 5 demonstrates channel-wise
routing’s advantage. Full channel-wise routing (g=768) achieves 47.1% on Dolly-15k, outperforming
module-wise routing (44.5%) by 2.6%. This confirms that different dimensions require different
LoRA combinations.

Table 5: Comprehensive Ablation on Routing Granularity for NLP (N=16). Performance on
Dolly-15k evaluated by MMLU accuracy. Empty cells denote planned experiments.

Routing Strategy Hyperparameter MMLU Acc. (%)

Module-Wise - 44.5

Fine-Grained

Grouped
g=32 45.3
g=64 45.2
g=128 44.3

Full g=768 47.1

Block-level adaptation mitigates gradient conflicts. Tables 1(C) and 6 compare attachment
strategies. Transformer-level attachment (92.0%) consistently outperforms component-level (89.8%)
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across all data splits. The improvement is most pronounced in challenging tail categories (87.1% vs
85.7% for attention-only).

Table 6: Compare LoRA Attaching Scope. Results reported on N=15 categories on DOTA dataset.

Block Head Mid Tail Average

Attn 95.5 91.5 85.7 90.9
FFN 95.7 92.0 85.9 91.2
Transformer 96.0 92.9 87.1 92.0

4.5 CONFIGURATION ANALYSIS

We identify optimal configurations for different domains.

Vision tasks prefer block-level without fine-grained routing. Table 7 shows vision models benefit
most from transformer-level attachment (92.0%) but not from fine-grained routing (91.0%). This
suggests vision features are more homogeneous across channels.

Table 7: Optimal Configuration on Vision Tasks. We report the performance gains from progres-
sively incorporating our proposed techniques. Results reported in Top-1 Average Accuracy (%) on
DOTA (N=15).

Method DOTA (%)

Block-Level Adaptation
HydraLoRA 89.8

+ Attn-level 90.9
+ FFN-level 91.2
+ Transformer-level 92.0

Routing Granularity
Module-Wise 92.0
Fine-Grained 91.0

NLP tasks benefit from both block-level and fine-grained routing. Table 8 reveals NLP
models gain from both transformer-level attachment (43.5%→44.5%) and fine-grained routing
(44.5%→47.1%). Language representations appear more heterogeneous, requiring dimension-specific
combinations.

Table 8: Optimal Configuration on NLP Tasks. We report the performance gains from progressively
incorporating our proposed techniques. Experts learned on Dolly-15k (N=16) and evaluated on
MMLU.

Method MMLU Acc. (%)

Block-Level Adaptation
HydraLoRA 43.5

+ Transformer-level 44.5

Routing Granularity
Module-Wise 44.5
Fine-Grained 47.1

Module complexity offers diminishing returns. Table 9 shows that increasing LoRA module
complexity yields marginal gains. Even 2.11× parameters (Transformer) only improves 0.2% over
standard LoRA. This validates our focus on structural changes rather than capacity increases.
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Table 9: Ablation on LoRA Structure. Increasing local module complexity yields only marginal
gains. Baseline refers to the standard LoRA.

Method Avg Acc. (%) Relative Params

LoRA 89.8 1×
MLP 89.9 ≈ 1.0×
Deep MLP 90.1 ≈ 1.07×
Attention 90.1 ≈ 1.24×
Transformer 90.0 ≈ 2.11×

4.6 DISCUSSION

OrthoReg: Performance-Discriminability Limitation. We demonstrate that orthogonal regu-
larization (applied to parameters) creates a key limitation: it reduces parameter conflict but harms
feature discriminability. We measure routing entropy Ex

[
−
∑N

i=1 πi(x) log πi(x)
]
, i.e., the average

per-sample entropy of the router’s output distribution π(x). Higher entropy means more router
uncertainty. Table 1(A) shows 25 LoRA experts on iNat2018 with orthogonality regularization
λ ∈ {0, 0.25, 0.5, 0.75, 1.0}. Results confirm that while strong regularization (λ ≥ 0.5) severely
degrades performance by increasing router uncertainty, a smaller regularization (λ = 0.25) improves
accuracy. Notably, in our experiments, reaching this optimal point requires a 1.4× more training
iterations. It indicates the increased difficulty of optimizing.

SVD spectrum analysis. We perform a Singular Value Decomposition (SVD) to decompose
∆W = UΣV T for N = 25 LoRA modules trained on iNat2018. Singular values are partitioned
into three bands by cumulative energy, high (top-10%), mid (10-50%), and low (bottom-50%). For
each band B = {im}, we measure: 1) Parameter conflict: 1

N(N−1)

∑
i

∑
j ̸=k σj,iσk,i| cos(u⃗j,i, u⃗k,i)|

where the outer sum averages over all singular value positions i within band B, and the inner sum
computes pairwise LoRA conflicts at position i. 2) task discriminability as d(i)inter/σ

(i)
intra, where d

(i)
inter

is the mean L2 distance between task centroids and σ
(i)
intra is within-task variance. We show results

in Table 1(B). High-frequency components contain 68% of conflicts while comprising only 10%
of parameters. These same components show 3.2× higher discriminability (2.14 vs 0.67) than
low-frequency components.

5 CONCLUSION

We presented mtLoRA, which enables stable multi-task adaptation even with 25+ tasks by addressing
the fundamental spectral heterogeneity in LoRA modules. Our key insight (i.e., high-SV components
encode both conflicts and discrimination) motivates treating different spectral bands differently
rather than uniformly. The combination of spectral-aware regularization, fine-grained routing, and
block-level adaptation achieves up to 4.4% improvement over state-of-the-art, making multi-task
LoRA practical for real-world deployments.
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