
SimpleX: A Simple and Strong Baseline for
Collaborative Filtering

Kelong Mao1∗, Jieming Zhu2∗, Jinpeng Wang3, Quanyu Dai2, Zhenhua Dong2
Xi Xiao3★, Xiuqiang He2

1Gaoling School of AI, Renmin University of China
2Huawei Noah’s Ark Lab, Shenzhen, China

3Tsinghua Shenzhen International Graduate School, Tsinghua University, China
<mkl@ruc.edu.cn><jiemingzhu@ieee.org><wjp20@mails.tsinghua.edu.cn><daiquanyu@huawei.com>

<dongzhenhua@huawei.com><xiaox@sz.tsinghua.edu.cn><hexiuqiang1@huawei.com>

ABSTRACT
Collaborative filtering (CF) is a widely studied research topic in
recommender systems. The learning of a CF model generally de-
pends on three major components, namely interaction encoder,
loss function, and negative sampling. While many existing studies
focus on the design of more powerful interaction encoders, the
impacts of loss functions and negative sampling ratios have not
yet been well explored. In this work, we show that the choice of
loss function as well as negative sampling ratio is equivalently
important. More specifically, we propose the cosine contrastive
loss (CCL) and further incorporate it to a simple unified CF model,
dubbed SimpleX. Extensive experiments have been conducted on
11 benchmark datasets and compared with 29 existing CF models
in total. Surprisingly, the results show that, under our CCL loss
and a large negative sampling ratio, SimpleX can surpass most
sophisticated state-of-the-art models by a large margin (e.g., max
48.5% improvement in NDCG@20 over LightGCN). We believe that
SimpleX could not only serve as a simple strong baseline to foster
future research on CF, but also shed light on the potential research
direction towards improving loss function and negative sampling.

CCS CONCEPTS
• Information systems→Recommender systems;Collabora-
tive filtering.

KEYWORDS
Recommender systems; collaborative filtering; graph neural net-
works; contrastive loss

1 INTRODUCTION
Nowadays, personalized recommendation is ubiquitous in various
applications, such as video recommendation in YouTube [5], prod-
uct recommendation in Amazon [24], and news recommendation
∗ Both authors contributed equally to the work.
★ Corresponding Author.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
30th ACM International Conference on Information and Knowledge Management (CIKM
’21), November 1–5, 2021, Virtual Event, QLD, Australia, https://doi.org/10.1145/3459637.
3482297.

in Bing [34]. The goal of recommendation is to predict whether a
user will interact (e.g., click or purchase) with an item and thus help
users discover potential items of interests. Collaborative filtering
(CF) [27] is a fundamental task in recommendation that leverages
the collaborative information among users and items to predict
users’ preferences on candidate items. The simplicity and effective-
ness make it one of the most popular techniques in recommender
systems.

Generally, the learning process of a CF model can be separated to
three major components, including interaction encoder, loss func-
tion, and the negative sampling strategy used when only positive
(i.e.,implicit) feedbacks are available. Most existing studies focus
on the design of more powerful interaction encoders to capture
collaborative signals among users and items. Especially, the preva-
lence of deep learning motivates a rich line of work that applies
various neural networks to CF, including multi-layer perceptrons
(MLPs) [5, 11], auto-encoders [16], attention networks [3], trans-
formers [28], graph neural networks (GNNs) [10], and so on. Nev-
ertheless, these models tend to become more and more complex to
show performance improvements. This somehow limits their prac-
tical applicability in industrial recommender systems that demand
high efficiency.

On the contrary, few research efforts have been devoted to in-
vestigating the impacts of the latter two components. Specifically,
while multiple loss functions have been used in CF, such as Bayesian
personalized ranking (BPR) loss [22], binary cross-entropy loss [11],
softmax cross-entropy loss [5], pairwise hinge loss [12], and mean
square error loss [2], there is still a lack of systematic evaluation and
comparisons among different loss functions. Furthermore, many
recent GNN-based studies [10, 29, 30, 32, 33] experiment with the
BPR loss [22] and simply set the negative sampling ratio to a small
value (i.e., sampling 1 or 10 negative samples per positive user-
item pair). In this way, they can justify the superiority of their
proposed interaction encoders, but they neglect the importance of
loss functions and negative sampling in the learning of CF models.

In fact, we empirically observed that training with the BPR loss
and a small negative sampling ratio results in inferior results for
many CF models. In this paper, we show that choosing a suitable
loss function and a proper number of negative samples plays an
equal or more important role than an interaction encoder. Towards
this goal, we systematically compare multiple commonly-used loss
functions and also investigate the impact of negative sampling
ratio on each loss function. Moreover, inspired by the widely used

https://doi.org/10.1145/3459637.3482297
https://doi.org/10.1145/3459637.3482297

contrastive loss [8, 38] in computer vision, we propose a cosine
contrastive loss (CCL) tailored for CF. Our CCL loss optimizes the
embedding by maximizing the cosine similarity of a positive user-
item pair, while minimizing the similarity of a negative pair to a
certain margin. Surprisingly, we found that even a simple model
(e.g., MF), if paired with our proposed CCL loss, is sufficient to
surpass many sophisticated state-of-the-art models.

These findings raise questions about whether the current base-
lines are strong enough to verify the performance improvements
of the state-of-the-art CF models, and how much these sophis-
ticated models have really improved. Our work aims to answer
these questions. We argue that the current baselines might not be
strong enough, which could mislead us to overestimate the real
improvements of many new CF models. Instead of criticizing the
contributions of any existing work, the main goal of our work is to
build a simple and strong baseline model to foster future research
on CF.

In the design of SimpleX, we keep simplicity in mind and bor-
row ideas from several existing studies (e.g., average pooling in
YouTubeNet [5], attention in ACF [3]). We build Simplex as a uni-
fied model that integrates matrix factorization and user behaviour
modeling. Specifically, it comprises a behavior aggregation layer
(e.g., average pooling) to obtain a user’s preference vector from
the historically interacted items, and then fuses with the user em-
bedding vector via a weighted sum. More importantly, SimpleX is
optimized with our CCL loss and a large negative sampling ratio.
Although the interaction encoder of SimpleX seems quite simple
and might not be novel at all, we show that it could serve as a
super-strong baseline model and have great potential for industrial
applications because of its high efficiency.

For evaluation, we conduct comprehensive experiments on 11
benchmark datasets in total and compare with a total of 29 popular
CF models of different types. The results show that SimpleX outper-
formsmost sophisticated state-of-the-art methods by a largemargin
(up to 48.5% improvement in NDCG@20 over LightGCN [10] on
Amazon-Books). We also empirically compare the performance
of six representative loss functions and investigate the impact of
different negative sampling ratios on each loss function, which
demonstrates the superiority of our proposed CCL loss for CF tasks.
Furthermore, we evaluate the efficiency of SimpleX, which shows
more than 10x speedup over the simplified GNN-based CF model,
LightGCN [10]. We hope that our work could not only serve as a
simple and strong baseline to foster future research on CF, but also
attract more research efforts towards the co-design of interaction
encoders, loss functions, and negative sampling strategies.

