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ABSTRACT

Single-view 3D reconstruction is a fundamental problem in computer vision, hav-
ing a significant impact on downstream tasks such as Autonomous Driving, Vir-
tual Reality and Augment Reality. However, existing single-view reconstruction
methods are unable to reconstruct the regions outside the input field-of-view or
the areas occluded by visible parts. In this paper, we propose Hi-Gaussian, which
employs feed-forward 3D Gaussians for efficient and generalizable single-view
3D reconstruction. A Normalized Spherical Projection module is introduced fol-
lowing an Encoder-Decoder network in our model, assigning a larger range to
the transformed spherical coordinates, which can enlarge the field of view during
scene reconstruction. Besides, to reconstruct occluded regions behind the visi-
ble part, we introduce a novel Hierarchical Gaussian Sampling strategy, utilizing
two layers of Gaussians to hierarchically represent 3D scenes. We first use a
pre-trained monocular depth estimation model to provide depth initialization for
leader Gaussians, and then leverage the leader Gaussians to estimate the distribu-
tion followed by follower Gaussians. Extensive experiments show that our method
outperforms other methods for scene reconstruction and novel view synthesis, on
both outdoor and indoor datasets.

1 INTRODUCTION

Living in a complex 3D environment, humans need to comprehend their surroundings to make even
the slightest movements. Physiological studies show that humans can perceive depth even with
monocular vision (Koenderink et al., 1995). Although binocular vision is more mature currently, it
tends to degrade into monocular vision when sensing distant objects in autonomous driving scenar-
ios. Moreover, in Virtual Reality and Augment Reality tasks, there is an expectation to reconstruct
a scene from one single image captured by devices such as smartphones, which also makes single-
view 3D reconstruction critically crucial. Unfortunately, reconstructing the 3D structure from a 2D
image is ill-posed due to the lack of explicit geometric cues such as epipolar geometry, which are
only available with two or more views. Therefore, single-view 3D reconstruction is an important
but challenging issue in computer vision.

Single-view 3D reconstruction attracts more attention recently, with the development of differen-
tiable rendering or neural rendering. PixelNeRF (Yu et al., 2021) introduces Neural Radiance Field
into single-view reconstruction. It encodes a 2D image to obtain a feature volume, and finally
decodes the feature volume into a radiance field using an MLP decoder. MINE (Li et al., 2021)
uses multi-plane images to represent scenes, composed of RGB-α images at continuous depths,
which enhances the scene representation capabilities. VisionNeRF (Lin et al., 2023) incorporates
Transformer blocks into its encoder to better extract global features, which are combined with local
features to improve the quality of reconstruction. Splatter Image (Szymanowicz et al., 2024b) in-
troduces Gaussian Splatting into single-view reconstruction, addressing the challenge of the above
methods that require costly point sampling and querying during novel view synthesis. It utilizes a
U-Net to encode the input image into feature maps which is similar to the previous works, and then
decodes the feature maps into attributes of Gaussians instead of implicit radiance fields, obtaining a
scene represented by 3D Gaussians.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Hi-Gaussian

Single View as Input Full 3D Reconstruction as Output Novel View Synthesis

Figure 1: This is the pipeline of Hi-Gaussian, which requires only one single-view image as input,
and reconstructs a 3D scene in a feed-forward manner. It can also render realistic images from novel
views.

However, these methods only obtain features within the field-of-view (FOV) of the input view
through their image encoders, without additional focus on regions outside the input view. This
limits the ability of these methods to reconstruct areas beyond the input FOV, resulting in noticeable
blurriness or holes when there is a significant difference between the rendering view and the input
view. Another problem is their inability to reconstruct occluded regions. For example, as a typical
3DGS-based method, Splatter Image predicts only one Gaussian for each pixel, causing the Gaus-
sians to cluster near visible surfaces, which limits the reconstruction of occluded regions. These
drawbacks result in poor performances of the above methods when reconstructing complex scenes.

To address the aforementioned issues, we propose a simple and novel single-view reconstruction
method named Hi-Gaussian. Hi-Gaussian requires only one image as input, and directly recon-
structs a 3D scene in a feed-forward manner, as shown in Fig. 1. Our method is based on two key
ideas. First, we design a Normalized Spherical Projection module, which is aimed at reconstructing
scenes beyond the input FOV. After our Encoder-Decoder outputs feature maps, we project every
2D pixel to its normalized latitude-longitude spherical coordinates and uniformly resample the fea-
ture maps based on the spherical coordinates, which induces less distortion. Meanwhile, we expand
the FOV of the feature maps by assigning a larger range of values to the spherical coordinates, al-
lowing 3D Gaussians to cover a larger area. Second, we introduce a novel Hierarchical Gaussian
Sampling strategy, which helps to reconstruct the regions occluded by the visible parts. Specifically,
we estimate leader Gaussians through our pretrained depth network and Encoder-Decoder network,
and then predict follower Gaussians based on the leader Gaussians. We assume that these follower
Gaussians follow a normal distribution, whose parameters vary across leader Gaussians. We esti-
mate the mean and covariance of the normal distribution and sample them from this distribution.
Our main contributions are summarized as follows:

• We propose a Normalized Spherical Projection module to expand the input FOV, enabling
reconstruction beyond the image FOV while inducing less projection distortion.

