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Abstract

In this paper, we propose a data based transformation for infinite-dimensional Gaussian
processes and derive its limit theorem. In a clustering problem using mixture models, an
appropriate modification of this transformation asymptotically leads to perfect separation
of the populations. Theoretical properties related to label consistency are studied for the
k-means clustering algorithm when used on this transformed data. Good empirical perfor-
mance of the proposed methodology is demonstrated using simulated as well as benchmark
data sets, when compared with some popular parametric and nonparametric methods for
such functional data.

Keywords: Consistency in probability, Difference in covariance operators, Hajek and Feldman property, J
class problem, Location and scale differences, Mahalanobis’ distances.

1 Introduction

Suppose that we are given two Gaussian distributions (say, GDs) P1 and P2. The Hajek and Feldman
property (established independently by Hajek (1958) and Feldman (1958)) states that P1 and P2 are either
equivalent, or else mutually singular. In other words, for every measurable set A, P1(A) = 0 if and only if
P2(A) = 0, or else there exist two disjoint measurable sets S1 and S2 such that

P1(S1) = 1,P2(S1) = 0 and P1(S2) = 0,P2(S2) = 1.

Mutual singularity is not very interesting in finite dimensions because it happens only when at least one of
the covariance matrices is singular. However, in the functional setting, this singularity appears in non-trivial
situations. To mention an example, it was shown by Rao and Varadarajan (1963) that if the covariance
operators of P1 and P2, namely, Σ1 and Σ2 satisfy Σ2 = aΣ1 for some a ̸= 1, then P1 and P2 are mutually
singular.

It is clear that the mutually singular case of the Hajek and Feldman property (say, HFp) looks very promising
for classification as well as clustering (in the mixture setting) of data points. Recently, some results have
appeared taking advantage of this property to propose perfect classifiers (see the references given below).
However, the clustering problem seems to be harder, and as far as we know, Delaigle et al (2019) is the
only available paper with results in this area. The main drawbacks of the paper by Delaigle et al (2019) are
that it deals mainly with location problems (see Section M of Appendix II for a detailed discussion). In this
paper, we present a family of transformations on functional data which allows one to identify some mutually
singular situations. The transformed data are then used to obtain perfect clustering in the mixture setting.

To give an overview of our main contributions, let us consider a Gaussian process (say, Z) defined on a
bounded real interval, which without loss of generality, we identify with the unit interval [0, 1]. Further,
assume that its trajectories belong to the Hilbert space of square integrable functions H, which is defined as
follows:

H : set of real functions f(t) with t ∈ [0, 1] such that
∫ 1

0
f2(t)dt < ∞.
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The inner product in H is ⟨f, g⟩ =
∫ 1

0
f(t)g(t)dt. The keystone of this paper is Theorem 2.1. It states

that under appropriate assumptions, if b ∈ H, then the limit of a sequence of scaled Mahalanobis distances
between some finite-dimensional projections of Z and b converges in probability to a non-random limit.
Scaling is done using the dimension of the projection, and this convergence holds as the dimension goes to
infinity. Practical interest of this result lies in the fact that the limit depends only on the distribution of Z
(say, PZ). Therefore, Theorem 2.1 allows one to identify some cases in which GDs are mutually singular.
In such scenarios, this result allows one to obtain perfect classification as well as perfect clustering. Let us
explain this point a bit more precisely.

Consider a probability distribution P such that P =
∑J

h=1 πhPh, where 0 < πh < 1 with
∑J

h=1 πh = 1 and
Ph are GDs on H for 1 ≤ h ≤ J . Additionally, assume P to be known, but the precise values of J , πh and Ph

for 1 ≤ h ≤ J are unknown. According to this mixture model, every function z produced by P was in fact
generated from one of the Ph’s. Consequently, under appropriate conditions, the proposed transformation
leads to different limits (depending on the Ph which generated z) in Theorem 2.1. Now, if we have a set
of observations (with at least one observation from each Ph), we can identify the value of J as well as the
subsets of observations produced by each Ph with high probability using a large value of the dimension.

We believe that the HFp should have attracted the attention of researchers in classification and clustering
for functional data, the ‘orthogonality case’ apparently being more attractive because it would allow one
to obtain perfect classification and perfect clustering. It took 50 years before the HFp was formally used in
classification. To the best of our knowledge, the first paper using HFp in classification was Baillo et al (2011),
where the authors derived a classification procedure using likelihood ratios. They focused on the ‘equivalence
case’ and hence, did not obtain perfect classification. Optimal classification of Gaussian processes (say, GPs)
was analyzed in Torrecilla et al (2020) from the HFp viewpoint. Further, the optimal (Bayes’) classifier
of equivalent GPs was derived and a procedure to obtain asymptotically perfect classification of mutually
singular GPs was described as well. The results covered both homoscedastic and heteroscedastic cases.
Additionally, Delaigle and Hall (2012) and Delaigle and Hall (2013) investigated conditions under which a
perfect classification procedure for GPs was possible and developed related classifiers. The paper by Dai
et al (2017) proposed a functional classifier based on ratio of density functions, which also leads to perfect
classification. These papers contain no reference of the HFp. In fact, the relationship between Delaigle and
Hall (2012) and the HFp was analyzed in Berrendero et al (2018), where the authors presented an expression
of the optimal Bayes’ rule in some classification problems for functional data. As mentioned earlier, perfect
clustering has been studied by Delaigle et al (2019) only.

In Rao and Varadarajan (1963) and Shepp (1966b), the authors obtained characterizations of the singularity
or equivalence of Gaussian measures in functional spaces. Their results involve increasing sequences of
subspaces. For equivalent GDs, the limit obtained in Rao and Varadarajan (1963) includes a term which is
the exponential of an expression involving the difference of the means of P1 and P2. Curiously, the logarithm
of this term is related with the expressions of our limits. Similarities between our proposal and those in
Rao and Varadarajan (1963) and Shepp (1966b) end here because the other involved terms are different.
Moreover, we handle Mahalanobis distances between data points, while these papers use Hellinger and Jeffreys
functionals to measure discrepancy between distributions. As a consequence, the characterizations they obtain
are not applicable in practice to classify or cluster data points because they depend on the full distribution.
It is not straight forward to compute such functionals using data points.

In this paper, we first analyze the limit of the above mentioned scaled Mahalanobis’ distances by assuming
the underlying parameters of the GPs to be known in Section 2. We begin with a general concentration result
in Theorem 2.1. Then, we propose a transformation for clustering that asymptotically yield perfect separation
among the clusters (see Theorem 2.5). Further, this transformation can be used to find the unknown number
of clusters (see Proposition 2.3). In Section 3, we estimate the covariance operator of the mixture distribution
from data and state related asymptotic results for the proposed transformation. In Theorem 3.2, we prove
uniform (on the sample points) consistency of the empirical version for the transformation associated with
GP clustering. It is surprising that our GP clustering method fails to discriminate ‘location only’ scenarios,
but yields perfect clustering for ‘differences in scales’ (see Remark 2.2.2). We have also compared our work
both theoretically (see Section M of Appendix II) as well as numerically (see Sections 4, 5 and Section N in
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Appendix II) with the existing literature on perfect clustering for functional data. All proofs are deferred
to Appendix I. Some additional material is presented in Appendix II, which includes a possible extension
to non-Gaussian distributions (Section K), discussion on a clustering procedure in the ‘location only’ case
(Section L) and theoretical comparisons of our results with those obtained in the paper by Delaigle et al
(2019) (Section M).

In this paper, we will use the following notations. The distribution of the random process Z will be denoted
as PZ, its mean function by µZ and its covariance operator (referred to simply as covariance) by ΣZ. We
use ΣZ(s, t) to denote the covariance between Z(s) and Z(t) for s, t ∈ [0, 1]. Further, we will assume that all
involved random quantities are defined on a common probability space (Ω,A,P). Given a square matrix A,
trace(A) denotes its trace. The usual Euclidean norm on Rd is denoted by ∥ · ∥. To simplify notation, we do
not explicitly state the dependence of the norm on the dimension d.

2 Transformation with Known Gaussian Distributions

Let {Vd}d∈N be an increasing sequence of subspaces of H. Here, the dimension of Vd is d. This restriction is
not necessary for the development which follows as long as the dimension of Vd goes to infinity with increasing
d, but it simplifies the notation. Given the subspace Vd, let µZ

d and ΣZ
d represent the d-dimensional mean

and the d× d covariance matrix of the projection of Z on Vd. If u ∈ H, we denote ud to be its projection on
Vd.

Fix b ∈ H. Theorem 2.1 analyses the behaviour of the limit of squared Mahalanobis norm of the d-dimensional
random vector (Z − b)d for d ∈ N. For every positive definite d× d matrix Ad, we define the map

DAd

d (u,v) = 1
d

∥∥∥A−1/2
d (u − v)d

∥∥∥2
, for u,v ∈ H. (1)

In this section, the underlying distributions are assumed to be known. After stating Theorem 2.1 and some
remarks related to it, we will look into an application to cluster analysis inspired from this result. We will
take advantage of the fact that the limit in this theorem is not random, but it may depend on the underlying
probability distribution PZ.

Theorem 2.1 Let {Ad} be a sequence of d × d symmetric, positive definite matrices and αd
1, . . . , α

d
d be

the eigenvalues of the matrix Sd = (Ad)−1/2ΣZ
d (Ad)−1/2 for d ∈ N. We define αd = (αd

1, . . . , α
d
d)T and

∥αd∥∞ = max(αd
1, . . . , α

d
d) is the supremum norm. Let b ∈ H such that there exist constants Lµ and LS

(finite, or not) with

Lµ = lim
d→∞

DAd

d (µZ, b), (2)

LS = lim
d→∞

1
d

trace(Sd) and (3)

0 = lim
d→∞

∥αd∥∞

d
. (4)

Then, DAd

d (Z, b) P→ L := Lµ + LS as d → ∞.

Remark 2.1.1 A condition in Theorem 2.1 is required to ensure that no single component is extremely
influential. For instance, it may happen that we take a sequence such that αd

1 = d and αd
i = o(d−1) for every

2 ≤ i ≤ d. Under this condition, no limit is possible in Theorem 2.1. However, this possibility is excluded
by assumption (4).

Remark 2.1.2 We allow both the constants in Theorem 2.1 to be infinite. When LS is finite, Lemma B.1
(see Appendix I) shows that assumption (4) follows from assumption (3).

Remark 2.1.3 Let Z1 and Z2 be independent observations generated from the GDs P1 and P2. Thus,
Z1 − Z2 is a GP with mean µ1 − µ2 and covariance ΣZ1 + ΣZ2 . Consider the matrix Sd = (Ad)−1/2(ΣZ1

d +
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ΣZ2
d )(Ad)−1/2 with d ∈ N. Take Z = Z1 − Z2 and b = 0 in Theorem 2.1. Then, the following convergence

result holds:
DAd

d (Z1,Z2) = DAd

d (Z1 − Z2, 0) P→ L := Lµ + LS as d → ∞.