The main contributions of our work are summarized as follows:

• We highlight the importances of loss functions and nega-
tive sampling in CF, and propose the cosine contrastive loss
accordingly.

• We present a simple and strong baseline model, SimpleX,
which could even attain much better performance than most
sophisticated state-of-the-art models.

• We perform experiments on 11 benchmark datasets and com-
pare SimpleX with 29 existing CF models to show its superi-
ority in terms of both effectiveness and efficiency.

2 BACKGROUND AND RELATEDWORK
In this section, we first give a formulation of collaborative filtering
and point out three important aspects in CF modeling. We then
summarize different categories of CF models.

2.1 Formulation of CF
The research of collaborative filtering includes implicit CF and
explicit CF. Implicit CF models learn from implicit feedback data,
e.g., click, visit, and purchase, while explicit CF models learn from
explicit feedbacks such as ratings. In this work, we focus on implicit
CF since it is more common in real recommendation scenarios.
Besides, it is also easy to transform explicit feedback to implicit
feedback via binarization. In implicit CF, a matrixY is used to denote
the user-item interactions, where 𝑦𝑢𝑖 = 1 if user u has observed
interaction with item i and 𝑦𝑢𝑖 = 0 otherwise.

As mentioned in Section 1, we highlight three vital aspects that
have a large impact to the learning process of CF models:

(1) Interaction Encoder. The function of the interaction en-
coder is to learn embeddings for each user and each item, which
capture collaborative signals in the interaction matrix that reflect
the behavioral similarity between users (or items). It is undoubtedly
the core of CF models and has been well studied. We give a brief
summary of interaction encoders in section 2.2.

(2) Loss Function. In general, there are two common types of
loss functions in CF. Pointwise loss functions such as binary cross-
entropy (BCE) and mean square error (MSE) treat the learning
process as a binary classification or a regression task. Pairwise loss
such as Bayesian personalized ranking loss (BPR) is optimized to
make the similarities of positive user-item pairs larger than the
negative ones.

(3) Negative Sampling. Since there are a lot of unobserved
entries, in most cases we need to perform negative sampling to im-
prove training efficiency. A few studies have been made to improve
the uniform random sampling for recommendation, including min-
ing informative negative samples (e.g., RNS [6], and NBPO [41]),
tackling the selection bias of implicit user feedback (e.g., MSN [36])
and so on. In this work, we mainly investigate the influence of the
negative sampling ratio. The existing studies are complementary
to our work and potential to be applied to our SimpleX model for
further improvement.

2.2 Summary of representative CF methods
We summarize representative CF methods into four categories:

(1) MF-based methods.Matrix factorization (MF) based algo-
rithms decompose the user-item interaction matrix into two low-
dimensional latent matrices for user and item representation. Due to
its effectiveness, MF has been wildly studied in CF. Manotumruksa
et al. proposed GRMF [19] that smoothed MF through adding the
graph Laplacian regularizer to introduce graph information. Yang
et al. devised a unified and efficient method called HOP-Rec [37]
that incorporated both MF and graph-based models for implicit
CF. Chen et al. designed ENMF [2], which is an efficient MF-based
CF model with modified MSE loss function. It can be optimized
efficiently without negative sampling for implicit feedback.

(2) Autoencoder-basedmethods.Autoencoder-based CFmeth-
ods leverage the autoencoder network architectures to learn item

embeddings. Such models are suitable to perform inductive recom-
mendation, i.e., learning from one group of users while performing
recommendation for another group of users with the same candi-
date items. For example, Liang et al. proposed Mult-VAE [16], which
applied variational autoencoder (VAE) for CF. Ma et al. proposed
MacridVAE [18] by disentangling user intents behind user-item
and leveraging 𝛽-VAE to simulate the generative process of a user’s
personal history interactions. Steck et al. designed a linear model
called EASER [26] that is geared toward sparse data, in particular
implicit feedback data, for the recommendation.

(3) GNN-based methods. Since the interaction data can be
naturally modelled as a user-item bipartite graph, recent studies
propose graph neural network (GNN) based CF models and report
state-of-the-art performance. GNN-based methods model the rec-
ommendation as the link prediction task between user nodes and
item nodes, where the higher-order collaborative signals can be ef-
fectively captured through multi-layers message passing. Ying et al.
proposed PinSage [39] that improved GraphSage [9] to model the
item-item relationships for Pinterest. Wang et al. devised NGCF [32]
that explicitly encoded the collaborative signals as high-order con-
nectivities by performing embedding propagation. He et al. pro-
posed LightGCN [10], which removed the feature transformation
and non-linear activation in NGCF and improved both performance
and efficiency. These successful applications of GNN in recommen-
dation further inspire many good studies, including BGCF [29]
which models the uncertainty in the user-item graph with bayesian
graph neural networks, DGCF [33] which models a distribution
over intents for each user-item interaction, NIA-GCN [30] and
NGAT4Rec [25] that learn neighborhood relationships, and SGL-
ED [35], DHCF [14], LCFN [40], and so on.

(4) Others. We put methods that do not fall into the first three
categories into this “Others” category. Here we list some represen-
tative models such as SLIM [21] which is a simple linear model
that combines the advantages of neighborhood- and model-based
CF approaches, MLPs-based NeuMF [11] and YouTubet [5], mem-
ory network-based CMN [7], metric learning-based CML [12], and
NBPO [41] that leverages noisy-label robust learning techniques.

3 SIMPLEX
In this section, we first present our cosine contrastive loss and the
SimpleXmodel architecture for CF. We then analyze its connections
to other existing models.

3.1 Cosine Contrastive Loss
In the CF literature, many different loss functions have been em-
ployed, including BPR loss [22], binary cross-entropy [11], softmax
cross-entropy [5], pairwise hinge loss [12], etc. However, there is
still a lack of a systematic comparison among them, leaving their
effects on model performance not well understood. In this work,
we not only make such a comparison, but also propose a new loss
function for CF, namely cosine contrastive loss (CCL). Given a pos-
itive user-item pair (𝑢, 𝑖) and a set of randomly sampled negative
samples (i.e., N), the CCL loss is expressed as follows:

L𝐶𝐶𝐿 (𝑢, 𝑖) = (1 − 𝑦𝑢𝑖) +
𝑤

|N |
∑
𝑗 ∈N

max(0, 𝑦𝑢 𝑗 −𝑚) (1)

where 𝑦𝑢𝑖 calculates the cosine similarity between the representa-
tion vectors of user𝑢 and item 𝑖 . |N | denotes the number of negative
samples.𝑚 is the margin to filter negative samples, which is usually
set to 0∼1. Intuitively, CCL is optimized to maximize the similarity
between positive pairs and minimize the similarity of negative pairs
below the margin𝑚.𝑤 is a hyper-parameter to control the relative
weights of positive-sample loss and negative-sample loss.

