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Retention Depolarization in Recommender System
Anonymous Author(s)

ABSTRACT

Repeated risk minimization is a popular choice in real-world rec-
ommender systems driving their recommendation algorithms to
adapt to user preferences and trends. However, numerous studies
have shown that it exacerbates retention disparities among user
groups, resulting in polarization within the user population. Given
the primary objective of improving long-term user engagement in
most industrial recommender systems and the significant commer-
cial benefits from a diverse user population, enforcing retention
fairness across user population is therefore crucial. Nonetheless,
this goal is highly challenging due to the unknown dynamics of
user retention (e.g., when a user would abandon the system) and
the simultaneous aim to maximize the experience of every user.

In this paper, we propose ReFair, the first computational frame-
work that continuously improves recommendation algorithmswhile
ensuring long-term retention fairness in the entire user population.
ReFair alternates between environment learning (i.e., estimate the
user retention dynamics) and fairness constrained policy improve-
ment with respect to the estimated environment, while effectively
handling uncertainties in the estimation. Our solution provides
strong theoretical guarantees for long-term recommendation per-
formance and retention fairness violation. Empirical experiments
on two real-world recommendation datasets also demonstrate its
effectiveness in realizing these two goals.
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1 INTRODUCTION

To continuously adapt to changing user preferences, evolving trends
of content popularity, and dynamic market conditions, most in-
dustrial recommender systems actively update their algorithms by
regularly incorporating new training data, e.g., user feedback on the
recommendations. One widely-adopted approach is the repeated
risk minimization (RRM) procedure [16], where the algorithm is
updated by minimizing empirical loss on newly collected data, and
then deployed to gather new data for next-step training. The pro-
cedure is repeated for iterative algorithmic refinement over time.
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Previous studies [11, 32] show that RRM tends to exacerbate the
performance disparities among different groups of users, leading to
polarization within the user population. To make it more explicit,
consider news recommendation to two user groups, one favoring
international news and another favoring entertainment news, while
the latter group is much larger in size. Due to the focus on mini-
mizing overall loss in RRM, the recommendation algorithm tends
to prioritize the optimization for the larger group’s preference for
entertainment news, resulting in a higher error rate and diminish-
ing user experience in the smaller group that prefers international
news. This, in turn, makes users in the smaller group more likely
to abandon the system, which further shrinks its group size and
their impact on the overall training objective of RRM. Consequently,
the recommendation algorithm faces even greater challenges in
capturing the preferences of the smaller group, i.e., a death spiral.

Thus, given the primary objective to improve long-term user
engagement in industrial recommender systems and the significant
commercial benefits from a diverse user population, it is crucial
to depolarize and equalize retention across different user groups.
This also forms a new notion of user-side fairness, which we refer
to as retention fairness. However, previous research on user-side
fairness in recommender system [14, 24, 27, 28, 30] fails to address
this type of long-term fairness, primarily because of their focus
on balancing instantaneous performance a user (or user groups)
receives, measured by specific metrics, such as the prediction error
disparity across different user groups at each time step of RRM. Yet,
equalizing recommendation performance based on instantaneous
metrics does not suggest equalized long-term retention [23, 40].
Instead, enforcing retention fairness necessitates a forward-looking
approach that minimizes the disparity in retention across user
groups over time, while the recommendation algorithm is being
improved to maximize the recommendation utility. This goal is
highly non-trivial, since the retention dynamics of different users
are unknown and closely tied to the recommendations provided.

In this paper, we present a learning framework that iteratively
updates its recommendation algorithm while enforcing long-term
retention fairness, named as ReFair. To tackle the aforementioned
challenges, we develop a model-based reinforcement learning (RL)
solution, where we estimate the environment model to assist policy
learning. At a high level, ReFair iteratively executes two steps: 1)
estimate an individual user’s reward feedback and retention after
he/she takes a system-provided recommendation, and 2) improve
the recommendation algorithm to maximize user satisfaction sub-
ject to retention fairness across user groups, both for the long-term.
But because the estimations may be inaccurate, relying solely on
the estimated environment can lead to sub-optimal recommen-
dation performance [4, 8, 35] and also have no guarantee on the
retention fairness. To address these issues, we propose a surrogate
optimization approach that explicitly considers the uncertainty
of the estimated environment. It incorporates an extra bonus to
encourage exploration, while relaxing the retention fairness con-
straint based on the uncertainty of environment model estimation.
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Policy gradient is then leveraged to solve the surrogate optimization
problem. Theoretical analysis demonstrates that ReFair achieves
a sub-linear regret on cumulative reward and retention fairness
violation, under a linear environment assumption. Experiments
on two real-world datasets further demonstrate ReFair’s effec-
tiveness in optimizing user satisfaction and ensuring retention
fairness, both in a long term. All codes and data can be found in
https://anonymous.4open.science/r/ReFair-BAB7.

In summary, our contributions are as follows:
• We introduce a model-based reinforcement learning solution that
continuously improves recommendation quality while enforcing
retention fairness in a long term.

• To address the inaccuracies in the estimated environment model,
we propose a surrogate optimization approach that introduces
additional exploration bonus and a soft constraint relaxation to
counter uncertainty in environment model estimation.

• We demonstrate the effectiveness of our proposed framework
through both theoretical analysis and empirical experiments on
two real-world recommendation datasets.

2 PRELIMINARY

While the specific model architectures may vary, industrial recom-
mendation systems commonly employ a repeated risk minimization
(RRM) procedure to regularly incorporate new training data, e.g.,
user feedback on the latest recommendations, so as to provide up-
to-date recommendations tailored to users’ evolving preferences
[16]. Formally, let 𝜋𝜗𝑡 denote the recommendation policy at time
𝑡 parameterized by 𝜗𝑡 , and H𝑡 denote the user interactions gath-
ered by the previously deployed recommendation policy 𝜋𝜗𝑡 , RRM
updates the recommendation policy at time 𝑡 + 1 to minimize the
following loss:

𝜋𝜗𝑡+1 = arg min
𝜗
E(𝑢,𝑎)∼H𝑡

[ℓ (𝑢, 𝑎;𝜗𝑡 )] (1)
where ℓ (𝑢, 𝑎;𝜗𝑡 ) represents the loss associated with the interaction
pair of user 𝑢 and recommendation 𝑎 from policy 𝜋𝜗𝑡 . Various
types of loss ℓ (𝑢, 𝑎;𝜗) have been explored in practice, such as cross-
entropy loss [37], RL-based loss [5, 6], etc.

Numerous studies have shown that the RRM procedure in Eq. (1)
exacerbates retention disparities among different user groups. As
shown in previous studies [11, 32], minority groups, with limited
observations inH𝑡 and thus less impact on the training objective
in Eq. (1), tend to experience worse recommendation quality when
𝜋𝜗𝑡+1 is deployed. Worse still, discouraged by subpar recommen-
dations, such users are more likely to leave the platform, resulting
in a further disparity in the sizes of training samples inH𝑡+1 and
their influence on the RRM training at time 𝑡 + 1. This creates a
detrimental feedback loop where minority groups suffer progres-
sively inferior user experiences, leading to a continued shrinkage
in group sizes.

While it is crucial to thoroughly investigate and address fairness
concerns on long-term user retention, it has been overlooked in
previous research on user-side fairness in recommender systems
[14, 24, 27, 28, 30]. Previous research primarily focuses on enforcing
fairness at a single step of RRM with respect to the instantaneous
metric using collected data so far, such as minimizing prediction
error gaps across user groups onH𝑡 . This however has no guarantee

on mitigating retention disparities in a long term, since smaller
errors on an instantaneous metric (e.g., prediction error at time 𝑡 )
do not imply higher long-term user retention at all [23, 40]. This
motivates our proposed framework for recommendation algorithm
optimization subject to the retention fairness constraint.

3 REFAIR: OUR APPROACHWITH

THEORETICAL GUARANTEES

In this section, we present ReFair, a framework to iteratively im-
prove recommendation algorithm/policy while enforcing retention
fairness over time. As the first work of this type, we choose to focus
on addressing retention fairness between two user groups in this
paper, but the developed framework and algorithm can be easily
extended to scenarios with multiple user groups.

As we focus on continuously improving the recommendation
policy over time, we formulate the problem using aMarkovDecision
Process (MDP) and introduce an absorbing state 𝑜 to explicitly
capture users’ retention dynamics. Specifically, we construct the
following MDPM = (S,A, P, 𝑟 , 𝜌0, 𝛾) where
• S: a continuous state space describing the latent states of users.
Here 𝑠𝑢,𝑡 = 𝑜 suggests user 𝑢 leaves the platform at time 𝑡 . Other-
wise, 𝑠𝑢,𝑡 encodes the latent state at time 𝑡 of user 𝑢 based on the
his/her historical interactions with the system (e.g., capturing
and summarizing overall satisfaction of the system so far).

• A: a discrete action space, containing all the recommendation
candidates.

• P : S × A × S → R is the state transition probability, where
P(𝑜 |𝑠𝑢,𝑡 , 𝑎) denotes the probability that user𝑢 leaves the platform
after being recommended content 𝑎 under state 𝑠𝑢,𝑡 .

• 𝑟 : S × A → R is the reward function, where 𝑟 (𝑠𝑢,𝑡 , 𝑎) ∈ [0, 1]
represents the reward (e.g., rating) that the system obtains when
recommending content 𝑎 to user 𝑢 at time 𝑡 . Notably, once the
user leaves the platform, no further reward can be obtained, i.e.,
𝑟 (𝑜, 𝑎) = 0 for all 𝑎 ∈ A.

• 𝜌0: the initial user state distribution at 𝑡 = 0.

• 𝛾 : the discount factor for future rewards.
We employ two MDPs to represent two distinct user groups, such
as those interested in entertainment news and international news
in our previous example, respectively. These two MDPs share the
same state space, action space, and discount factor, but they can
differ in terms of initial state distributions, transitions, and reward
functions. We use superscripts 𝑔 ∈ {𝑎, 𝑏} to denote the two groups.
For example, 𝜌𝑎0 and 𝜌𝑏0 denote the initial state distributions of the
two groups, respectively. To simplify our notations, variables with-
out superscripts are utilized to represent the entire user population.
For example, 𝜌0 denotes the initial state distribution over all users.
At each time step 𝑡 = 0, 1, ...𝑇 , the system samples an item from
its latest recommendation policy 𝜋𝜗𝑡 , which is a probability dis-
tribution over all recommendation candidates. The sampled item,
denoted as 𝑎𝑢,𝑡 ∼ 𝜋𝜗𝑡 (·|𝑠𝑢,𝑡 ), is then recommended to user 𝑢. Our
goal is to find the 𝜋𝜗𝑡 that maximizes the cumulative reward from all
users and concurrently realizes retention fairness between the two
groups of users. This is formulated into the following optimization
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problem,

max
𝜋𝜗

E𝑠𝑢,𝑡∼𝑑𝑡 ,𝜋𝜗

[
𝑇 −𝑡∑︁
𝑘=0

𝛾𝑘 · 𝑟
(
𝑠𝑢,𝑡+𝑘 , 𝑎𝑢,𝑡+𝑘

) ]
(2)���E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋𝜗 [

P(≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
]
− 𝑤 · E

𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋𝜗

[
P(≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

] ��� ≤ 𝜖,

In the above, the constraint captures the retention fairness require-
ment we impose at each time step 𝑡 :
• 𝑑𝑡 (·), 𝑑𝑎𝑡 (·) and 𝑑𝑏𝑡 (·) denote the state distribution in the whole
population, user group 𝑎 and 𝑏 at time 𝑡 , respectively.