Here, Lµ = limd→∞ DAd

d (µ1, µ2) and LS is as defined in (3) of Theorem 2.1.

Remark 2.1.4 In general, the fact that Vd ⊂ Vd+1 does not guarantee the existence of any relationship be-
tween the sets {αd

1, . . . , α
d
d} and {αd+1

1 , . . . , αd+1
d+1}. However, in some cases {αd

1, . . . , α
d
d} ⊂ {αd+1

1 , . . . , αd+1
d+1}

(see, for instance, Section 2.1, where Vd is generated by the first d eigenfunctions of ΣZ).

2.1 Application: Cluster Analysis

In this subsection, we deal with a random function Z whose distribution is a two component mixture
distribution of the form: PZ = π1P1 + π2P2, where 0 < π1 < 1 and π1 + π2 = 1. Here, Ph denotes the GD
on H with mean function µh and covariance Σh for h = 1, 2. The mean function and the covariance of the
mixture satisfy µZ(t) = π1µ1(t) + π2µ2(t) with t ∈ [0, 1] and

ΣZ(s, t) = π1Σ1(s, t) + π2Σ2(s, t) + π1π2[µ1(s) − µ2(s)][µ1(t) − µ2(t)] for s, t ∈ [0, 1]. (5)

Given a random sample Z1, . . . ,ZN from PZ, consider the following set:
Ch = {j : Zj was obtained from Ph for 1 ≤ j ≤ N} (6)

with h ∈ {1, 2}. Clearly, the set Ch depends on the sample size N . The components of the mixture
distribution PZ and the sets Ch for h = 1, 2 are unknown, and the problem we are dealing with is the
estimation of these sets. However, we assume PZ and the sets C1 and C2 to be known in this section to build
the fundamental idea behind using the proposed transformation for GP clustering.

Let Vd with d ∈ N denote the sequence of d-dimensional subspaces generated by the d eigenfunctions
associated with the d largest eigenvalues of ΣZ (recall the discussion in Remark 2.1.4). In the following
result, Z1 and Z2 are assumed to be independent and PZ1 = Ph and PZ2 = Pk with h, k ∈ {1, 2}. The
clustering procedure that we propose is based on the behavior of the transformation DΣZ

d (Z1,Z2), which is
stated below in Theorem 2.2.

Theorem 2.2 (a) Assume that h = k ∈ {1, 2}. Define Sh
d := (Σd)−1/2(2Σhd)(Σd)−1/2 for d ∈ N, and

assume that Lh
S = limd

1
d trace(Sh

d ) exists. Then,

D
ΣZ

d

d (Z1,Z2) P→ Lh
S as d → ∞. (7)

(b) Assume that h ̸= k ∈ {1, 2}. Define Shk
d := (Σd)−1/2(Σhd + Σkd)(Σd)−1/2 for d ∈ N, and assume that

Lhk
S = limd

1
d trace(Shk

d ) exists. Then,

D
ΣZ

d

d (Z1,Z2) P→ Lhk := Lhk
S as d → ∞. (8)

(c) If h ̸= k ∈ {1, 2}, then Lhk
µ = limd D

ΣZ
d

d (µh, µk) = 0 and both Lh
S and Lhk

S are finite.

Remark 2.2.1 The structure of the covariance ΣZ stated in equation (5) imposes some restrictions on the
associated constants as stated in part (c) of Theorem 2.2. In particular, the fact that Lh

S and Lhk
S are finite

implies that assumption (4) in Theorem 2.1 always holds for the sequence of matrices {Sh
d }d∈N and {Shk

d }d∈N
with h, k ∈ {1, 2}.

Remark 2.2.2 It follows from part (c) in Theorem 2.2 that the statistic we propose is useless for cluster
analysis in the homoscedastic case (independently of the difference between µ1 and µ2) because if Σ1 =
Σ2, then L12 = L1

S = L2
S . A possibility is to modify the statistic D

ΣZ
d

d (z1, z2) so that the value of the
transformation D

ΣZ
d

d (µ1, µ2) increases with d ∈ N. Our proposal is to use

DΣd,r
d (u,v) := 1

d

∥∥∥(Σ−1/2
d )r(u − v)d

∥∥∥2
= 1
d

d∑
i=1

(ui − vi)2

λr
i

, with r ∈ N.

Discussion of this transformation, and some numerical results are included in Appendix II.
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To simplify notation and avoid technicalities with empty classes, we additionally assume that the observations
whose indices belong to the sets C1 = {1, . . . , N1} and C2 = {N1 + 1, . . . , N} with N = N1 + N2 and
N1, N2 > 0, were generated by P1 and P2, respectively. In practice, these sets are unknown and in fact our
aim is their estimation. We begin with this simplifying assumption for ease of notation, and to obtain a
clear exposition of the proposed methodology.

Define the N ×N matrix Γd whose (i, j)-th element is

Γd(Zi,Zj) = γd
ij = 1

N − 2

N∑
t=1, t ̸=i,j

[
D

ΣZ
d

d (Zt,Zi) −D
ΣZ

d

d (Zt,Zj)
]2

(9)

for 1 ≤ i, j ≤ N . Theorem 2.2 and the fact that t ̸= i, j in (9) give us the following:

γd
ij

P→

{
0, if i, j ∈ Ch for h = 1, 2,
γhk, if i ∈ Ch and j ∈ Ck, with h ̸= k ∈ {1, 2},

(10)

as d → ∞. Here,
γhk = Nh − 1

N − 2 (Lh
S − Lhk

S )2 + Nk − 1
N − 2 (Lk

S − Lkh
S )2.

Combining the fact stated above in (10), as d → ∞, we obtain (remember that N,N1, N2 are fixed now)

Γd
P→ Γ :=

[
0N10T

N1
γ121N11T

N2

γ211N21T
N1

0N20T
N2

]
. (11)

Let βd
i and βi (for 1 ≤ i ≤ N) denote the eigenvalues corresponding to the matrices Γd and Γ, respectively.

Define the following quantities

Kd =
N∑

i=1
I(|βd

i | > ad) and K0 =
N∑

i=1
I(|βi| > 0), (12)

with {ad}d∈N decreasing to 0 as d → ∞ at an appropriate rate, and I is the indicator function. The constant
K0 clearly equals 2 for the limiting N ×N matrix Γ stated in (11), and hence, correctly identifies the true
underlying number of clusters.

Proposition 2.3 Assume N1, N2 ≥ 1 are fixed. Under the assumptions of Theorem 2.2, if L12
S ̸= L1

S and
L21

S ̸= L2
S, then there exists a sequence {ad}d∈N ⊂ R+ such that ad → 0 and Kd

P→ 2 as d → ∞.

This now implies that we can correctly identify the true number of clusters asymptotically, as d → ∞.
The structure of the matrix Γ in (11) is straight forward because of the simplifying assumption on the sets
C1 and C2. However, this is not a requirement and we will drop it. Proposition 2.3 holds more generally
for any permutation of the data points Z1, . . . ,ZN . In fact, if the sets C1 and C2 are unknown, then the
rows/columns of the Γ matrix will be permuted accordingly. But, the underlying structure remains the
same and Proposition 2.3 continues to hold. As a followup of our previous result, we now prove that if
any standard clustering method is used on the Γd matrix, then we can perfectly cluster all the observations
asymptotically (as d → ∞) because of the structure of the Γ matrix stated in (11).

Definition 2.4 A clustering method can be defined as a map from H to the set {1, . . . , J}. Consider the
sequence of maps {ψd : d ∈ N} and a second map ϕ. A measure of distance between two clusterings based on
the Rand index (see p. 847 of Rand (1971)) is defined as follows:

Rd,N = 1(
N
2
) ∑

1≤i<j≤N

I
[
I[ψd(zi) = ψd(zj)] + I[ϕ(zi) = ϕ(zj)] = 1

]
,

for a fixed N ≥ 2.
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Let ϕ be the map which gives the true labels, i.e., ϕ(xj) = h for j ∈ Ch with h ∈ {1, 2}. We can construct a
data based ψd by directly applying any clustering technique on the rows or columns of the matrix Γd. Here,
we use the k-means algorithm on the rows of Γd.

Mathematically, the k-means algorithm finds J groups (say, G1, . . . ,GJ) with centers c1, . . . , cJ such that
ϕ(G1, . . . ,GJ) =

∑J
h=1

∑
{i:xi∈Gh} ∥xi − ch∥2 is minimized. The asymptotic properties of the matrix Γd as

d → ∞ (stated above in (11)) imply that differences in the limiting constants should yield perfect clustering.
Our next result proves label consistency for this k-means algorithm when J = 2.

Theorem 2.5 Assume J = 2 and γ12 > 0. Further, assume that the conditions in Theorem 2.2 and
Proposition 2.3 hold. Then, the clusters will be perfectly identifiable, i.e., Rd,N

P→ 0 as d → ∞.

Remark 2.5.1 The well-known Rand index (a measure of similarity) is usually defined as 1 − Rd,N . As a
consequence, Theorem 2.5 implies that the Rand index goes to one as d → ∞.

Remark 2.5.2 The structure of the N ×N symmetric matrix Γ stated in (11) continues to hold, and will
lead us to perfect clustering for every value of J ≥ 2. Moreover, the procedure described in Proposition 2.3
also works fine, with the limit equal to the rank of Γ. However, generalizing this idea to J(> 2) clusters is
not trivial.

The quantity K0 in (12) is the rank of Γ, and one may be tempted to think that it generally coincides with
J . But, this is true only for J ≤ 3 and may be different for J ≥ 4 (as shown in Lemma F.1 of Appendix
F). The proof of Lemma F.1 further shows that the condition under which Rank(Γ) < J is quite restrictive.
Thus, in practice, our proposal is to estimate the number of clusters J using Kd.

2.1.1 Example with GPs

If we assume that Σ2 = aΣ1 with a > 0, then we have the following expressions for the scale constants stated
in Theorem 2.2:

L1
S = 2

π1 + π2a
, L2

S = 2a
π1 + π2a

and L12
S = 1 + a

π1 + aπ2
.

Thus, it is possible to identify perfectly the clusters as long as a ̸= 1, since this implies that γ12 and γ21 both
are positive quantities.

2.1.2 Uniform Convergence

In Theorem 2.2, we have proved consistency for finite sets of data points for the transformation DΣd

d (Z1,Z2)
defined in (1). We now prove the uniform (on the random sample) convergence of this function as N → ∞.
This result will be useful in establishing a second result on uniform convergence, which we state in the next
section.