Design Choices. The formulation of CCL is simple and largely
inspired by the widely used contrastive loss [8, 38] in the computer
vision tasks, such as face recognition and image retrieval. But we
make several design choices that differ from most widely-used loss
functions in CF and greatly facilitate model training. First, instead of
applying dot product (e.g., in LightGCN [10]) or Euclidean distance
(e.g., in CML [12]) to measure the similarity (or distance) between a
user-item pair, we choose to compute the cosine similarity between
them. By applying L2 normalization on both representation vectors,
cosine similarity only calculates the angle difference and thus avoid
the effect of representation magnitude. This is favorable since the
magnitude of a user/item representation could be strongly biased
by its popularity in CF tasks. This is also similar to the calculation
of word similarity in Word2Vec [20], where cosine similarity is
usually used.

Second, when the number of negative samples becomes large,
there usually exist many redundant yet uninformative samples. But
existing loss functions (e.g., BPR [22]) treat every negative sam-
ple equivalently. As such, model training could be overwhelmed
by these uninformative samples, which significantly degrade the
model performance and also slows the convergence. In contrast,
CCL alleviates this problem by using a proper margin𝑚 to filter un-
informative negative samples. Intuitively, uninformative negative
samples will get zero loss in CCL when they have a small cosine
similarity below the margin𝑚. As a result, it helps automatically
identify those hard negative samples with cosine similarity larger
than𝑚, and thus facilitates better training of the model.

Third, we found that directly summing or averaging the loss
terms of all negative samples could degrade the model performance,
especially when the number of negative samples is large. This is
partially due to the high imbalance between positive and negative
samples (e.g., 1:1000 when |N | = 1000). We thus introduce a data-
dependent weight𝑤 to control the balance between positive loss
and negative loss. We emphasize that it also achieves a similar effect
to the confidence weight imposed on negative samples in weighted
matrix factorization [13].

3.2 Model Architecture
To leverage the advantages of CCL, we further propose a simple
CF model, dubbed SimpleX. In the design of SimpleX, we keep
simplicity in mind and borrow ideas from several successful models
such as YouTubeNet [5], ACF [3], and PinSage [39].

Figure 1 illustrates the overall architecture of SimpleX. It largely
follows the mechanism of MF, which factorizes users and items
into a common latent space. Yet, SimpleX also takes the interacted
item sequence of each user as additional input to better model user
behaviors. This also has been shown effective in many existing
studies, such as YouTubeNet [5] and ACF [3]. The key part of Sim-
pleX lies in its aggregation layer for behavior sequence aggregation.

Interacted ItemsUser Candidate Item

!
Weighted Sum

1 − !
Cosine

CCL Loss

Aggregation

Figure 1: The Simple Model Architecture of SimpleX.

Here we introduce three common aggregation choices, including
average pooling, self-attention, and user-attention, but Simplex is
a unified architecture that any other aggregation method should
also be applicable.

Suppose the historically interacted item set of user 𝑢 as H𝑢 ,
and we set its maximal size to 𝐾 . For users with a different size
of interacted items, either padding or chunking can be applied
accordingly. As such, the aggregated vector can be obtained as
follows:

𝑝𝑢 =
∑

𝑘∈H𝑢

𝐼𝑘 · 𝛼𝑘𝒆𝑘 , (2)

where 𝑒𝑘 ∈ R𝑑×1 is the 𝑑-dimensional embedding vector of item
𝑘 . 𝐼𝑘 denotes the mask indices toH𝑢 during padding, where 𝐼𝑘 =

0 indicates a padding token; otherwise 𝐼𝑘 = 1. 𝛼𝑘 denotes the
aggregation weight, which can be computed according to different
aggregation types as follows.

𝛼𝑘 =


𝐼𝑘∑

𝑘∈H𝑢
𝐼𝑘
, if average pooling,

𝐼𝑘 ·𝑒𝑥𝑝 (𝛽𝑘)∑
𝑗∈H𝑢

𝐼𝑘 ·𝑒𝑥𝑝 (𝛽 𝑗) , if self-attention or user-attention.
(3)

Average pooling provides a straightforward way to aggregate the
interacted items, which has been successfully applied in YouTubeNet [5].
But it treats each item equally and fails to account for the relative
importances of different items as well as a user’s preference on
each item. The attention mechanism, such as self-attention and
user-attention, can be applied in such cases as calculated in the
lower part of Equation 3. The difference between them lies in the
computation of 𝛽𝑘 , which is:

𝛽𝑘 =

{
𝑞𝑇 𝑡𝑎𝑛ℎ(𝑾1𝑒𝑘 + 𝑏1) , if self-attention,
𝑒𝑇𝑢 𝑡𝑎𝑛ℎ(𝑾2 × 𝑒𝑘 + 𝑏2) , if user-attention.

(4)

where 𝑞 ∈ R𝑑×1 is a learnable global query vector for self-attention
and 𝑒𝑢 is the user-specific query vector for user 𝑢 in user-attention.
𝑾1,𝑾2 ∈ R𝑑×𝑑 and 𝑏1, 𝑏2 ∈ R𝑑×1 are learnable parameters. Note
that similar attention mechanisms can be found in some existing
work [3, 34].

However, after behavior aggregation via Equation 2, the pooling
vector 𝑝𝑢 may lie in a different latent space with user vector 𝑒𝑢 . We
further fuse both parts to get the final user representation ℎ𝑢 :

ℎ𝑢 = 𝑔 · 𝑒𝑢 + (1 − 𝑔) ·𝑉𝑝𝑢 (5)

where 𝑽 ∈ R𝑑×𝑑 is a learnable parameter and 𝑔 is a hyperparameter
weight. Finally, we measure the cosine similarity 𝑦𝑢𝑖 between user
𝑢 and item 𝑖 as the input to our CCL loss.

𝑦𝑢𝑖 = 𝑐𝑜𝑠 (ℎ𝑢 , 𝑒𝑖) (6)

The above three aggregation layers provide different views for
aggregation, including global-average view, global-weighed view
and user-specific weighted view. The choice among them is quite
data-dependent. In our experiment, we show that average-pooling
is a robust aggregation method that always demands a first attempt
when applying SimpleX. The other two usually needs more efforts
to tune and in some cases brings marginal improvements.

3.3 Relationships to Existing Models
SimpleX is also related to multiple popular CF models.

• MF. MF is the most common model for CF. SimpleX follows
the similar mechanism of MF. When setting g = 1 in SimpleX,
it reduces to a MF model trained with CCL (i.e., MF-CCL).

• YouTubeNet. YouTubeNet is a successful model that has
been widely used in industry. SimpleX can be also seen as a
simplified YouTubeNet model (without using side features)
when average pooling is employed. The only difference is
that YouTubeNet employs concatenation instead of weighted
sum to fuse 𝑒𝑢 and 𝑝𝑢 . But the latter performs better in our
experiments.

• GNN-based models. Simplex is also similar to GNN-based
models. For instance, when choosing the user-attention ag-
gregation layer, it almost equals to a graph attention (GAT)
layer applied on user nodes only. If using the self-attention
aggregation layer, it works like the neighbor interaction in
NIA-GCN [30] as well.

We emphasize that although the design of SimpleX is simple and
might not be novel to some extent, it unifies several key components
in existing CF models. Surprisingly, such a simplemodel is suf-
ficient to surpass most state-of-the-art CF models by a large
margin, which could serve as simple and strong baseline for
future research.

