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Abstract

Is structure information modeling really
worth in Aspect-based sentiment classification
(ABSC)? Recent popular works tend to exploit
syntactic information guiding sentiment depen-
dency parsing, i.e., structure-based sentiment
dependency learning. However, many works
fall into the trap that confusing the concepts
between syntax dependency and sentiment de-
pendency. Besides, structure information (e.g.,
syntactic dependency tree) usually consumes
expensive computational resources due to the
extraction of the adjacent matrix. Instead, we
believe the sentiment dependency mostly oc-
curs between adjacent aspects. By proposing
the sentiment patterns (SP) to boost the senti-
ment dependency learning, we introduce the
Local dependency aggregating (Lena) to ex-
plore sentiment dependency in the text. Ex-
periments show that Lena is more efficient
than existing structure-based models without
dependency matrix constructing and modeling
expense. The performance on all five public
ABSC datasets makes a big step compared to
state-of-the-art models, and our work could in-
spire future research focusing on efficient local
sentient dependency modeling.

1 Introduction

In order to solve the absence of explicit sentiment
information in the context, recent studies on ABSC
(Pontiki et al., 2014) turned to focus on the parsing
of sentiment dependency among aspects. For exam-
ple, The laptop’s storage is large,
so does the battery capacity., the
customer praised both storage and battery ca-
pacity, while no direct sentiment description of
battery capacity is available in the review. The
methods capable of dependency learning can be
approximately categorized into the topological
structure-based dependency parsing methods
(Zhang et al., 2019a; Huang and Carley, 2019),
and syntax tree distance-dependent methods(Phan

and Ogunbona, 2020). Meanwhile, some works
adopt hybrid dependency modeling strategies to
enhance the model’s ability to learn sentiment
dependency. But there are some problem remained
in structure modeling. On the one hand, some
previous works blurred the gap between syntactical
dependency and sentiment dependency, and avoid
exploring the relatedness of them. On the other
hand, due to the expensive dependency tree parsing
time and resources occupation, they are not the
ideal solutions for dependency learning in long
texts, especially texts with multi-aspects. Table. 1
shows the brief comparison between the structure
information-based models and non-structure-based
models’.

Table 1: The resources occupation of state-of-the-art
ABSC models. “P.T.” and “A.S.” indicate the dataset
pre-processing time and additional storage requirement,
respectively. * represents non-dependency based mod-
els, and “7” indicates our models.

Laptop14 Restaurant14
Models PT. (sec) A.S.(MB) PT. (sec) A.S.(MB)
BERT-BASE * 1.62 0 3.17 0
LCF-BERT * 2.89 0 3.81 0
ASGCN-BERT  13.29 0.01 0.02 9.4
RGAT-BERT 35.4k 157.4 48.6k 188
Lena *f 3.16 0 4.32 0
Lenag *T 20.56 0 30.23 0

Our study shows that sentiment dependency
mostly exists between adjacent aspects, we call
this phenomenon “sentiment cluster”. We explain
the existence of sentiment cluster by introducing
sentiment patterns (see Sec. 3.2). This sentiment
cluster hypothesis implies the possibility of effi-
cient modeling of sentiment dependency. We ex-
ploit this finding by introducing sentiment patterns
(SP) to improve ABSC. Meanwhile, we propose a

!The experiments are based on RTX 2080 GPU, AMD
R5-3600 CPU with PyTorch 1.9.0. The original size of the
Laptop14 and Restaurant14 datasets are 336kb and 492kb,
respectively.



sentiment dependency learning framework based
on sentiment cluster, i.e., the local sentiment de-
pendency aggregating (Lena). Lena handles the
sentiment dependency within a local sentiment de-
pendency aggregating window (AW), avoiding the
direct modeling of structure information such as
trees or graphs. The AW aggregates the aspect-
oriented features. Hence, the Lena could be imple-
mented in flexible ways. e.g., we can construct the
aspect-oriented features based on attention mecha-
nism, BERT-SPC(Song et al., 2019) or LCF(Zeng
etal., 2019) mechanism. We adopt the local context
focus (LCF) mechanism to obtain aspect-oriented
features and construct aggregating windows. More
specifically, we employ the original LCF mecha-
nism and adapted the LCFS(Phan and Ogunbona,
2020) mechanism to implement Lena. Our exper-
imental results show Lena achieve an impressive
improvement compared to state-of-the-art models,
i.e., up to 86.21% and 91.07% accuracy on the
Laptop14 and the Restaurant14 Datasets.