Theorem 2.6 Assume the conditions in Theorem 2.2, and let {dN } ⊂ N be such that dN → ∞, as N → ∞.
Then,

a) For h ∈ {1, 2}, let αdN
= (αdN

1 , . . . , αdN

dN
)T be the eigenvalues of Sh

dN
with dN ∈ N. If

logN = o

(
dN

∥αdN
∥∞

)
, (13)

then it happens that
sup

Z1,Z2∈CN
h

∣∣∣DΣdN

dN
(Z1,Z2) − Lh

S

∣∣∣ P→ 0 as N → ∞. (14)

b) For any h ̸= k ∈ {1, 2}, let αdN
= (αdN

1 , . . . , αdN

dN
)T be the eigenvalues of Shk

dN
with dN ∈ N. If

logN = o

(
dN

∥αdN
∥∞

)
, (15)

6
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then it happens that

sup
Z1∈CN

h
,Z2∈CN

k

∣∣∣DΣdN

dN
(Z1,Z2) − Lhk

∣∣∣ P→ 0 as N → ∞. (16)

Remark 2.6.1 Assumption (4) holds here, so ∥αdN
∥∞

dN
= 1
dN

max
1≤i≤dN

αdN
i → 0. Thus, if we take dN growing

fast enough, then it is assured that assumptions (13) and (15) hold. The structure of the matrices Sh
d and

Shk
d for d ∈ N with h ̸= k ∈ {1, 2} implies that a sufficient condition is logN = o(dN ) (see Proposition H.1

in Appendix H).

3 Transformations with Estimated Gaussian Distributions

In this section, we will discuss the steps to implement the procedure described in Section 2. In practice, the
involved distributions and all the associated quantities need to be estimated from the data. Here, Z will
denote a random element with distribution the mixture π1P1 + π2P2.

For j ∈ N, let ϕZ
j (t) with t ∈ [0, 1] and λZ

j denote the eigenfunctions and eigenvalues of ΣZ, respectively. We
will now make the following assumptions:

A.1 supt∈[0,1] E[(Z(t))4] < ∞.

A.2 It happens that λZ
1 > λZ

2 > · · · > 0 satisfying
∑∞

j=1 λ
Z
j < ∞.

It is well-known that assumption A.2 implies {ϕZ
j }j∈N forms an orthonormal basis of H.

To estimate ΣZ and its eigenvalues and eigenfunctions, we will use the corresponding empirical quantities.
Suppose that we have a simple random sample Z1, . . . ,ZN taken from Pz. Given s, t ∈ [0, 1], we define

Σ̂Z(s, t) = 1
N

N∑
i=1

[Zi(s) − ZN (s)][Zi(t) − ZN (t)],

where Z̄N (t) = 1
N

∑N
i=1 Zi(t). Consider the corresponding families λ̂Z

1 ≥ λ̂Z
2 ≥ · · · and ϕ̂Z

1 , ϕ̂
Z
2 , . . . of its

eigenvalues and eigenvectors, respectively. Note that Σ̂Z as well as all the λ̂Z
j ’s and ϕ̂Z

j ’s depend on N .
Given u ∈ H, we denote

ûZ
j = ⟨u, ϕ̂Z

j ⟩ =
∫ 1

0
u(t)ϕ̂Z

j (t)dt for j ∈ N.

With a finite sample, we cannot estimate all the infinite eigenvalues and eigenvectors. Thus, we follow the
work of Delaigle and Hall (2012) and Hall and Hosseini-Nasab (2006), and select a non-random decreasing
sequence ηN going to zero slowly enough as to satisfy limN N1/5ηN = ∞. We take

R̂Z
N = inf{j : λ̂Z

j − λ̂Z
j+1 < ηN } − 1. (17)

This definition implies that λ̂Z
j ≥ ηN for every j ≤ R̂Z

N . Moreover, we will also need that the theoretical
eigenvalues are reasonably well separated. To obtain this, given δ > 0, we also define

RZ
N = inf{j : λZ

j − λZ
j+1 < (1 + δ)ηN } − 1. (18)

We now state empirical analogues of the results stated in Section 2.1.
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3.1 Consistency of Clustering

Let Z1, . . . ,ZN be a simple random sample taken from PZ. Now, PZ and the sets C1 and C2 (containing
information on the class labels and defined in (6)) are unknown. Extension of Theorems 2.2 and 2.6 to
Theorems 3.1 and 3.2 is presented below. The following results will be based on the analysis of the map
D̂R̂N

(u,v), which is the transformation DΣ
d (u,v) defined in (1) with d = R̂N (defined in (17)), and the

pooled covariance matrix ΣR̂N
which is estimated by Σ̂R̂N

(sample covariance of the full sample). The first
result is related to the consistency of the transformation on finite sets.

Theorem 3.1 Let assumptions A.1 and A.2 and those in Theorem 2.2 hold.

(a) If h = k ∈ {1, 2}, then
D̂R̂N

(Z1,Z2) P→ Lh
S as N → ∞. (19)

(b) If h ̸= k ∈ {1, 2}, then
D̂R̂N

(Z1,Z2) P→ Lhk
S as N → ∞. (20)

We need an increasing sample size in order to estimate the parameters consistently. Thus, it is desirable
to be able to cluster the increasing number of data points, asymptotically without error. The only way to
achieve this is to get some kind of uniform convergence in (19) and (20) when the sample size increases.
This is the purpose of Theorem 3.2, which gives us clear evidence that using this transformation would lead
to asymptotic perfect separation in the empirical case as well.

Theorem 3.2 Let us assume all the conditions in Theorem 2.6 with logN = o(RZ
N ) in (18).

(a) For h ∈ {1, 2}, it happens that

sup
Z1,Z2∈CN

h

∣∣∣D̂R̂N
(Z1,Z2) − Lh

S

∣∣∣ P→ 0 as N → ∞.

(b) For any h, k ∈ {1, 2} with h ̸= k, we have that

sup
Z1∈CN

h
,Z2∈CN

k

∣∣∣D̂R̂N
(Z1,Z2) − Lhk

S

∣∣∣ P→ 0 as N → ∞.

Remark 3.2.1 Clearly, Theorem 3.1 follows from Theorem 3.2. But, the conditions required for proving
the former are weaker and hence, we state it as a separate result.

Remark 3.2.2 (Asymptotic perfect identification of clusters) Recall the matrix Γd from (9) with d ∈ N.
Now, consider the matrix Γ̂R̂N

, which is obtained by replacing γd
ijs in the matrix ΓR̂N

with their estimated
values γ̂R̂N

ij (I.e. γ̂R̂N
ij = D̂R̂N

(Zi,Zj) with 1 ≤ i ̸= j ≤ N). Define v12 = π1
∣∣L1

S − L12
S

∣∣2 + π2
∣∣L2

S − L21
S

∣∣2.
Fix ϵ > 0. Theorem 3.2 implies that with probability converging to one as N → ∞, we have

- if Zi,Zj ∈ Ch for h ∈ {1, 2}, then
∣∣γ̂d

ij

∣∣ ≤ 4ϵ2,

- if Zi ∈ Ch,Zj ∈ Ck for h ̸= k ∈ {1, 2}, then
∣∣γ̂d

ij − v12
∣∣ ≤ Hϵ,

for some H > 0. Consequently, if v12 > 0, then the elements in Γ̂d will be clustered into two well-separated
clusters: one around 0 and another one around v12 with probability converging to one.

Similarly, let PZ be a mixture of J(> 2) components and denote

vhk := πh

∣∣Lh
S − Lhk

S

∣∣2 + πk

∣∣Lk
S − Lkh

S

∣∣2
8
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with 1 ≤ h ̸= k ≤ J . For positive and distinct vhks, the elements in the matrix Γ̂d will be perfectly clustered
into 1 +

(
J
2
)

well-separated clusters: one of them around the point 0 and the remaining around the values
vhk (for h < k) with probability converging to one as N → ∞. Therefore, asymptotically, the sequence of
matrices {Γ̂R̂N

}N∈N will contain enough information to perfectly cluster all the data points.

3.2 Implementation in Practice

We are given a sample of functional data points without the labels. Here, we consider the N ×N estimated
matrix Γ̂N with the (i, j)-th element as D̂R̂N

(Zi,Zj) (which is just the empirical version of DΣZ
d

d (Zi,Zj)
based on the pooled sample covariance) for 1 ≤ i, j ≤ N and apply any clustering procedure on its rows (or,
columns). Note again that we do not need to estimate the unknown constants Lh

S and Lhk
S for h, k ∈ {1, 2}

(stated in Theorem 3.1) for the implementation of our clustering procedure. The expression related with
R̂N is not used in practice as well (see Section 4.2 for the details of our implementation).

4 Analysis of Simulated Datasets

For our simulation study, we consider two class problems (J = 2). We generated data on a discrete grid of
100 equi-spaced points in the unit interval [0, 1] from four different simulation models, which are described
below. Let us fix s > 0.

I. Define Xh(t) =
∑40

j=1(λ1/2
hj Zhj+µhj)ϕj(t) with t ∈ [0, 1] and h = 1, 2. Here, the Zhjs are independent

standard normal (i.e., N(0, 1)) random variables, ϕj(t) =
√

2 sin(πjt) with t ∈ [0, 1] and 1 ≤ j ≤ 40.
Also, µhj = 0 for j > 6, and we set the other components equal to (0,−0.5, 1,−0.5, 1,−0.5)T and
(0,−0.75, 0.75,−0.15, 1.4, 0.1)T for k = 1, 2, and λ1j = 1/j2 and λ2j = s/j2 for 1 ≤ j ≤ 40.
This model is from the paper Delaigle and Hall (2012).

II. In this example, X1 ∼ B and X2 ∼ µ + sB with µ(t) = Gt for t ∈ [0, 1] and G ∼ N(0, 4)
independent of B. Here, B is the standard Brownian bridge, i.e., a centered Gaussian process with
σij = min(ti, tj) − titj with ti, tj ∈ [0, 1] for i, j ∈ N.

Since E[X2(t)] = E[Gt] = 0 for t ∈ [0, 1], the differences in mean never appear in this setting. In
fact, the inclusion of µ modifies the covariances because if 0 < ti < tj < 1, then the independence
between G and the B yields the following:

E[X2(ti)X2(tj)] = 4titj + s2ti(1 − tj).

This model is from the paper Berrendero et al (2018).

III. Let Xh = µh +
∑50

j=1 ξhjλhj
1/2ϕj for h = 1, 2. Here, ξhjs are i.i.d. N(0, 1), µ1 = 0 and µ2(t) = t

with t ∈ [0, 1], λ1j = e−j/3 and λ2j =
√
se−j/3 for 1 ≤ j ≤ 50, and ϕ2i−1 =

√
2 sin(2iπt) and

ϕ2i =
√

2 cos(2iπt) for 1 ≤ i ≤ 25 with t ∈ [0, 1].
This model is from the paper Dai et al (2017).

IV. This problem consists of two Brownian motions defined in the closed interval [0, 1] with means
µ1(t) = 20t1.1(1 − t) and µ2(t) = 20t(1 − t)1.1, respectively, for t ∈ [0, 1]. For the first class, the
eigenfunctions are ϕj(t) =

√
2 sin((j − 0.5)πt) and associated eigenvalues are λ1j = 1/(π(j − 0.5))2

for 1 ≤ j ≤ 15. The second class is similar to the first one, but the eigenvalues are multiplied by
√
s

(i.e., λ2j =
√
sλ1j =

√
s/(π(j − 0.5))2) for 1 ≤ j ≤ 15.

