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Abstract

Is structure information modeling really001
worth in Aspect-based sentiment classification002
(ABSC)? Recent popular works tend to exploit003
syntactic information guiding sentiment depen-004
dency parsing, i.e., structure-based sentiment005
dependency learning. However, many works006
fall into the trap that confusing the concepts007
between syntax dependency and sentiment de-008
pendency. Besides, structure information (e.g.,009
syntactic dependency tree) usually consumes010
expensive computational resources due to the011
extraction of the adjacent matrix. Instead, we012
believe the sentiment dependency mostly oc-013
curs between adjacent aspects. By proposing014
the sentiment patterns (SP) to boost the senti-015
ment dependency learning, we introduce the016
Local dependency aggregating (Lena) to ex-017
plore sentiment dependency in the text. Ex-018
periments show that Lena is more efficient019
than existing structure-based models without020
dependency matrix constructing and modeling021
expense. The performance on all five public022
ABSC datasets makes a big step compared to023
state-of-the-art models, and our work could in-024
spire future research focusing on efficient local025
sentient dependency modeling.026

1 Introduction027

In order to solve the absence of explicit sentiment028

information in the context, recent studies on ABSC029

(Pontiki et al., 2014) turned to focus on the parsing030

of sentiment dependency among aspects. For exam-031

ple, The laptop’s storage is large,032

so does the battery capacity., the033

customer praised both storage and battery ca-034

pacity, while no direct sentiment description of035

battery capacity is available in the review. The036

methods capable of dependency learning can be037

approximately categorized into the topological038

structure-based dependency parsing methods039

(Zhang et al., 2019a; Huang and Carley, 2019),040

and syntax tree distance-dependent methods(Phan041

and Ogunbona, 2020). Meanwhile, some works 042

adopt hybrid dependency modeling strategies to 043

enhance the model’s ability to learn sentiment 044

dependency. But there are some problem remained 045

in structure modeling. On the one hand, some 046

previous works blurred the gap between syntactical 047

dependency and sentiment dependency, and avoid 048

exploring the relatedness of them. On the other 049

hand, due to the expensive dependency tree parsing 050

time and resources occupation, they are not the 051

ideal solutions for dependency learning in long 052

texts, especially texts with multi-aspects. Table. 1 053

shows the brief comparison between the structure 054

information-based models and non-structure-based 055

models1.

Table 1: The resources occupation of state-of-the-art
ABSC models. “P.T.” and “A.S.” indicate the dataset
pre-processing time and additional storage requirement,
respectively. ∗ represents non-dependency based mod-
els, and “†” indicates our models.

Models
Laptop14 Restaurant14

P.T. (sec) A.S. (MB) P.T. (sec) A.S. (MB)

BERT-BASE ∗ 1.62 0 3.17 0
LCF-BERT ∗ 2.89 0 3.81 0

ASGCN-BERT 13.29 0.01 0.02 9.4
RGAT-BERT 35.4k 157.4 48.6k 188

Lena ∗† 3.16 0 4.32 0
LenaS ∗† 20.56 0 30.23 0

056

Our study shows that sentiment dependency 057

mostly exists between adjacent aspects, we call 058

this phenomenon “sentiment cluster”. We explain 059

the existence of sentiment cluster by introducing 060

sentiment patterns (see Sec. 3.2). This sentiment 061

cluster hypothesis implies the possibility of effi- 062

cient modeling of sentiment dependency. We ex- 063

ploit this finding by introducing sentiment patterns 064

(SP) to improve ABSC. Meanwhile, we propose a 065

1The experiments are based on RTX 2080 GPU, AMD
R5-3600 CPU with PyTorch 1.9.0. The original size of the
Laptop14 and Restaurant14 datasets are 336kb and 492kb,
respectively.
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sentiment dependency learning framework based066