• We propose a Hierarchical Gaussian Sampling strategy to reconstruct occluded areas in
images, enhancing reconstruction fidelity and improving performance on novel view syn-
thesis.

• Experimental results show that the proposed method achieves state-of-the-art reconstruc-
tion accuracy on both outdoor and indoor datasets.

2 RELATED WORK

2.1 IMPLICIT 3D SCENE REPRESENTATION

One of the most representatives of implicit 3D scene representation is Neural Radiance Field
(NeRF) (Mildenhall et al., 2021; Müller et al., 2022), which has seen widespread development
in recent years due to its end-to-end differentiable nature and simple structure. NeRF utilizes
a coordinate-based neural network to represent the scene, and typically start training from im-
ages with poses while employing differentiable volume rendering to back-propagate photometric
loss. Many following works have made improvements to NeRF in various aspects. For exam-
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ple, NeRF++ (Zhang et al., 2020), MipNeRF (Barron et al., 2021) and MipNeRF-360 (Barron
et al., 2022) introduce advanced point sampling techniques, improving the rendering quality. Pix-
elNeRF (Yu et al., 2021), MVSNeRF (Chen et al., 2021), SinNeRF (Xu et al., 2022) and SparseN-
eRF (Wang et al., 2023) enable NeRF to perform sparse-view 3D reconstruction while Vision-
NeRF (Lin et al., 2023) and SceneRF (Cao & de Charette, 2023) extend NeRF to single input view.
However, due to implicit nature of Neural Radiance Field in storing scene information through
MLPs, explicit scenes cannot be directly obtained. Additionally, the volume rendering process in-
volves sampling and querying multiple points along rays, leading to a very slow rendering speed.
Therefore, we do not choose implicit Neural Radiance Field as the scene representation but use an
explicit representation instead.

2.2 EXPLICIT 3D SCENE REPRESENTATION

Explicit representation has been studied for decades due to its simplicity and intuitiveness. Many
works explicit 3D scene representations including point clouds (Fan et al., 2017; Yang et al., 2019;
Wiles et al., 2020; Vahdat et al., 2022), meshes (Kanazawa et al., 2018; Wang et al., 2018; Gao
et al., 2022), and voxels (Choy et al., 2016; Girdhar et al., 2016; Yagubbayli et al., 2021). However,
these representations are not smooth enough, which may affect the quality of novel view synthesis.
The recently emerged method of 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has become
another mainstream approach for 3D reconstruction due to its continuous 3D representation and
rapid differentiable rasterization. Among 3DGS-based methods, pixelSplat (Charatan et al., 2024),
latentSplat (Wewer et al., 2024), MVSplat (Chen et al., 2024), and FreeSplat (Wang et al., 2024)
extend 3DGS to sparse-view reconstruction. Whereas TriplaneGaussian (Zou et al., 2024), Splatter
Image (Szymanowicz et al., 2024b), and AGG (Xu et al., 2024) further expand 3DGS to single-
view object reconstruction. Our method also introduces 3D Gaussian Splatting into single-view
reconstruction, primarily for scene reconstruction rather than object reconstruction, which is a much
harder problem due to the complexity, diversity, and large scale of the scene.

2.3 SINGLE VIEW 3D RECONSTRUCTION AND NOVEL VIEW SYNTHESIS

Single-view 3D reconstruction involves feeding a single image into a neural network in a feed-
forward manner to directly output a 3D scene. Among single-view 3D scene reconstruction meth-
ods, SynSin (Wiles et al., 2020) utilizes point clouds to represent scenes, requiring a GAN gener-
ator (Goodfellow et al., 2020) for image synthesis after projecting the point clouds onto the image
plane, while MINE (Li et al., 2021) and MPI (Tucker & Snavely, 2020) use multi-plane images
to represent scenes. In contrast, SRN (Sitzmann et al., 2019), pixelNeRF (Yu et al., 2021) and
SceneRF (Cao & de Charette, 2023) use Neural Radiance Fields for scene representation. They
both construct pixel-aligned feature maps using an image encoder, then get point-wise features by
projecting 3D points onto the feature maps, and finally decode them using an MLP to obtain colors
and opacities. These NeRF-based methods exhibit slow inference speeds due to volume rendering.
Following the emergence of 3DGS (Kerbl et al., 2023), Splatter Image (Szymanowicz et al., 2024b)
is designed to predict 3D Gaussians for reconstruction. However, Splatter Image estimates per-pixel
aligned 3D Gaussians, limiting its capability to estimate only the surfaces of visible objects in the
image, rather than unseen parts. To address this issue, we first design a Normalized Spherical Projec-
tion module to reconstruct the areas outside the input field-of-view, and then propose a Hierarchical
Gaussian Sampling strategy to reconstruct the occluded regions.