This model is from the paper Galeano et al (2015).

We set s = 1 for location only problems. In location and scale problems, we fixed s = 3, while for
scale only problems the mean functions µ1 and µ2 were set to be the constant function 0 and s = 3 was
retained.

9
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4.1 Choice of d

A critical issue is selection of the optimal dimension of the projected space for a given a set of data points
(i.e., a fixed value of (N1, N2) or N). Let us recall Theorem 3.1; according to this result we expect the rows
of the matrix Γ̂d to form two clearly separated clusters depending on the class label of the observation for
large values of d. To demonstrate this, we construct a sequence of images and show how this separation
varies with increasing values of d.

We generated samples of size 250 from each of the two classes for the ‘scale case’ of Example II. For
the purpose of demonstration, the first 250 observations correspond to the first GD, while the next 250
observations to the second. Figure 1 below shows the heatmap for increasing values of d, and we observe the
best concentration at d = 80. However, some noise in the off-diagonal submatrices for d = 80 (compared to
d = 60) makes us to consider that the optimum could be somewhere between the values 60 and 80.

(a) d = 20 (b) d = 40 (c) d = 60 (d) d = 80

Figure 1: Heatmap of Γ̂d for varying values of d.

Clearly, the choice of d is quite important as d is the dimension of the subspace where we project our obser-
vations (for a fixed sample size). We observe from Figure 1 that its estimation is quite crucial. Subsection
4.2 contains further details on the choice of d.

4.2 Clustering Procedure

To implement the clustering method, one needs to choose the dimension d suitably, and we use cross-
validation (CV) to do the job. We use the idea developed by Wang (2010), which we state briefly here: given
B ∈ N, split the data into three random subsets (say, S1b, S2b and S3b) each of equal size for 1 ≤ b ≤ B.
For each value of b, treat the points in S1b and S2b as the training sets, and S3b as the validation set. For
a fixed value of d and given a clustering algorithm, the two training sets S1b and S2b are used to construct
two cluster assignments. An appropriate distance between these two cluster assigments (say, D) is computed
based on the validation set S3b (see Section 2 of Wang (2010) for more details). We repeat this partition
B = 50 times and average it over these B samples to get D̂CV

d . Define d̂CV = arg min2≤d≤N D̂CV
d .

Recall the structure of the Γ matrix stated in (11), and also see Figure 1. As mentioned in Section 3.2, the
number of clusters were estimated using the method described in Section 2.1 (see (12)). To implement the
procedure in practice, one needs to estimate the sequence {ad}d∈N. We have used the function optishrink
available in the R package denoiseR. This function extracts a low-rank signal from Gaussian noisy data using
the optimal shrinker of singular values. The low rank structure of the Γ matrix motivates us to directly apply
this function on Γ̂d. The overall implementation yielded quite desirable results in our numerical study (see
Tables 4.1 and 4.2 below). We can apply any clustering method on the transformed data Γ̂d. In addition
to the k-means algorithm (CD-k-means) discussed in Theorem 2.5, we considered spectral clustering (CD-
Spectral) and Gaussian mixture models (CD-mclust). One may refer to the book by Hastie et al (2009)
for details on these three popular clustering methods. The R codes for our methods are available here: GP
clustering. As we do with the other methods we are comparing with, we only report here the better obtained
result. Complete results are reported in Appendix N.

10
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We considered several methods for comparison. The first method is the classical k-means algorithm for
functional data. Several competent methods for functional clustering using functional mixed mixture models
are implemented in the function funcit from the R package funcy. We report this method as funclust.
The methodology developed by Chiou and Li (2007) is available in the function FClust from the R package
fdaspace using two clustering techniques ‘EMcluster’ (CL1) and ‘kCFC’ (CL2). We have reported the
minimum result, and stated it as CL. In Delaigle et al (2019), the authors developed functional clustering
based on the k-means using basis functions. We implemented this method for two choices of the basis
functions, namely, Haar and PC, and reported the best result among these two (we call it DHP). We have
not used the DB2 basis for our comparisons because it requires the grid points to be of a power of 2. The
DHP method is available from the journal website, and we used those Matlab codes for our comparisons.

We conducted simulations based on models I to IV, which were introduced in the beginning of Section 4. We
did not consider the location only scenario as our proposed method is useless in such cases (recall part
(c) of Theorem 2.2). However, we have some discussion and additional results in Section L in Appendix II
for this scenario. The sample size of each class was set to be 250. Our experiment was replicated 100 times,
and the results are reported in Tables 4.1 and 4.2 below. To measure the similarity between two cluster
assignments, we computed the adjusted Rand index using the function RRand in the R package phyclust.
One minus the adjusted Rand index (we call it adjusted Rand distance) is reported in tables below, where
the minimum is marked in bold and the second lowest is in italics.

It is worth noting that all the competing methods require the number of clusters as an input variable, and we
have run these methods with k = 2 (the true number of clusters). However, when applying the CD procedure
we have estimated the number of clusters following the procedure described above. We obtained the correct
value in more than 99% of the cases (across all four examples for both scenarios) in our simulation study.

Table 4.1: Adjusted Rand distances for different GPs with difference in location and scales (with standard
error in brackets).

Ex. k-means funclust CL DHP CD
I 0.0632 0.1541 0.0239 0.0818 0.0001

(0.0007) (0.0017) (0.0007) (0.0025) (0.0001)
II 0.9445 0.8222 0.5767 0.5149 0.4240

(0.0036) (0.0027) (0.0045) (0.0049) (0.0030)
III 0.4250 0.3858 0.2891 0.4137 0.0625

(0.0017) (0.0003) (0.0000) (0.0054) (0.0006)
IV 0.4945 0.3975 0.1833 0.1379 0.0000

(0.0005) (0.0011) (0.0000) (0.0033) (0.0000)

In the first setting, we considered clustering problems with differences in their location and scale pa-
rameters. Usefulness of the proposed transformation is clear from Table 4.1. Our method attains the first
position across all examples, while in Example IV we obtain perfect clustering. Although there is no location
difference in Example II, sub-optimal performance of our method is probably due to low signal from the
difference between the two covariance structures. CL attains the second best performance in the first three
examples among the competing methods, while DHP performs better than CL in Example IV.

In the next setting, we dealt with differences only in scale parameters. It is clear from Table 4.2 that
the separation in scatters is captured very well by the proposed transformation Γ̂d. Moreover, our method
again leads to perfect clustering (with a significant improvement in Example II compared to Table 4.1).
The method funclust (respectively, CL) attains the second position in Examples II and III (respectively,
Examples I and IV). The performances of k-means and DHP are similar, and quite bad in this scenario.
Generally, the results in Table 4.2 suggest that all existing methods fail to judiciously capture information
if it is present only in the scale parameters.

After applying the transformation Γ̂d, we had used three methods for clustering the transformed observations.
Overall, it seems that the Gaussian mixture model (i.e., mclust) achieves better results than the other two
procedures (see the complete numerical results in Section N of Appendix II).

11
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Table 4.2: Adjusted Rand distances for different GPs with difference only in scales (with standard error in
brackets).

Ex. k-means funclust CL DHP CD
I 1.0019 0.9776 0.8269 0.9966 0.0000

(0.0000) (0.0006) (0.0000) (0.0005) (0.0000)
II 1.0006 0.5004 0.9065 0.9999 0.0084

(0.0001) (0.0049) (0.0007) (0.0003) (0.0003)
III 0.9990 0.9956 0.9994 0.9967 0.0856

(0.0002) (0.0000) (0.0000) (0.0007) (0.0006)
IV 0.968 1.0006 0.8464 0.9980 0.0005

(0.0001) (0.0000) (0.0000) (0.0006) (0.0004)

5 Analysis of Benchmark Datasets

We have applied our proposed methods to some benchmark data sets, Wheat (from the R pack-
age fds), Satellite (available at https://www.math.univ-toulouse.fr/∼ferraty/SOFTWARES/NPFDA
/index.html), and Cars (kindly provided by the first author of Torrecilla et al (2020)).

To evaluate the clustering algorithms, we ran a single execution (without splitting). Class assigments are
already available for the Wheat dataset. The Satellite data has been analyzed in detail in the paper
Dabo-Niang et al (2007), where the authors split the curves into two clusters ‘unimodal’ and ‘multimodal’.
The authors of this paper kindly shared the exact cluster assignments for this data set with us. The Cars
data contains asset log-returns of the car companies Tesla, General Motors and BMW (see Torrecilla et al
(2020) for more details). However, the rank of the estimated Γ̂d matrix was two for this data set, and our
method detected only two distinct clusters. This is coherent with Torrecilla et al (2020), where the authors
had noted that assets of General Motors and BMW were very similar and quite difficult to distinguish. So,
we merged General Motors with BMW while assigning the class labels for this data set. Consequently, the
number of clusters was set to be two for all competing methods. We report the adjusted Rand distance for
these three data sets in Table 5.1. Superiority of our proposed methodology w.r.t. the competing methods
is clear from the results given below.

Table 5.1: Adjusted Rand distances for different clustering methods.
Data M k-means funclust CL DHP CD

Wheat 100 0.6960 0.6960 0.8058 0.5730 0.3644
Satellite 472 0.6072 0.6072 0.6060 0.7253 0.4448

Cars 90 0.8856 0.8856 0.9650 0.9088 0.4680

To get a better understanding of the performance of our proposed method, we further computed the well-
known average purity function. A value of average purity function close to one indicates good performance
of a method. We obtained the values as 0.90, 0.8622 and 0.8666 for the Wheat data, the Satellite data
and the Cars data, respectively. Overall, our proposed method CD yields quite promising results in all three
benchmark data sets.
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Appendix I: Proofs and Mathematical Details

A Proof of Theorem 2.1

Fix d ∈ N. The d-dimensional random vector (Z − b)d has a Gaussian distribution with mean equal to
(µ − b)d and covariance matrix equal to Σd. Now, ∥(Ad)−1/2(Z − b)d∥2 is equal to the square of the
norm of a d-dimensional normal variable with mean md = (Ad)−1/2(µ − b)d and covariance matrix Sd =
(Ad)−1/2Σd(Ad)−1/2. Therefore, if ud is a d-dimensional vector with centered normal distribution and
covariance matrix equal to Sd, then

DAd

d (Z, b) ∼ 1
d

⟨md + ud,md + ud⟩ = 1
d

(
∥md∥2 + ∥ud∥2 + 2⟨md,ud⟩

)
. (21)

By assumption (2), we have
lim

d→∞

1
d

∥md∥2 = Lµ.

Let us consider the second term in (21). Fix a basis in Vd spanned by the eigenvectors of Sd. Note that
this term is not dependent on Lµ. Denote ud = (ud,1, . . . , ud,d)T and md = (md,1, . . . ,md,d)T in this basis.
Therefore, the random variables (ud,i)2 with 1 ≤ i ≤ d are independent with means equal to αd

i for 1 ≤ i ≤ d

and
∑d

i=1(ud,i)2 ∼
∑d

i=1 α
d
i (ui)2. Here, {ui}1≤i≤d is a sequence of independent and identically distributed

(i.i.d.) real variables with the standard normal distribution. We split the proof into two cases.

