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Abstract

We develop a scalable second-order algorithm for a recently proposed ¢;-
regularized pseudolikelihood-based partial correlation network estimation frame-
work. While the latter method admits statistical guarantees and is inherently
scalable compared to likelihood-based methods such as graphical lasso, the cur-
rently available implementations rely only on first-order information and require
thousands of iterations to obtain reliable estimates even on high-performance su-
percomputers. In this paper, we further investigate the inherent scalability of the
framework and propose locally and globally convergent semismooth Newton meth-
ods. Despite the nonsmoothness of the problem, these second-order algorithms
converge at a locally quadratic rate, and require only a few tens of iterations in
practice. Each iteration reduces to solving linear systems of small dimensions or
linear complementary problems of smaller dimensions, making the computation
also suitable for less powerful computing environments. Experiments on both
simulated and real-world genomic datasets demonstrate the superior convergence
behavior and computational efficiency of the proposed algorithm, which position
our method as a promising tool for massive-scale network analysis sought for in,
e.g., modern multi-omics research.

1 Introduction

A partial correlation network refers to a graph in which each node (vertex) corresponds to a variable
and an edge between two nodes represents the partial corrrelation between the corresponding pair of
variables. Partial correlation is defined as the correlation coefficient between the residuals resulting
from the linear regression of each of the two variables with the rest of the variables, thereby measuring
the degree of association between the two adjusting for the effect of the remaining variables. Learning
partial correlation networks form data is particularly important in multi-omics studies of biological
systems, where spurious edges due to shared regulatory factors should be avoided to detect direct
biological interaction of causal implications [27} 24 [22].

Partial correlation network estimation is closely connected to covariance selection [6]], which estimates
nonzero entries of the inverse covariance or precision matrix of the variables. This is because a
nonzero entry of the precision matrix implies a nonzero partial correlation between the corresponding
variables. Moreover, if normality of the data distribution is assumed, then the zero entries of the
precision matrix imply conditional independence. For this reason, when the number of variables is
large and it is reasonable to assume that the number of edges is small, the graphical lasso [8 34] that
maximizes the Gaussian likelihood under ¢; penalty on the entries of the precision matrix or solve
the following optimization problem

mingegre —logdet O + tI‘(S@) + /\H@_DHl, A>0, (1)
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is by far the most popular choice. Here, SP denotes the space of p-dimensional symmetric matrices,

and S = (1/n) X" X is the sample covariance matrix of the data X = [zy,...,x,]" € R"*?. The
©_ p denotes a matrix that takes the off-diagonal elements of ® with zero diagonal elements. The /4
norm || - ||; sums up the absolute values of the elements of its input matrix. The solution © to (T)

estimates the target precision matrix ®*, such that z; “N 0, (®@")~h).

However, many methods that directly solve (1) suffer from computational bottleneck when p reaches
a few thousands, which is not desirable for analyzing modern massive-scaled data such as arising
from multi-omics. The root cause is that the Karush-Kuhn-Tucker (KKT) optimality condition of

@ '+8+)1Z=0, Zcd|O_pl|, )

where 0||®_p||; denotes the subdifferential of the ¢; norm at ®_p, involves matrix inversion.
Direct computation of the inverse © ! requires O(p?) arithmetic operations. Since most existing
algorithms for solving @ (e.g., 54185120, [13]) can be understood as solving @ in an iterative fashion,
such a costly computation essentially occurs every iteration. Worse, matrix inversion is difficult to
parallelize or distribute, limiting scalability.

A recently proposed framework called ACCORD [19]] overcomes this limitation by employing a
computation-friendly loss function in a one-to-one transformation of the precision matrix variable ©.
It solves a convex optimization problem

mingcrpxr — logdet 2p + (1/2) tr(QTQS) +A|IQ-pll1, 3)

where €2p denotes the diagonal matrix that takes the diagonal elements of 2. Precision matrix

©® and the optimization variable €2 are related by 2 = @Bl/ ’© and © = Q0. Note 2 may
not be symmetric. However, the sparsity patterns of €2 and ® coincide with each other, so the /4

penalty on £2_p is legitimate. Under some regulatory conditions, the estimate €2 that uniquely

minimizes (3) is a consistent estimator of Q* := @E_l/ >©* and its sparsity pattern. The ACCORD
framework lies in line with ¢;-penalized pseudolikelihood-based methods for partial correlation
network estimation. These methods are computionally more scalable than the graphical lasso owing
to the use of pseudolikelihood, which in turn is more robust to non-normality. SPACE [29] is the
first of its kind, which directly targets partial correlations. While SPLICE [32]] and SYMLASSO [9]
follow this line, these methods are not convex, and convergence of the corresponding optimization
algorithms are not established. CONCORD [17] convexifies SPACE by changing the target variable
to precision matrix ®. Nevertheless, consistency of the estimated precision matrix requires quite
strong conditions. ACCORD relaxes those by asymmetrizing the target variable and establishes
non-asymptotic bounds on estimation error and sample complexity [19].

The key computational attraction of ACCORD is its scalability. In (3)), the log-determinant barrier is
applied only to the diagonal elements of €2, hence reduces to merely a sum of logarithms. This makes
the KKT conditions for (3) much more tractable than (2). In [19], a proximal gradient algorithm
is proposed to solve (@) at a linear rate. The major computational bottleneck of this algorithm is
sparse-dense matrix-matrix multiplication, which easily allows for distributed computation [18].
This contrasts ACCORD with the graphical lasso. For massive-scale data from, e.g., multi-omic
studies, [19] implements the algorithm on distributed-memory high-performance computing (HPC)
systems equipped with the message passing inferface (MPI). As a showcase, the liver hepatocellular
carcinoma (LIHC) cohort from The Cancer Genome Atlas [[1] with p =~ 300, 000 molecular features,
for which the most scalable graphical lasso algorithm [[14]] fails, are analyzed. Despite the success,
this computation takes 200 node-hours on a powerful HPC system in a supercomputing center,
accessibility to which is generally limited to public. For wider uses of ACCORD among a large
number of scientists, a computational algorithm that can operate in a smaller but more accessible
environment, such as a GPU workstation, and possesses a convergence rate faster than the linear rate
of the proximal gradient algorithm (to compensate for the limited computing power) is on demand.

This paper addresses such a demand by proposing a semismooth Newton method for solving (3).
Because of its superlinear convergence property, semismooth Newton methods [31]] have been widely
employed for learning problems with non-smooth objective functions [21} 23| 33| 35]. We develop
the semismooth Newton method for ACCORD through two steps. First, we show that problem
(3) is rowwise separable, which allows it to decompose into separate p-dimensional minimization
problems for each row of €. Second, we show that the Karush-Kuhn-Tucker (KKT) condition for



each minimization problem can be formulated as finding a root of a nonlinear multivariate function
F', which is nondifferentiable but strongly semismooth. This observation ensures that the iteration
converges at a locally quadratic rate. The key to implementation is to find a suitable element of
Clarke’s generalized Jacobian (which is a set) of F'. We achieve this goal by deriving the Bouligand
derivative of F'. The latter allows us to globalize the semismooth Newton algorithm, for which the
initial point can be chosen with liberty. A connection to the primal-dual active set (PDAS) strategy
[12] is also made. We then examine the performance of our algorithm in both synthetic and the LIHC
data, with concluding remarks provided thereafter. Proofs of the results are provided in the Appendix.

2 Locally convergent semismooth Newton method

2.1 KKT condition as root-finding

In this subsection, we show that the KKT condition for (E]) can be formulated as finding a root
of a multivariate nonlinear function. We begin with observing that the objective function in (3) is
separable in rows. Let €2; be the i-th row of Q. Then, (3) can be rewritten as finding a minimizer of

S0 (< togdet @i+ (1/2) (2] 2:S) + ARl ) @)

where 2, ; and 2; _; denote the diagonal and the off-diagonal parts of €2;, respectively. Equation

@ clearly shows that the objective function is separable in €2;’s. Henceforth, we will derive the

optimality condition for i = 1 without loss of generality. Let w = (wy,w';) T, where w; = € 1 and

w_1 = Q4 _1. Then, the objective function to minimize is f(w) = g(w) + h(w), where
g(w) = (1/2)w”Sw, h(w) = —logws + A||lw_1|1,

which are both convex functions. By introducing a dual variable d = (d;,d' )", the optimality
condition 9 f(w*) = 0 can be expressed as

Sw* +d* =0, d*e€dh(w) 5)

where 0f and Oh denote the subdifferentials of f and h, respectively. Moreover, the condition
d* € Oh(w™*) can be equivalently expressed using the proximal operator of A [15]

w* = prox, (w* +d*), ©)

which can be explicitly written as

. wi \/cuf T
prox, (w) = argmin,cg, {h(v) + (1/2)]v —w|3} = (G Ty(w-)") ',

where T\ (w_1) := (sign(w;) max(|w;| — A,0)) ;-1 is an element-wise soft-thresholding operator.
Combining (3)) and (6)), the KKT condition for (3) can be equivalently written as

F(w*,d*) =0, 7)
where F' : R?P — R?P is defined as

Stw+d c+VETd

F(OJ, d) = W1 — Prox._ 10g(~)(w1 + dl) ’ prox_ log(‘)(l‘) = f (8)
wo1 —Th(w_1 +d_q)

Therefore, solving (3) amounts to finding a root of nonlinear equation (7). Map F' has a unique root
almost surely, as long as the sample is drawn from a continuous distribution [19, Theorem 3.1].