Moreover, Lena is a backbone-free framework,
we develop Lena based on several pre-trained mod-
els, e.g., BERT(Devlin et al., 2019), RoBERTa(Liu
et al., 2019), DeBERTa(He et al., 2021) to evaluate
its transferability. Besides, we propose differen-
tial weighting for window components to explore
better AW construction strategy. The experimen-
tal results show that Lena is an efficient sentiment
dependency learning method according to the per-
formance comparisons.

Therefore, the main contributions® of this paper
are as follows:

1 Our research proves that current structure-
based modeling methods are not the cure of
ABSC. In the contrast, it is highly inefficient
and may mislead future research.

2 The novel sentiment patterns are introduced in
this paper. We further propose the Lena mech-
anism for efficient and effective sentiment de-
pendency learning. The experimental results
show that our models comprehensively out-
perform state-of-the-art models without loss
of simplicity and efficiency.

3 The differential weighting strategy and simpli-
fication strategy is proposed to deeply explore
the optimal AW construction strategy of Lena.

2The code and datasets are available in supplementary
material.

And we study the effectiveness of and con-
duct experiments to evaluate the performance
of Lena based on multiple pre-trained models.

2 Related Works

We observe that recent works tend to resolve sen-
timent dependency problem by modeling syntax-
based structures Those structure tree-based meth-
ods generally employ the graph convolution net-
work (GCN) and attention mechanism(Bahdanau
et al., 2014) to model the sentiment dependency.
There are diversities of attention mechanisms
proposed in the previous research(Wang et al.,
2016; Ma et al., 2017), e.g., multi-grained atten-
tion(Zhang et al., 2019a) and multi-head atten-
tion(Vaswani et al., 2017). These works ignore
the efficiency drawback of syntax tree handling.

Existing popular ABSC methods can be divided
into methods based methods based on dependency
learning, and methods based on pre-trained models.
Meanwhile, some works use the hybrid strategy to
improve their works.

2.1 Dependency-based Methods

The researchers have been attempting to model sen-
timent dependency based on the syntax tree-based
structure information which achieves hopeful im-
provement without consideration of efficiency. Fig.
1 shows an example of a syntax tree that can be
used for structure extraction. Early works focus
on learning the sentiment dependency based on
syntax tree parsed from aspect and context. e.g.,
(Zhang et al., 2019a) and (Sun et al., 2019) intro-
duce the models based on dependency trees and
obtain promising performance. Most ABSC mod-
els (Huang and Carley, 2019; Tang et al., 2020;
Wang et al., 2020) employ the GCN equipped with
an attention mechanism to learn syntactical trees
because the GCN can model topological relation
and obtains promising performance. Meanwhile,
some methods (He et al., 2018; Zhang et al., 2019b)
exploit the dependency tree to measure the distance
between aspect and context words, those methods
avoid modeling the dependency tree directly and
have better efficiency. Dai et al. (2021) propose
the pre-trained model to induce the dependency
tree which can be adapted to several models and
achieved state-of-the-art performance. However,
this method requires additional and expensive re-
sources (e.g., time and system memory) to induce
structure information.
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Figure 1: The syntax-tree parsed from a real restaurant review. The colored words are tokens from aspect terms, and
the arrowed lines indicate the dependency relations. The dependency matrix built from syntax-tree requires n X n

(n is the length of the text) space to store.

2.2 PTM-based Methods

The pre-trained models prompt the development of
ABSC. BERT is one of the first pre-trained mod-
els to be applied in ABSC, which achieves excit-
ing performance by fine-tuning without any model
modification (Xu et al., 2019). Rietzler et al. (2019)
argue that besides fine-tuning, domain adaption of
BERT on target corpus could make a great improve-
ment for ABSC. Zhao et al. (2020) and Wang et al.
(2020) propose the BERT-based models and exploit
dependency trees to learn sentiment information.
Scholars recognize that the sentiment polarity of
the target aspect is highly related to its local con-
text. Instead of directly modeling dependency tree,
Phan and Ogunbona (2020) propose a method that
calculates the distance using syntactical informa-
tion to guide the model to learn the LCF feature and
obtain considerable results. There are many other
pretrained model-based methods aimed for ABSC
in recent years (Tang et al., 2020; Zhou et al., 2020;
Li et al., 2021; Silva and Marcacini, 2021), most
of them shows hopeful improvement. We do not
intend to discuss them in detail but we compare our
models with their methods without any evasion.