A.0.1 LS is finite

Fix ϵ > 0. Taking into account that the variance of a χ2 distribution with one degree of freedom is two and
using Tchebychev’s inequality, we have that

P
[

1
d

∣∣∥ud∥2 − trace(Sd)
∣∣ ≥ ϵ

]
= P

[
1
d

∣∣∣∣∣
d∑

i=1

(
(ud,i)2 − αd

i

)∣∣∣∣∣ ≥ ϵ

]

≤ 2
ϵ2d2

d∑
i=1

(αd
i )2

≤ 2
ϵ2d2 ∥αd∥∞

d∑
i=1

αd
i ,

which converges to zero by assumptions (3) and (4). Consequently, we have shown that

1
d

∥ud∥2 − 1
d

trace(Sd) P→ 0 as d → ∞,

and assumption (3) gives
1
d

∥ud∥2 P→ LS as d → ∞.

A.0.2 LS is infinite

We have that

P

[
1∑d

i=1 α
d
i

∣∣∣∣∣
d∑

i=1

(
(ud,i)2 − αd

i

)∣∣∣∣∣ ≥ ϵ

]
= P

[∣∣∣∣∣
d∑

i=1

αd
i∑d

i=1 α
d
i

(
(ui)2 − 1

)∣∣∣∣∣ ≥ ϵ

]

≤ 2
ϵ2

d∑
i=1

(
αd

i∑d
i=1 α

d
i

)2

≤ 2
ϵ2

∥αd∥∞∑d
i=1 α

d
i

,

1
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which converges to zero because LS = ∞ and assumption (4). Thus, we have shown that

1
1
d

∑d
i=1 α

d
i

(
1
d

∥ud∥2 − 1
d

trace(Sd)
)

P→ 0. (22)

Consequently, 1
d ∥ud∥2 converges to ∞ at the same rate as 1

d trace(Sd).

Concerning the last term in (21), we have ⟨md,ud⟩ =
∑d

i=1 md,iud,i. We split the proof into cases.

A.0.3 Lµ is finite

Fix ϵ > 0, and define αd = (αd
1, . . . , α

d
d)T . Using Tchebychev’s inequality again, we get

P
[

1
d

|⟨md,ud⟩| > ϵ

]
≤ 1
ϵ2d2

d∑
i=1

(md,i)2αd
i ≤ 1

ϵ2d2 ∥αd∥∞∥md∥2,

which converges to zero by assumptions (2) and (4), and the proposition is proved in this case.

A.0.4 Lµ is infinite

The result follows from equation (21) and the previous results, if we are able to show that the sequence of
real valued random variables

wd = ⟨md,ud⟩
max(∥md∥2, ∥ud∥2)

converges to zero in probability as d → ∞. In turn, this will be fixed if we show that every subsequence of
{wd} contains a new subsequence which satisfies this property. Thus, let {wdk

} be a subsequence of {wd}
and let us consider the associated subsequences {∥mdk

∥} and {∥udk
∥}. Obviously, there exists a further

subsequence {dk∗} such that one of the following holds:

(i) limdk∗
∥mdk∗ ∥2

trace(Sdk∗ ) = 0.

(ii) limdk∗
∥mdk

∥2

trace(Sdk∗ ) = ∞.

(iii) There exists a finite C > 0 such that limdk∗
∥mdk∗ ∥2

trace(Sdk∗ ) = C.

Notice that in cases (i) and (iii), we have LS = ∞. To simplify notation, we denote the sequence {Sdk∗ } by
{Sh}, and similarly for the remaining ones. In case (i), since equation (22) shows that

∥uh∥2

trace(Sh)
P→ 1 as h → ∞, (23)

we have ∥mh∥
∥uh∥

P→ 0 as h → ∞. Consequently,

lim
h

|wh| = lim
h

|⟨mh,uh⟩|
∥uh∥2 ≤ lim

h

∥mh∥
∥uh∥

= 0 in probability.

If (ii) holds, we have that |wh| ≤ ∥uh∥
∥mh∥ . Since E

[
∥uh∥2] = trace(Sd), we have that ∥uh∥2

∥mh∥2
P→ 0, and, also in

this case wh
P→ 0 as h → ∞.

In case (iii), taking into account that equation (23) now holds, it is enough to show that

⟨mh,uh⟩
C trace(Sh)

P→ 0 as h → ∞,

2
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Fix ϵ > 0. We have that

P
[∣∣∣∣ ⟨mh,uh⟩
C trace(Sh)

∣∣∣∣ > ϵ

]
≤ 1

C2ϵ2

h∑
i=1

m2
h,iα

h
i(∑h

i=1 α
h
i

)2 ≤ 1
C2ϵ2

∥αh∥∞∑h
i=1 α

h
i

∥mh∥2

trace(Sh) ,

which converges to zero by assumptions (3) and (4). •

B On Assumptions (3) and (4)

The next lemma shows that if LS < ∞, then assumption (3) implies assumption (4).

Lemma B.1 Let {ad}d≥1 be a sequence of real positive numbers such that limd
1
d

∑d
i=1 ai exists, and it is

finite. Then, it happens that limd
1
d ∥ad∥∞ = 0.

Proof: Fix d ∈ N, and denote Ad =
∑d

i=1 ai. We have that

ad

d
= Ad

d
− Ad−1

d− 1
d− 1
d

and consequently, 0 = limd
ad

d . Given ϵ > 0, there exists d1 > 0 such that if d > d1, then ad

d ≤ ϵ and d2 ≥ d1
such that

sup
1≤i≤d1

ai

d2
≤ ϵ.

Let d > d2 and take 1 ≤ i ≤ d. So, we have that if i ≤ d1, then ai

d < ai

d2
≤ ϵ and if i > d1, then ai

d ≤ ai

i ≤ ϵ.
This completes the proof. •

C Proof of Theorem 2.2

First, note that (Z1 −Z2)d is a d-dimensional normal vector, with mean (µh −µk)d and covariance Σhd +Σkd.

To prove (a) and (b) we will assume that (c) holds. Statement (c) is proved later, and its proof is independent
of (a) and (b).

In case (a), we have h = k. So, (µk − µh)d = 0d and Σhd + Σkd = 2Σhd. If we take Ad = Sh
d , according

to Remark 2.1.2, (c) gives that assumption (4) holds for this selection of Ad. Therefore, (7) follows from
Theorem 2.1 because in this case Lh

µ = 0.

In case (b), we have h ̸= k. We take Ad = Shk
d and b = µh −µk. Similarly as in (a), we have that assumption

(4) also holds in this case and Theorem 2.1 implies

D
ΣZ

d

d (Z1,Z2) P→ Lhk := Lhk
µ + Lhk

S as d → ∞.

Now, (8) follows because (c) gives that Lhk
µ = 0.

To prove (c), let us denote Σ∗ = π1Σ1 + π2Σ2, µ = (µ1 − µ2) and π12 = π1π2, from (5), we have that

Σd = Σ∗
d + π12µdµ

T
d .

From here, the Sherman-Morrison formula gives

Σ−1
d = (Σ∗

d)−1 − π12(Σ∗
d)−1µdµ

T
d (Σ∗

d)−1

1 + π12µT
d (Σ∗

d)−1µd
.

3
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Since (Σ∗
d)−1 is positive definite for all d ∈ N, this now implies that

0 ≤ µT
d Σ−1

d µd = µT
d (Σ∗

d)−1µd − π12(µT
d (Σ∗

d)−1µd)2

1 + π12(µT
d (Σ∗

d)−1µd)
= µT

d (Σ∗
d)−1µd

1 + π12µT
d (Σ∗

d)−1µd
≤ 1
π12

,

and the proof that Lhk
µ = 0 trivially ends from definition of Lhk

µ .

To handle the terms Lh
S and Lhk

S , recall the Woodbury matrix identity:

(U + V )−1 = U−1 − (U + UV −1U)−1.

Using this identity, we have
Σ−1

d = 1/π1Σ−1
1d −Bd,

where Bd = (π1Σ1d + π2
1Σ1d(π2Σ2d + π12µdµ

T
d )−1Σ1d)−1.

If U and V are positive definite (p.d.), then UTV U is p.d. InBd, both the matrices Σ1d and (π2Σ2d+π12µdµ
T
d )

are symmetric and p.d., and this implies that Bd is also p.d. Further, Σ1/2
1d and Bd are p.d. which now

implies that Σ1/2
1d BdΣ1/2

1d is p.d. Recall that trace is a linear map. Now,

L1
S = lim

d

1
d
trace(Σ−1/2

d (2Σ1d)Σ−1/2
d )

= lim
d

2
d
trace(Σ1dΣ−1

d )

= lim
d

2
d
trace(1/π1Id) − lim

d

2
d
trace(Σ1dBd)

= lim
d

2
d
trace(1/π1Id) − lim

d

2
d
trace(Σ1/2

1d BdΣ1/2
1d )

≤ lim
d

2
d
trace(1/π1Id) = 2

π1
.

Similarly, we can also prove that L2
S <

2
π2

. Again,

L12
S = lim

d

1
d
trace(Σ−1/2

d (Σ1d + Σ2d)Σ−1/2
d )

= lim
d

1
d
trace(Σ−1/2

d Σ1dΣ−1/2
d ) + lim

d

1
d
trace(Σ−1/2

d Σ2dΣ−1/2
d )

<
1
π1

+ 1
π2

= 1
π1π2

.

•

D Proof of Proposition 2.3

Under the conditions of Proposition 2.3, the number of significant (unique) eigenvalues of the matrix Γ is 2.
Recall that N is fixed here.

Consider the standardized distance matrix Dd with the (i, j)-th element as DΣZ
d

d (zi, zj) for 1 ≤ i, j ≤ N and
d ∈ N. We have a sequence of matrices Dd

P→ D0 as d → ∞ (componentwise). Since the map D to Γ is
clearly continuous w.r.t. this convergence, we have that Γd

P→ Γ as d → ∞. Let us denote the eigenvalues of
Γd (respectively, Γ) to be βd

1 , . . . , β
d
N (respectively, β1, . . . , βN ). Since eigenvalues are continuous functions

of the respective matrices, we have βd
j

P→ βj as d → ∞ for all 1 ≤ j ≤ N .

Let us now look into the following:
N∑

i=1
I(|βd

i | > ad) P→
N∑

i=1
I(|β0

i | > 0) as d → ∞

4
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with ad ↓ 0 as d → ∞ at an appropriate rate. Recall that the limiting quantity on the right should give us
the correct number of clusters. Consider the sequence {1/m}m∈N. Let us take i such that βd

i
P→ 0 as d → ∞.

Thus, for every ϵ, δ > 0 there exists Di
δ,ϵ such that if d ≥ Di

δ,ϵ then

P[|βd
i | > δ] < ϵ.

In particular, if we take δ = ϵ = 1/m, there exists Di
m such that if d ≥ Di

m:

P
[
|βd

i | > 1
m

]
<

1
m
.