3 THE PROPOSED HI-GAUSSIAN

Hi-Gaussian reconstructs the entire 3D scene from a single-view and is trained end-to-end only with
posed images. Given a sequence of K posed images I = {(I1,P1), (I2,P2), · · · , (IK ,PK)}, we
use I1 as input to construct 3D Gaussians {Gi}Ni=1 through a feed-forward network f . We denote
it as {Gi}Ni=1 = f(I1). The remaining frames of the image collection (i.e., {I2, · · · , IN}) serve as
supervision for training losses. To begin with, we introduce the background of 3DGS for single-view
reconstruction in Sec. 3.1. After that, we introduce our method and detail two key elements. Firstly,
to extend the scene beyond input FOV, we introduce Spherical Projection in Sec. 3.2. Secondly, to
extend the scene behind the visible part, we introduce the Hierarchical Gaussian Sampling in Sec.
3.3. Finally, we discuss our loss fuctions used during training in Sec. 3.4.
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Figure 2: Overview of our Hi-Gaussian framework: (a) Given the first input image I1 from the
image sequence I, we first obtain the corresponding depth map using a pre-trained monocular depth
estimation network fΦ. With known camera intrinsics, back-projection is utilized to derive 3D
locations for each leader Gaussians. Meanwhile we input I1 into an encoder-decoder network fΨ to
predict leader Gaussians’ other attributes. (b) To hallucinate colors and depth beyond input FOV, a
Normalized Spherical Projection module is designed to extend 3D Gaussians to regions outside the
input viewpoint. (c) To predict unseen parts behind the visible surfaces, we perform Hierarchical
Gaussian Sampling based on leader Gaussians Gp to obtain follower Gaussians Gc.

3.1 3DGS FOR SINGLE VIEW RECONSTRUCTION

3D Gaussians as scene representations. A set of 3D Gaussians {Gi}Ni=1 =
{(µi, αi,Si,Ri, ci)}Ni=1 represents a 3D scene (Kerbl et al., 2023). Here, µi ∈ R3 is the
center position, αi ∈ [0, 1] is the opacity, Si ∈ R3×3 is Gaussian scale which is represented by
a vector si ∈ R3, Ri ∈ R3×3 is Gaussian orientation which can be obtained from a quaternion
qi ∈ R4, and ci ∈ RK is the spherical harmonics for view-dependent colors. These Gaussians can
be rendered into images from arbitrary viewpoints. Let the un-normalized Gaussian function be
defined as

gi(x) = exp[−1

2
(x− µi)

⊤Σ−1
i (x− µi)] (1)

where Σi = RiSiS
⊤
i R

⊤
i . Then we can obtain a pixel’s color by α-blending:

c =
∑
i

αigi(xi)ci(v) (2)

where v ∈ R2 is the direction of the pixel’s ray emitted from the camera and xi ∈ R3 is intersection
point of the pixel’s ray with the ith Gaussian primitive. We can also obtain a depth map in a similar
way, just replacing ci with the depth value di ∈ R in Eqn. 2. We express the process as

d =
∑
i

αigi(xi)di (3)

where di is the depth of the ith Gaussian. Eqn. 2 and Eqn. 3 are involved in forming our loss
function, which will be introduced in Sec. 3.4.

Feed-forward single-view reconstruction. In the original 3DGS framework (Kerbl et al., 2023),
the Gaussians’ parameters need to be trained from scratch when reconstructing a new scene. In
contrast, we directly infer a 3D Gaussian representation without per-scene training. Specifically,
an Encoder-Decoder network is utilized with an image I1 ∈ R3×H×W as input and a tensor t ∈
RC×H×W as output. The tensor t consists of all Gaussians’ attributes, including the opacity α, the
depth d ∈ R+, the offset ∆ ∈ R3×3, the covariance Σ ∈ R3×3 represented by rotation q ∈ R4

and scale s ∈ R3, and the spherical coefficients c ∈ R3(L+1)2 where L is the order of the spherical
harmonics. Each pixel u = (u, v, 1)⊤corresponds to one Gaussian, whose center position can be
calculated by µ = K−1ud +∆, where K−1 ∈ R3×3 is the intrinsic matrix of the camera. Given
the relative pose P1→j between the source view Pj and the input view P1, along with the camera
intrinsics K, the source view image Îj can be rendered by the fast differentiable renderer R, which
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is provided by 3DGS (Kerbl et al., 2023) and is based on Eqn. 2. For sake of generality, we write
the process above as:

Îj = R({Gi}Ni=1,K,P1→j) (4)

The network is trained by minimizing the photometric loss Lsource = Ej∥Îj − Ij∥. For higher
fidelity, we employ a pretrained depth model (Piccinelli et al., 2024) to directly predict Gaussians’
3D locations, inspired by Szymanowicz et al. (2024a). Moreover, we propose a novel Normalized
Spherical Projection module to reconstruct the scenes beyond the input FOV, by projecting 2D pix-
els to spherical coordinates with a larger range of values. And we present a Hierarchical Gaussian
Sampling strategy to reconstruct the scenes behind the invisible parts, by initially predicting the
first layer of Gaussians (called leader Gaussians) and then predicting the second layer of Gaus-
sians (called follower Gaussians) based on the first layer. We elaborate on Normalized Spherical
Projection and Hierarchical Gaussian Sampling in Sec.3.2 and Sec.3.3 respectively.