4 EXPERIMENTS
In this section, we conduct comprehensive experiments to evalu-
ate SimpleX, including: 1) studying the impacts of loss functions
and negative sampling ratios, 2) making performance comparisons
to existing models on three main datasets, 3) incorporating CCL
to other models, 4) performing parameter analysis and efficiency
evaluation, 5) further validating SimpleX on some other datasets.

4.1 Experimental Setup
4.1.1 Dataset. We use 11 benchmark datasets in our study. For
fairness and ease of comparison, we choose those open datasets
that have been already split and preprocessed. Specifically:

(1) We employ three main datasets Amazon-Books, Yelp2018,
and Gowalla, which are commonly used in recent GNN-based CF
models [4, 10, 25, 32, 33, 35]. We perform most of our experiments
on them and further make comparisons to these GNN-based models.

Table 1: Performance of MF under different loss functions. The best result in each column is marked in bold.

Loss AmazonBooks Yelp18 Gowalla
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BPR Loss 0.0338 0.0261 0.0549 0.0445 0.1616 0.1366
Pairwise Hinge Loss 0.0352 0.0267 0.0562 0.0453 0.1318 0.0996
Binary Cross-Entropy 0.0479 0.0371 0.0617 0.0503 0.1321 0.1159
Softmax Cross-Entropy 0.0478 0.0367 0.0639 0.0522 0.1545 0.1276
Mean Square Error 0.0337 0.0267 0.0624 0.0513 0.1528 0.1315

Cosine Contrastive Loss 0.0559 0.0447 0.0698 0.0572 0.1837 0.1493

(2) To demonstrate the universality of SimpleX, we further test
SimpleX on some other datasets adopted by studies published in top-
tier conferences. Three of them, Amazon-CDs, Amazon-Movies,
Amazon-Beauty, are adopted by the work NIA-GCN [30] and
BGCF [29]. The other three, Amazon-Electronics, CiteUlike-
A, and Movielens-1M, are provided by NBPO [41], DHCF [14],
and LCFN [40], respectively. Specifically, we compare SimpleX
with the corresponding models on the corresponding datasets that
adopted in their original papers. For example, we will compare
with DHCF [14] on CiteUlike-A dataset because DHCF adopts this
dataset in their original paper.

(3) The last two are Movielens-20M and MillionSongData,
which are commonly used by autoencoder-based CF models, such
as Mult-VAE [16] and RecVAE [23]. We follow the strong generaliza-
tion setting, which split train/validation/test sets with different sets
of users, and specially make comparison with those autoencoder-
based CF models to further demonstrate the effectiveness of Sim-
pleX.

4.1.2 Compared Methods. We compare SimpleX with 29 existing
CF models of different types:

• Five methods based on MF and its variants, including MF-
BPR [15], GRMF [19], HOP-Rec [37], NeuMF [11], and ENMF [2];

• Four autoencoder-based methods, including Mult-VAE [16],
MacridVAE [18], EASER [26], and RecVAE [23];

• Fourteen GNN-based methods, including GC-MC [1], Pin-
sage [39], GAT [31], NGCF [32], DisenGCN [17], LR-GCCF [4],
NIA-GCN [30], LightGCN [10], DGCF [33], NGAT4Rec [25],
SGL-ED [35], BGCF [29], DHCF [14], and LCFN [40];

• Six methods of other types, including ItemPop, SLIM [21],
CML [12], YouTubeNet [5], CMN [7], and NBPO [41].

4.1.3 Implementation Details. We implement SimpleX in PyTorch.
Specifically, we set the batch size to 1024 by default. We use the
Adam optimizer and tune the learning rate among [1e-3, 5e-4, 1e-4].
We also employ 𝐿2 regularization on the embedding parameters
and search the regularization weight between 1e-9∼1e-2 with an
increase ratio of 5. For cosine contrastive loss, we search the num-
ber of negative samples from 1 to 2000. In many cases, we pick 100,
500, or 1000. The margin𝑚 is tuned among 0∼1 at an interval of 0.1,
for example, we set 0.4, 0.9, and 0.9 on Amazon-Books, Yelp2018,
and Gowalla, respectively. Meanwhile, we use the same embedding
size with the compared model, for example, 64 in LightGCN and
128 in LCFN. For fairness of comparison with existing models, we
report the results using the same evaluation metrics (e.g., Recall@20
and NDCG@20) and duplicate the reported results on their papers

for consistency. To facilitate reproducible research in the commu-
nity, we have contributed our source code and detailed benchmark
settings to the public Open-CF-Benchmark1.

4.2 Impact of Different Loss Functions
While most studies focus on the interaction encoder design, they
neglect the importance of loss functions in the learning of a CF
model. We make a systematic comparison on the impacts of differ-
ent loss functions. For this purpose, we choose one of the simplest
baseline CF models, i.e., MF, as the backbone to perform the experi-
ments, since simple models tend to be more illustrative. In addition
to our CCL loss, we evaluate MF on the following representative
loss functions:

• Bayesian personalized ranking (BPR) loss encourages
the similarity of a positive user-item pair to be higher than
that of each negative user-item pair. It is one of the most
commonly used loss function for CF research [10, 22, 32, 33].

• Pairwise hinge loss (PHL), is also known as max-margin
objective, which has been used in CML [12]. PHL forces
the distance of a negative user-item pair to be larger than a
positive one by at least the marginal distance.

• Binary cross-entropy (BCE) loss is commonly used for
binary classification, which has been adopted in the early
work NeuMF [11].

• Softmax cross-entropy (SCE) loss is widely used for multi-
class classification. YouTubeNet [5] cast item prediction as a
multi-class classification task through the SCE loss.

• Mean square error (MSE) has been widely used for CF,
such as WMF [13] and ENMF [2].

Table 1 shows the results of training MF with different loss func-
tions on Amazon-Books, Yelp2018, and Gowalla. Note that every
model has been trained with enough epochs to reach convergence
and the best results are reported. From the results, we have the
following observations:

1) CCL consistently achieves the best performance on all the
three datasets, outperforming the other loss functions by at least
16.7%, 9.2% and 13.7% w.r.t. Recall@20 on Amazon-Books, Yelp2018
and Gowalla, respectively.

2) BPR only appears to be strong on Gowalla and performs not
well on both Amazon-Books and Yelp2018. This demonstrates that
using BPR for training is probably sub-optimal, and thus the results
reported by many previous papers may need careful re-examination
and are likely to be further improved with our CCL loss.
1https://openbenchmark.github.io/collaborative-filtering

https://openbenchmark.github.io/collaborative-filtering

1 2 5 10 20 50 100 200 500 10002000
Number of Negative Samples

0.02

0.03

0.04

0.05

0.06

Re
ca

ll@
20

BPR
PHL
MSE
BCE
SCE
CCL

Figure 2: The effect of number of negative samples across
different loss functions on Amazon-Books.