on sentiment cluster, i.e., the local sentiment de-067

pendency aggregating (Lena). Lena handles the068

sentiment dependency within a local sentiment de-069

pendency aggregating window (AW), avoiding the070

direct modeling of structure information such as071

trees or graphs. The AW aggregates the aspect-072

oriented features. Hence, the Lena could be imple-073

mented in flexible ways. e.g., we can construct the074

aspect-oriented features based on attention mecha-075

nism, BERT-SPC(Song et al., 2019) or LCF(Zeng076

et al., 2019) mechanism. We adopt the local context077

focus (LCF) mechanism to obtain aspect-oriented078

features and construct aggregating windows. More079

specifically, we employ the original LCF mecha-080

nism and adapted the LCFS(Phan and Ogunbona,081

2020) mechanism to implement Lena. Our exper-082

imental results show Lena achieve an impressive083

improvement compared to state-of-the-art models,084

i.e., up to 86.21% and 91.07% accuracy on the085

Laptop14 and the Restaurant14 Datasets.086

Moreover, Lena is a backbone-free framework,087

we develop Lena based on several pre-trained mod-088

els, e.g., BERT(Devlin et al., 2019), RoBERTa(Liu089

et al., 2019), DeBERTa(He et al., 2021) to evaluate090

its transferability. Besides, we propose differen-091

tial weighting for window components to explore092

better AW construction strategy. The experimen-093

tal results show that Lena is an efficient sentiment094

dependency learning method according to the per-095

formance comparisons.096

Therefore, the main contributions2 of this paper097

are as follows:098

1 Our research proves that current structure-099

based modeling methods are not the cure of100

ABSC. In the contrast, it is highly inefficient101

and may mislead future research.102

2 The novel sentiment patterns are introduced in103

this paper. We further propose the Lena mech-104

anism for efficient and effective sentiment de-105

pendency learning. The experimental results106

show that our models comprehensively out-107

perform state-of-the-art models without loss108

of simplicity and efficiency.109

3 The differential weighting strategy and simpli-110

fication strategy is proposed to deeply explore111

the optimal AW construction strategy of Lena.112

2The code and datasets are available in supplementary
material.

And we study the effectiveness of and con- 113

duct experiments to evaluate the performance 114

of Lena based on multiple pre-trained models. 115

2 Related Works 116

We observe that recent works tend to resolve sen- 117

timent dependency problem by modeling syntax- 118

based structures Those structure tree-based meth- 119

ods generally employ the graph convolution net- 120

work (GCN) and attention mechanism(Bahdanau 121

et al., 2014) to model the sentiment dependency. 122

There are diversities of attention mechanisms 123

proposed in the previous research(Wang et al., 124

2016; Ma et al., 2017), e.g., multi-grained atten- 125

tion(Zhang et al., 2019a) and multi-head atten- 126

tion(Vaswani et al., 2017). These works ignore 127

the efficiency drawback of syntax tree handling. 128

Existing popular ABSC methods can be divided 129

into methods based methods based on dependency 130

learning, and methods based on pre-trained models. 131

Meanwhile, some works use the hybrid strategy to 132

improve their works. 133

2.1 Dependency-based Methods 134

The researchers have been attempting to model sen- 135

timent dependency based on the syntax tree-based 136

structure information which achieves hopeful im- 137

provement without consideration of efficiency. Fig. 138

1 shows an example of a syntax tree that can be 139

used for structure extraction. Early works focus 140

on learning the sentiment dependency based on 141

syntax tree parsed from aspect and context. e.g., 142

(Zhang et al., 2019a) and (Sun et al., 2019) intro- 143

duce the models based on dependency trees and 144

obtain promising performance. Most ABSC mod- 145

els (Huang and Carley, 2019; Tang et al., 2020; 146

Wang et al., 2020) employ the GCN equipped with 147

an attention mechanism to learn syntactical trees 148

because the GCN can model topological relation 149

and obtains promising performance. Meanwhile, 150

some methods (He et al., 2018; Zhang et al., 2019b) 151

exploit the dependency tree to measure the distance 152

between aspect and context words, those methods 153

avoid modeling the dependency tree directly and 154

have better efficiency. Dai et al. (2021) propose 155

the pre-trained model to induce the dependency 156

tree which can be adapted to several models and 157

achieved state-of-the-art performance. However, 158

this method requires additional and expensive re- 159

sources (e.g., time and system memory) to induce 160

structure information. 161
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Figure 1: The syntax-tree parsed from a real restaurant review. The colored words are tokens from aspect terms, and
the arrowed lines indicate the dependency relations. The dependency matrix built from syntax-tree requires n× n
(n is the length of the text) space to store.