3.2 NORMALIZED SPHERICAL PROJECTION

Since 3D Gaussians are predicted by feeding the network with only images, the scenes represented
by 3D Gaussians tend to be confined within the FOV of the images. For reconstructing the scenes
beyond the image FOV, it is a good choice to enlarge the FOV after projecting Gaussian primitives
to spherical coordinates because spherical projection induces less distortion than its planar counter-
part (Salomon, 2007; Cao & de Charette, 2023). However, spherical projection entails more spatial
compression, which leads to information loss and inevitably undermines the quality of scene re-
construction, which is illustrated in Fig. 8. In order to reduce distortions while suppressing spatial
compression, we adopt a novel projection approach, called Normalized Spherical Projection, after
our Encoder-Decoder network fΨ. Given that a leader Gaussian primitive Gp

i output by fΨ corre-
sponds to pixel coordinates [u, v]⊤, with known camera intrinsics K, its coordinates in the camera
coordinate system are [x, y]

⊤ ∼ K−1 [u, v]
⊤. We denote xmax and ymax as the maximum of x and

y, and xmin and ymin as the minimum of x and y respectively. Then we normalize the coordinates
by [

x̂
ŷ

]
=

[
(x− x̄)/x̃
(y − ȳ)/ỹ

]
(5)

where x̄ = (xmax + xmin)/2, ȳ = (ymax + ymin)/2 and x̃ = (xmax − xmin)/2, ỹ = (ymax −
ymin)/2. Then we map the normalized Cartesian coordinates to the corresponding spherical coor-
dinates. The projection is shown as:[

θ
ϕ

]
=

[
π − arctan

(
x̂−1

)
arccos (−ŷ/r)

]
(6)

where r =
√
x̂2 + ŷ2 + 1. We assign [θ, ϕ]

⊤ a 0.25× broader range of values, which leads to a
larger FOV. After the projection above, [θ, ϕ]⊤ are discretized and sampled uniformly.

Our Normalized Spherical Projection module allows leader Gaussians to be distributed more uni-
formly within the FOV, as illustrated in Fig. 2 (b). In addition, the expanded FOV enables Gaussians
to extend beyond the edges of the image.

3.3 HIERARCHICAL GAUSSIAN SAMPLING

When predicting leader Gaussians, we obtain their initial positions µp through a pre-trained depth
estimation network fΦ and estimate other attributes (∆µp, αp,Sp,Rp, cp) through an encoder-
decoder network fΨ, where ∆µp denotes the position offset of each leader Gaussian. ∆µp is
expected to serve a dual purpose: accurately predicting positions of leader Gaussians for the visible
regions and potentially allowing some leader Gaussians to move into occluded parts. However, our
experiments show that only predicting ∆µp is not enough for reconstruction of the occluded re-
gions. When only one Gaussian is estimated for each pixel, these Gaussians tend to aggregate near
the surface of the visible parts. This phenomenon ensures geometrical fidelity of the visible parts but
neglects the invisible parts, leading to compromised rendering quality under significant viewpoint
differences, as shown in Fig. 4 and 5.

To better reconstruct occluded regions within the scene, we employ a variational approach to addi-
tionally estimate M follower Gaussians based on each leader Gaussian, which is illustrated in Fig.
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SemanticKITTI BundleFusion
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

PixelNeRF (Yu et al., 2021) 15.80 0.466 0.489 20.51 0.822 0.351

MINE (Li et al., 2021) 16.03 0.496 0.448 20.60 0.763 0.377

VisionNeRF (Lin et al., 2023) 16.49 0.483 0.468 20.51 0.831 0.332

SceneRF (Cao & de Charette, 2023) 16.46 0.482 0.476 25.07 0.853 0.323

Splatter Image (Szymanowicz et al., 2024b) 15.83 0.457 0.395 24.13 0.817 0.205

Ours 16.78 0.518 0.358 25.50 0.877 0.179

Table 1: Quantitative results on SemanticKITTI and BundleFusion datasets. We outperform all other
methods on PSNR, SSIM and LPIPS.

2 (c). Specifically, we sample a latent vector featc for each follower Gaussian, assuming that featc

follows a multivariate Gaussian distribution:

featc ∼ N (Gp, fΩ(G
p)) (7)

where the attributes of Gp are considered as the mean. And Gp is fed into a shallow MLP fΩ with
a single hidden layer to predict the covariance. Subsequently, we input featc into another shallow
MLP fΘ to obtain the corresponding follower Gaussian:

Gc = fΘ(feat
c) (8)

After sampling M latent vectors for each leader Gaussian, we get M follower Gaussians. The
final 3D scene representation consists of leader Gaussians and follower Gaussians. We denote it as
{Gi}Ni=1 = {Gp

i }N
p

i=1 ∪ {Gc
i}

M×Np

i=1 , where N = (M + 1)×Np.