2.2 Newton’s method for semismooth functions

The formulation (7)—(8) of the KKT condition naturally suggests Newton’s method for finding the
root. However, because of the presence of the soft thresholding operator in (8], it is not differentiable
everywhere, which means that the plain Newton iteration cannot be applied. In this section, we show
that, despite the nondifferentiablity, function F in (8) is strongly semismooth, hence a semismooth
version of Newton’s method can be employed. We begin by defining semismoothness [26} 3 1]].



Definition 2.1 (Semismoothness). Function F' : R™ — R’ is said to be semismooth at z € R™ if it

is locally Lipschitz, all directional derivatives F’(x; v) := lim;_q w exist, and for any
G € OF (z + v), the following holds:

Gv = F'(z;v) = o([|v]]).
Furthermore, F' is strongly semismooth at x if it is semismooth at z and satisfies the condition for
any G € OF (z +v),

Gv — F'(z50) = O([]v||*).
The F is said to be (strongly) semismooth on U € R™ if it is (strongly) semismooth at any = € U.
Theorem 2.2. The map (w,d) — F(w,d) as defined in ®) is strongly semismooth.

The semismooth Newton method [31] relies on the notion of the generalized Jacobian [3]].

Definition 2.3 (Generalized Jacobian). For a function F' : R™ — R! that is locally Lipschitz
continuous around x € R™, Clarke’s generalized Jacobian at x is defined as

OF(x) = conv {li}gnVF(xk) cah o, 2k e Dp(x)} ,

where Dp(x) = {y : F is differentiable at y}, conv denotes the convex hull operation, and VF(y)
represents the Jacobian of F' at y. We call an element of OF () a generalized Jacobian of F' at x.

Thus for locally Lipschitz functions, a version of Newton’s method for solving F'(z) = 0 can be
defined as

2 =gb — QM) TR (),  G(a*) € OF ("), )
provided that G(z*) is nonsingular. If F' semismoothness, then the Newton iteration (J) exhibits a

superlinear convergence for suitable initialization [31]. If it is strongly semismooth, then it converges
at a locally quadratic rate:

Theorem 2.4 ([31]]). Suppose that x* is a root of F : R™ — R!, and that F is strongly semismooth
in an open neighborhood U containing x*, with a generalized Jacobian G(x) € OF (z). If G(x) is
nonsingular for all x € U and the set {||G(z) || : « € U} is bounded, then the semismooth Newton
method Q) converges quadratically to x*, provided that ||x° — z*|| is sufficiently small.

To verify the assumptions of Theorem [2.4]for the target problem (7), we provide a sufficient condition.
Proposition 2.5. Suppose (w*,d*) satisfies equation (1) for F defined in (8). Let A* = {1} U {i €
{2,...,p} ¢ |wf +dF| > A} If X 4., the submatrix of X taking the columns indexed by A* has
full column rank, then there exists a nonsingular G(w,d) € OF (w,d) for any (w,d) € R?! ina
neighborhood of (w*, d*).

In particular, we may choose (see Appendix [D]for the derivation)

S I
G(Wad)<I_J _J)a (10)
where J = diag(J;;) is a diagonal matrix with Jy; = %4— % and J;; = 1if jw;+d;| > A,
Jii = 01if |w; + d;| < Afori =2,...,p. In this case, semismooth Newton iteration @I) is equivalent

to the primal-dual active set algorithm [11} 7} 12} [15]].

3 Globalizing semismooth Newton method

3.1 B-semismooth Newton method

In this section, we propose a globalization strategy for the semismooth Newton method (9). Although
the quadratic convergence result (Theorem is attractive, this result is only local and is silent on
how to choose the initial point z° = (w°, d?). An algorithm that converges from any initial point
while maintaining locally quadratic convergence near the solution is more practical and desirable. To
this end, it turns out that globalizing iteration (9) per se is difficult, while globalizing the semismooth
Newton based on Bouligand derivatives or B-derivatives [28] is manageable.



Definition 3.1 (B-differentiability). A function F' : R™ — R! is said Bouligand differentiable
(B-differentiable) at x € R™ if it is locally Lipschitz, the directional derivative F'(z;v) =
limy g w exists for all v and fulfill the approximation property | F(x + v) — F(z) —
F'(z;v)|| = o(||v|]) as v — 0. If F is B-differentiable for any € R™, then it is said B-
differentiable. The directional derivative that satisfies these conditions is called the Bouligand
derivative (B-derivative) of I at x in the direction v.

Using the directional derivative F”(x; v), a Newton method for finding the root of a B-differentiable
function F' can defined as

oFTL =P ok F (2R 0F) = —F(2). (11)

Our target function is B-differentiable:

Proposition 3.2. Function F as defined in [8) is B-differentiable. Moreover, its B-derivative at (w, d)
in the direction of v = (vy, vq) is given by

Sv, + vg
(Z + 1/2)’0%1 + (Z — 1/2)’1}(171
, —Vd,; ie A
F (w,d,v) = Ve Z c _’Z'O 9 (12)
min{v, ;, —vq;} 1€I"
max{v, i, —vq;} €L
where z = z(w1,dy) := 72\/% and A = Aw,d), I° = I°(w,d), T+ = I+ (w,d), and

I~ =71 (w,d) such that

A:{Z€{27ap}‘w7+dz|>>‘}a I():{iE{Za'~'vp}:|wi+di|</\}7

, _ , (13)
It ={ie{2,....p}:wi+di=)}, T ={ic{2...,p}:w;+di=-\}

3.2 Solvability of the B-semismooth Newton method via linear complementarity problem

Applying to (TT), finding the Newton direction v such that F”(w, d;v) = —F (w, d) reduces to

Sv, +vg=—-Sw—d (14)
(Z + 1/2)1}0),1 + (Z - 1/2)’Ud,1 = —w1 + prox_ 10g(_)(w1 + dl) 15)
min{v, i, —v4i} = —w;, 1 € ZT, max{v, ;, —Vgi} = —w;, 1 €L, (16)

where z is the same as in (I2). Determining the existence of a solution to (T4)—(T6) and finding one
is a quadratic programming problem in v = (v,,, v4) € R?P. However, under the condition similar to
that of Proposition[3.2} we only need to solve a much smaller linear complementarity problem (LCP)

[4]. Let A = A(w,d) == {1} UAand A = A(w,d) := AUZ* UZ~ from ([3) and X g, X 1 be
the submatrix of X obtained in a similar way to X . in Proposition 2.5

Lemma 3.3 (cf. [10]). Assume X 3 has full column rank. Given (w,d) € R?’, v = (v,,v4) € R?
solves (T4)—(16)) if and only if

-
X = ((—Ud,z+ + wz+)T7 (vaz- — wz—)T) Y = ((%,I+ +wz+)T7 (—Vp1- — wI—)T)

solves the LCP

T

x>0,y2>0, (x,y)=0, andy = Mx +¢q (17

where M = M (S,w,d) and q = q(S,w,d) are given in Appendix|E.2} The M is symmetric positive
definite and admits a unique solution.

A LCP can be solved efficiently using standard techniques such as Lemke’s or pivoting methods
[4]. Let Sg ¢ be the submatrix of § with rows indexed by R and columns indexed by C. With the
solution to available, the Newton direction v* in (TT) for the F in (8) can be found in a closed
form as stated in the following main theorem.



Theorem 3.4. In (13), let A = A(w*,d*), A = A(wF,d*), and T+ = T*(w*, d*). Assume X ;
has full column rank. Let x,y be the unique solution to for an iterate (W*,d¥). In addition to
@), let AT ={i€{2,....p}:wF +d¥ >ANand A= = {i € {2,...,p} s wF+dF <A}
Then, the B-semismooth Newton iteration is well-defined with

k k

k k k T T \T_ gk Vaz+\ _ [ —Xz+ w
Uy 70 = —W70, Vg4 =A144,—1,-) —dj, (vk > = ( > + < F) )
d,7-

T _ T
((vo’i’l)T, (’Ut’f),A)T7 (vf;,I+)T7 _(UZ,I*)—: (vs,IO)T) =N 1(Pk_(0—ru OTv (US,I+)T7 _(vs,I*)Tv OT) )7

_ N7YOooo
gk k _ k 1_ 1
Vg1 =0 Vo1 —Cy N (—CNll I)

where b¥,cF ¢ R, P* ¢ RP, C € R(p_‘m)x'j‘, and Ny € wa‘“j', given in Appendix are
determined by w*, d* and S. In particular, N, is symmetric positive definite.