2.2 PTM-based Methods162

The pre-trained models prompt the development of163

ABSC. BERT is one of the first pre-trained mod-164

els to be applied in ABSC, which achieves excit-165

ing performance by fine-tuning without any model166

modification (Xu et al., 2019). Rietzler et al. (2019)167

argue that besides fine-tuning, domain adaption of168

BERT on target corpus could make a great improve-169

ment for ABSC. Zhao et al. (2020) and Wang et al.170

(2020) propose the BERT-based models and exploit171

dependency trees to learn sentiment information.172

Scholars recognize that the sentiment polarity of173

the target aspect is highly related to its local con-174

text. Instead of directly modeling dependency tree,175

Phan and Ogunbona (2020) propose a method that176

calculates the distance using syntactical informa-177

tion to guide the model to learn the LCF feature and178

obtain considerable results. There are many other179

pretrained model-based methods aimed for ABSC180

in recent years (Tang et al., 2020; Zhou et al., 2020;181

Li et al., 2021; Silva and Marcacini, 2021), most182

of them shows hopeful improvement. We do not183

intend to discuss them in detail but we compare our184

models with their methods without any evasion.185

3 Methodology186

Fig. 3 shows the main architecture of the Lena187

framework. The Lena-based model uses pretrained188

models to learn the LCF mechanism-based aspect-189

oriented features of all provided aspects, and the ag-190

gregation window travels upon the aspect-oriented191

features of adjacent aspects. We concatenate the192

global context feature and aggregation window fea-193

ture to predict aspect polarity in case of avoiding194

potential loss of sentiment information outside the195

aggregation window.196

3.1 Preliminaries197

Fig.1 shows an example of aspect-based sentiment198

classification, where “atmosphere”, “food” and199

“service” contain positive sentiment, while “din- 200

ner” and “drink” contain neutral sentiment. There 201

may be multiple aspects with different sentiment 202

polarities in a text, and the polarity between each 203

aspect may be dependent or even contradictory. 204
2021/12/4 上午1:48 SP.svg

file:///C:/Users/chuan/OneDrive - 华南师范大学/桌面/SP.svg 1/1

sentiment cluster sentiment cluster

Cozy atmosphere, good food and service, good place to meet friends for dinner and a drink.

global coherency local coherency

Figure 2: Visualization of the sentiment cluster and
sentiment coherency.

3.2 Sentiment Pattern 205

Inspired by existing works(Zhang et al., 2019a; 206

Zhao et al., 2020) which proved sentiment polarity 207

between aspects is not always independent, we in- 208

troduce sentiment pattern (SP). i.e., the underlying 209

empirical principles of organization of sentiment 210

polarities, to help the model learn sentiment depen- 211

dency. Precisely modeling for sentiment patterns 212

may be difficult, we can develop our model un- 213

der the guidance of SP. We propose two sentiment 214

patterns in this paper and prove our arguments by 215

experiment analysis. 216

3.2.1 Sentiment Cluster 217

The aspects containing similar sentiment polarity 218

tend to cluster as shown in Fig 2. As users gener- 219

ally organize the opinions of aspects before giving 220

the review, it is intuitive to realize that users tend 221

to cluster the aspects according to the polarity cat- 222

egory. i.e., SP1. Table 2 shows the number of 223

aspects belongs to a sentiment cluster with size ≥ 224

1. We can observe that many of the aspects are 225

clustered. 226

3.2.2 Sentiment Coherency 227

Sentiment polarities of multiple aspects are possi- 228

ble to subject to the sentiment coherency as shown 229
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Table 2: The number of aspect in sentiment clusters
with different sizes.

Dataset
Cluster Size

Sum1 2 3 4 ≥5
Laptop14 791 799 468 294 614 2966

Restaurant14 1318 1050 667 479 1214 4728
Restaurant15 617 406 229 163 326 1741
Restaurant16 836 539 314 210 462 2361

MAMS 6463 2583 1328 746 1397 12517

in Fig 2. In the case of natural thinking style, users230

are probably to bring up an aspect that has the same231

polarity as pre-aspect for any thinking pause. The232

pattern of sentiment coherency can be classified233

into global and local coherency. We propose our234

model referring to the local sentiment coherency.235

i.e., SP2.236
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Figure 3: The main framework of Lena.