3.4 LOSS FUNCTIONS

Due to the randomness of Hierarchical Gaussian Sampling, the accuracy of the rendered images and
depths may be slightly influenced. In order to further improve the quality of reconstruction and novel
view synthesis, we introduce a reprojection loss following (Cao & de Charette, 2023) as below:

Lreproj =
1

H ×W

H∑
v=1

W∑
u=1

∥Îsource(u, v)− Itarget

(
proj

(
D̂source (u, v)

))
∥1 (9)

where H and W are the height and width of the image respectively, Îsource is the image rendered
under the source view through Eqn. 2, D̂source is the depth rendered under the source view through
Eqn. 3, Itarget is the ground-truth image under the target view, and proj(·) is the transformation
of (u, v) from the source view to the target view. Besides, we adopt the RGB loss Lsource and the
perceptual loss Llpips from Szymanowicz et al. (2024b). Note that these three loss functions are
calculated under the source view, not making use of the input view image. Therefore, we render 3D
Gaussians into the input view as Îinput, constructing an l-1 RGB loss between Îinput and Iinput,
which is formulated as Linput = ∥Îinput − Iinput∥1. Our total loss is as below:

Ltotal = λ1Lsource + λ2Lreproj + λ3Llpips + λ4Linput (10)

Our model is trained by minimizing Ltotal. It can be viewed as a self-supervised manner, because
we only use posed 2D images as ground truth for supervision, without 3D supervision.

4 EXPERIMENTS

In this section, we describe our experimental setup, evaluate our approach on novel view synthesis,
and conduct ablation studies to validate our design choices.

4.1 EXPERIMENTAL SETUP

We evaluate Hi-Gaussian primarily on novel view synthesis. Our experiments are conducted on two
datasets: outdoor SemanticKITTI (Geiger et al., 2012; Behley et al., 2019) and indoor BundleFu-
sion (Dai et al., 2017). SemanticKITTI has large driving scenes encompassing challenging natural

6
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Figure 3: Qualitative comparison on SemanticKITTI and BundleFusion. For aesthetic layout, we
crop the results of SemanticKITTI to match the aspect ratio of BundleFusion. For both datasets, we
note that our rendered images are sharper and more realistic than other methods.

environments such as trees, skies, along with dynamic elements like vehicles and pedestrians. Its
image sequences are captured by a forward-facing camera with little rotation but large forward
translation between viewpoints. In contrast, BundleFusion has shallow indoor scenes with pro-
nounced lateral shifts between viewpoints. We follow the experimental settings from SceneRF (Cao
& de Charette, 2023) for both SemanticKITTI and BundleFusion.

Compared Methods. We compare our method with five novel view synthesis approaches: pix-
elNeRF (Yu et al., 2021), MINE (Li et al., 2021), VisionNeRF (Lin et al., 2023), SceneRF (Cao
& de Charette, 2023), which are NeRF-based methods, and Splatter Image (Szymanowicz et al.,
2024b), which is a 3DGS-based method. For all compared methods, we use their official implemen-
tations.

Evaluation Metrics. To evaluate visual fidelity, we compare the rendered images of each method
with their corresponding ground truth images. We use Peak Signal-to-Noise Ratio (PSNR, higher
is better), Structural Similarity Index Measure (SSIM, higher is better) and the Learned Perceptual
Image Patch Similarity (LPIPS, lower is better) as evaluation metrics.

Implementation Details. The pre-trained monocular depth estimation network fϕ in our model is
from UniDepth (Piccinelli et al., 2024). Our Encoder-Decoder network is composed of a UNet (Song
et al., 2020) and a 1×1 convolutional layer. In Normalized Spherical Projection module, we enlarge
the input FOV by 0.25×. For Hierarchical Gaussian Sampling, M is set to 3, which is adequate
for scene representation. Our method is trained by minimizing the loss function of Eqn. 10 and
set λ1 = λ2 = λ4 = 1 and λ3 = 0.05. We train our method and all compared methods using
AdamW (Loshchilov, 2017) optimizer on 4 Tesla V100 32G with learning rate of 1e-5 for 50 epochs.

4.2 RESULTS

We evaluate the quality of reconstruction through novel view synthesis on SemanticKITTI and
BundleFusion seperately. For SemanticKITTI, we input a single image each time and test every
model with predicting the images within the next 10 meters. For BundleFusion, we input a single
image each time and test every model with predicting the images from the 16 frames preceding it
and the 16 frames following it. Quantitatively, we take the average of the evaluation results for
each frame as the final metrics, as shown in Table 1. Our method achieves the best performance

7
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SemanticKITTI BundleFusion
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

w/o Normalized Spherical Projection 16.47 0.497 0.364 25.69 0.875 0.187

w/o Hierarchical Gaussian Sampling 16.33 0.491 0.361 25.57 0.873 0.189

Full settings 16.78 0.518 0.358 25.50 0.877 0.179

Table 2: Architecture ablations on SemanticKITTI and BundleFusion. Both of the two key compo-
nents contribute to better performance on Novel View Synthesis.