Why CCL performs better than the other loss functions?
In addition to the design choices analyzed in Section 3.1, we further
highlight the advantages of CCL with some concrete comparisons.
First, in contrast to BPR, BCE, SCE, andMSE, CCL can automatically
filter out hard negative samples that are hard to distinguish (i.e.,
large cosine similarity) by the model via its margin mechanism. For
example, if we set𝑚 = 0.8, only those negative pairs with 𝑦𝑢𝑖 > 0.8
will contribute to the loss. Different from the above loss functions
that treat each negative sample equally, CCL allows the model
to emphasize on the learning of hard negative samples and thus
generate more discriminative representations. Second, compared
with PHL that also applies a margin mechanism, CCL is more
effective for CF. The PHL loss is determined by the relative distance
between positive samples and negative samples. Even if a negative
sample is actually hard to be distinguished (e.g., 𝑦𝑛𝑒𝑔

𝑢𝑖
= 0.8), it will

not contribute to learning if the corresponding positive sample has
𝑦
𝑝𝑜𝑠

𝑢𝑖
= 0.9. CCL avoids such ambiguity by penalizing the absolute

similarity 𝑦𝑢𝑖 of each negative sample.

4.3 Impact of Negative Sampling Ratio
We argue that negative sampling ratio is also important in the
learning of CF models, which has been largely ignored by existing
studies. To support our claims, we compare the performance of MF
trained with 1∼2000 negative samples on Amazon-Books. We also
repeat the experiment on different loss functions. We train each
model until convergence and report the best results, as shown in
Figure 2. We have the following observations from the results:

1) The number of negative samples does matter for CF model
training. Generally, increasing it within a certain range leads to
improvements. This suggests that we should carefully consider the
impact of the number of negative samples in the evaluation.

2) MF trained with CCL is consistently better than training with
the other loss functions under different negative sampling ratios,
further demonstrating the superiority of our CCL.

3) The performances of PHL, MSE, and BPR become stable when
the number of negative samples increases to 50. In contrast, CCL,
BCE, and SCE can keep performance gains with the increase of
number of negative samples, even when it reaches to 1000.

In summary, our experimental results show that both loss func-
tions and negative sampling ratios can have a large impact onmodel
performance. Training with the CCL loss and a large negative sam-
pling ratio appears to be a promising setting for CF methods to gain

higher performance. We therefore call for more future research
towards this direction.

4.4 Performance Comparison to SOTA Models
In this section, we provide a comprehensive comparison results
of SimpleX and other 23 CF models on three main datasets, i.e.,
Amazon-Books, Yelp2018, and Gowalla, which are very commonly
adopted in CF studies (especially in GNN-based CF), to demonstrate
the superiority of SimpleX. Table 2 shows our performance com-
parisons on Amazon-Books, Yelp2018, and Gowalla under the same
evaluation protocol, and we have the following observations:

1) Our SimpleX achieves the best overall performance on all the
three datasets. In particular, compared with the most recent Light-
GCN, SimpleX makes 41.9%, 8.0%, and 2.3% performance improve-
ments on Recall@20 for Amazon-Books, Yelp2018, and Gowalla,
respectively, demonstrating the high effectiveness of SimpleX. Be-
sides, note that we do not report the results of SGL-ED [35] and
NGAT4Rec [25] on Gowalla since they are not evaluated on Gowalla
but only evaluated on the other two datasets in their original papers
too, and the authors have not released their code. As the experi-
mental settings of SGL-ED and NGAT4Rec are exactly same as us,
we just report their results on Amazon-Books and Yelp2018.

2) The performance of MF-CCL is surprising. When using CCL
as the loss function, the performance of MF is not only much better
than the results of MF-BPR reported in the previous paper, but
also reaches a new state-of-the-art performance (if leaving out
our SimpleX) on Amazon-Books and Yelp2018. On Gowalla, it also
achieves comparable performance compared to the previous best
model DGCF. Such results strongly suggest that loss functions can
make a big difference and should be carefully chosen and studied.

3) YouTubeNet, CML, and SLIM are three models that we added
and have not been tested on these three datasets before by the ex-
isting work. We found that they achieve pretty good performance.
Specifically, these three models can averagely outperform a rep-
resentative GNN-based CF model – NGCF, by more than 24% and
28% w.r.t. Recall@20 and NDCG@20, respectively. This implies that
the current baselines are relatively weak, which may lead us to
overestimate how much real progress we have made in CF.

4) In CF tasks, more complex models not always lead to better
performance. The designs of SLIM, YouTubeNet, CML,MF-CCL, and
our SimpleX are all much more concise than most of autoencoder-
based (e.g., Mult-VAE and MacridVAE) and GNN-based models (e.g.,
NGCF, NIA-GCN, and DGCF), but they can achieves better per-
formance. This also reveals that the current trend in CF research,
which pays too much attention to the design of sophisticated inter-
action encoders while ignoring the impacts of loss functions and
negative sampling, needs to be improved.

4.5 Incorporating CCL to Other Models
In Table 2, we have shown that one of the simplest models, i.e.,
MF, can even largely outperforms most of state-of-the-art models
if training with CCL. We are curious about how other models will
perform if incorporated with CCL instead of their original losses.
Therefore, in this part, we take experiments with two effective CF
models in addition, i.e., YouTubeNet and LightGCN with CCL, and
report the results on Amazon-Books and Yelp2018 in Table 3.

Table 2: Performance comparison to popular CF models. We highlight the top-5 best results in each column. RI stands for
relative improvement. We also report the average RI over NGCF for each model if applicable. For models marked with ∗, part
of the results are duplicated from existing papers for consistency.

Amazon-Books Yelp2018 Gowalla Avg RI over NGCFPublication Model Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20
– ItemPop 0.0051 0.0044 0.0124 0.0101 0.0416 0.0317 – –

UAI’2009 MF-BPR 0.0338 0.0261 0.0576 0.0468 0.1627 0.1378 – –
NIPS’2015 GRMF∗ 0.0354 0.0270 0.0571 0.0462 0.1477 0.1205 – –

RecSys’2016 YouTubeNet 0.0502(4) 0.0388(4) 0.0686(3) 0.0567(3) 0.1754(5) 0.1473(5) 32.2% 33.3%
WWW’2017 NeuMF∗ 0.0258 0.0200 0.0451 0.0363 0.1399 0.1212 – –
WWW’2017 CML 0.0522(3) 0.0428(3) 0.0622 0.0536 0.1670 0.1292 29.6% 37.6%
SIGIR’2018 CMN∗ 0.0267 0.0218 0.0457 0.0369 0.1405 0.1221 – –

RecSys’2018 HOP-Rec∗ 0.0309 0.0232 0.0517 0.0428 0.1399 0.1214 – –
WWW’2018 Mult-VAE∗ 0.0407 0.0315 0.0584 0.0450 0.1641 0.1335 9.6% 7.1%
NeurIPS’2019 MacridVAE∗ 0.0383 0.0295 0.0612 0.0495 0.1618 0.1202 8.5% 8.0%

TOIS’2020 ENMF 0.0359 0.0281 0.0624 0.0515 0.1523 0.1315 6.1% 7.4%
GNN-based Models