3.3 Local Sentiment Dependency Aggregating237

The Lena is based on SP1 and SP2. The implemen-238

tation of Lena relies on the aspect-oriented context239

features. We construct the aggregating window240

using LCF features of adjacent aspects. i.e., the241

k-th (k = 1 in this paper) left- and right-adjacent242

aspects are concatenated to be the aggregating win-243

dow. The calculation of local context can be clas-244

sified into the relative-position method and syntax245

distance-based method. In this paper, we employ246

both methods to extract LCF features and construct247

the aggregating window3. i.e., Lena and LenaS248

(Lena-Syntax), respectively.249

3.3.1 Relative Distance-based Local Context250

Token distance-based local context is calculated251

using the distance of token-aspect pairs. Assume252

W c = {wc0, wc1, . . . , wcn} is the token set after tok-253

enization. The distance Dt of a token-aspect pairs254

is calculated as follow:255

Dt =

∑m
i=1(pi − pt)

m
(1)256

3see (Phan and Ogunbona, 2020; Yang et al., 2021) for
detailed LCF computation

where pi(i ∈ [1,m]) and pt are the positions of 257

i-th token within the aspect and the position of any 258

context token, respectively. m is the length of an 259

aspect. It that case, we determine the local context 260

and assign the local context tags according to Dt: 261

Tt =

{
0, Dt > α
1, other

(2) 262

where n is the length of the tokenized context; 263

α(α = 3) is a fixed threshold to measure local 264

context. Then Lena uses the relative distances to 265

obtain context weights. The Lena applies context 266

weights to the global context feature and obtains 267

the LCF features. 268

H l
i =

{
Hc
i Di ≤ α

1− (Di−α)
n ·Hc

i Di > α
(3) 269

Where Hc
i and H l

i are the hidden states at po- 270

sition i in the global context features and local 271

context features, respectively. This implementation 272

is called Lena. 273

3.3.2 Syntax Distance-based Local Context 274

Although directly learning structure tree is ineffi- 275

cient, we can employ the distance calculated from 276

the syntax structure to measure local context and 277

model the local context. Fig. 1 shows a syntax- 278

based tree from a sample with multi-aspects. The 279

distance Dt can be calculated according to the 280

shortest distance between a token node and aspect 281

nodes in the syntax-based tree. Consistent with the 282

token-based local context calculation method, the 283

syntactic structure-based method also calculates 284

the average distance between the aspect-token and 285

the context token: 286

Dt =

∑m
i=1min_dist(t, taspecti )

m
(4) 287

where min_dist indicates the shortest distance be- 288

tween i-th token within the aspect and context to- 289

ken t from the non-local context. Similar to the 290

Lena, the LenaS only replace the token-pair based 291

distance with syntax-node based distance. 292

3.3.3 Aggregating Window 293

We use BERT, RoBERTa and DeBERTa as the base 294

models to encode input text. Assume that Hc is the 295

context feature learned from BERT: 296

H l
T = W l

TH
c (5) 297

298
H l
L = WLH

c (6) 299
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300
H l
R = W l

RH
c (7)301

where H l
T , H l

L and H l
R are the LCF features of302

the target aspect, the feature of left- and right-303

adjacent aspect. W l
T ∈ Rn×dh , W l

L ∈ Rn×dh and304

W l
R ∈ Rn× dh are the local context weight vectors305

of aspects. We apply the self-attention for LCF306

feature of each aspect:307

Ho
SA = [HL

SA, H
T
SA, H

R
SA] (8)308

309
Ho = W oHo

SA + bo (9)310

HL
SA, HT

SA, HR
SA are LCF features learned by self-311

attention. dh is the dimension of the hidden size312

and Ho
SA is the window composed of concatenated313

LCF features of multiple adjacent aspects. Ho is314

the output representation of Lena, W o and bo are315

the trainable weight and bias parameters.316

3.3.4 Aggregation Window Padding317

We need to pad the aggregation window using the318

aspect-oriented features. Here are three padding319

strategy shown in Fig. 4. It is worthy noting that320

padding sentiment aggregation window does not321

degenerate model because the padded components322

are duplicated and the same as edge adjacent as-323

pects. Besides, the padded components have the324

same sentiment information which is subject to SP1325

and SP2 while modeling the sentiment clusters.