3 Methodology

Fig. 3 shows the main architecture of the Lena
framework. The Lena-based model uses pretrained
models to learn the LCF mechanism-based aspect-
oriented features of all provided aspects, and the ag-
gregation window travels upon the aspect-oriented
features of adjacent aspects. We concatenate the
global context feature and aggregation window fea-
ture to predict aspect polarity in case of avoiding
potential loss of sentiment information outside the
aggregation window.

3.1 Preliminaries

Fig.1 shows an example of aspect-based sentiment
classification, where “atmosphere”, “food” and

“service” contain positive sentiment, while “din-
ner” and “drink” contain neutral sentiment. There
may be multiple aspects with different sentiment
polarities in a text, and the polarity between each
aspect may be dependent or even contradictory.

Cozy atmosphere, good to meet friends for and a drink.

and service, good

T
sentiment cluster sentiment cluster
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Figure 2: Visualization of the sentiment cluster and
sentiment coherency.

3.2 Sentiment Pattern

Inspired by existing works(Zhang et al., 2019a;
Zhao et al., 2020) which proved sentiment polarity
between aspects is not always independent, we in-
troduce sentiment pattern (SP). i.e., the underlying
empirical principles of organization of sentiment
polarities, to help the model learn sentiment depen-
dency. Precisely modeling for sentiment patterns
may be difficult, we can develop our model un-
der the guidance of SP. We propose two sentiment
patterns in this paper and prove our arguments by
experiment analysis.

3.2.1 Sentiment Cluster

The aspects containing similar sentiment polarity
tend to cluster as shown in Fig 2. As users gener-
ally organize the opinions of aspects before giving
the review, it is intuitive to realize that users tend
to cluster the aspects according to the polarity cat-
egory. i.e., SP1. Table 2 shows the number of
aspects belongs to a sentiment cluster with size >
1. We can observe that many of the aspects are
clustered.

3.2.2 Sentiment Coherency

Sentiment polarities of multiple aspects are possi-
ble to subject to the sentiment coherency as shown



Table 2: The number of aspect in sentiment clusters
with different sizes.

Cluster Size
Dataset 1 2 3 4 >5 | Sum
Laptop14 791 799 468 294 614 | 2966
Restaurant14 | 1318 1050 667 479 1214 | 4728
Restaurant15 | 617 406 229 163 326 | 1741
Restaurantl6 | 836 539 314 210 462 | 2361
MAMS 6463 2583 1328 746 1397 | 12517

in Fig 2. In the case of natural thinking style, users
are probably to bring up an aspect that has the same
polarity as pre-aspect for any thinking pause. The
pattern of sentiment coherency can be classified
into global and local coherency. We propose our
model referring to the local sentiment coherency.
i.e., SP2.
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Figure 3: The main framework of Lena.

3.3 Local Sentiment Dependency Aggregating

The Lena is based on SP1 and SP2. The implemen-
tation of Lena relies on the aspect-oriented context
features. We construct the aggregating window
using LCF features of adjacent aspects. i.e., the
k-th (k = 1 in this paper) left- and right-adjacent
aspects are concatenated to be the aggregating win-
dow. The calculation of local context can be clas-
sified into the relative-position method and syntax
distance-based method. In this paper, we employ
both methods to extract LCF features and construct
the aggregating window>. i.e., Lena and Lenag
(Lena-Syntax), respectively.

3.3.1 Relative Distance-based Local Context

Token distance-based local context is calculated
using the distance of token-aspect pairs. Assume
We = {w§,ws, ..., wg} is the token set after tok-
enization. The distance D; of a token-aspect pairs
is calculated as follow:

p, = (=m0 "

3see (Phan and Ogunbona, 2020; Yang et al., 2021) for
detailed LCF computation

where p;(i € [1,m]) and p, are the positions of
1-th token within the aspect and the position of any
context token, respectively. m is the length of an
aspect. It that case, we determine the local context
and assign the local context tags according to D;:

B 0, Dy >a
T = { 1, other 2)

where n is the length of the tokenized context;
a(a = 3) is a fixed threshold to measure local
context. Then Lena uses the relative distances to
obtain context weights. The Lena applies context
weights to the global context feature and obtains
the LCF features.