KDDW’2018 GC-MC∗ 0.0288 0.0224 0.0462 0.0379 0.1395 0.1204 – –
KDD’2018 PinSage∗ 0.0282 0.0219 0.0471 0.0393 0.1380 0.1196 – –
ICLR’2018 GAT∗ 0.0326 0.0235 0.0543 0.0431 0.1401 0.1236 – –
SIGIR’2019 NGCF∗ 0.0344 0.0263 0.0579 0.0477 0.1570 0.1327 – –
ICML’2019 DisenGCN∗ 0.0329 0.0254 0.0558 0.0454 0.1356 0.1174 – –
AAAI’2020 LR-GCCF 0.0335 0.0265 0.0561 0.0343 0.1519 0.1285 – –
SIGIR’2020 NIA-GCN∗ 0.0369 0.0287 0.0599 0.0491 0.1359 0.1106 6.9% 4.8%
SIGIR’2020 LightGCN∗ 0.0411 0.0315 0.0649 0.0530 0.1830(4) 0.1554(3) 15.8% 15.4%
SIGIR’2020 DGCF∗ 0.0422 0.0324 0.0654 0.0534 0.1842(2) 0.1561(1) 17.8% 17.6%
Arxiv’2020 NGAT4Rec∗ 0.0457 0.0358 0.0675(4) 0.0554(5) – – 24.7% 26.1%
SIGIR’2021 SGL-ED∗ 0.0478(5) 0.0379(5) 0.0675(4) 0.0555(4) – – 27.8% 30.2%

Ours
CIKM’2021 MF-CCL 0.0559(2) 0.0447(2) 0.0698(2) 0.0572(2) 0.1837(3) 0.1493(4) 41.6% 45.0%
CIKM’2021 SimpleX 0.0583(1) 0.0468(1) 0.0701(1) 0.0575(1) 0.1872(1) 0.1557(2) 45.3% 49.2%

RI over NGCF 69.6% 77.9% 21.1% 20.6% 19.2% 17.3%
RI over LighGCN 41.9% 48.5% 8.0% 8.5% 2.3% 0.2%

From the results, we find that training YouTubeNet and Light-
GCN with CCL instead of their original loss functions, i.e, SCE and
BPR respectively, can bring good improvements. This demonstrates
that CCL is likely to be a more promising loss function to help
CF models achieve better performance. Besides, we observe that
the improvements brought by CCL on YouTubeNet and LightGCN
are not as significant as those on MF. CCL seems to improve these
models to a similar level of performance. This may be because of the
following reason: Generally, valuable collaborative information can
be captured by both the interaction encoder and the loss function.
As the encoders of YouTubeNet and LightGCN are sophisticated
and stronger to learn biased collaborative signals, by contrast, the
impact of the loss function to them appears relatively small.

In addition, it is worth noting that our main focus is to question
the value of sophisticated encoders and provide a simple strong
baseline, but not to improve current state-of-the-art CF models
by exhaustingly trying of various loss functions. Based on the
experiments with MF, YouTubeNet, and LightGCN, we demonstrate
and highlight that the loss function is a large bottleneck in CF
models. We expect our work could inspire more research to study

Table 3: Performance of different models trained with CCL
v.s. their original losses.

Model Amazon-Books Yelp2018
Recall@20 NDCG@20 Recall@20 NDCG@20

MF-BPR 0.0338 0.0261 0.0549 0.0445
MF-CCL 0.0559 0.0447 0.0698 0.0572

YouTubeNet 0.0502 0.0388 0.0655 0.0537
YouTubeNet-CCL 0.0544 0.0430 0.0685 0.0563

LightGCN 0.0411 0.0315 0.0649 0.0530
LightGCN-CCL 0.0528 0.0416 0.0669 0.0554

the co-design of the interaction encoder, loss function, and negative
sampling.

4.6 Parameter Analysis on SimpleX
We investigate the performance of three different behavior aggrega-
tion layers, the fusing weight 𝑔, and the negative loss weight𝑤 . Re-
sults on Amazon-Books and Yelp2018 are shown in Table 4. We can
make the following observations: 1) Average pooling, self-attention,

Table 4: Parameter analysis results on SimpleX.

Ablations Amazon-Books Yelp2018
Recall@20 NDCG@20 Recall@20 NDCG@20

avg_pooling 0.0583 0.0468 0.0701 0.0575
self_attn. 0.0580 0.0462 0.0698 0.0576
user_attn. 0.0551 0.0436 0.0698 0.0574
g = 0 0.0534 0.0429 0.0679 0.0555
g = 0.5 0.0583 0.0468 0.0688 0.0565
g = 1 0.0540 0.0432 0.0701 0.0575
𝑤 = 1 0.0163 0.0128 0.0238 0.0189
𝑤 = 150 0.0542 0.0429 0.0701 0.0575
𝑤 = 300 0.0583 0.0468 0.0666 0.0549
𝑤 = 1000 0.0481 0.0379 0.0568 0.0463

Table 5: Efficiency comparison on Amazon-Books, w.r.t. the
average training time per epoch, the number of epochs to
converge, and the total training time.

Model Time/Epoch #Epochs Training Time
ENMF 129s 81 2h54m

LightGCN 51s 780 11h3m
SimpleX (|N |=100) 40s 28 19m
SimpleX (|N |=1000) 131s 35 1h16m

and user-attention obtain very similar results on Amazon-Books
and Yelp2018, respectively. This shows the robustness of apply av-
erage pooling for behavior aggregation in practice. SimpleX with
𝑔 = 0.5 reaches higher performance compared with the other two
settings on Amazon-Books, which shows that importance of fusing
user embedding with user behavior aggregation. 2) The negative
weight𝑤 which adjusts the ratio of positive and negative losses is
vital to model’s performance. In general, too small (𝑤 = 1) or too
large (𝑤 = 1000) difference between positive and negative losses
leads to performance reduction.

4.7 Efficiency Comparison
Our SimpleX has high efficiency due to its simple design.We numeri-
cally compare the training time of SimpleXwith two state-of-the-art
CF models, i.e., ENMF and LightGCN, which are relatively efficient
in their respective categories, on Amazon-Books. The efficiency
experiments are conducted on the same Intel(R) Xeon(R) Silver 4210
CPU @2.20GHz machine with one GeForce RTX 2080 GPU. We
compare them under the same implementation framework, using
the same acceleration methods (e.g., implementing the sampling
with C++) to ensure fairness. Specifically, we present the averaged
training time per epoch, the number of epochs that the model needs
to reach the level of performance reported in the original paper,
and the total training time (test time is not included), in Table 5.

It turns out that SimpleX is much more efficient than ENMF
and LightGCN overall. Specifically, SimpleX only needs around
30 epochs to converge in training, which is more convenient for
real application. The total training time of SimpleX with a 1000:1
negative sampling ratio has around 2x and 10x speedup compared
with ENMF and LightGCN respectively. Moreover, if we decrease

the negative sampling ratio to 100:1, the training time for one
epoch of SimpleX can be optimized to 40s, finally resulting in only
19 minutes total training time. Certainly, the performance slightly
drops compared with using a 1000:1 negative sampling ratio, but
it still maintains a pretty good level (much better than ENMF and
LightGCN). Such high efficiency makes our model promising to be
applied in large-scale real recommender systems.