Aspect-dependent features

Copy

Copy

Copy

Case1 Case3Case2

Figure 4: Window padding strategy for different situa-
tions.

326

3.3.5 Differential Weighted Aggregation327

Window328

The Lena treats the sentiment information of ad-329

jacent aspects on both left and right sides equally.330

However, According to SP2, it is natural for us to331

realize that the importance of sentiment informa-332

tion of the left- and right- adjacent aspects are prob-333

ably different. Thereafter, We propose differential334

weighting to differential adjust the contribution of335

sentiment information from the left-adjacent (pre-336

vious) aspect and the sentiment information of the337

right-adjacent (following) aspect. Assume η is the 338

adjustable weight of the LCF feature of left and 339

right aspects: 340

Hdw
att = [ηHL

SA, H
T
SA, (1− η)HR

SA] (10) 341

where Hdw
att is the LCF feature learned through dif- 342

ferential weighting Strategy. 343

3.4 Output Layer 344

For the purpose of compensating the loss of context 345

feature caused by LCF calculation, we combine the 346

global context feature and feature learned from the 347

local dependency aggregating to predict sentiment 348

polarities as following: 349

Ofusion = W f [Ho, Hc] + bf (11) 350

Odense = W dOfusionhead + bd (12) 351

ŷ =
exp(Odense)∑C
1 exp(Odense)

(13) 352

where Ofusionhead and ŷ are the features of first token 353

and predicted sentiment polarity, respectively. C 354

indicates the number of polarity categories. W f ∈ 355

Rn×2dh , bf ∈ R2dh and W d ∈ R1×C , bd ∈ RC 356

are the trainable weight and bias vectors. 357

3.5 Model Training 358

Lena is implemented based on transform- 359

ers4, namely Lena-BERT, Lena-RoBERTa, Lena- 360

DeBERTa (a.k.a., Lena) Lena-DeBERTa-Large 361

(a.k.a., LenaX) and we optimize our model using 362

Adam. The objective function is cross-entropy as 363

follows: 364

L = −
C∑
1

ŷi log yi + λ‖Θ‖2 (14) 365

where λ and Θ are the L2 regularization and 366

parameter set of the model. 367

4 Experiments 368

4.1 Datasets and Hyper-parameters 369

To comprehensively evaluate the performance 370

of the local dependency aggregating mecha- 371

nism, we conducted experiments on five public 372

4https://github.com/huggingface/
transformers
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datasets5 (containing multiple aspects): the Lap-373

top14 and Restaurant14 datasets from SemEval-374

2014 Task4(Pontiki et al., 2014), the Restau-375

rant15, Restaurant16 datasets from SemEval-376

2015 task12(Pontiki et al., 2015), SemEval-2016377

task5(Pontiki et al., 2016) and MAMS datasets378

from (Jiang et al., 2019), respectively.379

Table 3: The statistics of five datasets used in this work.

Datasets
Positive Negative Neutral

Train Test Train Test Train Test
Laptop14 994 341 870 128 464 169

Rest14 2164 728 807 196 637 196
Rest15 909 326 256 180 36 34
Rest16 1240 468 437 117 69 30
MAMS 3379 400 2763 329 5039 607