H¢ D;i<a
H! - { " SC)

Tl 1-2=2 ge D> a
Where Hf and H! are the hidden states at po-
sition ¢ in the global context features and local
context features, respectively. This implementation

is called Lena.

3.3.2 Syntax Distance-based Local Context

Although directly learning structure tree is ineffi-
cient, we can employ the distance calculated from
the syntax structure to measure local context and
model the local context. Fig. 1 shows a syntax-
based tree from a sample with multi-aspects. The
distance D, can be calculated according to the
shortest distance between a token node and aspect
nodes in the syntax-based tree. Consistent with the
token-based local context calculation method, the
syntactic structure-based method also calculates
the average distance between the aspect-token and
the context token:

Yo, man_dist(t, t?Spect)
m

“)

Dy =

where min_dist indicates the shortest distance be-
tween ¢-th token within the aspect and context to-
ken t from the non-local context. Similar to the
Lena, the Lenag only replace the token-pair based
distance with syntax-node based distance.

3.3.3 Aggregating Window

We use BERT, RoBERTa and DeBERTa as the base
models to encode input text. Assume that H¢ is the
context feature learned from BERT:

HY) = WLH® ®)

HL =W, H® (6)



HL = WkLH® (7)

where Hrfp, H ZL and H 5—% are the LCF features of
the target aspect, the feature of left- and right-
adjacent aspect. W:lp € R, Wi € R and
W}l% € R™ “n gre the local context weight vectors
of aspects. We apply the self-attention for LCF
feature of each aspect:

H%y = [HEy HE, HE) (8)
H° = W°HS, + 1° )

HEL, HL,, HE, are LCF features learned by self-
attention. dj, is the dimension of the hidden size
and Hg , is the window composed of concatenated
LCF features of multiple adjacent aspects. H° is
the output representation of Lena, W° and b° are
the trainable weight and bias parameters.

3.3.4 Aggregation Window Padding

We need to pad the aggregation window using the
aspect-oriented features. Here are three padding
strategy shown in Fig. 4. It is worthy noting that
padding sentiment aggregation window does not
degenerate model because the padded components
are duplicated and the same as edge adjacent as-
pects. Besides, the padded components have the
same sentiment information which is subject to SP1
and SP2 while modeling the sentiment clusters.

Aspect-dependent features

Figure 4: Window padding strategy for different situa-
tions.

3.3.5 Differential Weighted Aggregation
Window

The Lena treats the sentiment information of ad-
jacent aspects on both left and right sides equally.
However, According to SP2, it is natural for us to
realize that the importance of sentiment informa-
tion of the left- and right- adjacent aspects are prob-
ably different. Thereafter, We propose differential
weighting to differential adjust the contribution of
sentiment information from the left-adjacent (pre-
vious) aspect and the sentiment information of the

right-adjacent (following) aspect. Assume 7 is the
adjustable weight of the LCF feature of left and
right aspects:

HY = HE s, HEy, (1 —n)HEL)  (10)
where H%? is the LCF feature learned through dif-
ferential weighting Strategy.

3.4 Output Layer

For the purpose of compensating the loss of context
feature caused by LCF calculation, we combine the
global context feature and feature learned from the
local dependency aggregating to predict sentiment
polarities as following:

Ofusion — Wl H® HY] + b/ (11)
Odense — yydofusion | pd (12)
. ex Odense
§= o070 (13)
Zl eXp(Odense)

where O{Z;éon and  are the features of first token
and predicted sentiment polarity, respectively. C
indicates the number of polarity categories. W/ €
R™*2dn pf ¢ R2m and W € R™C, b € RC
are the trainable weight and bias vectors.

3.5 Model Training

Lena is implemented based on transform-
ers?, namely Lena-BERT, Lena-RoBERTa, Lena-
DeBERTa (a.k.a., Lena) Lena-DeBERTa-Large
(a.k.a., LenaX) and we optimize our model using
Adam. The objective function is cross-entropy as
follows:

C
L=-) Gilogyi+ |02  (14)
1

where A and © are the Lo regularization and
parameter set of the model.