Without loss of generality, we can assume that Di
1 < Di

2 < · · · , and consider the sequence

ai
d =

{
2 if 1 ≤ i < Di

1,
1
m if Di

m ≤ i < Di
m+1, for some m ≥ 1.

Then, obviously ai
d → 0, and

P
[
I(|βd

i | > ai
d) > 0

]
= P

[
|βd

i | > ai
d

]
< ai

d.

If we define ad = sup{ai
d : β0

i = 0}, and i satisfies that β0
i = 0, then I(|βd

i | > ad) P→ 0 as d → ∞. A similar
reasoning allows us also to conclude that if |β0

i | > 0, then I(|βd
i | > ad) P→ 1 as d → ∞. •

E Proof of Theorem 2.5

In this proof, we use the superindex d in Gd
i to emphasize that the groupings can change with the dimension

d ∈ N. Proposition 2.3 implies that Kd = 2 with probability converging to one.

Note that ϕ(G1, . . . ,GJ) has an alternative mathematical expression as

J∑
h=1

1
2|Gh|

∑
u,v∈Gh

∥u − v∥2, (24)

where |G| denotes the cardinality of the set G. Let us denote the rows/columns of Γd as γd
1, . . . ,γ

d
N . The

structure of Γd implies that ∥γd
i − γd

j ∥2 P→ 0 as d → ∞ iff i, j ∈ Ch for h ∈ {1, 2}. So, if each Gd
h for h = 1, 2

contains observations from the same population, then ϕd(Gd
1,G

d
2) P→ 0 as d → ∞.

Let us assume that on the contrary, there exists a subsequence of dimensions {dk} such that for every k
there exists at least a couple of points ik, jk with ik ∈ Gd

1 and jk ∈ Gd
2 (say). Since the number of points

is finite, there exists a further subsequence {dk∗} such that both sequences {ik∗} and {jk∗} are constant.
Therefore, for those subsequences (24) implies that

lim inf
d

ϕd(G1,G2) ≥ lim
d

∥γdk∗
ik∗ − γdk∗

jk∗ ∥2 P→ γ12 > 0.

So, for the minimization of ϕd(Gd
1,G

d
2), each Gd

h must contain all observations from a single population with
probability converging to one as the dimension increases. This proves the convergence in probability of the
Rand index Rd,N to zero as d → ∞. •

F Rank of the Matrix Γ

Identifying number of clusters from the matrix Γ is not equivalent to finding the rank of the matrix Γ.

5
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Lemma F.1 The rank of the matrix Γ is less then or equal to J . Moreever, equality is guaranteed only when
J ≤ 3.

Proof: Trivially, rank(Γ) ≤ J . Let us denote the reduced Echelon form of N ×N matrix Γ as Γ◦. Thus, the
matrix Γ◦ is a J × J symmetric matric with γij > 0 and distinct when i ̸= j, while γii = 0.

Moreover, for J = 3, we have

det(Γ◦) = det

 0 γ12 γ13
γ12 0 γ23
γ13 γ23 0

 = 2γ12γ13γ23 ̸= 0.

In the case J = 4, if γ12 =
γ13γ24 + γ14γ23 + 2 √

γ13γ14γ23γ24

γ34
, then a simple computation gives that

det(Γ◦) = 0. This happens, for instance, if we consider the following matrix (with all positive and dis-
tinct off-diagonal entries): 

0 t 1 2
t 0 3 4
1 3 0 5
2 4 5 0

 ,

where t = 2 + 4
√

6/5 > 0.

•

G Proof of Theorem 2.6

In order to simplify the writing, we will write d instead of dN . We will use the notation ∥αd∥2 :=(∑d
i=1(αd

i )2
)1/2

. The real r.v.’s {ui} are assumed to be i.i.d. with standard normal distribution.

The following lemma is deduced from Lemma 1 in Laurent and Massart (2000) on p. 1325, after some simple
computations, taking into account that ∥αd∥2 ≥ ∥αd∥∞. We state it here for further reference.

Lemma G.1 If Zd =
∑d

i=1 α
d
i (u2

i − 1) and x ≥ 1, then

P [|Zd| ≥ 4x∥αd∥∞] ≤ 2 exp(−x).

We will also employ the following well known bound for the tail of the standard normal distribution:

P[|N(0, 1)| ≥ t] ≤
√

2
π

exp(−t2/2) for all t ≥ 1. (25)

Proof of Theorem 2.6 : Let us show part b). The proof of (14) is similar to that of (16). We use the notation
md = (Σd)−1/2(µ1 − µ2)d and ui

d = (Σd)−1/2(Zi − µi)d with d ∈ N, where Zi is a generic observation with
distribution Pi for i = 1, 2. Moreover, with an obvious abuse of notation, we will often write ui

d ∈ CN
i with

d ∈ N for i = 1, 2.

6
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Recall that Lµ = 0 and LS < ∞ (see part (c) in Theorem 2.2). Repeating the first steps in the proof of
Theorem 2.1, we have that

sup
Z1∈CN

1 ,Z2∈CN
2

∣∣∣∣DΣ
d (Z1,Z2) − 1

d
trace(S12

d )
∣∣∣∣

≤
∣∣∣∣1d∥md∥2

∣∣∣∣+ sup
u1∈CN

1 ,u2∈CN
2

∣∣∣∣1d∥u1
d − u2

d∥2 − 1
d

trace(S12
d )
∣∣∣∣ (26)

+ 2 sup
u1∈CN

1 ,u2∈CN
2

1
d

∣∣⟨md,u1
d − u2

d⟩
∣∣ , (27)

and it is enough to prove that the terms in (26) and (27) converge to zero in probability.

The first term in (26) converges to zero by first part of (c) in Theorem 2.2. Concerning the second term,
let N1, N2 be the number of elements in CN

1 and CN
2 , respectively. Since N1 + N2 = N , it is clear that

N1 ×N2 ≤ N2/4. Let ε > 0. We have that

PN := P

[
sup

u1∈CN
1 ,u2∈CN

2

∣∣∣∣1d∥u1
d − u2

d∥2 − 1
d

trace(S12
d )
∣∣∣∣ > ε

]

= P

 ⋃
u1∈CN

1 ,u2∈CN
2

{∣∣∣∣1d∥u1
d − u2

d∥2 − 1
d

trace(S12
d )
∣∣∣∣ > ε

}
≤ N2

4 P
[∣∣∣∣1d∥u1

d − u2
d∥2 − 1

d
trace(S12

d )
∣∣∣∣ > ε

]
, (28)

where u1 and u2 are associated with some Z1 ∈ CN
1 and Z2 ∈ CN

2 , respectively. However, it is clear that

1
d

∥u1
d − u2

d∥2 − 1
d

trace(S12
d ) ∼ 1

d

d∑
i=1

αd
i (u2

i − 1).

Take x = εd/(4∥αd∥∞). By assumption (15), we have d/∥αd∥∞ → ∞ and eventually x ≥ 1. So, from Lemma
G.1, we obtain

PN ≤ N2

4 P

∣∣∣∣∣∣
∑
i≤d

αd
i (u2

i − 1)

∣∣∣∣∣∣ > εd

 ≤ 1
2 exp

(
− εd

4∥αd∥∞
+ 2 logN

)
,

which converges to zero by assumption (15).

For the third term, in equation (27) we have that

P ∗
N := P

[
sup

u1∈CN
1 ,u2∈CN

2

1
d

|⟨md,u1
d − u2

d⟩| > ε

]

≤ N2

4 P
[

1
d

|⟨md,u1
d − u2

d⟩| > ε

]

= N2

4 P

1
d

∣∣∣∣∣∣
∑
i≤d

mdi(αd
i )1/2ui

∣∣∣∣∣∣ > ε


= N2

4 P

|N(0, 1)| > ε
d√∑

i≤d(mdi)2αd
i


≤ 1

23/2π1/2 exp
(

−ε2

2
d2∑

i≤d(mdi)2αd
i

+ 2 logN
)

(29)

≤ 1
23/2π1/2 exp

(
−ε2

2
d2

∥αd∥∞
∑

i≤d(mdi)2 + 2 logN
)
,

7
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which converges to 0 because of the fact that Lµ = 0 (see part (c) in Theorem 2.2) and (15). The same
assumption allows us to apply inequality (25) to equation (29). •

H Result Related to Remark 2.6.1

Proposition H.1 Under assumptions of Theorem 2.2, if we assume that logN
dN

→ 0, then conditions (13)
and (15) hold.

Proof: Fix h ∈ {1, 2}, and recall that
Σ−1

d = (πhΣhd)−1 − Pd,

where Pd = (πhΣhd + πhΣhd(Th
d )−1πhΣhd)−1 is a positive definite matrix. Further,

Id + ΣdPd = 1
πh

ΣdΣ−1
hd .

From here, Weyl’s inequality gives

1 ≤ αmin( 1
πh

ΣdΣ−1
hd ) = 1

πh
αmin(ΣdΣ−1

hd ). (30)

Note the fact that the eigenvalues of the matrices AB and BA are same. So, the matrices Sh
d and ΣhdΣ−1

d

will have the same eigenvalues. Furthermore, the eigenvalues of Sh
d are the inverses of the eigenvalues of

ΣdΣ−1
hd . Thus, (30) gives that

αmax(Sh
d ) < 2

πh
(free of d). (31)

We now have

logN = o

(
dN

αdN
1

)
⇔ αdN

1 logN
dN

→ 0.

Equation (31) now implies that condition (13) holds if we assume logN
dN

→ 0.

Fix h ̸= k ∈ {1, 2}. Our second matrix of interest is

Shk
d = (Σd)−1/2(Σhd + Σkd)(Σd)−1/2.

Since the matrices are symmetric, we have

αmax(Shk
d ) ≤ αmax(Σ−1/2

d ΣhdΣ−1/2
d ) + αmax(Σ−1/2

d ΣkdΣ−1/2
d ).

Again, the eigenvalues of Σ−1/2
d ΣidΣ−1/2

d and of ΣidΣ−1
d will be equal for i = h, k. So,

αmax(Shk
d ) ≤ αmax(ΣhdΣ−1

d ) + αmax(ΣkdΣ−1
d )

= 1
αmin(ΣdΣ−1

hd )
+ 1
αmin(ΣdΣ−1

kd )

≤ 1
πh

+ 1
πk

= 1
πhπk

(using equation (30)).

From here, similarly as before, we would obtain that logN
dN

→ 0 implies (15) holds. •

8
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I Proof of Theorem 3.1

Recall that in this theorem, we use the subspaces generated by the estimates of the first d eigenfunctions of
the covariance of the random process Z.

We begin with some notation and preliminary results which have been taken from Delaigle and Hall (2012)
and Hall and Hosseini-Nasab (2006), or follow directly from the results there. Then, we will give the proof
of Theorem 3.1. For every n ∈ N, let us consider

∆̂2
Z =

∫ 1

0

∫ 1

0
(Σ̂(s, t) − Σ(s, t))2dsdt,

δZ
j = min

k≤j
(λk − λk+1).