• The hyper-parameter 𝑤 is pre-defined to capture varying de-
grees of fairness requirements. For example,𝑤 = 1 indicates an
equalization of retention between the two groups.

• P(≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) is an abbreviation for P(𝑠𝑢,𝑡+1 ≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ),
which represents the probability of user𝑢 under state 𝑠𝑢,𝑡 chooses
to stay on the platform after being recommended to content 𝑎𝑢,𝑡 .

Under the context of recommender system optimization subject to
retention fairness constraints, conventional value-based or policy-
based reinforcement learning (RL) solutions become infeasible, as
we cannot afford policy training by directly interacting with the
environment (i.e., the users). More specifically, applying a policy
that is not well optimized can cause deviations in the interaction
trajectory from being satisfactory, leading to either poor cumulative
rewards or significant violations of retention fairness. In particular,
once a user abandons the platform, there is no way for the system
to get the user back. In other words, our problem is not episodic:
once initiated, we can never restart from the initial state.

Thus, we appeal to a model-based RL solution, which builds an
environment model based on the estimated transition dynamics
(P̂𝑡 ) and reward function (𝑟𝑡 ) at time 𝑡 . The recommendation policy
is then learned under the estimated environment. However, directly
substituting the ground-truth reward function 𝑟 and transition dy-
namics Pwith their estimates to optimize Eq.(2) is not feasible. This
is because the estimates cannot be perfect. Relying solely on the
estimated rewards can lead to sub-optimal recommendation perfor-
mance [4, 8, 35], while enforcing fairness based on the inaccurate
estimations of transition dynamics can be misleading and thus fail
to effectively ensure retention fairness.

As a result, we have to explicitly factor uncertainty of the esti-
mated environment model into policy optimization, which closely
couples the two iterative steps in ReFair:
• Environment learning. Provide the estimated reward function
𝑟𝑡 and transition dynamics P̂𝑡 , along with the associated uncer-
tainties required in the subsequent policy optimization step.

• Policy optimization with the estimated environment. Up-
date the recommendation policy 𝜋𝜗𝑡 under the estimated envi-
ronment (𝑟𝑡 , P̂𝑡 ) at time 𝑡 , with respect to the uncertainty of the
estimated environment.
In the following, we start our discussion from policy learning,

which imposes requirements for environment model learning.

3.1 Policy Improvement with An Estimated

Environment

Wedevise a surrogate optimization problem that guides policy learn-
ing under the estimated environment, subject to the environment

model’s estimation uncertainty. The surrogate optimization prob-
lem is constructed based on Eq.(2) by introducing an exploration
bonus term and relaxation of fairness constraint.
Exploration Bonus. Relying solely on the estimated reward 𝑟𝑡
without considering its inaccuracy can mislead policy learning, e.g.,
overlook better recommendation policies under the ground-truth
reward. A provably effective approach is to learn from calibrated
rewards, i.e., the principle of optimism in the face of uncertainty
[1, 12]. Specifically, we calibrate the estimated reward function
with an exploration bonus term 𝑏𝑡 (·, ·) that captures uncertainties
in environment estimation and assigns higher values to currently
under-explored actions as follows,

𝑟𝑡 (𝑠, 𝑎) = 𝑟𝑡 (𝑠, 𝑎) + 𝑏𝑡 (𝑠, 𝑎). (3)

To make this calibration valid, 𝑏𝑡 (·, ·) is required to consistently
overestimate (i.e., be larger than) the true rewards [4, 8], which can
be formally defined in the following:

Definition 3.1 (Validity of exploration bonus 𝑏𝑡 ). A exploration
bonus 𝑏𝑡 : S × A → R is valid if, for ∀𝑠 ∈ S, 𝑎 ∈ A, the following
condition holds:���𝑟𝑡 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎) + 𝛾 (

P̂𝑡 (·|𝑠, 𝑎) − P(·|𝑠, 𝑎)
)
𝑉𝑡

��� ≤ 𝑏𝑡 (𝑠, 𝑎),
where𝑉𝑡 (𝑠) denotes the value of state 𝑠 in the environment (𝑟𝑡 , P̂𝑡 ).
And P(·|𝑠, 𝑎)𝑉𝑡 =

∑
𝑠′ P(𝑠′ |𝑠, 𝑎)𝑉𝑡 (𝑠′).

Constraint Relaxation. To address the influence of inaccuracies
in the estimated transition dynamics P̂𝑡 when measuring retention
fairness, we propose to relax the fairness constraint in Eq.(2):���E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋𝜗 [

P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
]
− 𝑤E

𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋𝜗

[
P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

] ��� ≤ 𝑐𝑡 .

(4)

where 𝑐𝑡 represents the relaxation due to the uncertainty in the
estimated P̂𝑡 . As time progresses and more data is collected, the
relaxation factor 𝑐𝑡 decreases along with the decreasing uncertainty
in the estimated transition dynamics P̂𝑡 . This allows the relaxed
constraint to gradually approaches the desired ground-truth con-
straint in Eq.(2). Therefore the total violation of retention fairness
during policy learning depends on the rate of shrinkage of 𝑐𝑡 .

In addition to its rate of shrinkage, 𝑐𝑡 also needs to ensure that the
set of policies satisfying the relaxed constraint include the optimal
policy at time 𝑡 , even if the estimated dynamics P̂𝑡 are not accurate
yet. This requirement is referred to as the compatibility of 𝑐𝑡 [8]. Let
𝜋∗𝑡 represent the optimal policy for Eq.(2). We can formally define
the compatibility of 𝑐𝑡 as follows,

Definition 3.2 (Compatibility of 𝑐𝑡 ). 𝑐𝑡 is compatible, if 𝜋∗𝑡 is
included in the policy set that satisfies the constraint, for all 𝑡 :���E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋∗𝑡 [

P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
]
− 𝑤E

𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋
∗
𝑡

[
P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

] ��� ≤ 𝑐𝑡

(5)

Surrogate optimization problem. Let

𝑄̃𝑡 (𝑠𝑢,𝑡 , 𝑎) = 𝑟𝑡 (𝑠𝑢,𝑡 , 𝑎) + E𝑠𝑢,𝑡+1

[
𝑇−𝑡∑︁
𝑘=1

𝛾𝑘 · 𝑟𝑡 (𝑠𝑢,𝑡+𝑘 , 𝑎𝑢,𝑡+𝑘 )
]

denote the Q-function under the calibrated rewards in Eq.(3). To-
gether with the uncertainty-driven relaxed constraint in Eq.(4), we
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then learn 𝜋𝜗𝑡 by optimizing the following surrogate problem of
Eq.(2) at time 𝑡 :

max
𝜋𝜗

E𝑠𝑢,𝑡∼𝑑𝑡 ,𝜋𝜗
[
𝑄̂𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

]
(6)���E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋𝜗 [

P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
]
−𝑤E

𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋𝜗
[
P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

] ��� ≤ 𝑐𝑡 .
Various constrained policy optimization algorithms [2, 34] can

be employed to solve Eq.(6). And later we prove that solving this
surrogate optimization problem leads to sublinear regret in rec-
ommendation performance and sublinear cumulative fairness con-
straint violation. In this work, we choose to customize a primal-dual
gradient update procedure named FOCOPS [34], due to its stability
and clear physical interpretations. The detailed implementation
will be provided in Section 4.
Extension to multiple user groups. To extend ReFair to scenar-
ios with 𝐾 user groups, we only need to formulate the retention
fairness constraints among 𝐾 groups. A straightforward approach
is to enforce retention fairness between every pair of groups as in
Eq.(4), resulting in 𝐾 (𝐾 − 1)/2 constraints. The same constrained
policy optimization algorithms as developed in this paper can then
be directly applied to obtain the recommendation policy.

3.2 Environment Learning

In this section, we delve into the details of learning the environ-
ment model and deriving the valid exploration bonus term 𝑏𝑡 and
compatible constraint relaxation 𝑐𝑡 accordingly.

To theoretically analyze the performance difference between
learning through the surrogate optimization problem in Eq.(6) and
the ideal optimization problem in Eq.(2), we assume the following
linear structure in the ground-truth reward function 𝑟 and transition
dynamics P:

𝑟 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) = ⟨𝜃∗, 𝜙 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )⟩
P(𝑠 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) = ⟨𝜇𝑠∗, 𝜙 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )⟩ (7)

where 𝜙 is a known state-action feature map 𝜙 : S × A → R𝑑 ;
𝜃∗ ∈ R𝑑 and 𝜇𝑠∗ ∈ R𝑑 are the unknown ground-truth parameters
associated with the reward and transition dynamics for state 𝑠 ,
respectively. Without loss of generality, we assume ∥𝜙 (𝑠, 𝑎)∥ ≤ 1
for all (𝑠, 𝑎) ∈ S ×A, ∥𝜃∗∥ ≤

√
𝑑 , and ∥𝑣𝑇 𝜇∗∥ ≤

√
𝑑 for any vector

𝑣 over S with ∥𝑣 ∥∞ ≤ 1. Here, 𝜇∗ represents the stacked vector 𝜇𝑠∗
across S. For simplicity, we will also use 𝑟𝑠,𝑎 to represent 𝑟 (𝑠, 𝑎) in
the subsequent description.