In particular, given that Zt UZ~" =@ forZt = {i € {2,...,p}:wi+di =}, T~ ={i €
{2,...,p} : wf + df = —\}, the convergence of (IT)) becomes locally quadratic:

Corollary 3.5 ([30, Corollary 3.3]). Let (w*,d*) be the unique solution to F(w,d) = 0. If T+~ U
I =0and X 1+ from Proposition has full column rank, then the B-semismooth Newton
iteration (L)) is well-defined and converges quadratically to (w*,d*) in its neighborhood.

Remark 3.6. Multiplication with matrix N ! only requires a linear system solve involving the
symmetric positive definite submatrix N of size |A| x |.A|. In the sparse estimation context, the size
of the active set A is small, hence solving (TT) is not a bottleneck for scalability.

Remark 3.77. Given that F' in () is locally Lipschitz and directionally differentiable, there exists
a generalized Jacobian G such that F'(w,d;v) = G(w,d)v where v satisfies (IT) [31]. More
specifically, the B-semismooth Newton method can be regarded as the semismooth Newton method (9))
that employs the generalized Jacobian G in (T0) such that J; = 1 fori € AU{i e ZTUZ™ : x; =0}
and J; = 0fori € Z° U{i € TV UZ~ : x; > 0}, where x is the solution to the LCP (T7).
Furthermore, since it is numerically unlikely that |w; 4 d;| precisely equals to A, in most scenarios
ZT UZ~ = ( and the B-semismooth Newton method coincides with the PDAS algorithm.

3.3 Globalizing B-semismooth Newton with line search

Globalization of the B-semismooth Newton method (TT)) is based on the observation that, under the
(unique) existence of the solution to (7)), solving this nonlinear equation is equivalent to minimizing
(w,d) = 3||F(w,d)||3. Given the Newton direction v* obtained by solving (T4)—(T6) for (w,d) =
(w*,d*), we can apply line search to construct a damped Newton algorithm that monotonically
decreases the objective sequence {6(w”, d*)}. Following [25], we consider the line search algorithm
that finds an integer m;, such that

O(z* + pmrk) — 0(2F) < —20p™ ("), (18)
for algorithm parameters o, p € (0,1).

Also, Theorem 3.4{suggests that the full column rank of the submatrix X 7 is essential in computing

the direction v* for A, = j(wk, d"). If this condition is not met, then we can resort to the proximal
gradient algorithm of [19] which converges linearly to the solution. Note that this algorithm does not
necessarily descent 6(w, d) in one iteration. Thus, we need repeat the step for 6(w, d) to decrease.

The resulting damped B-semismooth Newton algorithm is summarized in Algorithm [T} The main
question is whether the iterate sequence {(w”,d*)} will converge to the solution (w*,d*), and
whether the Newton steps will eventually take place; these are all addressed in the following theorem.

Theorem 3.8. Suppose It UZ~ =0 and X A~ from Proposition has full column rank. Let
{(w*,d*)} be the sequence of iterates generated by Algorithm Then, the proximal gradient step
occurs only a finite number of times, and if we let {p"™* } denote the corresponding step sizes,

1. iflimsupy,_, ., p™* > 0, then (w*,d*) — (w*,d*), the unique solution to F(w,d) = 0;
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Algorithm 1: Damped B-semismooth Newton method with line search

Input: Initial guess 2° = (w°, d°) for all rows, po, o € (0, 1), and tolerance tol

foreach row in Q simultaneously do

k + 0;

while 0(z*) > tol do

Compute the sets Ay, = A(w", d*), Zp = 7°(w*,d"), and T = T (wF,d*) U T~ (", d");
Set ./Ik = {7,} U Ay UI#;

it X ;7 has full column rank then
k
Find the search direction v* according to Theorem
m < 0;
repeat
| me—m+1;

until 0(2* + p7oF) < (1 — 2007)0(2);
h T gk 4 ok,
else
T < xk;
repeat
‘ Update £ with the proximal gradient algorithm of [19]
until 0(z) < 0(z*);
oF 7,
| k< k+1;

2. if limsup,_, . p™ = 0 and (w',d") is an accumulation point of {(w*,d*)}, then
(wh,d") = (w*,d*) and (WF,d*) — (w*, d").

Moreover; if (W*,dF) — (w*, d*), then the convergence is locally quadratic.

Comparison to the SSNAL framework There is a line of work that falls into the semismooth
Newton-based augmented Lagrangian method (SSNAL) framework, developed for solving the lasso-
related regression problems [21, 23] 35]. As the name suggests, this framework solves the problem
via the inexact augmented Lagrangian method (ALM). ALM incurs an optimization subproblem, and
SSNAL solves this subproblem via semismooth Newton. While the subproblem is solved at a locally
superlinear (quadratic if it is strongly semismooth) rate, the convergence rate of the the outer ALM
iteration is locally linear, even if the subproblem can be solved at a locally quadratic rate. Global
convergence is also established.

In contrast, Algorithm [I] formulates the KKT condition as a strongly semismooth equation (8)
and apply semismooth Newton. Globalization is achieved via damping instead of ALM. So our
algorithmic design is fundamentally different from SSNAL: there is no subproblem to solve inexactly,
and the convergence is locally quadratic. (If the KKT equation were merely semismooth, then the
local convergence would be superlinear.)

Another distinction is that SSNAL typically constructs augmented Lagrangian via the dual of the
original (primal) problem, while we focus on the primal. It is worth pointing out that [23]] applies the
SSNAL framework directly to the primal in addition to the dual, but its design and analysis focus
on low-dimensional settings where the number of observations significantly exceeds the number of
features (i.e., n > p). As such, it is not readily applicable to high-dimensional settings, which are
the primary focus of our work.

4 Experiments

4.1 Convergence behavior of Damped B-semismooth Newton method

We present numerical experiments to empirically validate the convergence and descent property of
the proposed damped B-semismooth Newton method. Specifically, we compare Algorithm [I]against
the proximal gradient algorithm proposed in [19], by tracking the following three metrics over the



iteration:
|F(w*,d")||3, (objective function of Algorithm T)

f(w®) — f(@), (objective function of ACCORD) (19)
|w® — w*||2.  (squared distance to the optimum)

The w estimates the optimal solution w* by the output of Algorithm !at convergence. Convergence
is declared if all rows satisfies the criterion ||F(w",d*)[|> < 107™. The rank test for line 6 in

Algorlthmlls based on the sufficiency check |.Ax| < n, while more stringent tests (e.g., condition
number or singular value thresholds) are also possible. For the line search parameter (line 11), we use
pr = max{0.7 — 0.003 - k,0.4} and 0 = 0.001. The algorithm is implemented in PyTorch 1.13.1.
Matrix operations are parallelized on six NVIDIA RTX 6000 Ada generation GPUs using CUDA
11.7.

To assess the convergence behavior, we generated n = 500 observations from a p = 1,000-
dimensional zero-mean multivariate Gaussian distribution with precision matrix ®* that contained
3% non-zero entries, locations of which were sampled uniformly at random. The regularization
parameter A was set to 0.1, 0.15, and 0.2 to ensure that the estimated precision matrix exhibits a
sparsity level comparable to ©*.

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Iteration Iteration Iteration

method —— B-semi ----- Prox A — 0.1 0.15 0.2

Figure 1: Convergence comparison: damped B-semismooth Newton vs. proximal gradient method

The results are summarized in Figure [T} where the vertical axis is plotted on a logarithmic scale. The
proximal gradient method exhibits an approximately linear convergence rate with respect to both the
ACCORD objective function f and the squared distance to the optimum, consistent with the theory
[19]. In contrast, the damped B-semismooth Newton method demonstrates superlinear convergence
for both metrics, achieving approximately an order of magnitude faster convergence. Furthermore,
for ||F(w¥,d*)||? in which Algorithm [1/has a descent property, the convergence appears locally
quadratic (as predicted by theory) and occurs within a few tens of iterations.

As Algorithm|I]includes two components in addition to the semismooth Newton steps, namely the
proximal gradient steps and the LCP solve step, we also conducted an ablation study to assess the
contribution of each component. See Appendix [G.|for details.

4.2 Graph density-convergence trade-off

In Algorithm the B-semismooth Newton update cannot be applied to the row in which
rank(X z ) > min(n,p). Since the size of the active set is inherently linked to the sparsity of
the true precision matrix ®* (hence that of £2*), we vary the regularization parameter \ to study

the robustness of the algorithm (in terms of the occurrence of the Newton step) to the density of the
underlying partial correlation graph.

To conduct this investigation, we define the graph density as Density = |E|/(}) where | E| denotes
the number of undirected edges and p is the number of nodes in the graph implied by ®*. Based on
this definition, we constructed a graph structure sampled uniformly at random with densities of 0.03,
0.05, and 0.10. Note that the graph density in Section is roughly 0.03. The partial correlation
matrix corresponding to the graph was constructed to have the minimum eigenvalues of at least 0.2,
with all non-zero entries having absolute values no less than 0.1. Based on this matrix, we generate
n = 100 observations from a p = 1, 000-dimensional zero-mean multivariate Gaussian distribution
with precision matrix @*.