We fine-tune the hyper-parameter settings on the380

datasets. The learning rate of Lena is 1e-5. The381

batch size and maximum text length are 16 and 80,382

respectively. The L2 regularization parameter λ383

is 1e-8, and the local context threshold α is 3 for384

both Lena and LenaS . Each model trained for five385

rounds and the median performance is presented.386

4.2 Overall Performance387

We compare the performance of Lena and LenaS388

with recent state-of-the-art models without any eva-389

sion (many of them are structure-based dependency390

learning methods). However, we do not intend to391

introduce them separately, please see the original392

paper refer to Table 4.393

Table 4 shows the main experimental results.394

Overall, the Lena baseline model obtain sub-395

stantial improvements over most of the BERT-396

and RoBERTa-based Lena models on all five397

datasets. In particular, the LenaXS achieves the398

un-parallelable improvement compared to exist-399

ing methods, no matter structure learning meth-400

ods or recent DeBERTa models. Compared with401

the DeBERT-based model, LenaX and Lena sig-402

nificantly outperform approximately 1.5%, 3.5%403

accuracy on all four datasets. As for comparisons404

with structure-based learning method GCN-based405

SDGCN and SK-GCN-BERT, Lena-based models406

significantly improve the classification accuracy407

and F1 on all five datasets. What impresses us is408

that the distance-based Lena arrives comparable409

metric compared to LenaS , while the latter requires410

more data pre-processing time, i.e., approximate 8411

multiples compare to the former. We do not need412

5The processed datasets are available with the code in
supplementary materials.

to make more performance comparisons, as the 413

metrics are fair and stand for themselves. Com- 414

bined with Fig. 1, We have a conclusion that Lena 415

models perform impressively in handling local sen- 416

timent dependency without any GCN architecture 417

or additional structure matrix. 418

4.3 Differential Weighting for AW 419

Figure 5: Visualization of average performance ex-
ploiting differential weighting on the Restaurant15 and
Restaurant16 datasets.
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Figure 6: Visualization of performance under differen-
tial weighting (η) on the Restaurant15, Restaurant16
dataset. The violin plot and box plot parts are Accuracy
metric and F1 metric, respectively.

It is natural to realize that the order of aspects 420

in the text matters while modeling the aggrega- 421

tion window. Because users tend to comment on 422

an aspect that has the same polarity as the pre- 423

commented aspects. We design the differential- 424

weighting to model this effect. We use η (η ∈ 425

[0, 1]) to adjust the contribution of LCF features of 426

side aspects. A greater η means more contribution 427

of the left-aspect’s LCF feature. Fig 5 and Fig 6 428

show the performance of the model under different 429

η. 430

It is clear to observe that the contribution of 431

adjacent aspects on left- and right- sides are differ- 432
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Table 4: The overall performance of Lena variants on five datasets. “Dep” means structure information modeling.
The best experimental results are heightened in bold. All experiments results of Lena are medians in five runs.

Model Dep.
Laptop Restaurant14 Restaurant15 Restaurant16 MAMS

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

BERT (Devlin et al., 2019) N 79.73 75.5 82.74 73.73 82.16 64.97 89.43 74.2
BERT-PT (Xu et al., 2019) N 78.89 75.89 85.92 79.12 - - - - - -
SDGCN-BERT (Zhao et al., 2020) Y 81.35 78.34 83.57 76.47 - - - - - -
CapsNet-BERT (Jiang et al., 2019) N - - - - - - - - 83.39 80.91
LCF-BERT (Zeng et al., 2019) N 79.73 76.07 86.16 80.12 83.77 69.03 91 77.1 - -
RGAT-BERT (Bai et al., 2020) Y 80.94 78.2 86.68 80.92 - - - - - -
SK-GCN-BERT (Zhou et al., 2020) Y 79 75.57 83.48 75.19 83.2 66.78 87.19 72.02 - -
DGEDT-BERT (Tang et al., 2020) Y 79.8 75.6 86.3 80 84 71 91.9 79 - -
LCFS-BERT (Phan and Ogunbona, 2020) N 80.25 76.72 86.43 80.84 84.07 69.67 90.35 76.28 - -
ASGCN-BERT (Zhang et al., 2019a) Y 79.83 75.89 84.76 77.94 84.22 72.9 91.05 77.05 - -
BERTAsp+SCAPT (Li et al., 2021) N 82.76 79.15 89.11 83.79 - - - - - -
RGAT-RoBERTa (Dai et al., 2021) Y 83.33 79.95 87.52 81.29 - - - - - -
PWCN-RoBERTa (Dai et al., 2021) Y 84.01 81.08 87.35 80.85 - - - - - -
ABSA-DeBERTa (Silva and Marcacini, 2021) N 82.76 79.36 89.46 83.42 - - - - - -