At time 𝑡 , the logged user-item interactions from previous timesteps
are denoted as 𝐷𝑡 = {{𝑠𝑢,𝑖 , 𝑎𝑢,𝑖 , 𝑠𝑢,𝑖+1, 𝑟𝑢,𝑖 }𝑡−1

𝑖=0 }𝑢 . Based on the es-
timated model parameters 𝜃𝑡 and 𝜇𝑠𝑡 , the reward and transition
dynamics can be computed as follows:

𝑟𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) = ⟨𝜃𝑡 , 𝜙 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )⟩,
P̂𝑡 (𝑠 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) = ⟨𝜇𝑠𝑡 , 𝜙 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )⟩

where

𝜃𝑡 = arg min
𝜃

∑︁
𝑢

𝑡−1∑︁
𝑖=0

(
𝜃⊤𝜙 (𝑠𝑢,𝑖 , 𝑎𝑢,𝑖 ) − 𝑟𝑢,𝑖

)2 + 𝜅∥𝜃 ∥2,

𝜇𝑠𝑡 = arg min
𝜇

∑︁
𝑢

𝑡−1∑︁
𝑖=0
(𝜇⊤𝜙 (𝑠𝑢,𝑖 , 𝑎𝑢,𝑖 ) − 1𝑠𝑢,𝑖+1=𝑠 )2 + 𝜅∥𝜇∥2 .

The optimization problems above have closed-form solutions:

𝜃𝑡 =
∑︁
𝑢

𝑡−1∑︁
𝑖=0

𝑟𝑢,𝑡𝜙 (𝑠𝑢,𝑖 , 𝑎𝑢,𝑖 )⊤Λ−1
𝑡

𝜇𝑠𝑡 =
∑︁
𝑢

𝑡−1∑︁
𝑖=0

1𝑠𝑢,𝑖+1=𝑠𝜙 (𝑠𝑢,𝑖 , 𝑎𝑢,𝑖 )⊤Λ−1
𝑡 (8)

with

Λ𝑡 =

𝑡−1∑︁
𝑖=0

∑︁
𝑢

𝜙 (𝑠𝑢,𝑖 , 𝑎𝑢,𝑖 )𝜙 (𝑠𝑢,𝑖 , 𝑎𝑢,𝑖 )⊤ + 𝜅𝑰𝑑×𝑑 .

Based on the closed-form solution in Eq.(8), we can derive the valid
exploration bonus 𝑏𝑡 and compatible constraint relaxation 𝑐𝑡 in the
following lemma.

Lemma 3.3. Denote 𝜖𝑠𝑢,𝑡 = P(𝑠 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) − 1𝑠𝑢,𝑡+1=𝑠 . Assume the
linear structure in Eq.(7) holds, and E[𝜖𝑠𝑢,𝑡 |𝐷𝑡 ] = 0,∀𝑠 . For a fixed
𝜍 ∈ (0, 1), with probability at least 1−𝜍 , for all 𝑡 , 𝑠 and 𝑎, the following
constructions of exploration bonus 𝑏𝑡 and compatible 𝑐𝑡 are valid,

𝑏𝑡 (𝑠, 𝑎) = (𝛽𝑡1 + 𝛽
𝑡
2)∥𝜙 (𝑠, 𝑎)∥Λ−1

𝑡

𝑐𝑡 = 𝛽
𝑡
3E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋𝜗 [∥𝜙 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )∥Λ−1

𝑡
]

+𝑤𝛽𝑡3E𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋𝜗 [∥𝜙 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )∥Λ−1
𝑡
]

where 𝛽𝑡1 = 𝑂̃ (𝑑
√︁

log(𝑈𝑡)), 𝛽𝑡2 = 𝑂 (
√︁
𝑑 log(𝑡𝑈 )), 𝛽𝑡3 = 𝑂 (

√︁
𝑑 log(𝑡𝑈 )),

and𝑈 denotes the number of users in the system.

Slow switching.We adopt a slow switching technique to reduce
computation overhead in updating the environmentmodel [35]. The
idea is that we only update the environment model when enough
new data has been collected, via checking the determinant of the
covariance matrix Λ𝑡 . Specifically, assume the most recent model
update happened at time 𝑡 , we choose to update the model at time
𝑡 ′ only if det(Λ𝑡 ′ ) ≥ 2 det(Λ𝑡 ).
Theoretical Analysis. To theoretically inspect the performance of
learning through surrogate optimization, we consider the following
regret:
• For recommendation performance, we track cumulative regret
bound in 𝑇 rounds:

Regret(𝑇 ) =
𝑇−1∑︁
𝑡=0

(
E𝑠𝑢,𝑡 [𝑉 ∗ (𝑠𝑢,𝑡 )] − E𝑠𝑢,𝑡

[
𝑇−𝑡∑︁
𝑘=0

𝛾𝑘𝑟 (𝑠𝑢,𝑡+𝑘 , 𝑎𝑢,𝑡+𝑘 )
])

where E𝑠𝑢,𝑡 [𝑉 ∗ (𝑠𝑢,𝑡 )] denotes the expected cumulative rewards
obtained by following the optimal policy at time 𝑡 .

• For retention fairness, we consider cumulative violation of fair-
ness over T rounds:

Creg (𝑇 ) =
𝑇−1∑︁
𝑡=0

���E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋𝜗𝑡 [
P(≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

]
−𝑤 · E

𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋𝜗𝑡
[
P(≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

] ���
Based on the exploration bonus 𝑏𝑡 and compatible constraint

relaxation 𝑐𝑡 derived in Lemma 3.3, along with the slow switching
technique, we can bound the regret in long-term recommendation
performance and total retention fairness violation of the recommen-
dation policy learned through the surrogate optimization problem
in Eq.(6) in the following theorem.
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Theorem 3.4. Assume the assumption in Lemma 3.3 holds. With
probability at least 1−𝜍 , learning through the surrogate optimization
problem in Eq.(6) has the following upper bounds on the cumula-
tive regret for recommendation performance and total violation of
retention fairness over 𝑇 rounds:

Regret(𝑇 ) ≤ 𝑂̃
(√︃
𝑑3𝑇 log(1/𝜍) log(𝑈𝑇 )

)
𝐶reg (𝑇 ) ≤ 𝑂

(
(1 +𝑤)𝑑

√︁
𝑇 log(1/𝜍) log(𝑈𝑇 )

)
4 PRACTICAL IMPLEMENTATION

In this section, we present our practical approach for solving the
surrogate optimization problem defined in Eq.(6).

To ensure monotonic improvement, we adopt the local policy
search method [19] to iteratively improve the policy. Additionally,
we replace the second constraint in Eq.(6) with a square norm
constraint, which is differentiable everywhere, facilitating more
efficient and stable gradient-based optimization. As a result, we
reformulate the surrogate optimization problem at time 𝑡 in Eq.(6)
as follows:

max
𝜋𝜗

E𝑠𝑢,𝑡 ∼𝑑𝑡 ,𝜋𝜗
[
𝑄̂𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

]
(9)(

E𝑠𝑢,𝑡 ∼𝑑𝑎𝑡 ,𝜋𝜗

[
P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

]
− 𝑤E

𝑠𝑢,𝑡 ∼𝑑𝑏𝑡 ,𝜋𝜗

[
P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

] )2
≤ 𝑐2

𝑡

𝐷KL (𝜋𝜗 ∥𝜋𝜗𝑡−1 ) ≤ 𝜎

We then employ a primal-dual gradient update algorithm FO-
COPS [34] to solve Eq.(9), which first finds the optimal update
policy in the nonparameterized policy space and then projects it
back into the parametric policy space.
Find the Optimal Policy Update. Let

𝐶𝑡,𝜋 = E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋
[
P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

]
− 𝑤E

𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋
[
P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

]
.

(10)

By following a similar procedure as FOCOPS [34], we can show
that the optimal solution of Eq.(9) takes the following form:
• If user 𝑢 is in group 𝑎:

𝜋∗ (𝑎 |𝑠𝑢,𝑡 ) =
𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 )
𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

exp
(

1
𝑣
𝑄̂𝑡 (𝑠𝑢,𝑡 , 𝑎) − 2

𝜆

𝑣
𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

)
• If user 𝑢 is in group 𝑏:

𝜋∗ (𝑎 |𝑠𝑢,𝑡 ) =
𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 )
𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

exp
(

1
𝑣
𝑄̂𝑡 (𝑠𝑢,𝑡 , 𝑎) + 2𝑤

𝜆

𝑣
𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

)
where𝑍𝜆,𝑣 (𝑠𝑢,𝑡 ) ensures 𝜋∗ (·|𝑠𝑢,𝑡 ) is a valid probability distribution,
i.e.,

∑
𝑎∈A 𝜋

∗ (·|𝑠𝑢,𝑡 ) = 1. 𝜆 and 𝑣 are the Lagrangian multiplier of
the first and second constraint in Eq. (9) respectively, and they
correspond to the solutions of the dual problem. See Appendix 8.1
for a complete derivation.

The optimal solution carries an intuitive physical interpreta-
tion. For example, when group 𝑎 is the current disadvantage group
(i.e., the fairness violation 𝐶𝑡,𝜋𝜗 ≤ 0), the Q-value of actions with
high retention probability is boosted. This interpretation holds in a
similar manner when group 𝑏 becomes the disadvantage group.
Calculation of Policy Gradient. To obtain the policy gradients
for optimizing Eq.(9), we project 𝜋∗ into the parameterized policy

Algorithm 1 ReFair.

Initialize Λ0 = 𝜅𝐼 , 𝑍 = det(Λ0).
for 𝑡 = 0, 1, . . . ,𝑇 do

Calculate Λ𝑡 .
if det(Λ𝑡 ) ≥ 2𝑍 then

Estimate the environment, i.e., 𝑟𝑡 , P̂𝑡 , 𝑏𝑡 and 𝑐𝑡 .
𝑍 = det(Λ𝑡 ).

end if

Update 𝜆 using Eq.(12).
for 𝐾 epochs do

Update recommendation policy using Eq.(11).
end for

Take action with respect to 𝜋𝜗𝑡 and log interactions.
end for

space by minimizing the following loss:

L(𝜗) = E𝑠𝑢,𝑡∼𝑑𝑡 [𝐷KL (𝜋𝜗 ∥𝜋∗) [𝑠𝑢,𝑡 ]] .
This results in the following policy gradients:

∇𝜗L(𝜗) = E𝑠𝑢,𝑡∼𝑑𝑡 [∇𝜗𝐷KL (𝜋𝜗 ∥𝜋∗) [𝑠𝑢,𝑡 ]],
where
∇𝜗𝐷KL (𝜋𝜗 ∥𝜋∗ ) [𝑠𝑢,𝑡 ] ≈ ∇𝜗𝐷KL (𝜋𝜗 ∥𝜋𝜗𝑡−1 ) [𝑠𝑢,𝑡 ] (11)

− 1
𝑣
E𝑎∼𝜋𝜗𝑡−1

[ ∇𝜗𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 )
𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 )

(
𝑄̂𝑡 (𝑠𝑢,𝑡 , 𝑎) + 2𝑤𝑔𝜆𝐶𝑡,𝜋𝜗

P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎
)]

.