Ground 
Truth

w/o Normalized 
Spherical Projection

w/o Hierarchical 
Gaussian Sampling

Full Settings

(a) (b) (c)

Input

Figure 4: Ablations on SemanticKITTI (val). Both Normalized Spherical Projection module and
Hierarchical Gaussian Sampling contribute to rendering novel view images with higher fidelity.
Normalized Spherical Projection module helps to inpaint the holes beyond the input FOV (column
c) and mitigate distortions (column a and b). Hierarchical Gaussian Sampling helps to reconstruct
the occluded regions behind the trees (column b and c) and the building (column a).

across the three metrics on both the datasets. Qualitatively, we compare our method with a typical
NeRF-based method SceneRF (Cao & de Charette, 2023) and a typical 3DGS-based method Splat-
ter Image (Szymanowicz et al., 2024b). Fig. 3 displays the visual results. It is notable that when
there is a significant difference between the rendering view and the input view, the images output by
SceneRF exhibit noticeable blurriness, which is a common issue with NeRF methods due to limited
point sampling in volume rendering. Additionally, SceneRF incorrectly renders numerous scattered
points at object edges, leading to poor visual quality. Although Splatter Image outputs sharper and
clearer images, it suffers from severe distortions due to the lack of depth constraints during training.
Moreover, since Splatter Image predicts only one Gaussian per pixel, its Gaussians tend to cluster
near visible surfaces. This makes itself unable to reconstruct occluded areas in the scene, espe-
cially in outdoor environments, resulting in holes and ripple artifacts in novel view images. On the
contrary, our method renders images that are both sharp and realistic, with the best visual effects.

Furthermore, we compare the rendering quality of our method with other methods at various dis-
tances from the input view, as illustrated in Fig. 6. Although SceneRF performs best in terms of
PSNR and SSIM when the distance between the novel view and the input view is close, our method
quickly surpasses SceneRF and Splatter Image as the distance increases. This highlights the robust-
ness of our approach to input view distances.

4.3 ABLATION STUDY

To further demonstrate the effectiveness of our method, we conduct ablation studies with or without
certain components, i.e., Normalized Spherical Projection and Hierarchical Gaussian Sampling, on
the validation set of SemanticKITTI and BundleFusion. See quantitative results in Table 2 and
qualitative ones in Fig. 4 and 5.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Ground 
Truth

w/o Normalized 
Spherical Projection

w/o Hierarchical 
Gaussian Sampling

Full SettingsInput

(a)

(b)

Figure 5: Ablations on BundleFusion (val). Without Normalized Spherical Projection, our model
fails to reconstruct outside the input FOV, leading to ghosting artifacts. Without Hierarchical Gaus-
sian Sampling, there will be ripple artifacts and holes in the rendered novel views.
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Figure 6: Performances of different methods at varying input view distances on SemanticKITTI (the
first row) and BundleFusion (the second row). The quality of novel view synthesis drops as the
distance increases due to lower overlaps of FOV with the input view.

Importance of Normalized Spherical Projection. To verify the effectiveness of our Normalized
Spherical Projection module, we compare Hi-Gaussian to a variant (w/o Normalized Spherical Pro-
jection module) that eschews FOV enlargement with normalized spherical projection. Qualitatively,
this produces holes (see Column c in Fig. 4) and ghosting artifacts (see Fig. 5) that are evidence of
incorrect predictions of scenes. Quantitatively, this leads to a significant drop in performance. More-
over, in order to illustrate the effect of normalization, we compare our normalized spherical projec-
tion with the un-normalized one proposed by SceneRF (Cao & de Charette, 2023). For fairness,
we fix other hyper-parameters, such as the FOV scaling factor and the number of Gaussians. We
experiment with normalized/un-normalized spherical projection, getting respectively 16.78/16.76
for PSNR, 0.518/0.512 for SSIM and 0.358/0.370 for LPIPS. The results demonstrate that our nor-
malized spherical projection performs better than the un-normalized one. Fig. 8 also shows that
normalized spherical projection induces less spatial compression than the un-normalized one, which
slightly enhances the rendering quality.

Importance of Hierarchical Gaussian Sampling. To verify the effectiveness of our Hierarchical
Gaussian Sampling, we remove the parts of our network that predict follower Gaussians. We use
only one layer Gaussians (i.e., leader Gaussians) for reconstruction. Qualitatively, Fig. 4 illustrates
that ripple artifacts are significant when only predicting one layer Gaussians. Columns (a) and (c)

9
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Input Visualized LayersNovel View Synthesis

= leader Gaussians inside the input FOV = leader Gaussians outside the input FOV = follower Gaussians 

Figure 7: Visualized layers of Gaussians on SemanticKITTI (val). The red part denotes the leader
Gaussians within the input FOV. The green part denotes the additional leader Gaussians from FOV
expansion. And the blue part denotes the follower Gaussians. The additional leader Gaussians fill
the regions beyond the input FOV. And the follower Gaussians fill occluded regions, such as the
areas behind the skywalk or the trees.

original image after normalized spherical projection after unnormalized spherical projection

Figure 8: For visualization, we apply two different spherical projections to an image. In prac-
tice, we perform spherical projections on high-dimensional features. The black areas around the
images show that our normalized spherical projection induces less spatial compression than the un-
normalized spherical projection.

respectively display the novel view synthesis of regions that are occluded by buildings/vehicles in
the input view. Our model with full settings is capable of predicting and inpainting the occluded
regions of the scene, while our model without Hierarchical Gaussian Sampling cannot predict them,
resulting in significant holes. Fig. 5 also shows significant ripple artifacts and holes, due to obstruc-
tion by the cabinet/printer. Quantitatively, Table 2 indicates that the performance drops markedly
without Hierarchical Gaussian Sampling.