4.8 Evaluating SimpleX on More Datasets
In addition to the threemain datasets used in the above sub-sections,
we additionally evaluate SimpleX on 8 more datasets to further
demonstrate the generability of SimpleX.

Table 6 shows the comparison results to some state-of-the-art
CF models published in 2020. For fairness of comparison, we use
the same data preprocessing and experimental settings (embedding
dimensions and evaluation metrics) provided by the correspond-
ing papers. We observed that SimpleX consistently outperforms
all the compared models on different datasets. The performance
improvements are especially large (12.8% to 33.6% improvement in
NDCG@20) on Amazon-CDs, Amazon-Movies and Amazon-Beauty
compared to BGCF, a recent GNN-based model. This again strongly
verifies the effectiveness and robustness of SimpleX to serve as a
strong baseline in future work.

Moreover, we also make a comparison to some autoencoder-
based models, including SLIM, Mult-VAE, EASER, and RecVAE. It is
worth noting that our experiment also follows the same setting with
them. In particular, we adopt the strong generalization protocol,
where the training, validation and test sets are disjoint in terms of
users. This requires the model to perform inductive learning during
inference. That is, only item embeddings can be learned during
training and then transferred to the validation and test sets for
prediction. To achieve this, we simplify SimpleX by setting 𝑔 = 0
in this experiment and only learn user representations from their
historically interacted items.

Table 7 presents the evaluation results on Movielens-20M and
MillionSongData. We can see that SimpleX obtains better perfor-
mance than SLIM, which is a well-known strong baseline for CF.
But it does not surpass Mult-VAE, EASER and RecVAE given their
complete forms. This is reasonable because all of them use many
more parameters (O(|𝐼 | ∗600) for Mult-VAE and RecVAE, O(|𝐼 | ∗ |𝐼 |)
for EASER) than SimpleX, as shown in the “#Params" columns. Note
that both Mult-VAE and RecVAE use 600 as the dimension of the
first hidden layer. As the number of items (|𝐼 |) easily reaches mil-
lions to billions in industrial recommender systems, we choose
a small embedding dimension (i.e., 64) and results in parameters
in the scale of O(|𝐼 | ∗ 64). To make the comparison more fair, we
reduce the embedding dimensions of baseline models accordingly.
Specifically, for Mult-VAE and RecVAE, we set its encoder and de-
coder as a single (|𝐼 | ∗ 64)-dimensional dense layer. For EASER,
we decompose its item similarity matrix (denoted as B) to two
(|𝐼 | ∗ 64)-dimensional sub-matrices by truncated SVD, and multiply
the two sub-matrices to approximate the item similarity matrix to
perform predictions. In this setting, SimpleX clearly outperform
these autoencoder based CF models.

Overall, our comprehensive experimental results on various
datasets show that our SimpleX is simple and strong to serve as a

Table 6: Performance comparison to some more models published in 2020. We use the same dataset settings and report the
same metrics with the original papers. We also duplicate their reported results for consistency.

Amazon-CDs Amazon-Movies Amazon-Beauty
Model Recall@20 NDCG@20 Model Recall@20 NDCG@20 Model Recall@20 NDCG@20
NGCF 0.1258 0.0792 NGCF 0.0866 0.0555 MF-BPR 0.1312 0.0778

NIA-GCN 0.1487 0.0932 NIA-GCN 0.1058 0.0683 NGCF 0.1513 0.0917
BGCF 0.1506 0.0948 BGCF 0.1066 0.0693 BGCF 0.1534 0.0912

SimpleX 0.1763 0.1145 SimpleX 0.1342 0.0926 SimpleX 0.1721 0.1028
RI over NIA-GCN 18.6% 22.9% RI over NIA-GCN 26.8% 35.5% – – –

RI over BGCF 17.1% 20.8% RI over BGCF 25.9% 33.6% RI over BGCF 12.2% 12.8%

Amazon-Electronics CiteUlike-A Movielens-1M
Model F1@20 NDCG@20 Model Precision@20 Recall@20 Model F1@20 NDCG@20
MF-BPR 0.0275 0.0680 NGCF 0.0517 0.0193 NGCF 0.1582 0.2511
NBPO 0.0313 0.0810 DHCF 0.0635 0.0249 LCFN 0.1625 0.2603
SimpleX 0.0338 0.0842 SimpleX 0.0754 0.0269 SimpleX 0.1658 0.2670

RI over NBPO 8.0% 4.0% RI over DHCF 18.7% 8.2% RI over LCFN 2.0% 2.6%

Table 7: Performence comparison to autoenoder-based models on Movielens-20M and MillionSongData.

Model Movielens-20M MillionSongData
Recall@20 Recall@50 NDCG@100 #Params Recall@20 Recall@50 NDCG@100 #Params

SLIM 0.370 0.495 0.401 – – – – –
Mult-VAE 0.395 0.537 0.426 24.5M 0.266 0.363 0.313 49.7M
EASER 0.391 0.521 0.420 404.3M 0.333 0.428 0.389 1,692M
RecVAE 0.414 0.553 0.442 16.5 M 0.276 0.374 0.326 33.3M

Mult-VAE (d=64) 0.375 0.514 0.407 2.6M 0.230 0.319 0.280 5.3M
EASER (d=64) 0.361 0.487 0.392 2.6M 0.170 0.235 0.205 5.3M
RecVAE (d=64) 0.385 0.520 0.412 2.6M 0.232 0.319 0.280 5.3M
SimpleX (d=64) 0.389 0.523 0.416 1.3M 0.245 0.329 0.293 2.6M
RI over Mult-VAE 3.8% 1.7% 2.3% 6.5% 3.2% 4.7%
RI over EASER 7.8% 7.4% 6.2% 44.0% 40.3% 43.3%
RI over RecVAE 1.1% 0.6% 1.1% 5.8% 3.2% 4.8%

new baseline model to facilitate future research on CF. The avail-
ability of this baseline would allow for more solid experimental
evaluations and more fair comparisons among CF models.

5 CONCLUSION
In this paper, we study the progress made in CF research and iden-
tify three key aspects for CF modeling. While most research focuses
on interaction encoders, the impacts of loss functions and nega-
tive sampling on CF models have been largely neglected. In this
work, we highlight their impacts and further propose the cosine
contrastive loss together with a simple and strong baseline for CF,
dubbed SimpleX. It outperforms most state-of-the-art CF models
by a large margin. Our work released the simple and strong base-
line model and the whole benchmarking results for foster future
research on CF. We conduct extensive experiments to validate the
effectiveness and efficiency of SimpleX. We suggest that the CF
community should pay more attention to other key components

in addition to interaction encoders and encourage researchers to
conduct more robust empirical evaluation.

6 ACKNOWLEDGEMENTS
This work was supported in part by the National Natural Science
Foundation of China (61972219), the Research andDevelopment Pro-
gram of Shenzhen (JCYJ20190813174403598, SGDX20190918101201696),
the National Key Research and Development Program of China
(2018YFB1800601), and the Overseas Research Cooperation Fund of
Tsinghua Shenzhen International Graduate School (HW2021013).