Here𝑤𝑔 = −1 if the user 𝑢 is in group 𝑎 and𝑤𝑔 = 𝑤 if the user is
in group 𝑏. Details of derivation can be found in Lemma 8.1 in the
appendix.
Dynamically adjust constraint strength. 𝜆 and 𝑣 control the
strength of the two constraints in Eq.(9). However, directly solving
the dual problem to obtain specific values for 𝜆 and 𝑣 is computa-
tionally impractical for large state/action spaces as it requires to
calculate 𝑍𝜆,𝑣 (𝑠𝑢,𝑡 ).

Following previous work [34], we treat the parameter 𝑣 as a
fixed hyperparameter during training, since it plays a role similar
to the temperature term utilized in maximum entropy reinforce-
ment learning [39]. Furthermore, as the strong duality holds, we
can optimize the dual problem by applying gradient descent with
respect to 𝜆 to determine the current optimal fairness constraint
strength. This leads to the following update rule for 𝜆:

𝜆 ← proj𝜆 [𝜆 − 𝛼 (𝑐2
𝑡 −𝐶2

𝑡,𝜋𝜗
)] (12)

The projection operator proj𝜆 projects 𝜆 back to [0, 𝜆max]; and 𝛼 is
the step size. The detailed derivation of the policy gradients with
respect to 𝜆 can be found in Appendix 8.1.

The update of the fairness constraint strength, as shown in
Eq.(12), also takes into account the uncertainty in environment
estimation. The strength is only increased when the constraint
violation exceeds the current estimation uncertainty. The imple-
mentation of ReFair is summarized in Algorithm 1.

5 EXPERIMENTS

In this section, we empirically evaluate the performance of Re-
Fair on two real-world recommendation datasets. We assess the
effectiveness of the algorithm in terms of both long-term recom-
mendation quality and retention fairness among groups.
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5.1 Experiment Setup

Datasets.We adopt the following two benchmark recommendation
datasets with long-term user activity records.
• ML-1M dataset.

1 The dataset consists of the activity records
of 6,040 users spanning from year 2000 to 2003, encompassing
approximately 1 million ratings for around 3,900 movies from
the online movie recommendation service MovieLens. We set
𝑟 (𝑢, 𝑎) = 1, if user 𝑢 gives movie 𝑎 a rating greater than 3, oth-
erwise 𝑟 (𝑢, 𝑎) = 0. To ensure data quality, we only retain users
who have provided more than 10 positive rewards and movies
that have received more than 50 ratings.

• 30Music dataset [21]. The dataset consists of listening and
playlist data from 45K users, including 31,351,954 play events on
5.6 million tracks, within a 1-year time window starting from
January, 2014 on Last.FM. We take 𝑟 (𝑢, 𝑎) = 1 if user 𝑢 completes
listening to a song 𝑎 at least once, and 𝑟 (𝑢, 𝑎) = 0 otherwise.
To ensure data quality, we adopt the 100-core setting [33], i.e.,
discarding users and tracks with less than 100 interactions.

The statistics of the two datasets are summarized in Table 1.
Simulated Environment. To evaluate the long-term performance
of a recommendation algorithm, it is crucial to allow the algorithm
to interact with users. Following previous work [7], we focus on
evaluating the algorithms on the two benchmark datasets by train-
ing an environment simulator to mimic an interactive environment.

The architecture of the environment simulator is depicted in
Figure 3 in the appendix. Following previous work [6, 7], we em-
ploy a Recurrent Neural Network (RNN) to capture the temporal
dynamics of a user’s state transition. At each time step 𝑡 , the user’s
state 𝑠𝑢,𝑡 is constructed by concatenating two components: (1) em-
bedded user features and ID information, and (2) the RNN’s output,
which summarizes the user’s interaction history from previous
𝑡 − 1 steps. The RNN recursively feeds its output at time 𝑡 − 1, the
recommended item to user 𝑢 at time 𝑡 , and the corresponding user
feedback as input. The element-wise product between 𝑠𝑢,𝑡 and the
item embedding of item 𝑎 yields 𝜙 (𝑠𝑢,𝑡 , 𝑎). This vector is then lin-
early projected to obtain the reward 𝑟 (𝑠𝑢,𝑡 , 𝑎) and the probability of
user𝑢 abandoning the platform after receiving the recommendation
𝑎, i.e., P(𝑜 |𝑠𝑢,𝑡 , 𝑎).

The environment simulator is trained by minimizing its error in
predicting the reward and the probability of platform abandonment
recorded in the dataset. Considering the sparsity of the abandon-
ment signal among users, we define the event of a user’s departure
from the platform as after receiving a recommendation there is
no further interaction within two weeks in the ML-1M dataset or
12 hours in the 30Music dataset, when constructing the training
dataset. If a user returns to the platform after the specified time
period (two weeks for ML-1M or 12 hours for 30Music), they are
treated as a new user with the same user features but an empty
interaction history.

During the evaluation process, after the algorithm recommends
item 𝑎 to the user under state 𝑠𝑢,𝑡 , the representation 𝜙 (𝑠𝑢,𝑡 , 𝑎) and
reward 𝑟 (𝑠𝑢,𝑡 , 𝑎) generated by the simulator are presented to the
algorithm. Then we sample 𝑠𝑢,𝑡+1 ∼ P(·|𝑠𝑢,𝑡 , 𝑎); if 𝑠𝑢,𝑡+1 = 𝑜 , the

1https://grouplens.org/datasets/movielens/1m/

Table 1: Statistics of Datasets.

Dataset #Users #Items #Interactions
ML-1M 6,040 3,883 1,000,209
30Music 45,000 5,675,143 31,351,954

user is considered as leaving the system afterwards; otherwise the
recommendation process continues.

In our experiments, we cluster users into two distinct prefer-
ence groups based on user feature/ID embeddings learned from
the environment simulator. We focus on the setting where𝑤 = 1,
defined in Eq.(2), which corresponds to equalizing the long-term
user retention of the two user groups.
Baselines.We compare ReFair with the following baselines.
• RRM: the repeated risk minimization procedure, as discussed in
Section 2, involves iteratively minimizing the loss on one-step
intermediate feedback to obtain the updated recommendation
policy. This approach is commonly utilized in real-world recom-
mendation systems to enable continuous algorithm update.

• DRO [11]: a repeated risk minimization procedure, based on
distributional robust optimization. It minimizes the maximum
loss among groups at each time step. This approach has been
used to mitigate retention disparity in [11].

• RRM-Fair [27, 28]: a repeated risk minimization procedure that
minimizes the difference of training loss among different groups
at each time step to realize fairness.

• RL-UnFair: a model-based RL algorithm that maximizes the
estimated Q-value for policy learning without incorporating
exploration bonuses or considering retention-level fairness at
each time step [40].

• RL-DM: the model-based RL algorithm that learns a policy 𝜋 by
directly maximizing the objective function:

E𝜋 [𝑄̂𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) − 𝜆𝐶𝑡,𝜋 ]

where 𝜆 is a fixed hyper-parameter that balances the trade-off
between fairness and recommendation performance (in analogy
to the Lagrange multiplier method). The term 𝐶𝑡,𝜋 is defined in
Eq.(10) and captures the difference in user retention between two
groups based on the estimated dynamics at time 𝑡 (i.e., P̂𝑡 ).

Both RL-UnFair and RL-DM can be viewed as heuristic solutions
leveraging our RL formulation.
Evaluation Metrics.We evaluate all algorithms in terms of their
long-term recommendation performance and retention fairness.

For recommendation performance, we consider two metrics: (1)
Cumulative reward, computed by E𝑠𝑢,0∼𝜌

[∑𝑇
𝑡=0 𝛾

𝑡𝑟
(
𝑠𝑢,𝑡 , 𝑎𝑢,𝑡

) ]
; and

(2) Active rate@𝑇 , which measures the ratio of active users at time𝑇
to the total number of users. Higher values for both metrics indicate
better recommendation performance in the long run.

For retention fairness, we utilize the metric Retention disparity,
which quantifies the ratio of the retention probability between
the advantage group (with higher retention probability) and the
disadvantage group (with lower retention probability). A value
closer to 1 indicates a more fair algorithm in terms of long-term
retention. We adopt ratio as a measure of disparity, following [7].
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(d) Retention disparity on 30Music

Figure 1: Experiment results regarding cumulative reward and retention disparity on the two real-world datasets.

Table 2: Experiment results regarding Active rate@T.

Algorithm ML-1M 30Music
RRM 0.3870 0.2017
RRM-Fair 0.3869 0.1982
DRO 0.3873 0.3096
RL-UnFair 0.7103 0.5900
RL-DM 0.7151 0.5943
ReFair 0.7718 0.6247

5.2 Experiment Results

We executed each algorithm for 10 runs with different random
seeds. The average cumulative reward and retention disparity of
each algorithm on the two datasets during the whole recommen-
dation process are presented in Figure 1, while the Active rate@T
performance is reported in Table 2.
• Long-term dynamics matters. Compared to algorithms that also
use our RL formulation, the line of RRM-based algorithms (i.e., RRM,
DRO, RRM-Fair), focusing only on instantaneous objectives at sin-
gle time step, exhibited much lower cumulative rewards (Figure 1a
and 1c), lower active rates thus higher abandonment probabilities
(Table 2), as well as higher retention disparities significantly increas-
ing over time (Figure 1b and 1d). This highlights the necessity and
importance of considering long-term dynamics of user satisfaction
and retention in recommendation policy learning.
• Short-term fairness intervention still polarizes. As shown by the
performance of DRO and RRM-Fair in Figure 1b and 1d, simply
enforcing fairness with respect to the instantaneous metric still
leads to high and increasing retention disparities over time, i.e.,
polarized user population in the long run.
• Enforcing retention fairness under uncertainty depolarizes and im-
proves recommendation performance. The approaches of RL-UnFair
(without explicitly imposing a retention fairness constraint) or
RL-DM (enforcing fairness without considering uncertainty in tran-
sition dynamics estimation) fail in managing retention disparity
over time, as demonstrated in Figure 1b and 1d. In contrast, ReFair
explicitly factors the environment model estimation uncertainty
into its policy learning and hence achieives better retention fair-
ness, as evidenced by the lowest and mostly converged retention
disparity. Moreover, ReFair achieves the highest cumulative reward
and active rate@T, indicating stronger long-term recommendation
performance.

Table 3: Effects of exploration bonus and fairness constraint

strength adjustment regarding Active rate@T.