Analysis. To investigate the role of Normalized Spherical Projection Module and Hierarchical
Gaussian Sampling in reconstruction, we visualize layers of Gaussians on SemanticKITTI. Fig. 7
shows that leader Gaussians are primarily distributed on visible surfaces, while follower Gaussians
are mainly distributed in occluded regions like the areas behind the skywalk or the trees. It is worth
noting that when there is a significant rotation between the novel view and the input view, the FOV
expansion in Normalized Spherical Projection Module aids in reconstructing areas beyond the input
FOV.

5 CONCLUSION

In this paper, we introduce Hi-Gaussian, a feed-forward model that performs 3D reconstruction with
high fidelity from a single image. The proposed Normalized Spherical Projection module projects
2D pixels to spherical coordinates with a larger range of values, aiding in the reconstruction of the
scenes beyond the input FOV. And the proposed Hierarchical Gaussian Sampling strategy initially
predicts leader Gaussians and then predicts follower Gaussians based on leader Gaussians, helping
to reconstruct the occluded regions behind the visible parts. Both the two components enhance the
quality of reconstruction and novel view synthesis. In two single-view 3D reconstruction tasks,
which are outdoor SemanticKITTI and indoor BundleFusion respectively, our proposed approach
achieves state-of-the-art performances.
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APPENDIX

A MORE EXPERIMENTS

Additional qualitative and quantitative results are presented to further elaborate on the superiority
of our proposed method. We start by showcasing a more comprehensive comparison with other
methods, then present a more detailed ablation study.

A.1 QUALITATIVE COMPARISON WITH OTHER METHODS

Cross-dataset Novel View Synthesis. To better demonstrate the generalization capability of our
method, we conduct cross-dataset evaluations on novel view synthesis. Models are trained on
BundleFusion and are tested on NeRF-LLFF dataset. The qualitative results in Fig. 9 indicate
that our method renders the sharpest and clearest images in cross-dataset generalization.

Input

Ours

Splatter 
Image

SceneRF

Ground 
Truth

Figure 9: Qualitative evaluations on cross-dataset generalization from BundleFusion to NeRF-LLFF
dataset.

Mesh Visualization of Scene Reconstruction. To offer a more intuitive representation of scene
reconstruction, we display 3D meshes on the validation set of SemanticKITTI and BundleFusion.
These meshes are produced from the scene TSDF, which is obtained through the conversion of
rendered images and depths. Fig. 10 and Fig. 12 demonstrate that our method reconstructs the
clearest and sharpest meshes.

A.2 QUANTITATIVE COMPARISON WITH OTHER METHODS

Cross-dataset Novel View Synthesis. We present quantitative results on cross-dataset generaliza-
tion. Models are trained on BundleFusion and are tested on all 8 sequences in NeRF-LLFF dataset.
Table 3 shows that our method achieves the best performance on most sequences in NeRF-LLFF
dataset.
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OursSplatter ImageSceneRF

Figure 10: 3D meshes on SemanticKITTI (val.).
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Figure 11: Performances at varying input view distances on SemanticKITTI (the first row) and
BundleFusion (the second row) for ablation study. Our model with full settings usually achieves the
best performance.

Novel Depth Synthesis. To better showcase the depth estimation capability of our method, we
conduct evaluation on novel depth synthesis following the experimental setup of SceneRF (Cao &
de Charette, 2023). Our approach outperforms other methods across all metrics, which is shown in
Table 4 and Table 5.

Scene Reconstruction. We also evaluate reconstruction following SceneRF (Cao & de Charette,
2023) for a fair comparison. As demonstrated in Table 6, our method achieves the best reconstruction
performance. It is worth noting that if we propose an improved scene reconstruction approach, we
can get better results.

A.3 ABLATION STUDY

To further demonstrate the effectiveness of our method, we conduct more ablation studies. We
compare the quality of novel view synthesis at different distances from the input view. The results in
Fig. 11 show that our Normalized Spherical Projection module and Hierarchical Gaussian Sampling
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Fern Flower Fortress Horns
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SceneRF 13.64 0.130 0.702 13.31 0.263 0.584 15.46 0.290 0.636 14.55 0.222 0.650

Splatter Image 11.89 0.133 0.610 12.36 0.107 0.523 8.95 0.218 0.565 14.48 0.266 0.469

Ours 16.93 0.439 0.359 14.01 0.167 0.468 17.59 0.302 0.318 15.84 0.398 0.379

Leaves Orchids Room Trex
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SceneRF 13.77 0.161 0.548 11.31 0.128 0.716 12.74 0.286 0.743 10.65 0.093 0.757

Splatter Image 12.66 0.120 0.488 9.88 0.067 0.615 9.62 0.207 0.648 9.22 0.074 0.638

Ours 13.00 0.158 0.443 11.76 0.145 0.507 16.26 0.454 0.328 16.91 0.453 0.274

Table 3: Quantitative evaluations on cross-dataset generalization from BundleFusion to NeRF-LLFF
dataset.