In Delaigle and Hall (2012) and Hall and Hosseini-Nasab (2006), it is shown that if j ≥ 1, then

|λ̂j − λj | ≤ ∆̂Z, (32)

and that, if j ≤ R̂Z
N (recall the definition of R̂Z

N in (17)), then

∥ϕ̂j − ϕj∥ ≤ 81/2∆̂Z(δZ
j )−1, (33)

∆̂Z = Op(N−1/2), (34)
RZ

N → ∞ and R̂Z
N ≤ λ̂Z

1 η
−1
N . (35)

Moreover, if j ≤ R̂Z
N , there exists a k ≤ j such that

δZ
j = λk − λk+1 ≥ λ̂k − λ̂k+1 − 2∆̂Z ≥ ηN − 2∆̂Z = ηN + oP (ηN ), (36)

where we have applied (32) and (17) and that, from (34) and the assumption on ηN , we can conclude that
ηN > 2∆̂Z from an index onward. Thus, (36) and (33) yield

∥ϕ̂j − ϕj∥ ≤ 81/2 ∆̂Z

ηN − 2∆̂Z
. (37)

From (32), (17) and (34), we obtain that

λj ≥ λ̂j − ∆̂Z ≥ ηN − ∆̂Z = ηN + oP (ηN ). (38)

Now, we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1: The proof is based on Lemma I.1. The result follows trivially from this lemma, the
fact that R̂Z

N
P→ ∞ as n → ∞ and the result in Theorem 2.2.

Lemma I.1 Under the assumptions in Theorem 3.1, it happens that∣∣∣D̂R̂Z
N

(Z1,Z2) −DR̂Z
N

(Z1,Z2)
∣∣∣ P→ 0 as n → ∞.

Proof. For fixed Z1,Z2, let us denote u = Z1 −Z2. Obviously, ∥u∥ = O(1) a.s. Let us denote (u1, . . . , uR̂1
n
)T

and (û1, . . . , ûR̂1
n
)T to be the projections of u on the subspaces generated by the first R̂Z

N eigenvectors of the
matrices ΣR̂Z

N
and Σ̂R̂Z

N
, respectively, when written in the basis generated by those eigenvectors. Let n ∈ N,

and take j ≤ R̂Z
N . We now have∣∣∣∣∣ (uj)2

λ1
j

− (ûj)2

λ̂1
j

∣∣∣∣∣ =
∣∣∣∣∣ uj

(λ1
j )1/2 − ûj

(λ̂1
j )1/2

∣∣∣∣∣
∣∣∣∣∣ uj

(λ1
j )1/2 + ûj

(λ̂1
j )1/2

∣∣∣∣∣
≤

(∣∣∣∣∣uj − ûj

(λ1
j )1/2

∣∣∣∣∣+
∣∣∣∣∣ûj

(λ1
j )1/2 − (λ̂1

j )1/2

(λ1
j λ̂

1
j )1/2

∣∣∣∣∣
) ∣∣∣∣∣ uj

(λ1
j )1/2 + ûj

(λ̂1
j )1/2

∣∣∣∣∣ .
9
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We analyze each term in this expression separately as follows:∣∣∣∣∣uj − ûj

(λ1
j )1/2

∣∣∣∣∣ ≤ 1
(λ1

j )1/2

∫ 1

0
|u(t)||ϕ1

j (t) − ϕ̂1
j (t)|dt

≤
∥u∥ ∥ϕ1

j − ϕ̂1
j∥

(λ1
j )1/2

≤ 81/2∥u∥ ∆̂X

(λ1
j )1/2(ηn − 2∆̂X)

≤ 81/2∥u∥∆̂X(η−3/2
n + oP (η−3/2

n )), (39)
where we have applied the Cauchy-Schwartz inequality, (37), (34) and (38). On the other hand, we have∣∣∣∣∣ûj

(λ1
j )1/2 − (λ̂1

j )1/2

(λ1
j λ̂

1
j )1/2

∣∣∣∣∣ ≤
∫ 1

0
|u(t)||ϕ̂1

j (t)|dt
|λ1

j − λ̂1
j |(

(λ1
j )1/2 + (λ̂1

j )1/2
)

(λ1
j λ̂

1
j )1/2

≤ ∥u∥ ∆̂X(
(λ1

j )1/2 + (λ̂1
j )1/2

)
(λ1

j λ̂
1
j )1/2

≤ 1
2∥u∥∆̂X(η−3/2

n + oP (η−3/2
n )), (40)

where we have applied (17) and (38). Concerning the final term, using (38) and (17) again, we obtain that∣∣∣∣∣ uj

(λ1
j )1/2 + ûj

(λ̂1
j )1/2

∣∣∣∣∣ ≤ ∥u∥

(
1

(λ1
j )1/2 + 1

(λ̂1
j )1/2

)
≤ ∥u∥(η−1/2

n + oP (η−1/2
n )). (41)

Now, if we define C = 81/2 + 1, combining (39), (40), (41), (35) and (34), we get the following:

∣∣∣D̂R̂Z
N

(Z,Z2) −DR̂Z
N

(Z,Z2)
∣∣∣ ≤ 1

R̂Z
N

R̂Z
N∑

j=1

∣∣∣∣∣ (uj)2

λ1
j

− (ûj)2

λ̂1
j

∣∣∣∣∣
≤ C∥u∥2∆̂X(η−2

n + oP (η−2
n )) = OP (n−1/2η−2

n ).

By construction, ηn is such that nη5
n → ∞. So, we have |D̂R̂Z

N
(Z1,Z2) −DR̂Z

N
(Z1,Z2)| P→ 0 as n → ∞, and

the lemma is proved. •

J Proof of Theorem 3.2

We will need the following lemma:

Lemma J.1 Under the assumptions in Theorem 3.2, we have that P[R̂N ≥ RN ] → 1.

Proof : Let N ∈ N. From (32), we have that

inf
j≤RN

(λ̂j − λ̂j+1) ≥ inf
j≤RN

(λj − λj+1) − 2∆̂Z ≥ (1 + δ)ηN − 2∆̂Z,

and the proof ends because (34) and the fact that ηN ≥ N−1/5 imply that P[δηN − 2∆̂Z ≥ 0] → 1. •

In this setting, recall that Lµ = 0 and LS < ∞ (see (c) in Theorem 2.2). We will only prove part b); part
a) being similar. W.l.o.g. we will assume that h = 1 and k = 2. Remember that for every Z1,Z2, we have

DR̂N
(Z1,Z2) = 1

R̂N

R̂N∑
j=1

⟨Z1 − Z2, ϕj⟩2

λj
and D̂R̂N

(Z1,Z2) = 1
R̂N

R̂N∑
j=1

⟨Z1 − Z2, ϕ̂j⟩2

λ̂j

.

10
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We are going to consider the function

D̃R̂N
(Z1,Z2) = 1

R̂N

R̂N∑
j=1

⟨Z1 − Z2, ϕj⟩2

λ̂j

.

Obviously,

sup
Z1∈CN

1 ,Z2∈CN
2

∣∣∣D̂R̂N
(Z1,Z2) − L12

S

∣∣∣ ≤ sup
Z1∈CN

1 ,Z2∈CN
2

∣∣∣D̂R̂N
(Z1,Z2) − D̃R̂N

(Z1,Z2)
∣∣∣

+ sup
Z1∈CN

1 ,Z2∈CN
2

∣∣D̃R̂N
(Z1,Z2) −DR̂N

(Z1,Z2)
∣∣

+ sup
Z1∈CN

1 ,Z2∈CN
2

∣∣DR̂N
(Z1,Z2) − L12

S

∣∣
=: T1 + T2 + T3.

Lemma J.1, and equations (35) and (32) imply that there exists C > 0 such that

P[RN ≤ R̂N ≤ CN1/5] → 1.

Consequently, with probability going to 1, it happens that

DRN
(Z1,Z2) ≤ DR̂N

(Z1,Z2) ≤ DCN1/5(Z1,Z2).

Since, by assumption (15), logN = o
(

RN

λ1

)
and trivially we have logN = o

(
CN1/5

λ1

)
, b) in Theorem 2.6

gives that T3 converges in probability to zero as N → ∞. Since L12
S < ∞, this fact implies that

sup
Z1∈CN

1 ,Z2∈CN
2

DR̂N
(Z1,Z2) = OP (1). (42)

With respect to T2, we have

T2 ≤ sup
Z1∈CN

1 ,Z2∈CN
2

1
R̂N

R̂N∑
j=1

⟨Z1 − Z2, ϕj⟩2

λj

|λj − λ̂j |
λ̂j

≤
R̂N∑
j=1

|λj − λ̂j |
λ̂j

sup
Z1∈CN

1 ,Z2∈CN
2

DR̂N
(Z1,Z2) = Op(N−1/10),

where last equality follows from (42), (32), (34), (35) and (17).

Finally, given Z1 ∈ CN
1 ,Z2 ∈ CN

2 , the Cauchy-Schwartz inequality and the fact that ∥ϕ̂j∥ = ∥ϕj∥ = 1 imply

∣∣∣D̂R̂n
(Z1,Z2) − D̃R̂n

(Z1,Z2)
∣∣∣ ≤ 1

R̂N

R̂N∑
j=1

∣∣∣⟨Z1 − Z2, ϕ̂j⟩2 − ⟨Z1 − Z2, ϕj⟩2
∣∣∣

λ̂j

= 1
R̂N

R̂N∑
j=1

∣∣∣⟨Z1 − Z2, ϕ̂j − ϕj⟩
∣∣∣ ∣∣∣⟨Z1 − Z2, ϕ̂j + ϕj⟩

∣∣∣
λ̂j

≤ ∥Z1 − Z2∥2 1
R̂N

R̂N∑
j=1

∥ϕ̂j − ϕj∥ ∥ϕ̂j + ϕj∥
λ̂j

≤ 2∥Z1 − Z2∥2 1
R̂N

R̂N∑
j=1

∥ϕ̂j − ϕj∥
λ̂j

= 2 ∥Z1 − Z2∥2
HN .

11
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Moreover, the application of (33), (34), (36) and (17) gives that HN = OP (N−1/10), which in turn is
equivalent to saying that there exists C > 0 such that P[Hn < CN−1/10] → 1. This and the reasoning
leading to (28) imply that to prove T1

P→ 0, it is enough to show that for every C > 0

N2P
[
∥Z1 − Z2∥2

> CN1/10
]

→ 0 as N → ∞, (43)

where Z1 and Z2 came from distributions P1 and P2, respectively.

To show (43), notice that Z1 − Z2 follows a Gaussian distribution whose mean function is µ1 − µ2 and its
covariance is Σ12 = Σ1 + Σ2. Let γj (with j ∈ N) denote the ordered eigenvalues of Σ12. Consider a basis
composed by the eigenfunctions of Σ12, we denote by (µ1 −µ2)j the components of µ1 −µ2 in this basis and
{uj} is a sequence of i.i.d. real standard normal variables with j ∈ N. Now, we have the following

∥Z1 − Z2∥2 ∼
∞∑

j=1

(
γ

1/2
j uj + (µ1 − µ2)j

)2

=
∞∑

j=1

(
γj(u2

j − 1) + γj + (µ1 − µ2)2
j + 2(µ1 − µ2)jγ

1/2
j uj

)
=

∞∑
j=1

(
γj(u2

j − 1) + 2(µ1 − µ2)jγ
1/2
j uj

)
+ trace(Σ12) + ∥µ1 − µ2∥2.