The hyperparameter A was chosen so that the estimated solution exhibits a sparsity level comparable to
that of the true precision matrix @*, while the line search parameters were set to p = 0.5, = 0.001.
We then assesses whether convergence is achieved within 300 iterations for each case. This limit
of iterations was chosen because from Section [f.I| we see B-semismooth Newton method typically
converges within a few tens of iterations. The results are presented in Table[T]

Density \A | 02 0.15 0.1 0.09 0.08 0.07

Density \ A | 0.07 0.06 0.05

0.03 Y Y - - - -
0.05 - Y Y - - - 0.10 | 91% 97.7% 100%
0.10 - - Y Y Y N

Table 1: Convergence within 300 iterations for varying Table 2: Proportion of rows updated by
graph density and A (Yes / No) proximal method after 300 iterations

With one exception, Algorithm [I]converged within 300 iterations. The exception occurred when the
underlying graph was the densest and the regularization parameter was the smallest. Usually the
denser the underlying graph becomes, the smaller regularization parameter is required to recover its
structure. To further investigate this phenomenon, we summarize in Table 2] the proportion of rows
updated by the proximal gradient method after 300 iterations for smaller values of \.

This result shows that there is a trade-off between the density of the underlying graph to estimate and
the convergence speed of Algorithm|[I] Nevertheless, for a consistent estimation of the support of
the underlying graph, a sparsity assumption is essential, which is tied to the identifiability condition
of Proposition [3.2][7]. Under this condition, the Newton step occurs eventually. Adaptive selection
of the regularization parameter A under the sparsity regime, e.g., continuation strategy [[7, [13]], is an
interesting future direction of study.

Further experiments on other types of random graphs were also conducted, the results of which can
be found in Appendix[G.3]

4.3 Application to large-scale genomic data

In this subsection, we assess the performance of Algorithm [I]in estimating the partial correlation
graph from a large-scale multi-omic dataset. Specifically, we apply Algorithm [ and proximal
gradient method (ACCORD-FBS) to the LIHC dataset from The Cancer Genome Atlas [1]], consisting
of p = 305,471 features including RNA transcription levels and the DNA methylation status of
human genomes from n = 365 samples. Estimating partial correlations in such high-dimensional
biological data can facilitate the identification and validation of epigenomic and transcriptomic
regulatory mechanisms in human cells. This dataset was analyzed in [19]], in which an HPC version of
ACCORD-FBS was run on two national supercomputing centers for several hours. We emphasize that
we employed our own implementation of ACCORD-FBS for the GPU workstation of the previous
subsection, utilizing the row-wise separability.
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= 110* 3 10
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Figure 2: Convergence comparison on a large-scale multi-omic cancer dataset

The regularization parameter was set to A = 0.45, selected via the extended pseudo-Bayesian infor-
mation criterion [[19]]; a detailed sensitivity analysis of estimation performance around this value of A
is provided in Appendix[G.2] To test robustness of Algorithm[I] we further examined the optimization
performance for A € {0.20,0.60}, corresponding to relatively dense and sparse estimates. Figure



illustrates the convergence behavior of Algorithm [I]and ACCORD-FBS, evaluated using the first
two metrics defined in (T9). While ACCORD-FBS typically requires over a thousand iterations to
converge [19], our algorithm reached the solution within only a few dozen iterations. Despite the
reduced number of iterations, the computational cost per iteration remains nearly unchanged, as
the dominant operation in each step involves only the inversion of a relatively small submatrix of

dimension | A | x | A;|. Due to the rapid convergence of the B-semismooth Newton method, each
iteration involves significantly fewer row updates compared to ACCORD-FBS.

Method \ A 0.2 0.45 0.6
Time (s) [|[F| Time (s) [|[F| Time (s) [|[F|
Algorithm 1 5341 1.260 x 10* 3352 0 2083 0
ACCORD-FBS 6778 4.709 x 10° 5150 4.035 x 10? 3452 2.671 x 10°

Table 3: Wall-clock time (in seconds) and || F'|| until convergence or 100 iterations

As shown in Table (3] Algorithm |l|consistently achieved shorter wall-clock time and smaller || F||
than ACCORD-FBS for all tested values of A within 100 iterations or at convergence, whichever
came first.
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Figure 3: Interaction between sparsity and update strategy in Algorithm

As expected, more iterations were required to converge as the regularization parameter A decreases,
and more likely the proximal gradient step occurs (rather than the Newton step) in Algorithm[} As a
means of dissecting this phenomenon, we fix A at 0.45 and monitor the number of nonzero elements
in the iterate sequence Q" and the number of rows updated by either of the two methods; see Figure
In the early stage, updates were performed primarily by the proximal gradient method. Over time,
the number of nonzero entries in 2F decreased and the proportion of rows updated by the Newton
step increased. This transition aligns with intuition and enables Algorithm [I]to take advantage of the
fast convergence behavior of the B-semismooth Newton method in later iterations.

5 Conclusion

We explored the applicability of semismooth Newton methods in partial correlation network esti-
mation to derive a scalable algorithm with superlinear convergence. These methods exhibit locally
quadratic convergence to the solution, where the global convergence is also achievable by combin-
ing with the proposed damping strategy. They also enjoy parallelism by leveraging the rowwise
separability of the ACCORD objective function. Simulations and genomic data applications on
GPUs validate the superior computational performance of the semismooth methods compared to the
proximal method. In conclusion, semismooth Newton methods suggest a promising outlook for fast
and efficient partial correlation analysis of large-scale data with modest computing resources.
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Supplementary Material for “Partial Correlation Network Estimation
by Semismooth Newton Methods”

A Proof of Theorem 2.2

Recall that F is given in (§),

Sw+d
F(w,d) = |w1 — ProxX_ (w1 +di) |,
woyp —Th(w-1+d_1)

where S is the sample covariance matrix, T} is the soft-thresholding operator, and

T+ Vi 44
prox_ () =~V

A.1 Fislocally Lipchitz

To prove the local Lipschitz continuity of F, it suffices to show that each component of F' is Lipschitz
continuous. Note that each row of Sw + d is differentiable, with gradient (.S;, 1)T, which norm
is bounded by /||S||* + 1, and [|S]| is a largest eigenvalue of S. w1 — Prox_ .y (w1 + d1) is
1 wi+dy 1 wi+dy

5 — ot -5 = 2\/(w1+d1)2+4), where the absolute
value of each component are within [0, 1]. Finally, the soft-thresholding operator Ty (w; + d;) is
Lipschitz continuous with a constant of 1, so we can conclude that each component of F' is Lipschitz
continuous.

also differentiable with gradient (

A.2 Directional differentiability of F

In here, we not only establish the directional differentiability of F’, but also derive its directional
derivative explicitly. A vector-valued function F' : R™ — R! is directionally differentiable at
2 € R™ in the direction v if and only if each of its components F; (for i = 1,...,1) is directionally
differentiable at z in the direction v. Note that it is not necessary to consider the differentiable
components, as the directional derivative of a differentiable function F' at a point z in the direction v
is given by F'(x;v) = VF(x) -v. Accordingly, the directional derivative of the linear term Sw + d is
simply Sv,,+wvg. Similarly, the directional derivative of the composite term w; —prox_ log(+) (w1+dy)

i 1/2 —-1/2 here z = ——atdh

is (z+1/2)v,1 + (2 — 1/2)vg,1 where z W o

Now, we compute directional derivative of the non-differentiable component. We use the definition
of active sets and inactive sets in (I3). Then, the direction derivatives falls into one of the following
cases:

)i € It (w,d)and v, ; +v4; > 0. Theni € At (w+ tv,,, d+ tvg). In this case, F(w; + tv, i, d; +
tvg;) — F(wi,d;) = —tvg; + A — w; — d; = —tvg,;. The same argument works for i € 7~ (w, d)
and Vw,i T Vdi < 0.

ii)i € Tt (w,d) and v, ; +va; < 0. Then, i € Z°(w + tv,,, d+ tvy). In this case, F'(w; + tv,, 4, d; +
tvg;) — F(wi,d;) = w; + tv,; — w; = tv,;. The same argument works for i € 7~ (w,d) and
Vw,i + Vdi > 0.

iii) ¢ € A(w, d). Then, we can find ¢y > 0 such that A(w, d) C A(w+tv,,d+tvg) forall0 < t <ty
with

to < min Inf{t>0:|w; +tv, ; +d; +tvgi| > A}.
OijEA(w,d) { |J+ w,j T dj + d,J‘ }

For0 <t <tpandi € Alw,d) C A(w + tv,,d + tvg),
F(w; 4+ tvgi,d; + tva,;) — F(w;, d;) = —tvg,.

iv) i € I%w,d). Then, we can find t; > 0 such that Z°(w,d) C Z%w + tv,,d + tvg) for all
0 <t <ty with

t < jeg}%gd) inf {t > 0:|w; +tv,; +dj +tvg ;| < A}.
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For0 <t <tjandi € I°w,d) C Z%(w + tv,, d + tva),
F(wi + tvw,i,di + t’UdJ') — F(OJZ‘, dz) = tvw,i.