Algorithm RL-UnFair ReFair-OnlyQ ReFair-alpha0 ReFair
ML-1M 0.7103 0.7085 0.7412 0.7718

30Music 0.5900 0.6212 0.6232 0.6247

5.3 Ablation Studies

To gain a comprehensive understanding of ReFair, we conducted
ablation studies to examine the effects of two crucial factors in its
design: (1) the impact of the exploration bonus, and (2) the effect
of dynamically adjusting the strength of the fairness constraint by
updating 𝜆 through dual optimization. We introduce two variants
of ReFair respectively:
- ReFair-onlyQ: ReFair that maximizes Q-values based on ex-
ploration bonus-calibrated reward without considering retention
fairness.

- ReFair-alpha0: ReFair without dynamically adjusting the
strength of the fairness constraint, i.e., 𝛼 = 0 in Eq (12).
• Exploration bonus enhances recommendation performance. From
Figure 2a and 2b, and Table 3, it can be observed that enhancing
reward via exploration bonus (ReFair-onlyQ) results in higher cu-
mulative reward and active rate@T compared to RL-UnFair, which
directly works under the estimated environment model. This em-
phasizes the importance of exploration in compensating the inac-
curacies in environment estimation. However, without explicitly
enforcing retention fairness, ReFair-onlyQ experiences higher and
increasing retention disparity over time compared to ReFair, as
shown in Figure 2c and 2d.
• Dynamically adjusting the strength of fairness constraint provides
better fairness control. Compared to ReFair-alpha0, ReFair demon-
strates improved control over retention disparity by dynamically
adjusting the strength of the retention fairness constraint through
the update of 𝜆, leading to better retention fairness.

6 RELATEDWORK

Our work introduces the first framework that enables continuous
improvement of recommendation algorithms while simultaneously
maintaining long-term retention fairness. The following two lines
of work are most related to this work.
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Figure 2: Effects of exploration bonus and fairness constraint

strength adjustment on reward and retention disparity.

Fairness in Recommender System. Fairness, being a fundamen-
tal concept in trustworthy machine learning, has garnered sig-
nificant attention in the field of recommender systems [18, 22].
Extensive research has been conducted to explore and address fair-
ness concerns in recommendation scenarios, which can be broadly
categorized into three types based on the stakeholders involved: 1)
User-side fairness, which aims to balance the quality of recommen-
dation among different users (or user groups); 2) Item-side fairness
[17, 38], which focuses on equalizing exposure of different item
groups in the recommendation list; and, 3) Multiple-sided fairness
[25], which considers fairness concerns from multiple perspectives,
such as user-side, item-side, and sometimes even producer-side
fairness. User-side fairness can be further classified into individ-
ual fairness and group fairness. Individual fairness [15, 26] adopts
a counterfactual notion and aims to ensure similar users receive
recommendations of similar quality. On the other hand, user-side
group fairness focuses on balancing recommendation performance
among different user groups [7, 14, 24, 27, 28, 30]. Our work specif-
ically addresses user-side group fairness. However, most existing
work on user-side group fairness [14, 24, 27, 28, 30] primarily fo-
cuses on balancing group performance on instantaneous metrics
(e.g., prediction error) at a specific time step of RRM. Unfortunately,
these approaches cannot address retention fairness, which requires
equalized user retention over time [23, 32, 40]. Our experiment
results in Section 5.2 further support this argument.

Under the context of long-term fairness in recommender sys-
tems, previous work [9, 10, 20] has primarily focused on leveraging
reinforcement learning techniques to ensure long-term item-side

fairness, i.e., equalizing exposure among different item groups in a
long run. A recent study by Chi et al. [7] utilizes reinforcement learn-
ing to achieve equalized cumulative rewards across user groups.
However, this approach requires the policy to directly interact with
users for data collection and policy optimization. If the policy is
not well optimized, especially in the early stage, it can lead to poor
recommendations and seriously hurts user engagement with the
platform. Once a user abandons the platform, there is no way for the
system to regain their participation. In contrast, our work estimates
an environment model for policy learning, which mitigates the risk
of losing users’ trust due to the poor recommendation quality.
Long-term Fairness. Some recent work [8, 29, 31] has approached
long-term group fairness as a reinforcement learning problem, pri-
marily focusing on a sequential binary decision making setting.
However, these settings differ fundamentally from recommenda-
tion scenarios in two key aspects. Firstly, most of them [8, 29] focus
on an episodic setting, which assumes the decision making process
will repeatedly restart from the initial state, which is equivalent to
having all users back to the recommender system when a prede-
fined time horizon comes to its end. But in reality, it is not possible
to regain users who have left the platform. Secondly, in this line of
research, the actions themselves (such as granting a loan) directly
determine the level of fairness (such as the difference in loan ap-
proval rates among user groups). In contrast, a recommendation
decision, i.e., what to recommend, involves unknown impacts on in
user retention among groups. This significantly complicates policy
learning and constraint satisfaction.

7 CONCLUSION

In this paper, we introduce a novel fairness notion concerning long-
term retention across different user groups, driven by the necessity
of diverse long-term user engagement in recommender systems. We
propose the first framework that enables continuous improvement
of recommendation algorithms while enforcing retention fairness.
To tackle the challenge of unknown user retention dynamics, we
propose ReFair, a model-based reinforcement learning approach
that alternates between environment estimation and fairness con-
trol with respect to the uncertainty of environment estimation. Our
rigorous theoretical analysis demonstrates that ReFair achieves a
sub-linear regret on cumulative reward and constraint violation,
when the underlyingMDP possesses a linear structure. Furthermore,
empirical experiments conducted on two real-world recommenda-
tion datasets validate the effectiveness of ReFair in optimizing
long-term user satisfaction and ensuring retention fairness.

In our theoretical analysis, we primarily focused on linear en-
vironments. As our future work, we plan to explore the extension
of ReFair to more complex environment assumptions, including
kernel-based [35] and neural network-based [36] models. Addition-
ally, in this work, the recommendation policy is learnt completely
from the estimated environment. Given the effectiveness of of-
fline RL algorithms [13], previously logged interactions can also
be leveraged to jump start policy learning and further improve
empirical performance. Furthermore, analyzing the tightness of
our constraint relaxation and exploring new methods to further
tighten it are also important for achieving further improvements
on retention fairness.
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7.1 Theoretical Proof.

In this section, we provide a detailed proof of the theorems and
lemmas in Section 3.2. For simplicity, we use 𝜋𝑡 to represent 𝜋𝜗𝑡 in
the following proof.
Proof of Lemma 3.3:

Proof. We first show the validity of the exploration bonus.

Validity of 𝑏𝑡 . Recall that 𝜖𝑠𝑢,𝑡 = P(𝑠 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) − 1𝑠𝑢,𝑡+1=𝑠 , and
E[𝜖𝑠𝑢,𝑡 |𝐷𝑡 ] = 0,∀𝑠 . Under the linear structure assumption in Eq.(7),
we have the following lemmas from previous work [1, 3].

Lemma 7.1 (Uniform Convergence Results (Lemma 8.7 in [3])).
Fix 𝜍 ∈ (0, 1), for all 𝑡 , all 𝑠, 𝑎, with probability at least 1−𝜍 , we have:���(P̂𝑡 (·|𝑠, 𝑎) − P(·|𝑠, 𝑎)) 𝑉𝑡 ��� ≤ 𝛽𝑡1∥𝜙 (𝑠, 𝑎)∥Λ−1

𝑡
,

with 𝛽𝑡1 = 𝑂̃ (
√︁
𝑑𝑙𝑜𝑔(𝑡𝑈 )).
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Lemma 7.2 (Theorem 2 in [1]). For a fixed 𝜍 ∈ (0, 1), with proba-
bility at least 1 − 𝜍 , for all 𝑡 , and all 𝑠, 𝑎, we have:

|𝑟𝑡 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎) | ≤ ∥𝜙 (𝑠, 𝑎)∥Λ−1
𝑡

(√︂
𝑑 log( 1 + 𝑡𝑈 /𝜅

𝜎
) + 𝜅1/2𝐿

)
︸                                ︷︷                                ︸

𝛽𝑡2

According the definition of valid exploration bonus in Definition
3.1, we have:���𝑟𝑡 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎) + 𝛾 (

P̂𝑡 (·|𝑠, 𝑎) − P(·|𝑠, 𝑎)
)
𝑉𝑡

���
≤ |𝑟𝑡 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎) | + 𝛾

���(P̂𝑡 (·|𝑠, 𝑎) − P(·|𝑠, 𝑎)) 𝑉𝑡 ���
≤ 𝛽𝑡2∥𝜙 (𝑠, 𝑎)∥Λ−1

𝑡
+ 𝛾𝛽𝑡1∥𝜙 (𝑠, 𝑎)∥Λ−1

𝑡
.

This conclude the validity of the exploration bonus 𝑏𝑡 .

Compatible 𝑐𝑡 . Next we show the compatibility of the derived
𝑐𝑡 . According to the Definition 3.2, we have���E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋∗𝑡 [

P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
]
−𝑤E

𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋∗𝑡
[
P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

] ���
≤

�����E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋∗𝑡
[∑︁
𝑠′≠𝑜

P̂𝑡 (𝑠′ |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) − P(𝑠′ |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
] �����

+𝑤
�����E𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋∗𝑡

[∑︁
𝑠′≠𝑜

P̂𝑡 (𝑠′ |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) − P(𝑠′ |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
] �����

+
���E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋∗𝑡 [

P(≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
]
−𝑤E

𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋∗𝑡
[
P(≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

] ���︸                                                                                 ︷︷                                                                                 ︸
≤𝜖, for 𝜋∗𝑡

(13)

Let 𝛽𝑡3 =

(
𝜅
√
𝑑 + 3

√︂
𝑑 log

(
1+𝑡𝑈 /𝜅

𝜎

))
. According to Lemma 7.3,

we can bound the first two terms as follows:�����E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋∗𝑡
[∑︁
𝑠′≠𝑜

P̂𝑡 (𝑠′ |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) − P(𝑠′ |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
] �����

≤ E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋∗𝑡

[�����∑︁
𝑠′≠𝑜

P̂𝑡 (𝑠′ |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) − P(𝑠′ |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
�����
]

≤ 𝛽𝑡3E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋∗𝑡 [∥𝜙 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )∥Λ−1
𝑡
]

Let 𝜚max = max𝑠𝑢,𝑡 ,𝑎
𝜋∗𝑡 (𝑎 |𝑠𝑢,𝑡 )
𝜋𝑡 (𝑎 |𝑠𝑢,𝑡 ) and 𝛽

𝑡
3 = 𝜚max · 𝛽𝑡3, with importance

sampling, Eq.(13) can be rewritten as:���E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋∗𝑡 [
P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

]
− 𝑤E

𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋
∗
𝑡

[
P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

] ���
≤ 𝛽𝑡3E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋𝑡 [ ∥𝜙 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) ∥Λ−1