REFERENCES
[1] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2018. Graph Convolu-

tional Matrix Completion. In KDD’18 Deep Learning Day.
[2] Chong Chen, Min Zhang, Yongfeng Zhang, Yiqun Liu, and Shaoping Ma. 2020.

Efficient Neural Matrix Factorization without Sampling for Recommendation.
ACM Transactions on Information Systems (TOIS) 38, 2 (2020), 1–28.

[3] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive Collaborative Filtering: Multimedia Recommendation

with Item- and Component-Level Attention. In Proceedings of the 40th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR). 335–344.

[4] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting
Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional
Network Approach. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI). 27–34.

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM conference on
Recommender Systems (RecSys). 191–198.

[6] Jingtao Ding, Yuhan Quan, Xiangnan He, Yong Li, and Depeng Jin. 2019. Rein-
forced Negative Sampling for Recommendation with Exposure Data. In Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
(IJCAI). 2230–2236.

[7] Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network for
Recommendation Systems. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval (SIGIR). 515–524.

[8] Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality Reduction by
Learning an Invariant Mapping. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR). 1735–1742.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Advances in Neural Information Processing Systems
(NeurIPS). 1024–1034.

[10] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Net-
work for Recommendation. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval (SIGIR). 639–648.

[11] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web (WWW). 173–182.

[12] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative Metric Learning. In Proceedings of the 26th
International Conference on World Wide Web (WWW). 193–201.

[13] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. In Proceedings of the 8th IEEE International Conference
on Data Mining (ICDM). 263–272.

[14] Shuyi Ji, Yifan Feng, Rongrong Ji, Xibin Zhao, Wanwan Tang, and Yue Gao. 2020.
Dual Channel Hypergraph Collaborative Filtering. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD).
2020–2029.

[15] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization Tech-
niques for Recommender Systems. Computer 42, 8 (2009), 30–37.

[16] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In Proceedings of the 2018
World Wide Web Conference (WWW). 689–698.

[17] JianxinMa, Peng Cui, KunKuang, XinWang, andWenwuZhu. 2019. Disentangled
Graph Convolutional Networks. In International Conference on Machine Learning
(ICML). 4212–4221.

[18] Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu. 2019. Learn-
ing Disentangled Representations for Recommendation. In Advances in Neural
Information Processing Systems (NeurIPS). 5711–5722.

[19] JaranaManotumruksa, CraigMacdonald, and Iadh Ounis. 2017. A Deep Recurrent
Collaborative Filtering Framework for Venue Recommendation. In Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management (CIKM).
1429–1438.

[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
In Advances in Neural Information Processing Systems (NeurIPS). 3111–3119.

[21] Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods for Top-N
Recommender Systems. In IEEE 11th International Conference on Data Mining
(ICDM). 497–506.

[22] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI). 452–
461.

[23] Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin Malykh, and Sergey I.
Nikolenko. 2020. RecVAE: A New Variational Autoencoder for Top-N Recommen-
dations with Implicit Feedback. In The Thirteenth ACM International Conference
on Web Search and Data Mining (WSDM). 528–536.

[24] Brent Smith and Greg Linden. 2017. Two Decades of Recommender Systems at
Amazon.com. IEEE Internet Comput. 21, 3 (2017), 12–18.

[25] Jinbo Song, Chao Chang, Fei Sun, Xinbo Song, and Peng Jiang. 2020. NGAT4Rec:
Neighbor-Aware Graph Attention Network For Recommendation. arXiv preprint
arXiv:2010.12256 (2020).

[26] Harald Steck. 2019. Embarrassingly Shallow Autoencoders for Sparse Data. In
The World Wide Web Conference (WWW). 3251–3257.

[27] Xiaoyuan Su and TaghiM. Khoshgoftaar. 2009. A Survey of Collaborative Filtering
Techniques. Adv. Artif. Intell. 2009 (2009), 421425:1–421425:19.

[28] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Rep-
resentations from Transformer. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management (CIKM). 1441–1450.

[29] Jianing Sun, Wei Guo, Dengcheng Zhang, Yingxue Zhang, Florence Regol,
Yaochen Hu, Huifeng Guo, Ruiming Tang, Han Yuan, Xiuqiang He, et al. 2020.
A Framework for Recommending Accurate and Diverse Items Using Bayesian
Graph Convolutional Neural Networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD). 2030–
2039.

[30] Jianing Sun, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Xiuqiang He,
ChenMa, andMark Coates. 2020. Neighbor Interaction Aware Graph Convolution
Networks for Recommendation. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR).
1289–1298.

[31] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations (ICLR).

[32] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR). 165–174.

[33] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua.
2020. Disentangled Graph Collaborative Filtering. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR). 1001–1010.

[34] Chuhan Wu, Fangzhao Wu, Mingxiao An, Jianqiang Huang, Yongfeng Huang,
and Xing Xie. 2019. NPA: Neural News Recommendation with Personalized
Attention. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD). 2576–2584.

[35] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,
and Xing Xie. 2021. Self-supervised Graph Learning for Recommendation. In
Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR). 726–735.

[36] Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon Xiaom-
ing Wang, Taibai Xu, and Ed H Chi. 2020. Mixed Negative Sampling for Learning
Two-tower Neural Networks in Recommendations. In Companion Proceedings of
the Web Conference (WWW). 441–447.

[37] Jheng-Hong Yang, Chih-Ming Chen, Chuan-Ju Wang, and Ming-Feng Tsai. 2018.
HOP-Rec: High-order Proximity for Implicit Recommendation. In Proceedings of
the 12th ACM Conference on Recommender Systems (RecSys). 140–144.

[38] Shuo Yang, Wei Yu, Ying Zheng, Hongxun Yao, and Tao Mei. 2019. Adaptive
Semantic-Visual Tree for Hierarchical Embeddings. In Proceedings of the 27th
ACM International Conference on Multimedia (MM). 2097–2105.

[39] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-scale
Recommender Systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD). 974–983.

[40] Wenhui Yu and Zheng Qin. 2020. Graph Convolutional Network for Recom-
mendation with Low-pass Collaborative Filters. In International Conference on
Machine Learning (ICML). 10936–10945.

[41] Wenhui Yu and Zheng Qin. 2020. Sampler Design for Implicit Feedback Data
by Noisy-label Robust Learning. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR).
861–870.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Formulation of CF
	2.2 Summary of representative CF methods

	3 SimpleX
	3.1 Cosine Contrastive Loss
	3.2 Model Architecture
	3.3 Relationships to Existing Models

	4 Experiments
	4.1 Experimental Setup
	4.2 Impact of Different Loss Functions
	4.3 Impact of Negative Sampling Ratio
	4.4 Performance Comparison to SOTA Models
	4.5 Incorporating CCL to Other Models
	4.6 Parameter Analysis on SimpleX
	4.7 Efficiency Comparison
	4.8 Evaluating SimpleX on More Datasets

	5 Conclusion
	6 Acknowledgements
	References