Note that ¢( and ¢; are independent of ¢. Hence, directional derivative of F is (12).

A.3 Strong Semismoothness of F

Now, we prove that F' is strongly semismooth. From [31} Corollary 4.4], it is sufficient to check
the component-wise strong semismoothness of F'. First, since Sw + d is an affine function, strong
semismoothness holds trivially.

Next, we verify the strong semismoothness of ((wy — dy) — /(w1 + d1)? + 4)/2. It suffices to

consider only the non-linear term H (wy,d;) := /(w1 + d1)? + 4. The derivatives of H (w1, d;)

with respect to wy and d; are ( ““+ Zd1)2+4. The directional derivative of H (w1, d;) in the direction
w1 1
of a vector v = (v,,,v4)" is given by
OH OH wi +d;
H'(w1,d150,,04) = — 1V + ——vg = Vo + Vq).
(o150, 00) = G20+ o0 = e (v 00)

and the generalized Jacobian of H (w1 + v, d1 + v4) is @ matrix given by the partial derivatives with
respect to wy and dy :

wi+hi+di+hs wi+hi+di+ho
V= BH(WI + h"'” d1 + hd) = <\/(w1+h1+d1+h2)2+4 \/(W1+}Ll+dl+h/2)2+4> .
Then,
h di+h d
Vh = H' @1, disha,hg) = (— it e TOAT TRy ).
Vi +hy +di+ha)2+4 J(wr+di)2+4
Using a Taylor expansion, we obtain withy+d+he — witdy = H(wy + hy,d1 +

\/(w1+hw+d1+hd)2+4 \/(w1+d1)2+4
ha) = H(wi,dr) = O(|[h]]). Thus, Vh — H'(wy, dy; by, ha) = O(||A]%).
Lastly, we have the facts that the soft thresholding operator is strongly semismooth everywhere [16]
and w — w + d does not introduce any discontinuity or nonlinear behavior in T)(w). Therefore,
w_1 — Tx(w—1 + d_1) is strongly semismooth.
Since all components of F" are strongly semismooth, it follows that F’ is strongly semismooth.

B Proof of Theorem 2.4

Before proving Theorem [2.4] we present a well-known condition that are equivalent to semismooth-
ness from [[11, Theorem 2.9, Theorem 2.12].

Proposition B.1. Let F' : U — R™ be defined on the open set U C R™. Then, for x € U, the
following statements are equivalent:

(a) F is semismooth at x.

(b) F is locally Lipschitz continuous at x, all directional derivatives F'(x;v) exist, and for any
G € OF (z + v),

|F(z+v) — F(z) — Guv|| = o(||v]]) asv— 0.
Furthermore, the following statements are equivalent:

(c) F'is strongly semismooth at x.

(d) F is locally Lipschitz continuous at x, all directional derivatives F'(x;v) exist, and for any

G € OF (z 4+ v),
|F(x 4+ v) — F(x) — Guv|| = (9(Hv||2) asv — 0.
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Note that the Newton iterates satisfy
Iz — 2| < |G@E®)H[F(2*) = Fz*) = G(a")(a* — 27, (20)

provided that z* € U. Let B(z*,r) denote a ball of radius r centered at z* contained in U, and let
m be such that |G (z)~ || < m for all x € B(x*,r). Assume that F is semismooth at z* and let
n € (0, 1] be arbitrary. Then, there exists p € (0, ) such that

— — < = < —
1£(z" +v) = Fa¥) = Gla" +w)ol| < o] < —]l] 2D

for all ||v]| < p. Consequently, if we choose z° such that ||2° — 2*|| < p, then by induction from
[0) and 1), for v = x* — x*, we have ||z¥*! — 2*|| < pand ¥+ € B(a*, p). It follows that the
iterates are well-defined.

Assume further that F' is strongly semismooth at z*, meaning there exists a constant ¢ > 0 such that

c-m
1F(2" +v) = F(a") = G(a" +v)o]| < elfol* = —=]Jl]?, 22)

for all ||v|| < p.

Then, if we choose z° such that ||z° —z*|| < p, then by induction from (20) and (22)), for v = ak— >,
we have

2"+ — 2| < m| F(z*) = F(z*) - G(a®)(@® — 2")|| < ¢ mla* — 2|,
where ||z¥*! — 2*|| < p. Therefore, the iterates remain well-defined and satisfy
lz* 1 — 2| /[]a* — 2] = O(1),
indicating quadratic convergence of the sequence {z*} to z*.

Thus, under the assumption of strong semismoothness of F', the Newton iterates converge quadrati-
cally to x*. O

C Proof of Proposition [2.5]

Let

A:A(w7d) = {iE {2,...,])} : |wl+dz| > )\}7
IT=T(w,d):={i€{2, - ,p}:|w; +di] <A}
Since F is continuous, there exists a neighborhood AV of (w*, d*) such that for all (w,d) € N, we
have A = {1} UA = {1} U A* = A*. Since X j. has full column rank, X 7 also has full column

rank for all (w, d) sufficiently close to (w*, d*).
One of the generalized Jacobian G(w, d) € OF (w, d) can be expressed as

X1 X, X{'X a0z 1 0

G(w,d) = XﬂUIf(l XhurXavz 0 X I

z+3 0 zZ— 5 0

0 Iz 0 —1I4
— __ witdy
where z = oot )T L Note that we can permute the rows and columns of G as
%X;iXA %XgXI I 0
1 , 1

G(w,d) n)fIX.A nXIXI 1() Ir
((Z+§)1+OA) 0 ((2_5)1_1/1) 0
0 Iz 0 0r

where (21 + X4) = <$01 )?A).

My Mo

M, M4> ,where My = (2 X5 X 1), Mo = (2XTX 41 I5 0),

Let G := (



LXT X1 IXTX7 0 Iz
M3 = ((Z—i—%) +O.A) and M4: 0 ((Z %)1—[_,4) 0
0 Ir 0 0z
Note that ((z — 3)1 — L4) " is ((1/(z — $))1 — L4) and
+XT Xz 0 I\ [0z (1) Iz
0 (z=3)h1—1a) 0 0 ((1/(z=3)1—1a) 0 =1
Iz 0 0z/) \Iz 0 —1XxT Xz

We utilize Schur complement of G to formulate the inverse of G. Note that
G/My = My — MyM,; " Ms

1
= ~XiXa— (3XIXq Ia 0)

0z 0 Iz %XEXI
0 ((1/(z= 51 —La) 0 ((z43)1+04)
Ir 0 —LxTx, 0

1 1
_ X:CX——(“z )
AR A (Z_%)H-OA

Given that (X X z) is nonsingular, (X% X 1) —n ((j_é )1+ OA) is also nonsingular since |z| < 3.

Thus, we can construct the inverse of GG as
o\ () :< (G /M)~ —(G/Ma) "Mz M, >
— M Ms(G/My) ™t Myt M M (G/My) " My Mt

D Derivation of a Generalized Jacobian for F

Let F : R? — R?P be

Sw + d 2
r+vVz+4
F(w,d) = | w1 = prox_jogy(w1+d1) |, prox_p,.(z) = -5
w_1— T,\(O«Ll + dfl)
where T’ (+) is the componentwise soft-thresholding operator.
_ _ o (prox_ge( (w1 + d1)
Let F} (w,d) = Sw + d and F3(w,d) = w ( Ta(w o +d 1) .
Then, it is straightforward to see that aF gl =8, % =TI and
O prox_ 1og(.)(W1 +dy) 7 8pr0x_ log(-)(wl +dy) 1 wy +dy
Ow1 ddy 2 2 (w1 +di)2+4
Note that fori = 2,--- ,p,
8T,\(wl- + dl) 8T>\(wi + dl) 0 |wi * dl| > A
o = d = [0,1] |wi—|—di|=/\.
Wi ’ 1 |UJ1' + d1| <A
By adopting the convention 22 (g:’j:rd") oL (5; i+4i) — () at the kink {|w; + d;| = A}, the Jacobians

simplify to 22 =T — J and %2 = —J where J = diag(J;;) with
1 OJ1+d1 J—{l |wl+dl\>)\

2\/ W1+d1 0 |W'L+dz‘§)\7

OF (w,d) = (%Fi %%) = (ISJ IJ)’

which is equivalent to the example of the generalize Jacobian (10).

Jll

1=2,...,p.

Thus,
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E Proofs of Theorem 3.4

E.1 Proof of Proposition[3.2]

In Appendix [A.2] we established more than the existence of the directional derivative; we demon-
strated a stronger property that F'(z + tv) — F(x) — tF’(x; v) is exactly zero for sufficiently small
t > 0. Specifically, the main result in[A-2|can be summarized as follows.