4 Experiments

4.1 Datasets and Hyper-parameters

To comprehensively evaluate the performance
of the local dependency aggregating mecha-
nism, we conducted experiments on five public

*https://github.com/huggingface/
transformers
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datasets® (containing multiple aspects): the Lap-
topl4 and Restaurant14 datasets from SemEval-
2014 Task4(Pontiki et al., 2014), the Restau-
rantl5, Restaurantl6 datasets from SemEval-
2015 task12(Pontiki et al., 2015), SemEval-2016
task5(Pontiki et al., 2016) and MAMS datasets
from (Jiang et al., 2019), respectively.

Table 3: The statistics of five datasets used in this work.

Positive Negative Neutral

Datasets | Train | Test | Train | Test | Train | Test

Laptopl4 | 994 | 341 | 870 | 128 | 464 | 169
Rest14 2164 | 728 | 807 | 196 | 637 | 196
Rest15 909 | 326 | 256 | 180 36 34
Rest16 1240 | 468 | 437 | 117 69 30
MAMS | 3379 | 400 | 2763 | 329 | 5039 | 607

We fine-tune the hyper-parameter settings on the
datasets. The learning rate of Lena is 1e-5. The
batch size and maximum text length are 16 and 80,
respectively. The Lo regularization parameter A
is 1e-8, and the local context threshold « is 3 for
both Lena and Lenag. Each model trained for five
rounds and the median performance is presented.

4.2 Overall Performance

We compare the performance of Lena and Lenag
with recent state-of-the-art models without any eva-
sion (many of them are structure-based dependency
learning methods). However, we do not intend to
introduce them separately, please see the original
paper refer to Table 4.

Table 4 shows the main experimental results.
Overall, the Lena baseline model obtain sub-
stantial improvements over most of the BERT-
and RoBERTa-based Lena models on all five
datasets. In particular, the LenaXg achieves the
un-parallelable improvement compared to exist-
ing methods, no matter structure learning meth-
ods or recent DeBERTa models. Compared with
the DeBERT-based model, LenaX and Lena sig-
nificantly outperform approximately 1.5%, 3.5%
accuracy on all four datasets. As for comparisons
with structure-based learning method GCN-based
SDGCN and SK-GCN-BERT, Lena-based models
significantly improve the classification accuracy
and F1 on all five datasets. What impresses us is
that the distance-based Lena arrives comparable
metric compared to Lenag, while the latter requires
more data pre-processing time, i.e., approximate 8
multiples compare to the former. We do not need

SThe processed datasets are available with the code in
supplementary materials.

to make more performance comparisons, as the
metrics are fair and stand for themselves. Com-
bined with Fig. 1, We have a conclusion that Lena
models perform impressively in handling local sen-
timent dependency without any GCN architecture
or additional structure matrix.

4.3 Differential Weighting for AW

—— Lena (Acc)
--- Lena (F1)
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Figure 5: Visualization of average performance ex-
ploiting differential weighting on the Restaurant15 and
Restaurant16 datasets.
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Figure 6: Visualization of performance under differen-
tial weighting (17) on the Restaurantl5, Restaurant16
dataset. The violin plot and box plot parts are Accuracy
metric and F1 metric, respectively.

It is natural to realize that the order of aspects
in the text matters while modeling the aggrega-
tion window. Because users tend to comment on
an aspect that has the same polarity as the pre-
commented aspects. We design the differential-
weighting to model this effect. We use n (n €
[0, 1]) to adjust the contribution of LCF features of
side aspects. A greater 7 means more contribution
of the left-aspect’s LCF feature. Fig 5 and Fig 6
show the performance of the model under different
7.

It is clear to observe that the contribution of
adjacent aspects on left- and right- sides are differ-



Table 4: The overall performance of Lena variants on five datasets. “Dep” means structure information modeling.
The best experimental results are heightened in bold. All experiments results of Lena are medians in five runs.