𝑡
] + 𝑤𝛽𝑡3E𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋𝑡

[ ∥𝜙 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) ∥Λ−1
𝑡
]︸                                                                                                ︷︷                                                                                                ︸

𝑐𝑡

This concludes the whole proof. □

Lemma 7.3. For a fixed 𝜎 ∈ (0, 1), with probability at least 1 − 𝜎 ,
for all 𝑡 , and all 𝑠, 𝑎, we have:�����∑︁
𝑠′≠𝑜
P̂𝑡 (𝑠′ |𝑠, 𝑎) ] − P(𝑠′ |𝑠, 𝑎)

����� ≤ ©­«𝜅
√
𝑑 + 3

√︄
𝑑 log

(
1 + 𝑡𝑈 /𝜅

𝜎

)ª®¬ ∥𝜙 (𝑠, 𝑎) ∥Λ−1
𝑡

Proof. Define 𝑉𝑜 : S → [0, 1] with 𝑉𝑜 (𝑜) = 0, otherwise
𝑉𝑜 (𝑠) = 1,∀𝑠 ≠ 𝑜 . Let 𝜇𝑡 and 𝜖𝑢,𝑖 represent the stacked vectors of
𝜇𝑠𝑡 and 𝜖

𝑠
𝑢,𝑖

= P(𝑠 |𝑠𝑢,𝑖 , 𝑎𝑢,𝑖 ) − 1𝑠𝑢,𝑖+1=𝑠 across S, respectively. Then
we have:�����∑︁
𝑠′≠𝑜

P̂𝑡 (𝑠′ |𝑠, 𝑎)] − P(𝑠′ |𝑠, 𝑎)
����� = ���(P̂𝑡 (·|𝑠, 𝑎) − P(·|𝑠, 𝑎)) 𝑉𝑜 ���

= | (𝜇𝑡𝜙 (𝑠, 𝑎) − 𝜇∗𝜙 (𝑠, 𝑎)) ·𝑉𝑜 |

(1)
≤

���𝜅𝜙 (𝑠, 𝑎)𝑇Λ−1
𝑡 (𝜇∗)𝑇𝑉𝑜

��� + �����𝑡−1∑︁
𝑖=0

∑︁
𝑢

𝜙 (𝑠, 𝑎)𝑇Λ−1
𝑡 𝜙 (𝑠𝑢,𝑖 , 𝑎𝑢,𝑖 ) (𝜖𝑢,𝑖 )𝑇𝑉𝑜

�����
≤ 𝜅
√
𝑑 ∥𝜙 (𝑠, 𝑎)∥Λ−1

𝑡
+ ∥𝜙 (𝑠, 𝑎)∥Λ−1

𝑡
· ∥

𝑡−1∑︁
𝑖=0

∑︁
𝑢

𝜙 (𝑠𝑢,𝑖 , 𝑎𝑢,𝑖 ) (𝜖𝑢,𝑖 )𝑇𝑉𝑜 ∥Λ−1
𝑡

where inequality (1) is according to the Lemma 8.3 in [3]. Moreover,
Lemma 8.4 in [3] shows that:

∥
𝑡−1∑︁
𝑖=0

∑︁
𝑢

𝜙 (𝑠𝑢,𝑖 , 𝑎𝑢,𝑖 ) (𝜖𝑢,𝑖 )𝑇𝑉𝑜 ∥Λ−1
𝑡
≤ 3

√︄
ln

det(Λ𝑡 )1/2 det(𝜅𝐼 )−1/2

𝜎

≤ 3

√︄
𝑑 log

(
1 + 𝑡𝑈 /𝜆

𝜅

)
.

Thus we concludes the proof. □

Proof of Theorem 3.4:

Proof. We first prove the cumulative regret bound over𝑇 rounds.
We denote 𝑉 𝜋

𝑡 (𝑠𝑢,𝑡 ) as the value function of 𝜋 at state 𝑠𝑢,𝑡 with
estimated reward function 𝑟𝑡 in Eq.(3) and estimated transition
dynamics P̂𝑡 . Let 𝑉𝑡 (𝑠𝑢,𝑡 ) represent the expected cumulative re-
ward, starting from time 𝑡 and following the derived policy se-
quence 𝜋𝜗𝑡 , 𝜋𝜗𝑡+1 , ..., on the ground-truth MDP with the true re-
ward function 𝑟 and transition dynamics P. And we define Δ𝑡 =

E𝑠𝑢,𝑡∼𝑑𝑡 [𝑉 ∗ (𝑠𝑢,𝑡 )] − E𝑠𝑢,𝑡∼𝑑𝑡 [𝑉𝑡 (𝑠𝑢,𝑡 )].
Then we have:

Regret(𝑇 ) =
𝑇−1∑︁
𝑡=0

(
E𝑠𝑢,𝑡 [𝑉 ∗ (𝑠𝑢,𝑡 )] − E𝑠𝑢,𝑡

[
𝑇−𝑡∑︁
𝑘=0

𝛾𝑘𝑟 (𝑠𝑢,𝑡+𝑘 , 𝑎𝑢,𝑡+𝑘 )
])

=

𝑇−1∑︁
𝑡=0

Δ𝑡 . (14)

We then get:

Δ𝑡
(𝑎)
≤ E𝑠𝑢,𝑡∼𝑑𝑡 [𝑉

∗
𝑡 (𝑠𝑢,𝑡 )] − E𝑠𝑢,𝑡∼𝑑𝑡 [𝑉𝑡 (𝑠𝑢,𝑡 )]

(𝑏 )
≤ E𝑠𝑢,𝑡∼𝑑𝑡 [𝑉

𝜋𝑡
𝑡 (𝑠𝑢,𝑡 )] − E𝑠𝑢,𝑡∼𝑑𝑡 [𝑉𝑡 (𝑠𝑢,𝑡 )] (15)

where the inequality (a) is due to the optimism proved in Lemma 7.5,
and inequality (b) arises from the fact that 𝜋𝑡 is the optimal solution
for Eq.(6).

Recall that:

𝑄̂
𝜋𝑡
𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) = 𝑟𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) + 𝛾 P̂𝑡 (·|𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )𝑉

𝜋𝑡
𝑡 ,
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thus we have:

𝑄̂
𝜋𝑡
𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) −𝑄𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
= 𝑟𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) + 𝛾 P̂𝑡 (·|𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )𝑉 𝜋𝑡

𝑡 − 𝑟 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) − 𝛾P𝑡 (·|𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )𝑉𝑡+1
= 𝑟𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) − 𝑟 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) + 𝛾 (P̂𝑡 (·|𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) − P(·|𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ))𝑉 𝜋𝑡

𝑡

+ 𝛾P(·|𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
(
𝑉
𝜋𝑡
𝑡 −𝑉𝑡+1

)
+ 𝑏𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ).

Let

BELL𝑢,𝑡 = 𝑟𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )−𝑟 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )+𝛾 (P̂𝑡 (·|𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )−P(·|𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ))𝑉 𝜋𝑡
𝑡 ,

and take expectation regarding policy 𝜋𝑡 to select 𝑎𝑢,𝑡 and state,
we have:

E𝑠𝑢,𝑡∼𝑑𝑡 [𝑉
𝜋𝑡
𝑡 (𝑠𝑢,𝑡 )] − E𝑠𝑢,𝑡∼𝑑𝑡 [𝑉𝑡 (𝑠𝑢,𝑡 )]

≤ E𝑠𝑢,𝑡∼𝑑𝑡 ,𝜋𝑡
[
BELL𝑢,𝑡

]
+ E𝑠𝑢,𝑡∼𝑑𝑡 ,𝜋𝑡

[
𝑏𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

]
+ 𝛾𝐸𝑠𝑢,𝑡+1∼𝑑𝑡+1 [𝑉

𝜋𝑡
𝑡 (𝑠𝑢,𝑡+1) −𝑉𝑡+1 (𝑠𝑢,𝑡+1)]

≤ E𝑠𝑢,𝑡∼𝑑𝑡 ,𝜋𝑡
[
BELL𝑢,𝑡

]
+ E𝑠𝑢,𝑡∼𝑑𝑡 ,𝜋𝑡

[
𝑏𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

]
+ 𝛾𝐸𝑠𝑢,𝑡+1∼𝑑𝑡+1 [𝑉

𝜋𝑡
𝑡 (𝑠𝑢,𝑡+1) −𝑉

𝜋𝑡+1
𝑡+1 (𝑠𝑢,𝑡+1)]

+ 𝛾𝐸𝑠𝑢,𝑡+1∼𝑑𝑡+1 [𝑉
𝜋𝑡+1
𝑡+1 (𝑠𝑢,𝑡+1) −𝑉𝑡+1 (𝑠𝑢,𝑡+1)] .

Summarizing over 𝑡 = 0, . . . ,𝑇 − 1, we have:
𝑇−1∑︁
𝑡=0
E𝑠𝑢,𝑡∼𝑑𝑡 [𝑉

𝜋𝑡
𝑡 (𝑠𝑢,𝑡 ) −𝑉𝑡 (𝑠𝑢,𝑡 )] ≤

𝑇−1∑︁
𝑡=0
E𝑠𝑢,𝑡∼𝑑𝑡 ,𝜋𝑡

[
BELL𝑢,𝑡 + 𝑏𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

]
+
𝑇−1∑︁
𝑡=0

𝛾𝐸𝑠𝑢,𝑡+1∼𝑑𝑡+1 [𝑉
𝜋𝑡
𝑡 (𝑠𝑢,𝑡+1) −𝑉

𝜋𝑡+1
𝑡+1 (𝑠𝑢,𝑡+1)]

+
𝑇−1∑︁
𝑡=0

𝛾𝐸𝑠𝑢,𝑡+1∼𝑑𝑡+1 [𝑉
𝜋𝑡+1
𝑡+1 (𝑠𝑢,𝑡+1) −𝑉𝑡+1 (𝑠𝑢,𝑡+1)] (16)

For the last term, we have:
𝑇−1∑︁
𝑡=0

𝐸𝑠𝑢,𝑡+1∼𝑑𝑡+1 [𝑉
𝜋𝑡+1
𝑡+1 (𝑠𝑢,𝑡+1) −𝑉𝑡+1 (𝑠𝑢,𝑡+1)]

≤
𝑇−1∑︁
𝑡=0

𝐸𝑠𝑢,𝑡∼𝑑𝑡 [𝑉
𝜋𝑡
𝑡 (𝑠𝑢,𝑡 ) −𝑉𝑡 (𝑠𝑢,𝑡 )] − (𝑉

𝜋0
0 (𝑠𝑢,0) −𝑉0 (𝑠𝑢,0))