Lena (Ours) N 84.16 81.4 90.03 85.92 88.15 77.07 93.82 79.93 84.96 84.41
LenaS (Ours) N 84.33 80.97 89.64 84.08 89.04 78.54 94.47 84.84 85.18 84.62
LenaX (Ours) N 86.13 83.36 90.31 85.5 90 78.46 95.2 84.8 85.7 85.21
LenaXS (Ours) N 86.21 83.87 91.07 86.38 90.74 78.79 94.8 84.31 85.55 85

ent. However, because the datasets are small and433

contain error data, our experiment shows different434

optimal η for Lena variants considering Accuracy435

metric. Hopefully, while η ∈ [0.7, 0.8], we observe436

a general good performance in most situations. On437

the other hand, the fixed hyperparameter η is hard438

to precisely measure the significance of the senti-439

ment information of side aspects. We will consider440

adaptive η calculation methods in the future.441

The difference between simplified AW (SAW)442

and differential-weighting AW (DAW) with η = 0443

or η = 1 is the network structure, as the DAW444

employs a full-connected layer with 3× dh input445

size (2× dh in SAW learning the window features.446

4.4 Decomposition of Lena447

Table 5 shows the ablation experimental results.448

From the performance of simplified Lena, and449

BERT-, RoBERTa-based Lena variants, we see a450

certain clue that the DeBERTa baseline is better451

in most situations. Compared with the full Lena,452

although the simplified Lena slightly improves the453

sentiment classification efficiency. In most situa-454

tions the simplified Lena suffers a loss of perfor-455

mance inevitably. Moreover, the Lena with LA usu-456

ally performs better than Lena with RA, which is457

similar to the conclusion in DAW analysis: the bet-458

ter η usually lies between (0.5, 1) (a typical ideal459

η is 0.7).460

4.5 Research Questions 461

RQ1: Does the structure and GCN based 462

method learn the sentiment dependency? 463

According to Table. 4 and our analysis, the answer 464

may be yes but not necessary. The GCN-based 465

methods rely on the syntax tree or other topological 466

information. However, the are some limitations that 467

remain unresolved. 468

On the one hand, measuring the importance of 469

sentiment dependency between different aspects 470

is very difficult. Most existing works confuse the 471

border of syntax dependency and sentiment depen- 472

dency. i.e., assuming the syntax dependency may 473

help sentiment dependency learning implicitly. But 474

this concept approximate does not outperform the 475

aspect-focused modeling method. e.g., LCF-BERT. 476

We only focus on the local sentiment dependency 477

learning based on sentiment patterns, which pre- 478

vents the inefficient coarse-grained structure matrix 479

modeling. And experiment results show that the 480

Lena outperforms state-of-the-art models without 481

loss of simplicity and effectiveness. So the GCN 482

may make merely sense to some extent. 483

On the other hand, the syntax trees are parsed 484

based on the existing tool which does not subject to 485

the same tokenization strategy. In that case, there 486

are many inevitable alignment problems between 487

syntax tree nodes and deep learning tokenizers. Al- 488

though Dai et al. (2021) propose to use the pre- 489

trained model to induce the dependency tree which 490

alleviates alignment problem, this method requires 491

non-negligible expense. Thereafter, we believe the 492
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Table 5: The average performance deviation of ablated Lena baselines. “LA” and “RA” indicates the simplified
aggregating window constructed only exploits the left-adjacent aspect or right-adjacent aspect, respectively.