Laptop Restaurantl4 Restaurantl5 Restaurantl6 MAMS
Model Dep- “ace FI Acc FI A FI A Fl  Acc Fl
BERT (Devlin et al., 2019) N 7973 755 8274 7373 82.16 6497 8943 742
BERT-PT (Xu et al., 2019) N 7889 7589 8592 79.12 - - - - -
SDGCN-BERT (Zhao et al., 2020) Y 81.35 78.34 8357 7647 - - -
CapsNet-BERT (Jiang et al., 2019) N - - - - - - - - 83.39 8091
LCF-BERT (Zeng et al., 2019) N 79.73 76.07 86.16 80.12 83.77 69.03 91 77.1 - -
RGAT-BERT (Bai et al., 2020) Y 8094 782 8668 8092 - - - - -
SK-GCN-BERT (Zhou et al., 2020) Y 79 7557 8348 7519 832 66.78 87.19 72.02 -
DGEDT-BERT (Tang et al., 2020) Y 798 756 863 80 84 71 91.9 79 -
LCFS-BERT (Phan and Ogunbona, 2020) N 8025 76.72 8643 80.84 84.07 69.67 9035 76.28 -
ASGCN-BERT (Zhang et al., 2019a) Y 79.83 7589 8476 7794 8422 729 91.05 77.05 -
BERTAsp+SCAPT (Li et al., 2021) N 8276 79.15 89.11 83.79 - - - - -
RGAT-RoBERTa (Dai et al., 2021) Y 8333 7995 8752 81.29 - -
PWCN-RoBERTa (Dai et al., 2021) Y 8401 81.08 8735 80.85 - -
ABSA-DeBERTa (Silva and Marcacini, 2021) N 82.76 79.36 89.46 83.42 - -
Lena (Ours) N 84.16 81.4 90.03 8592 88.15 77.07 93.82 7993 8496 8441
Lenag (Ours) N 84.33 80.97 89.64 84.08 89.04 7854 9447 84.84 85.18 84.62
LenaX (Ours) N 86.13 8336 90.31 855 90 7846 952 848 85.7 85.21
LenaXg (Ours) N 86.21 83.87 91.07 8638 90.74 78.79 948 8431 8555 85

ent. However, because the datasets are small and
contain error data, our experiment shows different
optimal 7 for Lena variants considering Accuracy
metric. Hopefully, while € [0.7,0.8], we observe
a general good performance in most situations. On
the other hand, the fixed hyperparameter 7 is hard
to precisely measure the significance of the senti-
ment information of side aspects. We will consider
adaptive 7 calculation methods in the future.

The difference between simplified AW (SAW)
and differential-weighting AW (DAW) with = 0
or n = 1 is the network structure, as the DAW
employs a full-connected layer with 3 x dj, input
size (2 x dp, in SAW learning the window features.

4.4 Decomposition of Lena

Table 5 shows the ablation experimental results.
From the performance of simplified Lena, and
BERT-, RoBERTa-based Lena variants, we see a
certain clue that the DeBERTa baseline is better
in most situations. Compared with the full Lena,
although the simplified Lena slightly improves the
sentiment classification efficiency. In most situa-
tions the simplified Lena suffers a loss of perfor-
mance inevitably. Moreover, the Lena with LA usu-
ally performs better than Lena with RA, which is
similar to the conclusion in DAW analysis: the bet-
ter 7 usually lies between (0.5, 1) (a typical ideal
1 1s 0.7).

4.5 Research Questions

RQ1: Does the structure and GCN based
method learn the sentiment dependency?

According to Table. 4 and our analysis, the answer
may be yes but not necessary. The GCN-based
methods rely on the syntax tree or other topological
information. However, the are some limitations that
remain unresolved.

On the one hand, measuring the importance of
sentiment dependency between different aspects
is very difficult. Most existing works confuse the
border of syntax dependency and sentiment depen-
dency. i.e., assuming the syntax dependency may
help sentiment dependency learning implicitly. But
this concept approximate does not outperform the
aspect-focused modeling method. e.g., LCF-BERT.
We only focus on the local sentiment dependency
learning based on sentiment patterns, which pre-
vents the inefficient coarse-grained structure matrix
modeling. And experiment results show that the
Lena outperforms state-of-the-art models without
loss of simplicity and effectiveness. So the GCN
may make merely sense to some extent.

On the other hand, the syntax trees are parsed
based on the existing tool which does not subject to
the same tokenization strategy. In that case, there
are many inevitable alignment problems between
syntax tree nodes and deep learning tokenizers. Al-
though Dai et al. (2021) propose to use the pre-
trained model to induce the dependency tree which
alleviates alignment problem, this method requires
non-negligible expense. Thereafter, we believe the



Table 5: The average performance deviation of ablated Lena baselines. “LA” and “RA” indicates the simplified
aggregating window constructed only exploits the left-adjacent aspect or right-adjacent aspect, respectively.