+ (𝑉 𝜋𝑇
𝑇
(𝑠𝑢,𝑇 ) −𝑉𝑇 (𝑠𝑢,𝑇 ))

≤ 2𝑉max +
𝑇−1∑︁
𝑡=0

𝐸𝑠𝑢,𝑡∼𝑑𝑡 [𝑉
𝜋𝑡
𝑡 (𝑠𝑢,𝑡 ) −𝑉𝑡 (𝑠𝑢,𝑡 )] (17)

Plugging Eq.(17) into Eq.(16), we have:

𝑇−1∑︁
𝑡=0
E𝑠𝑢,𝑡∼𝑑𝑡 [𝑉

𝜋𝑡
𝑡 (𝑠𝑢,𝑡 ) −𝑉𝑡 (𝑠𝑢,𝑡 )] ≤

1
1 − 𝛾 E[

𝑇∑︁
𝑡=0

BELL𝑢,𝑡 + 𝑏𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )]

+ 𝛾

1 − 𝛾

𝑇−1∑︁
𝑡=0

𝐸𝑠𝑢,𝑡+1∼𝑑𝑡+1 [𝑉
𝜋𝑡
𝑡 (𝑠𝑢,𝑡+1) −𝑉

𝜋𝑡+1
𝑡+1 (𝑠𝑢,𝑡+1)] +

2𝑉max
1 − 𝛾

(18)

For the second part, since there is in total 𝑀 (𝑇 ) switches, we
known that there are at most𝑀 (𝑇 ) non-zero terms, thus we have:

𝑇−1∑︁
𝑡=0

𝐸𝑠𝑢,𝑡+1∼𝑑𝑡+1 [𝑉
𝜋𝑡
𝑡 (𝑠𝑢,𝑡+1) −𝑉

𝜋𝑡+1
𝑡+1 (𝑠𝑢,𝑡+1)] ≤ 𝑉max𝑀 (𝑇 ) .

Plugging in the upper bound of𝑀 (𝑇 ) in Lemma 7.4, we get:

𝑇−1∑︁
𝑡=0

𝐸𝑠𝑢,𝑡+1∼𝑑𝑡+1 [𝑉
𝜋𝑡
𝑡 (𝑠𝑢,𝑡+1) −𝑉

𝜋𝑡+1
𝑡+1 (𝑠𝑢,𝑡+1)] ≤ 𝑉max𝑀 (𝑇 )

≤ 1
log 2

𝑉max𝑑 log
(
𝑑 +𝑈𝑇 /𝜅

𝑑

)
+ 1.

For the first term, we have:

E[
𝑇∑︁
𝑡=0

BELL𝑡 + 𝑏𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )] ≤ E[
𝑇∑︁
𝑡=0
|BELL𝑡 | + 𝑏𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )]

≤ 2E[
𝑇∑︁
𝑡=0

𝑏𝑡 (𝑠𝑢,𝑡,𝑎𝑡 )] ≤ 2E

[
𝑇∑︁
𝑡=0
(𝛽𝑡1 + 𝛽

𝑡
2)∥𝜙 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )∥Λ−1

𝑡

]
= 2(𝛽𝑇1 + 𝛽

𝑇
2 )E

[
𝑇∑︁
𝑡=0
∥𝜙 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )∥Λ−1

𝑡

]

≤ 2(𝛽𝑇1 + 𝛽
𝑇
2 )

√√√
𝑇

𝑇∑︁
𝑡=0
∥𝜙 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )∥2Λ−1

𝑡

≤ 2(𝛽𝑇1 + 𝛽
𝑇
2 )

√︄
𝑇𝑑 log

(
𝑑 +𝑇𝑈 /𝜅

𝑑

)
.

Recalling that 𝛽𝑇1 = 𝑂̃ (𝑑
√︁

log(𝑈𝑇 )) and 𝛽𝑇2 = 𝑂 (
√︁
𝑑 log(𝑇𝑈 )), we

can summarize the results as follows:

Regret(𝑇 ) ≤ 𝑂̃
(√︃
𝑑3𝑇 log(1/𝜍) log(𝑈𝑇 )

)
Constrained Violation Bound. Next we bound the average viola-
tion of constraints over T rounds.

𝐶reg (𝑇 )

=

𝑇−1∑︁
𝑡=0

���E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋𝑡 [
P(≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

]
−𝑤E

𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋𝑡
[
P(≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

] ���
≤

𝑇−1∑︁
𝑡=0

���E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋𝑡 [
P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

]
−𝑤E

𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋𝑡
[
P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )

] ���
+
𝑇−1∑︁
𝑡=0
E𝑠𝑢,𝑡∼𝑑𝑎𝑡 ,𝜋𝑡

[�����∑︁
𝑠′≠𝑜

P(𝑠′ |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) − P̂(𝑠′ |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
�����
]

+𝑤
𝑇−1∑︁
𝑡=0
E
𝑠𝑢,𝑡∼𝑑𝑏𝑡 ,𝜋𝑡

[�����∑︁
𝑠′≠𝑜

P(𝑠′ |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) − P̂(𝑠′ |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )
�����
]

≤ 2𝑐𝑡

And for 𝑔 ∈ {𝑎, 𝑏}, we have:

E𝑠𝑢,𝑡∼𝑑𝑔𝑡
[
𝑇−1∑︁
𝑡=0
∥𝜙 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )∥Λ−1

𝑡
] ≤

√︄
𝑇𝑑 log

(
𝑑 +𝑇𝑈 /𝜅

𝑑

)
Recall that 𝛽𝑇3 = 𝑂 (

√︁
𝑑𝑙𝑜𝑔(𝑇𝑈 )), thus the constraint violation

over 𝑇 rounds is bounded by:

𝐶reg (𝑇 ) ≤ 𝑂
(
(1 +𝑤)𝑑

√︁
𝑇 log(1/𝜍) log(𝑈𝑇 )

)
Thus we conclude the proof. □

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Lemma 7.4. (Bounding the switches.) The total number of switches
can be bounded as follows:

𝑀 (𝑇 ) ≤ 1
log 2

𝑑 log
(
𝑑 +𝑈𝑇 /𝜅

𝑑

)
+ 1

Proof. On one hand, we have

det(Λ𝑇 )
det(Λ0)

≥
𝑀 (𝑇 )−1∏

𝑠=1

det(Λ𝑡𝑠+1 )
det(Λ𝑡𝑠 )

≥ 2𝑀 (𝑇 )−1 .

On the otherhand, we also have:

det(Λ𝑇 )
det(Λ0)

= det(Λ−1
0 Λ𝑇 ) ≤

(
Tr(Λ−1

0 Λ𝑇 )
𝑑

)𝑑
≤

(
𝑑 +𝑈𝑇 /𝜅

𝑑

)𝑑
.

Combing above inequalities, we can get:

𝑀 (𝑇 ) ≤ 1
log 2

𝑑 log
(
𝑑 +𝑈𝑇 /𝜅

𝑑

)
+ 1

□

Lemma 7.5 (Optimism). For any policy 𝜋 , we have

𝑉 𝜋 (𝑠𝑢,𝑡 ) ≤ 𝑉 𝜋
𝑡 (𝑠𝑢,𝑡 ), ∀𝑢, 𝑡

.

Proof. Recall that 𝑉𝑡 is calculated with estimated reward func-
tion 𝑟𝑡 in Eq.(3) and estimated transition dynamics P̂𝑡 . Since we fo-
cus on the finite horizon settings, thus 𝑉 𝜋 (𝑠𝑢,𝑇+1) = 𝑉 𝜋

𝑡 (𝑠𝑢,𝑇+1) =
0.

We prove this lemma through induction. Assuming the inductive
hypothesis 𝑉 𝜋 (𝑠𝑢,𝑡+1) ≤ 𝑉 𝜋

𝑡 (𝑠𝑢,𝑡+1), we have:

𝑉̂ 𝜋
𝑡 (𝑠𝑢,𝑡 ) = E𝜋

𝑟𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) + 𝑏𝑢,𝑡 + 𝛾
∑︁

𝑠𝑢,𝑡+1

P̂𝑡 (𝑠𝑢,𝑡+1 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )𝑉̂ 𝜋
𝑡 (𝑠𝑢,𝑡+1 )


(1)
≥ E𝜋

𝑟 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) + 𝛾
∑︁

𝑠𝑢,𝑡+1

P(𝑠𝑢,𝑡+1 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )𝑉̂ 𝜋
𝑡 (𝑠𝑢,𝑡+1 )


(2)
≥ E𝜋

𝑟 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) + 𝛾
∑︁

𝑠𝑢,𝑡+1

P(𝑠𝑢,𝑡+1 |𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 )𝑉 𝜋 (𝑠𝑢,𝑡+1 )


= 𝑉 𝜋 (𝑠𝑢,𝑡 )

Inequality (1) is due to the validity of 𝑏𝑢,𝑡 in Definition 3.1, and
inequality (2) is due to the inductive hypothesis 𝑉 𝜋 (𝑠𝑢,𝑡+1) ≤
𝑉 𝜋
𝑡 (𝑠𝑢,𝑡+1)

□

8 APPENDIX

8.1 Detailed derivation of policy gradients of

Eq.(9).

We first provide a detailed derivation for the optimal policy 𝜋∗ in
Eq. (9). Let 𝜆 and 𝑣 denote the Lagrangian multiplier of the first and
second constraint in Eq. (9) respectively. Then we have

L(𝜋𝜗 , 𝜆, 𝑣) = 𝜆𝑐2
𝑡+𝑣𝜎+E𝑠𝑢,𝑡 ,𝜋𝜗 [𝑄̂𝑡 (𝑠𝑢,𝑡 , 𝑎𝑢,𝑡 ) ]−𝜆𝐶2

𝑡,𝜋𝜗
−𝑣𝐷KL (𝜋𝜗 ∥𝜋𝜗𝑡−1 )

Figure 3: Architecture of the environment simulator.

We can observe L(𝜋𝜗 , 𝜆, 𝑣) is linear with respect to 𝜋𝜗 . Therefore,
it follows that Slater’s constraint qualification is satisfied and strong
duality holds.