Model Dep.
Laptop Restaurant14 Restaurant15 Restaurant16 MAMS

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Lena N 84.16 81.4 90.03 85.92 88.15 77.07 93.82 79.93 84.96 84.41
w/ LA N 81.92 80.2 89.2 84.62 88.51 76.96 92.36 78.83 84.81 84.49
w/ RA N 83.54 80.03 89.55 85.13 89.44 77.24 93.01 79.99 85.03 84.61
w/ BERT N 80.88 77.27 86.25 80.14 84.69 71.97 91 77.44 84.73 84.21
w/ RoBERTa N 84.17 81.69 88.84 83.79 87.22 75.86 93.82 83.15 84.51 83.93

LenaS N 84.33 80.97 89.64 84.08 89.04 78.54 94.47 84.84 85.18 84.62
w/ LA N 82.92 79.96 90.54 86.17 88.52 77.27 93.98 81.57 84.73 84.34
w/ RA N 83.7 80.36 89.11 83.79 87.41 77.21 93.5 79.85 85.18 82.79
w/ BERT N 81.35 78.35 87.14 81.04 84.81 72.21 92.2 79.5 85.05 84.31
w/ RoBERTa N 83.55 80.89 88.12 82.76 87.96 75.42 93.66 80.47 84.73 84.15

local sentiment dependency learning can prompt493

the ABSC research.494

RQ2: Are there other ways to build an AW?495

Lena is a paradigm rather than a hard network struc-496

ture, which means Lena is extensible and flexi-497

ble. The Aggregating Window is the core of Lena,498

which is composed of aspect-oriented feature vec-499

tors. We adopt the LCF mechanism to build the500

AW, and this initial implementation yields remark-501

able performance improvements. However, it is502

worth noting that there are many alternative strate-503

gies to build the AW. We also tried to construct504

[CLS] + Context + [SEP ] + Aspect + [SEP ]505

to learn the aspect-oriented feature vectors, and506

concatenate the vectors as AW, and also achieved507

promising performance. That is, aspect-oriented508

features derived from any method are available for509

constructing AW. e.g., some well-designed atten-510

tion mechanisms.511

RQ3: What are the differences between512

convolution and AW?513

There may be confusion that aggregating window is514

a special case of convolutional structure. However,515

convolution and AW are totally different in concept.516

The main differences are as follows:517

Modeling target. Convolution is a continuous518

in-modeling strategy that is usually used for token-519

level feature learning, e.g., learning embedded text520

representation. However, the AW is a discrete post-521

processing strategy for output feature vectors from522

a neural network.523

Processing granularity. The essence of AW is524

a concatenated feature vector, each component of525

AW is a vector with the same size of context-level526

feature vectors. While convolution network is used527

to extract context-level features. That means the528

convolution network can be used as the backbone529

model of Lena. i.e., what Lena aims for are what 530

convolution network can’t do. 531

4.6 The threatening of local sentiment 532

aggregating 533

Although Lena achieves impressive performance 534

for multiple-aspects situations, e.g., SemEval-2014 535

datasets. However, while being applied in mono 536

aspect situations, Lena would be degenerated to be 537

a local context focus variant model. 538

On the other hand, the parsing quality of syntax 539

trees affects the extraction of LCF features. We 540

use spaCy to obtain the syntax tree for LenaS as in 541

previous works. Due to the alignment problem of 542

tokenization between spaCy and pre-trained mod- 543

els (word-piece and sentence-piece). i.e., there 544

are considerable samples among five datasets that 545

are tokenized into different token set in spaCy and 546

sentence-piece, respectively. In that case, there is 547

a non-negligible error rate in calculating aspect- 548

token pair distance and extracting LCF features. 549

Considering the Lena is 7 ∼ 10 times faster in the 550

data pre-processing procedure, it would be a prior 551

choice in most situations. 552

5 Conclusion 553

We argue that structure-based sentiment learning is 554

inefficient and not necessary. By introducing senti- 555

ment patterns, we propose the Lena models which 556

use the aggregating window to learn the local senti- 557

ment dependency. Compared with the dependency 558

tree-based models, the Lena models only exploit a 559

few distance information and achieve impressive 560

performance on all five datasets. Compared to the 561

state-of-the-art models, Lena also outperforms in 562

five commonly used datasets without loss of effi- 563

ciency and simplicity. Moreover, we also propose 564

differential weighting for AW to measure the impor- 565
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tance of sentiment information of different aspects.566

Our work indicates that focusing on the local senti-567

ment dependency learning is an important method568

to prompt ABSC research. In the future, we plan569

to work on other window construction methods570

and propose a self-adaptive differential weighting571

method to improve the performance of Lena.572
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