Let (w, d) € R?P. There exists s > 0 such that, forall 0 < ¢ < s,

Sv, + vy
(z4+1/2)vy1 + (2 —1/2)vg1
F(w+tv,, d+tvg) — F(w,d) —Vd,i icA
t - Vw i ieIV

min{vy, ;, —vg;} 1€ZIT

max{v, i, —v4;} €L
The right-hand side defines the component-wise directional derivative F’(w, d; v) and F'(w, d; A\v) =
AF(w,d;v) for A > 0. Consequently, F’ satisfies the approximation property || F'(z + v) — F(x) —

F'(z;v)|| = o(]Jv]|) as v — 0. Since F is locally Lipschitz (see Appendix [A.1)) and the directional
derivative exists at every v, we conclude that F" is B-differentiable. O

E.2 Proofs of Lemma[3.3land Theorem 3.4]

Proof of Lemma 3.3} For the “only if” part, suppose v = (v,,,vq) € R?? satisfies (T4)-(T6). We
then observe that (16) is equivalent to

(Vi Fwi > 0N —vg; +w; =0) U (v, +w; =0N —vg,; +w; > 0),

(Vi Fwi <ON=vg; +w; =0) U (v, +w; =0N —vg,; +w; <0),

which in turn is equivalent to

Vy, 1+ + wr+ > 0, —Vq,7+ + Wzt > 0, <’Uw7[+ + wr+, —Vq,z+ + wz+> = 0, (23)
Vyz- +wz- <0, —vg7- +wz- <0, (v,7- +wr-, —vgz- +wz-) =0.
Rewrite (T4)—-(T3) as
Sv, + vy = —Sw —d,
1
(2 4+ 1/2v01 + (2 = 1/2)vas = —3 ((w1 —dy) — (o Fd )2+ 4) ,
_ — _ witdy
where z = z(w1,d1) o
The second equation can be equivalently written as
vg,1 = buy1 + ¢, (24)
where
1\ ! 1 1 1\ !
b(zQ) (z+2>>0, c2(z2> ((wlfdl)f (w1+d1)2+4).
(25)
Let E = —Sw —d and Sg ¢ denote the submatrix of S with rows indexed by R and columns indexed
by C. Then, for the first equation,
S1,10w,1 + 81,2002 + -+ + 51 pV0,p + Va1 E,
S82,1Vw,1 + 522V, + -+ 4+ S1pVup + Va2 Es
Sv, +vg=FE < . = .
Sp10w,1 + Sp2vw,2 + -+ + Spplup + Vap E,
(S11+b)vw1+ S120w2+ -+ S1pVwp E,—c
S21Vw1 + S22V0,2 + -+ + 51 pUup + Va2 Ey
< . = .
Sp1vu,1 + Sp2vw2 + -+ + Spplup + Vap E,
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Invoking the definition of Z in (I2)), we can rearrange this equation as
(5171 + b)UwJ + S{,lvw,fl FEi—c
Sa1Vw1 + SH Vw1 + Va,A E4
ST+ 10,1 + SIT+,,1%,—1 +vgzr | = | Er+
Sr-1vwn +SE vy 14 vaz- Ez-
' Ezo

S0 10,1 + 5507_1%,—1 + V4,70
In the above system, transpose the known v,, 7o and vg 4 (from (€) and (I2)) to the right-hand side

of the equation to yield
(Sl,l + b)vw,l + S%:AUI+UI* Vo, AUZ+UZ— B — SEIOUW,IU —C
SA100,1 + S£7AUI+UZ— Vo, AUT+UT - Eq— Sﬂ,zo%,zo — Vg, A
SI+,1%,1 =+ S%,Auﬁuzf Uy, AUZ+uz— + Vg 1+ Ez+ — S%Jr)zo%,zﬂ
ST- 1V, + S%l_’AujJrsz UV, AUZ+UZ— T+ V4,7~ Ez- — %1 700w, 70
El—o — S%U’Iovw,IO

T
510,1%,1 + SIO,AU1+UI— UV, AUZ+HUZ~ T V4,70
Now, rearranging the above equation gives the following.
Sii+b  Sia Si,1+ =517~ 0570 U, 1

Sa Sa,A Saz+  —Saz- Oazo Vo, A
ST+ 1 St+.a4 Strz+r  —Sz+rz- O+ g0 Voo, T+
-Sz-1 =Sz 4 —Sz-7+ Sr-1- 07 70 —Vy, -

SZ‘OJ SIO,.A SIO’IJr —SIO’I— IIOJO ’Ud,IO

=N
0 E, - Sizovw’zo —c (26)
T
0 Eq— SA,IOUQ%IO — V4,A
+| vaz+ | = Ez+ — S%,Io%,zﬂ
_1]871* —FEr- + S%, 70V, 70
EIO — S%O’IOUW7IO
=P
Since X i is full-rank,
Siz+ Sz
Saz- T
’ = (1/n) (XluAUz+U1—X1uAuI+uI—) 27

S11 Sia
Sar Saa  Saz+
Stv1 Stv.a Stvzv Strz-
Sr-1 St-a Sr-z1+ S1-71-
is nonsingular (in fact, positive definite). Denote the 4 x 4 principal block submatrix of N by
Sii+b  Sia Si,z+ =517~
_ | Sax Sa.A Sazv  —Saz- ||| A|
Ny = St+1 ST+ .4 Stv v =St - €R (28)
—Sr- .4 —Sz-71+ S1-71-

—S1-1
(DN 0 .
so that N = ( C Ipyp) with
C = (S70,1,570,4,870 7+, —S70,7-) . (29)
Then V; is also nonsingular since b > 0, and thus
1 ( N 0
N= (—CN11 Izoz0)”
Therefore,
Vw,1 0
Vw, A 0
Sv,+va=F < | voz+ =N |P—| viz+ (30)
—Vy,7- —Uq,7-
Vq,70 0
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If we let the 2 x 2 principal diagonl block submatrix of N1 be No = (S{g:—: b 5;7244 ) , then the

bottom right 2 x 2 block of Ny ! is the Schur complement of N5 in Ny:
-1
Sr+1+  —Sr+1- St+1 Sr+a —1(Siz+ —Siz-
M = ) ) — ; ; N. ) ) 31
K—SI—,I+ Chp —Sr0a =S ) N \Suze —Sar 1)
Thus,

Suatva=B = (2 ) () 4 (N (32)
w, T~ 4,7~

where [N, 1]3:4 refers to the submatrix of N 1 spanning the third and fourth row blocks.

From the property of the Schur complement, M is positive definite if and only if /N7 is positive
definite. To see this, write

Si1+b Sia Sz Siz-
N7 | Sar Saa Saz+ Saz- |
VOOV Sz Spea Szeze Srez- |V
Sz-1 Sz- a4 Sr-z+ Sr-71-

where
I
_ Tan
fo= Iz+ 1+
—Iz- 1-
is symmetric and orthogonal. The middle matrix is (27) that is positive definite.
If we let
X — —Uq,7+ T Wz+ .y = Vo, 7+ + W+ 7 (33)
Vg, 7- — Wz- —Vyp,7- — Wz-
then we see
(x,y)=0 and y=Mx+gq,
where
_ W+ —17, W+
q=—-M (—w1> + [Ny ]34 P + <—w1> . (34)

from (23) and (32). In other words, the x and y in (33) jointly solve the LCP (I7) with the M and
q given in (31) and (34). In fact, (T7) has a unique solution, since a finite-dimensional LCP of the
form (T7) has a unique solution if M is a P-matrix, meaning all of its principal minors are positive.
A symmetric positive definite matrix is a P-matrix.

For the “if”” part, suppose (x,y) solves the LCP with the M and ¢ given in (31)) and (34). Then

(x,y) is unique. Let
Va,z+ ) _ [ TXTH ) 4 (WI for x = TV (35
Vq,7- X7- wz- X7-

and 0
v 0
< W’IJr) N1 |P— V4. 7+
—Vy1- il
4,7
0 3:4
Then
0
v 0
(_5’1* ) =N P— | —xz+ twr+
w b —X7- — Wz~
0 3:4
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which implies (T4)—(T6). O
Proof of Theorem|3.4; From the uniqueness of the solution to LCP (T7)), the v* in (TT) is well-defined:
We know

Uigo = —wro, Vg4 =A1hs, —13) = dj

from (8)) and (12). That
()~ (G- ()
d,7- T wrz-
follows from (33)); the M and g for solving (x,y) in LCP (T7) are given in (31) and (34). Also, from
@3,

k

vy = b, =

7

where b* and ¢ can be deduced from (23). Finally, with the above quantities computed, we have

from (30) and (26),

k
vw,l 0
k
U]gJ’A kO
voze | =NTU|PY— | Uiz
¥ ok
w,I- d.z-
k
Ya,z0 0
with
Ef — szovf)’zo —cF
kK oT Lk k
) Nfl 0 . EA ; SA,IO;}UJ,IO ; Ud,.A
N <C}\f‘1 I> and  P% =1 Bz =571 700 70 ;
! —Er + ST v
Z- T o7 1o b, 10
E7o — 510710%710
where N7 and C are given in (28) and 29) and E* = —Swk — d*. O