𝑝∗ = max
𝜋𝜗

min
𝜆,𝑣≥0

L(𝜋𝜗 , 𝜆, 𝑣) = min
𝜆,𝑣≥0

max
𝜋𝜗
L(𝜋𝜗 , 𝜆, 𝑣). (19)

For the inner optimization problem, i.e.,

max
𝜋𝜗
L(𝜋𝜗 , 𝜆, 𝑣)

𝑠 .𝑡 .,
∑︁
𝑎

𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 ) = 1, 𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 ) ≥ 0

Similarly, denoting 𝜁 as the Lagrange multiplier for the constraints∑
𝑎 𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 ) = 1, we have:

𝐺 (𝜋𝜗 ) = 𝜆𝑐2
𝑡 − 𝜆𝐶2

𝑡,𝜋𝜗
− 𝜁 (

∑︁
𝑎

𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 ) − 1)

+ E𝑠𝑢,𝑡

[∑︁
𝑎

𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 )
(
𝑄̂𝑡 (𝑠𝑢,𝑡 , 𝑎) − 𝑣 (log𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 ) − log𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 ) )

)]
Taking the derivative of 𝐺 (𝜋) with respect to 𝜋𝜗 and setting it to
zero, we can derive the following optimal policy:

• If user 𝑢 is in group 𝑎:

𝜋∗ (𝑎 |𝑠𝑢,𝑡 ) =
𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 )
𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

exp
(

1
𝑣
𝑄̂𝑡 (𝑠𝑢,𝑡 , 𝑎) − 2

𝜆

𝑣
𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

)
• If user 𝑢 is in group 𝑏:

𝜋∗ (𝑎 |𝑠𝑢,𝑡 ) =
𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 )
𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

exp
(

1
𝑣
𝑄̂𝑡 (𝑠𝑢,𝑡 , 𝑎) + 2𝑤

𝜆

𝑣
𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

)
Let𝑤𝑔 = −1 if the user is in group 𝑎 and𝑤𝑔 = 𝑤 if the user is in

group 𝑏. By substituting 𝜋∗ into Eq. (19), we obtain:

𝑝∗ = min
𝜆,𝑣≥0

𝜆𝑐2
𝑡 + 𝑣𝜎 − 𝜆𝐶2

𝑡,𝜋∗

+ E𝑠𝑢,𝑡 ,𝜋∗
[
𝑄̂𝑡 (𝑠𝑢,𝑡 , 𝑎) − 𝑣 (log𝜋∗ (𝑎 |𝑠𝑢,𝑡 ) − log𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 ))

]
= 𝜆𝑐2

𝑡 + 𝑣𝜎 − 𝜆𝐶2
𝑡,𝜋∗

+ E𝑠𝑢,𝑡 ,𝜋∗
[
𝑣 log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 ) − 2𝜆𝑤𝑔𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

]
(20)

Lemma 8.1. The gradients of

L(𝜗) = E𝑠𝑢,𝑡∼𝑑𝑡 [𝐷KL (𝜋𝜗 ∥𝜋∗) [𝑠𝑢,𝑡 ]]
takes the form:

∇𝜗L(𝜗) = E𝑠𝑢,𝑡∼𝑑𝑡 [∇𝜗𝐷KL (𝜋𝜗 ∥𝜋∗) [𝑠𝑢,𝑡 ]],
12
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∇𝜗𝐷KL (𝜋𝜗 ∥𝜋∗) [𝑠𝑢,𝑡 ] = ∇𝜗𝐷KL (𝜋𝜗 ∥𝜋𝜗𝑡−1 ) [𝑠𝑢,𝑡 ]

− 1
𝑣
E𝑎∼𝜋𝜗𝑡−1

[∇𝜗𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 )
𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 )

(
𝑄 (𝑠𝑢,𝑡 , 𝑎) + 2𝑤𝑔𝜆𝐶𝑡,𝜋𝜗 P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎

)]
,

where𝑤𝑎 = −1 and𝑤𝑏 = 𝑤 .

Proof. We first have that :

𝐷KL (𝜋𝜗 ∥𝜋∗) [𝑠𝑢,𝑡 ] = −
∑︁
𝑎

𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 ) log𝜋∗ (𝑎 |𝑠𝑢,𝑡 )︸                                 ︷︷                                 ︸
(𝐴1 )

+
∑︁
𝑎

𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 ) log𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 )

Let

𝑤𝑔 =

{
−1, 𝑔 = 𝑎

𝑤. 𝑔 = 𝑏

For 𝐴1, we have:

𝐴1 = −
∑︁
𝑎

𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 ) log

(
𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 )
𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

·

exp
(

1
𝑣
𝑄 (𝑠𝑢,𝑡 , 𝑎) + 2𝑤𝑔 𝜆

𝑣
𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

) )
≈ −

∑︁
𝑎

𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 ) log𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 ) + log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

− 1
𝑣

∑︁
𝑎

𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 )
(
𝑄 (𝑠𝑢,𝑡 , 𝑎) + 2𝑤𝑔𝜆𝐶𝑡,𝜋𝜗 P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

)
We then subtract the entropy term to recover the KL divergence:

𝐷KL (𝜋𝜗 ∥𝜋∗) [𝑠𝑢,𝑡 ] = 𝐷KL (𝜋𝜗 ∥𝜋𝜗𝑡−1 ) [𝑠𝑢,𝑡 ] + log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

− 1
𝑣
E𝑎∼𝜋𝜗𝑡−1

[∇𝜗𝜋𝜗 (𝑎 |𝑠𝑢,𝑡 )
𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 )

(
𝑄 (𝑠𝑢,𝑡 , 𝑎) + 2𝑤𝑔𝜆𝐶𝑡,𝜋𝜗 P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎

)]
where the last equality we applied importance sampling to rewrite
the expectation w.r.t 𝜋𝜗𝑡−1 . Finally, taking the gradient on both
sides, we will finish the proof. □

Update 𝜆 and 𝑣 . Recall the dual optimization problem is derived
as follows (Eq.(20)):

𝑝∗ = min
𝜆,𝑣≥0

𝜆𝑐2
𝑡 + 𝑣𝜎 − 𝜆𝐶2

𝑡,𝜋∗

+ E𝑠𝑢,𝑡 ,𝜋∗
[
𝑣 log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 ) − 2𝜆𝑤𝑔𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

]
For simplicity, we denote

𝑄̃
𝑔
𝑡 (𝑠𝑢,𝑡 , 𝑎)) =

1
𝑣
𝑄̂𝑡 (𝑠𝑢,𝑡 , 𝑎) + 2𝑤𝑔 𝜆

𝑣
𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎) .

We first focus on the derivative of 𝜋∗ regarding to the 𝜆.
𝜕𝜋∗ (𝑎 |𝑠𝑢,𝑡 )

𝜕𝜆

=
𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 )
𝑍 2
𝜆,𝑣
(𝑠𝑢,𝑡 )

[
𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

𝜕

𝜕𝜆
exp(𝑄̃𝑔

𝑡 (𝑠𝑢,𝑡 , 𝑎))

− exp(𝑄̃𝑔
𝑡 (𝑠𝑢,𝑡 , 𝑎))

𝜕𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )
𝜕𝜆

]
=
𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 )
𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

exp(𝑄̃𝑔
𝑡 (𝑠𝑢,𝑡 , 𝑎))

𝜕𝑄̃
𝑔
𝑡 (𝑠𝑢,𝑡 , 𝑎)
𝜆

−
𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 )
𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

exp(𝑄̃𝑔
𝑡 (𝑠𝑢,𝑡 , 𝑎))

𝜕 log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )
𝜆

= 2
𝑤𝑔

𝑣
𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)𝜋∗ (𝑎 |𝑠𝑢,𝑡 ) − 𝜋∗ (𝑎 |𝑠𝑢,𝑡 )

𝜕 log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )
𝜆

Thus the derivative of the last expectation term in 𝑝∗ with respect
to 𝜆 can be expressed as:
𝜕

𝜕𝜆
E𝑠𝑢,𝑡 ,𝜋∗

[
𝑣 log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 ) − 2𝜆𝑤𝑔𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

]
= E𝑠𝑢,𝑡 ,𝜋𝜗𝑡−1

[
𝜕

𝜕𝜆

𝜋∗ (𝑎 |𝑠𝑢,𝑡 )
𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 )

(
−2𝜆𝑤𝑔𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

+𝑣 log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )
) ]

= E𝑠𝑢,𝑡 ,𝜋𝜗𝑡−1

[
1

𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 )

(
𝑣𝜋∗ (𝑎 |𝑠𝑢,𝑡 )

log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )
𝜕𝜆

− 2𝑤𝑔𝜋∗ (𝑎 |𝑠𝑢,𝑡 )𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

+
𝜕𝜋∗ (𝑎 |𝑠𝑢,𝑡 )

𝜕𝜆

(
−2𝜆𝑤𝑔𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎) + 𝑣 log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

) )]
.

= E𝑠𝑢,𝑡 ,𝜋∗ [2
𝑤𝑔

𝑣
𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

(
𝑣 log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

−2𝑤𝑔𝜆𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)
)

−
𝜕 log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

𝜕𝜆

(
𝑣 log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 ) − 2𝑤𝑔𝜆𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠, 𝑎)

)
+ 𝑣

log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )
𝜕𝜆

− 2𝑤𝑔𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)] (21)

Also
𝜕𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

𝜕𝜆
=

𝜕

𝜕𝜆

∑︁
𝑎

𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 ) exp(𝑄̃𝑔
𝑡 (𝑠𝑢,𝑡 , 𝑎))

=
∑︁
𝑎

𝜋𝜗𝑡−1 (𝑎 |𝑠𝑢,𝑡 ) exp(𝑄̃𝑔
𝑡 (𝑠𝑢,𝑡 , 𝑎)) ∗

(
2
𝑤𝑔

𝑣
𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

)
=
𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

𝑣
E𝜋∗ [2𝑤𝑔𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)] .

Therefore,
𝜕 log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

𝜕𝜆
=
𝜕𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

𝜕𝜆
∗ 1
𝑍𝜆,𝑣 (𝑠𝑢,𝑡 )

=
1
𝑣
E𝜋∗ [2𝑤𝑔𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)] (22)

Thus,
𝜕

𝜕𝜆
E𝑠𝑢,𝑡 ,𝜋∗

[
𝑣 log𝑍𝜆,𝑣 (𝑠𝑢,𝑡 ) − 2𝜆𝑤𝑔𝐶𝑡,𝜋∗ P̂𝑡 (≠ 𝑜 |𝑠𝑢,𝑡 , 𝑎)

]
= 0 (23)
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The derivative of L(𝜋∗, 𝜆, 𝑣) w.r.t 𝜆 is :
𝜕L(𝜋∗, 𝜆, 𝑣)

𝜆
= 𝑐2

𝑡 −𝐶2
𝑡,𝜋∗ (24)

With the optimized policy at time 𝑡 being 𝜋𝜗𝑡 , the update rule for 𝜆
is as follows:

𝜆 ← proj𝜆 (𝜆 − 𝛼 (𝑐2
𝑡 −𝐶2

𝑡,𝜋𝜗𝑡
)) (25)

The projection operator proj𝜆 projects 𝜆 back to [0, 𝜆max]. And 𝛼
is the step size.
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