SemanticKITTI
Methods Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ1 ↑ δ2 ↑ δ3 ↑

PixelNeRF (Yu et al., 2021) 0.2364 2.080 6.449 0.3354 65.81 85.43 92.90

MINE (Li et al., 2021) 0.2248 1.787 6.343 0.3283 65.87 85.52 93.30

VisionNeRF (Lin et al., 2023) 0.2054 1.490 5.841 0.3073 69.11 88.28 94.37

SceneRF (Cao & de Charette, 2023) 0.1681 1.291 5.781 0.2851 75.07 89.09 94.50

SplatterImage (Szymanowicz et al., 2024b) 0.2519 2.127 7.282 0.4205 58.41 79.30 89.02

Ours 0.1165 0.812 4.702 0.2397 80.99 90.02 94.67

Table 4: Novel depth synthesis on SemanticKITTI datasets.

strategy consistently enhance the performance of our model, regardless of the distance between the
novel view and the input view.

B MORE THEORETICAL STUDY

B.1 NORMALIZED SPHERICAL PROJECTION

In Sec. 3.2, we propose normalized spherical projection, which introduces less spatial compression
than the un-normalized one. In other words, the curvature of the upper edges in the images ob-
tained from normalized spherical projection is flatter, which is shown in Fig. 8. Now we provide a
theoretical analysis of the phenomenon described above.

The formula for un-normalized spherical projection is given as follows:[
θ

ϕ

]
=

[
π − arctan

(
x−1

)
arccos (−y/r)

]
(11)

where [x, y]
⊤ is coordinates in the camera coordinate system and r =

√
x2 + y2 + 1. We consider

θ and ϕ as functions of x and y, denoting them as θ = h1(x, y) and ϕ = h2(x, y) respectively.
From Eqn. 11, we can see that h1(x, y) = π − arctan

(
x−1

)
is solely dependent on x, while

h2(x, y) = arccos (−y/r) = arccos
(
−y/

√
x2 + y2 + 1

)
is dependent on both x and y. Taking

the partial derivative of h2(x, y) with respect to x, we obtain

∂h2(x, y)

∂x
= − xy

(x2 + y2 + 1)
√
x2 + 1


> 0 if xy < 0

= 0 if xy = 0

< 0 if xy > 0

(12)

Thus, for a given constant y0 > 0, h2(x, y0) is strictly monotonically increasing for x ∈ (−∞, 0),
and strictly monotonically decreasing for x ∈ (0,+∞). Similarly, h2(x,−y0) is strictly mono-
tonically decreasing for x ∈ (−∞, 0), and strictly monotonically increasing for x ∈ (0,+∞).
Moreover, since h2(x, y) = h2(−x, y), it is evident that h2(x, y) is an even function with respect
to x. Therefore, for any x ∈ R, for any x̂ ∈ {x′ | |x′| < |x|}, we have h2(x̂, y0) > h2(±x, y0) and
h2(x̂,−y0) < h2(±x,−y0).

Since normalization typically transforms x into a smaller x̂, our normalized spherical projection
maps Cartesian coordinates to a smaller range of spherical coordinates. This results in the upper and
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BundleFusion
Methods Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ1 ↑ δ2 ↑ δ3 ↑

PixelNeRF (Yu et al., 2021) 0.6029 2.312 1.750 0.5904 46.34 72.38 83.89

MINE (Li et al., 2021) 0.1839 0.098 0.386 0.2386 65.53 91.78 98.21

VisionNeRF (Lin et al., 2023) 0.5958 2.468 1.783 0.5586 55.47 79.29 86.68

SceneRF (Cao & de Charette, 2023) 0.1766 0.094 0.368 0.2100 72.71 94.89 99.23

SplatterImage (Szymanowicz et al., 2024b) 0.2407 0.142 0.454 0.2710 57.06 89.00 97.99

Ours 0.0792 0.041 0.225 0.1101 95.28 99.30 99.75

Table 5: Novel depth synthesis on BundleFusion datasets.

SemanticKITTI BundleFusion
Methods IoU↑ Prec.↑ Rec.↑ IoU↑ Prec.↑ Rec.↑

SceneRF (Cao & de Charette, 2023) 13.84 17.28 40.96 20.16 25.82 47.92

Splatter Image (Szymanowicz et al., 2024b) 10.30 11.30 53.93 13.89 22.22 27.04

Ours 15.56 17.39 59.72 40.42 48.91 69.96

Table 6: Reconstruction evaluations on SemanticKITTI and BundleFusion datasets. We outperform
all other methods across all metrics.

lower edges of the images obtained from normalized spherical projection appear relatively flatter
than the un-normalized one.
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SceneRF Splatter Image Ours

Figure 12: 3D meshes on BundleFusion (val.).
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