F Proofs of Theorem

F.1 Proof of Theroem 3.8

To verify the global convergence of Algorithm T] we utilize some regularity conditions of F’ as in
[28. 125]. Consider following lemmas:
Lemma F.1. The proximal gradient step in Algorithm[I|occurs only a finite number of times.
Lemma F.2. There exists a constant L > 0 and a neighborhood N of x* such that for all x € N,
[1F(z;v) ]| = Lv]| (36)
holds for all vectors v € R?P,
Lemma F.3. For every sequence {x*} converging to x¥, {v¥} converging to v', and positive scalar
sequence {1} converging to zero,
O(xF + tpo*) — O(zF
lim sup (2% + t4v7) (")
k—o0 t

< lim F(z®)TF' (2%;0"%)

" k—oo

Proof of Theorem We exclude the trivial case where z* exactly hits the optimal solution during
the iteration, in other words, H(mk) > 0. First, we show that m;, in @ always exists for all Newton
iterations. To see this assume that

O(z" 4 pmok) — 0(2*) > —20p™0 (%), (37)

holds for all m € {m,} where m; is an infinite increasing integer sequence. Then, dividing both
sides by p™ and taking the limit as j — oo, we have

O(x* + pmivk) — 9(a*)
pmj

—200(z%) < lim

j—o0

= F'(zF; 0" T F(2%) = —26(2).
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as we assumed that o € (0, 1) and 6(2*) > 0, we have a contradiction. So, there always exists mj,
such that (T8) holds. Since {#(z*)} is a strictly decreasing sequence bounded above zero, its limit
exists and therefore,
0= lim {0(z*) — (z""")} > 20 limsup(p"™*0(z*)) = 0.
k—o0 k—o00

If lim supy,_, ., p"™* > 0, then limy, ., #(2*) = 0. Since we assume that Zt" UZ~ = ) and X 4.
has full column rank, every (in particular, the unique) generalized jacobian O F'(x*) is nonsingular.
Then, by Clarke’s inverse function theorem [3l], /' admits a locally Lipschitz continuous inverse in

a neighborhood of z*. Consequently, for all sufficiently large k, we have z¥ = F~1(F(z*)) —
F~Y0) = z*.

If lim supy,_, . p™* = 0, then we have p™*6(z*) — 0 and
O(xF + pme k) — 0(2F) > —20p™ 10 ().

Consider a subsequence of {z* : k € K} that converges to ' such that At = A Forallk € K

large enough, 2* € N/, where J\/ is the neighborhood of z* specified in Lemma F.2| By Lemma
it follows that ||v*|| < 1||F(z*)||, which implies that the corresponding subsequence {v*},cx is

bounded. Thus, we can find a subsequence &, k such that 2% and v** converges into some z' and
', respectively. Then, by Lemma we have

B(att + pmi o) — f(a)

mkl —1

lim F(z*)TF' (k1 0%) > lim

l—o0 l—o0 P

> —206(z")

On the other hand, since v** is a Newton direction for (TT)),

lim F(z")TF' (2% 0%) = lim —260(2") = —20(z").
l—o00 l—o00

Therefore, 9(:5*) = 0 and since the solution is unique, the accumulation point 21 coincides with x*.

Finally, we establish the convergence of the full sequence {x*}. Since x* is the unique solution to
F(z) = 0, there exists § > 0 such that * is the unique minimizer of ||F'(z)| for ||z — 2*|| < 4.
Recall that for all k large enough, [[v*|| < 1||F(2*)|| from Lemma Since ||F(z*)|| — 0 as

k — oo, it follows that ||v*|| — 0. Therefore, there exists a constant §’ € (0, §) such that, we have
l2" =2 < o) < 6 - 4"

whenever ||2% — 2*|| < §’. Let 4 > 0 denote the minimum value of ||F(z)| over the region
§" < ||z — 2*|| < &. Suppose that [|z*° — z*|| < §" and || F(2*°)|| < . Then, since the sequence
| F(z*)]| is strictly decreasing, it follows that || F'(z*o*1)|| < u. But, since ||z*o Tt — zko|| < § — &,
we also have that
lz®Ft — 2| < [JlaoFt — ato|| 4[|zt — 2| < 6.

Hence, by the definition of 11, we have ||zFo+! —z*|| < §’. By induction, it follows that ||z* —2*|| < ¢’
and || F(z%)| < p for all k > kq. Since x* is the unique accumulation point of {z*} within this
neighborhood, we conclude that the entire sequence {z*} converges to z*.

We now characterize the local convergence behavior of the iterates. By [30, Theorem 4.3], since
x® — z*, the unique solution to F(z) = 0, and F'(-;-) in is semicontinuous of degree 2 [30,
Lemma 2.3], the sequence {2} converges quadratically to #* in its neighborhood and p™ eventually
becomes 1. O

F.2 Proof of LemmalE1l

The proximal gradient algorithm of [19] generates an iterate sequence to converge linearly to the
unique solution x*. We distinguish between two contexts in which the proximal gradient step is
invoked: the inner loop (lines 14—16) and the outer loop (lines 12—-17).

First consider the inner loop. Let {xéfox} denote the sequence of iterates computed by the proximal

E
gradient update. This update is applied iteratively from the initial pomt :Uprox = x"”. Assume
0(xko,.) > 0. (Otherwise we are done.) Since xf,rox — z*asj — oo, G(Iprox) — 0as j — oo, and
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< H(xko

poox)- Thus, the inner

by linear convergence, there exists a finite index J such that Q(m]’ggox)
loop terminates in finitely many iterations.

Next, consider the proximal gradient phase of the outer loop. This phase is potentially invoked until
the iterate enters a neighborhood N of z* = (w*, d*) where A = A* holds (such a neighborhood
exists due to the assumption of Theorem [3.8). If the iterate does not enter A" after a finite number of

) . k; —.
invocations, then 6(zplox) 7 0, a contradiction.

Once the (outer) sequence {z*} enters N, within this neighborhood the rank condition for local
B-semismooth Newton convergence is satisfied, so the algorithm remains in the Newton phase.
Consequently, the proximal gradient step is invoked only a finite number of times throughout the
entire procedure. O

F.3 Proof of Lemmal[F2
Let

A:{iG{Q,...,p}t|wi+di‘>)\},
T={ie{2,---,p}:|wi+dif <A}

Recall that the Bouligand derivative F’(w, d;v) can be expressed with the generalized Jacobian
Ga(w,d) as

)gﬂ Xy )g { Xauz 1 0
XhorX1 XauzX 0 I
F cy) = - AUz AUZAAUT
(OJ, d7 U) GA((U, d)U z+ % 0 y— % 0 v
0 Iz 0 —1I4
for the differentiable points (|w; + d;| # \) where z = ——-=4____ Since we know that the

24/ (w1+d1)?+4
value of the (p + i) -th element of F’(w,d;v) fori € Z% is —v,,; or v, ;, we can construct the
following inequality:

1" (w, ds )| = BN |G aus(w, d)v]|

Thus, it suffices to show that the generalized Jacobian G 4(w, d) is nonsingular. Then, it can be
deduced that

I1GZ (@, DG a(w, d)oll > o]l

and thus, L in holds for the minimum value of ||G ;' (w,d)||. Since F is continuous and

I+t UZ~" = (), there exists a neighborhood N of (w*, d*) such that for all (w,d) € N, we have
A = A*. Since X j. has full column rank, X 7 also has full column rank for all (w, d) sufficiently
close to (w*, d*). We already proved that such G 4 has an inverse in Appendix O

F.4 Proof of Lemmal[EJ3

Note that
F2 k + kY _ F2 k
lim TL@F 00 = PP T R by (38)
k—o0 2ty k—o0
holds as the equality within its domain of x for¢ = 1,--- ,p + 1, and the equality also holds for

i=p+1,---,2p where |w; +d;| # X\ (j = 2,---,p), as F;’s are differentiable and F}’s are
continuous at these points. Hence, it suffices to prove that (38) also holds for non-differential points
|w-d] = A. Suppose that (w*, d*) converges to (w', dt) and (v, v%) converges to (v],, v}). Without
loss of generality, let w’ + df = . Let k1, ko, - - - be any increasing sequence of a positive integer.
Then, forany i € {p+1,--- ,2p}, we can find some subquence k., where

Em Em
o B b 0 P, 0™)) — B dE))

l—o0 by

(39)

my

exists and falls into at least one of the following cases:
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1. whmi 4 @k > X and whm + dFm + bk, (vf,ml + fusml) > A. Then,

k k k
tg, Vo b=tk (vt v,
B9) = lim — “ A d ‘- —’UL = lim F/(zFme;obm),
l—0c0 tkml l—00
km km
2. whm 4 dbm < X and whm  dFm + tk,,, (0" +v,"") > A Then,
km km, km
b, vl — (whmi 4 dkm + Lk, (v v, = A)
(39) = lim
=00 tkml
. k?n .
< lim (tg, vo"™)/te, = vl = lim F/(zFm;oFm),
l—o00 t l l—o0