Laptop Restaurantl4 Restaurantl5 Restaurantl6 MAMS

Model Dep. Acc Fl  Acc Fl  Acc FI  Acc Fl  Acc Fl

Lena N 84.16 814 90.03 8592 88.15 77.07 93.82 7993 8496 8441
w/ LA N 8192 802 892 8462 8851 7696 9236 7883 8481 8449
w/ RA N 8354 80.03 89.55 85.13 8944 7724 93.01 7999 8503 84.61
w/ BERT N 80.88 77.27 86.25 80.14 84.69 71.97 91 7744 84.73 84.21
w/RoBERTa N  84.17 81.69 88.84 83.79 87.22 7586 93.82 83.15 84.51 83.93
Lenag N 8433 8097 89.64 84.08 89.04 7854 9447 84.84 85.18 84.62
w/ LA N 8292 7996 90.54 86.17 88.52 77.27 9398 81.57 84.73 84.34
w/ RA N 837 80.36 89.11 83.79 8741 7721 935 7985 85.18 82.79
w/ BERT N 8135 7835 87.14 81.04 84.81 7221 922 795 8505 84.31
w/RoBERTa N 83.55 80.89 88.12 8276 87.96 7542 93.66 80.47 84.73 84.15

local sentiment dependency learning can prompt
the ABSC research.

RQ2: Are there other ways to build an AW?

Lena is a paradigm rather than a hard network struc-
ture, which means Lena is extensible and flexi-
ble. The Aggregating Window is the core of Lena,
which is composed of aspect-oriented feature vec-
tors. We adopt the LCF mechanism to build the
AW, and this initial implementation yields remark-
able performance improvements. However, it is
worth noting that there are many alternative strate-
gies to build the AW. We also tried to construct
[CLS] + Context + [SEP] 4+ Aspect + [SEP]
to learn the aspect-oriented feature vectors, and
concatenate the vectors as AW, and also achieved
promising performance. That is, aspect-oriented
features derived from any method are available for
constructing AW. e.g., some well-designed atten-
tion mechanisms.

RQ3: What are the differences between
convolution and AW?

There may be confusion that aggregating window is
a special case of convolutional structure. However,
convolution and AW are totally different in concept.
The main differences are as follows:

Modeling target. Convolution is a continuous
in-modeling strategy that is usually used for token-
level feature learning, e.g., learning embedded text
representation. However, the AW is a discrete post-
processing strategy for output feature vectors from
a neural network.

Processing granularity. The essence of AW is
a concatenated feature vector, each component of
AW is a vector with the same size of context-level
feature vectors. While convolution network is used
to extract context-level features. That means the
convolution network can be used as the backbone

model of Lena. i.e., what Lena aims for are what
convolution network can’t do.

4.6 The threatening of local sentiment
aggregating

Although Lena achieves impressive performance
for multiple-aspects situations, e.g., SemEval-2014
datasets. However, while being applied in mono
aspect situations, Lena would be degenerated to be
a local context focus variant model.

On the other hand, the parsing quality of syntax
trees affects the extraction of LCF features. We
use spaCy to obtain the syntax tree for Lenag as in
previous works. Due to the alignment problem of
tokenization between spaCy and pre-trained mod-
els (word-piece and sentence-piece). i.e., there
are considerable samples among five datasets that
are tokenized into different token set in spaCy and
sentence-piece, respectively. In that case, there is
a non-negligible error rate in calculating aspect-
token pair distance and extracting LCF features.
Considering the Lena is 7 ~ 10 times faster in the
data pre-processing procedure, it would be a prior
choice in most situations.

5 Conclusion

We argue that structure-based sentiment learning is
inefficient and not necessary. By introducing senti-
ment patterns, we propose the Lena models which
use the aggregating window to learn the local senti-
ment dependency. Compared with the dependency
tree-based models, the Lena models only exploit a
few distance information and achieve impressive
performance on all five datasets. Compared to the
state-of-the-art models, Lena also outperforms in
five commonly used datasets without loss of effi-
ciency and simplicity. Moreover, we also propose
differential weighting for AW to measure the impor-



tance of sentiment information of different aspects.
Our work indicates that focusing on the local senti-
ment dependency learning is an important method
to prompt ABSC research. In the future, we plan
to work on other window construction methods
and propose a self-adaptive differential weighting
method to improve the performance of Lena.
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