3. whmi 4 @Fm > X and whm 4 @R+ bk, (viml + vsml) < A. Then,

tkml ’Uf;ml + (wkml + dkml _ )\)

E9) = lim
l—o00 tszl
km km km
tk Vw t— tk (’Uw ¢ +v l) \
. , d .
< lim —* " = —v} = lim F/(z"m;0fm).
l—00 tr l—o0

my

4. wkm 4+ @b < X and wFm 4+ dFme 4 4, l(vff”‘ + vs'"”) < )\. Then,

(B9) = lim (tg,, Uiml)/tk-m =l = lim FJ(z"me;0km).
=00 l L l—o0
5. wkm 4 d*m = X\. Then,
. km km km
B = lliglo(tkm v = ty,, max{vy" + v, 0}) /L,

= min{v], fvjl} < llir& F (xhmo;pfm),

Hence, we can conclude that
F. k t k — F k
lim sup l(x + teY ) Z(x )
k—o0 tk

< lim F}(2;0")
k—oo
holds for all 7. Then, using the continuity of F" it follows that

k ky k
Jimn sup O(x" + txo®) — 6(z")

k—o0 i T koo

with some simple arithmetic. O

G Additional Experiments

G.1 Ablation study: roles of the proximal update and LCP solving

Algorithm [T]includes two components other than the semismooth Newton steps, that are the proximal
update steps and the LCP solve step. To disentangle the roles of these two components, we replicated
the setup of Section[4.T|and ran each configuration for 50 iterations under three ablations: (i) disabling
only the proximal update steps, (ii) disabling only the LCP solve step, and (iii) disabling both. The
LCP solve step is invoked only when, for a given row, ZT UZ~ # (). In this ablation study, “disabling
the LCP solve step” means reclassifying all indices in Z+ U Z~ as inactive by assigning them to Z°,
thereby bypassing the LCP solve subroutine. Recall that with both components enabled, Algorithm |T]
terminated within 30 iterations.

At A = 0.10, disabling the proximal steps prevented the algorithm from converging within 50
iterations, regardless of whether the LCP solve component was enabled. By contrast, convergence
was achieved whenever the proximal gradient component was retained, even without the LCP solve
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comeponent. In the original run at this value of ), the proximal update was invoked in 229 out of
1000 rows in the first iteration, indicating its importance in the denser regime. For A = 0.15,0.2,
the algorithm converged under all ablation settings. In the original runs, at most one proximal
update (out of 1000 rows) occurred in the first iteration, after which the semismooth Newton updates
predominated. Thus, while the proximal gradient steps can be dispensable in these sparser regimes, it
remains a practical safeguard unless the sparsity level is known a priori.

The LCP solve step was activated only on the kink set {4 : |w; + d;| = A }. Since exact equality is
numerically rare, such activations almost never occurred. Consistent with this observation, TableE]
shows that Algorithm [I]is largely insensitive to this event, and Table [5|reports that the LCP solve
occurs for a negligible fraction of rows. Even with 10,000 Newton row updates per iteration, the LCP
solve occurred in about one or fewer row on average, as reflected by the small average and maximum
per-iteration fractions. Thus, the practical impact of the LCP module is limited, although it remains
theoretically indispensable for correctness and robustness, especially on unseen data.

A \ Full method No Proximal No LCP No Proximal + No LCP
0.10 | Converged (30) Diverged Converged (30) Diverged
0.15 | Converged (22) Converged (26) Converged (22) Converged (26)
0.20 | Converged (14) Converged (14) Converged (14) Converged (14)

Table 4: Convergence within 50 iterations under ablations of the proximal and LCP modules.

X | Avg. frac. LCP/iter. Max frac. LCP/iter. Lastiter. LCP occurred  Total iters.

0.20 0.00005 0.0011 62 159
0.45 0.00004 0.0012 29 69
0.60 0.00012 0.0045 31 63

Table 5: Incidence of LCP updates in the original runs. “Frac.” denotes the fraction of rows updated
by LCP in an iteration.

G.2 Sensitivity to the choice of regularization parameter \

We assessed the convergence behavior of Algorithm[T]across a range of regularization parameters
under the same experimental setup as described in Section[4.3] focusing on real-world datasets. The
baseline choice A = 0.450 was selected by the extended Bayesian information criterion in [19]. To
examine sensitivity, we varied A from 0.325 to 0.575 with an increment of 0.025 and recorded the
iteration count, the number of nonzeros in the estimated precision matrix, and the resulting fraction
of nonzero elements (density). The result is summarized in Table 6]

The change of the density remained modest within the range A € [0.4,0.5], indicating that the
sparsity pattern is relatively insensitive around the “optimal” A = 0.450. Across the tested A
values, Algorithm [I]converged within a few tens of iterations; while the iteration count tended to
increase mildly as A decreases (i.e., as the solution becomes denser), the overall convergence behavior
remained stable.

G.3 Convergence across densities and alternate random graph topologies

In this section, we further investigate the trade-off between graph density and convergence using
alternative random graph structures. In Section the ground truth precision matrix ©* was
constructed based on an Erd6s—Rényi graph, where edges are sampled uniformly at random. To
capture a broader variety of graph structures, we additionally consider two alternative random graph
topologies: hub networks and scale-free graphs.

A hub network was generated using the following procedure: (1) for each cluster, (300 x density) hub
nodes were selected, each of which was connected to 66 randomly chosen nodes; (2) the remaining
(100 — 300 x density) nodes within each cluster were connected via an Erd6s—Rényi graph, using
the remaining intra-cluster edges.
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A \Iterations Nonzeros  Density (%)

0.325 103 5,494,644 5.89 x 1073
0.350 69 4,806,952 5.15 x 1073
0.375 78 4214966 4.52 x 1073
0.400 67 3,699,259 3.96 x 1072
0.425 94 3,248215 3.48 x 1073
0.450 64 2,852,968 3.06 x 1073
0475 67 2,505,706  2.68 x 1072
0.500 71 2,200,810 2.36 x 1073
0.525 56 1,930,194 2.07 x 1073
0.550 66 1,692,240 1.81 x 1073
0.575 65 1,481,495 1.59 x 1073

Table 6: Iteration count, number of nonzero elements, and the fraction of nonzero elements in the
estimated precision matrix for the LIHC dataset with varying regularization paremeter \.

A scale-free graph was generated so that the degree k of the nodes has a probability P(k) ~ k=23,

Each graph comprised 10 clusters with 100 nodes per cluster. The total number of edges was
determined by the graph density defined in Section with 80% of the edges allocated to intra-
cluster connections and the remaining 20% to inter-cluster connections. The resulting graphs are
summarized in Table [l

Density Hub Nodes Intra-cluster Edges per Cluster

0.03 9 1198
0.05 15 1998
0.10 30 3996

Table 7: The number of hub nodes and intra-cluster edges per cluster according to graph density

Following the experimental setup described in Section[4.2} the regularization parameter A was chosen
so that the estimated precision matrix exhibits a sparsity level similar to that of the true matrix @*.
We then assessed whether Algorithm[I]converges within 300 iterations across various graph types
and density levels (0.03, 0.05, and 0.1). The results are summarized in Tables@-@

We observe that the convergence behavior in different graph density levels is primarily determined
by the overall density of the true precision matrix (i.e., graph structure), rather than by the specific
graph structures. Intuitively, although the graph structures considered in this experiment may exhibit
diverse local structural patterns, their overall density was controlled to remain constant across all
settings. Since the applicability of the B-semismooth Newton method depends more on overall graph
density than on local structural variations, the observed results are consistent with this interpretation.

Hub Network
Density \A | 02 0.15 0.1 0.09 0.08 0.07
0.03 v Y _ _ _ i Density \ A \ 0.07 0.06 0.05
0.05 - Y Y - - - 0.1 \ 3% 833% 100%
0.1 - - Y Y Y N

Table 8: Convergence within 300 iterations for varying Table 9: Proportion of rows updated by
graph density and A proximal method after 300 iterations
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Scale-free graph

Density \A | 0.2 0.15 0.1 0.09 0.08 0.07

Density \ A | 0.07 0.06 0.05

0.03 Y Y - - - -
0.05 - Y Y - - - 0.1 | 1.6% 855% 99.8%
0.1 - - Y Y Y N

Table 10: Convergence within 300 iterations for varying Table 11: Proportion of rows updated by
graph density and A proximal method after 300 iterations
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: The theoretical results of the paper are provided with assumptions and proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The code for the main experiments is provided.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Sufficient access to the data and the code is provided.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experiment details are specified.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Reporting error bars on the experiments is not relevant with our research.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Computer resources for the experiments are specified.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: This research discusses an optimization algorithm with no societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The release of data or models does not have such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The data used in the experiment is properly credited.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This research does not involve crowdsourcing nor human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This research does not involve human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method of this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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