Notice that K := trace(Σ12) + ∥µ1 − µ2∥2 < ∞. Thus,

P
[
∥Z1 − Z2∥2

> CN1/10
]

= P

 ∞∑
j=1

(
γj(u2

j − 1) + 2(µ1 − µ2)jγ
1/2
j uj

)
> CN1/10 −K


≤ P

 ∞∑
j=1

γj(u2
j − 1) > 1

2

(
CN1/10 −K

)
+P

 ∞∑
j=1

(µ1 − µ2)jγ
1/2
j uj >

1
4

(
CN1/10 −K

)
=: P1 + P2. (44)

Obviously, 1
4
(
CN1/10 −K

)
→ ∞. Thus, eventually 1

4
(
CN1/10 −K

)
> 1 and from Lemma G.1, we have

that

P1 ≤ lim
d→∞

P

 d∑
j=1

γj(u2
j − 1) > 1

2

(
CN1/10 −K

) ≤ 2 exp
(

− 1
8γ1

(
CN1/10 −K

))
. (45)

Concerning to P2, first notice that for every d ∈ N, the real r.v.
∑d

j=1(µ1 − µ2)jγ
1/2
j uj is centered normal,

with variance equal to
d∑

j=1
(µ1 − µ2)2

jγj ≤ γ1

d∑
j=1

(µ1 − µ2)2
j ≤ γ1∥µ1 − µ2∥2. Therefore,

P2 ≤ lim
d→∞

P

∣∣∣∣∣∣
d∑

j=1
(µ1 − µ2)jγ

1/2
j uj

∣∣∣∣∣∣ > 1
4

(
CN1/10 −K

)
≤ P

[
|N(0, 1)| > 1

4γ1/2
1 ∥µ1 − µ2∥

(
CN1/10 −K

)]

≤
√

2
π

exp
(

− 1
2γ1(4∥µ1 − µ2∥)2

(
CN1/10 −K

)2
)
, (46)

where last inequality comes from (25) because, eventually 1 <
(
CN1/10 −K

)
/(4γ1/2

1 ∥µ1 − µ2∥). Finally,
(44), (45), and (46) give (43) and consequently, T1

P→ 0 as N → ∞. •

12
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Appendix II: Additional Material

K Extension to non-Gaussian Processes

Obviously, non-Gaussian processes can also be mutually singular. In fact, Theorem 4.3 in Rao and Varadara-
jan (1963) contains a sufficient condition for this property to be satisfied. This allows us to consider the
possibility to extend previous results to cover non-Gaussian distributions. It is obvious that the developed
proofs can cover non-Gaussian distributions as long as they satisfy the due properties. In this subsection, we
state the properties a distribution should satisfy in order the proofs can be extended. Let P1 and P2 be two
probabilities on the Hilbert space H. Here, Z will denote a L2[0, 1]-valued random element with distribution
π1P1 + πsP2 for some π1, π2 > 0 with π1 + π2 = 1.

The basic assumption is the existence of a covariance of Z. We will also consider assumptions A.1 and A.2 (see
Section 3 of the main paper) and b ∈ L2[0, 1]. Given a positive-definite d× d matrix Ad and a d-dimensional
subspace Vd ⊂ L2[0, 1], we need to consider the d-dimensional random vector Ud = (Ad)−1/2(Z − b)d and
the covariance matrix Sd = A

−1/2
d ΣdA

−1/2
d , where Σd is the covariance matrix of Zd and (Z − b)d is the

projection on Vd of (Z − b) with d ∈ N.

Let us write Ud −E[Ud] = (u1, . . . , ud)T in the basis of the eigenvectors of Sd and let αd
1, . . . , α

d
d denote the

eigenvalues of Sd. Therefore, ui/α
d
i for 1 ≤ i ≤ d are real, standardised random variables which we need to

assume to be i.i.d. Similar properties must hold for the decomposition of Z in its eigenfunction basis (also
see Dai et al (2017)). We finally need two exponential inequalities as those stated in (25) of Lemma G.1.

L Discussion on GP Clustering for the ‘Location Only’ Case

We have some ideas to fix the problem with the ‘location only’ case. Recall the notation used in Subsection
2.1 of the main paper. As stated there, the problem in this case is that

D
ΣZ

d

d (u,v) = 1
d

∥∥∥Σ−1/2
d (u − v)d

∥∥∥2
= 1
d

d∑
i=1

(ui − vi)2

λi

P→ 0 as d → ∞.

Our idea is to replace the terms in the sum with some others going to 0 slowly enough (or, if possible, not
converging to zero at all). To use this idea, our proposal is as follows:

D
ΣZ

d ,r
d (u,v) := 1

d

∥∥∥(Σ−1/2
d )r(u − v)d

∥∥∥2
= 1
d

d∑
i=1

(ui − vi)2

λr
i

, with r ∈ I. (47)

Here, I is the set of integers. In this article, we have studied the case when r = 1, i.e., DΣZ
d ,1

d . However, this
was not a strict requirement and we look into some possible scenarios below:

• If r ∈ {0,−1,−2, . . .}, assumption A.2 in the main paper trivially gives that (ui−vi)2

λr
i

≤ (ui−vi)2

λi

eventually for large i, and consequently, DΣZ
d ,r

d (u,v) P→ 0 as d → ∞.

• When r ∈ {2, 3, . . .}, the transformation D
ΣZ

d ,r
d may be useful because 1/λr

i will start to take high
values (recall assumption A.2 ) and this may lead to separation between the observations of corre-
sponding to different clusters.

Keeping the viewpoint stated above in mind, we consider the transformation D
ΣZ

d ,4
d (using r = 4 in (47)).

Numerical results for the difference in location only setting stated in Section 4 are reported below. We
have excluded Example II from this comparison because, as stated earlier, the two GPs have no difference
in their means.

13
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Table L.1: Adjusted Rand distances for different GPs with difference in location (with standard error in
brackets), taking r = 4 in (47).

GP ↓ k-means funclust CL DHP CD
I 0.0001 0.0002 0.0001 0.0001 0.0012

(0.0001) (0.0001) (0.0001) (0.0000) (0.0002)
III 0.0646 0.0795 0.0945 0.1480 0.1649

(0.0015) (0.0009) (0.0045) (0.0047) (0.0017)
IV 0.1606 0.0318 0.1015 0.0134 0.1257

(0.0007) (0.0003) (0.0000) (0.0004) (0.0019)

As expected, the performance of k-means is quite good in Examples I and III. Both DHP and CL also perform
quite well securing a first place in some cases. The proposed statistic DΣZ

d ,4
d shows significant improvement

(recall from part (c) of Theorem 2.2 that Lµ = 0 for the earlier transformation D
ΣZ

d ,1
d ), and this is reflected

in the numerical figures of Table L.1.

Clearly, there is scope of further work with the proposed transformation D
ΣZ

d ,r
d for r ∈ {2, 3, . . .}, both

theoretically as well as numerically.

M Review of the paper Delaigle et al (2019)

As stated, Delaigle et al (2019) is related to perfect clustering and it is the only paper on perfect clustering
we are aware of. In this section, we analyze the relation between our proposal and this paper.

The proposal by Delaigle et al (2019) is based on finding a finite-dimensional subspace in which the data are
projected, and clustering is done by applying a modification of the k-means algorithm on those projections.
A theoretical result related to perfect clustering is stated in Theorem 1 of this paper. In the homoscedastic
case, Delaigle et al (2019) gives an explicit expression of the subspace in which the data should be projected
(see Theorem 2 of this paper).

The technique proposed in this paper has some advantage over our proposal in the sense that they
can handle the homoscedastic (differences only in location) case. However, it suffers from sev-
eral limitations, the main one being that Delaigle et al (2019) is able to deal with mixtures
involving only two components. On the technical side, the theory of Delaigle et al (2019)
has some limitations. It requires to arbitrarily fix p ∈ N. Then, the data are projected on a p-dimensional
subspace in which the clustering is to be done. New issues appear in the way in which the subspace should
be chosen, and the way in which the clusters can be constructed. According to Theorem 1 of this paper, the
generators of the subspace must be chosen in a finite set with cardinality an → ∞ as the sample size n → ∞.
Moreover, the partition of the data set must be chosen between those in a finite set of Voronoi tessellations of
Rp with cardinality bn → ∞ as n → ∞. Additionally, the result needs technical conditions like the existence
of some c ∈ (0, 1) such that for every C > 0 it happens that ap

nbn exp(−Cnc) → ∞ as n → ∞.

N Full Numerical Results

Full results for two scenarios are given below.

Full result for the location only case (using the transformation DΣd,4
d stated in Section L of Appendix II)

is given next.

R codes for our clustering methods are available from this link: GP clustering.

14
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Table N.1: Adjusted Rand distances for different GPs with difference in location and scale (with standard
error in brackets).

GP ↓ CD-k-means CD-Spectral CD-mclust CL1 CL2 DHP1 DHP2
I 0.1678 0.0082 0.0001 0.0239 0.0554 0.8386 0.0818

(0.0010) (0.0002) (0.0001) (0.0007) (0.0005) (0.0064) (0.0025)

II 0.9858 0.9847 0.4240 0.5767 0.9967 0.5470 0.5149

(0.0003) (0.0004) (0.0030) (0.0045) (0.0018) (0.0047) (0.0049)

III 0.4191 0.9857 0.0625 0.2891 0.9962 0.4137 0.5613

(0.0042) (0.0099) (0.0006) (0.0000) (0.0000) (0.0054) (0.0060)

IV 0.0316 0.0000 0.0000 0.1833 0.6660 0.1379 0.5211

(0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0033) (0.0061)

Table N.2: Adjusted Rand distances for different GPs with difference only in scales (with standard error in
brackets).

GP ↓ CD-k-means CD-Spectral CD-mclust CL1 CL2 DHP1 DHP2
I 0.0063 0.0001 0.0000 0.8269 1.0017 0.9989 0.9966

(0.0002) (0.0001) (0.0000) (0.0000) (0.0000) (0.0005) (0.0008)

II 0.0091 0.0100 0.0084 0.9065 1.0019 1.0001 0.9999

(0.0010) (0.0019) (0.0003) (0.0007) (0.0005) (0.0002) (0.0003)

III 0.5549 0.9805 0.0856 0.9994 0.9998 0.9984 0.9967

(0.0052) (0.0099) (0.0006) (0.0000) (0.0000) (0.0004) (0.0007)

IV 0.0102 0.0014 0.0005 0.8464 0.9928 0.9994 0.9980

(0.0021) (0.0013) (0.0004) (0.0000) (0.0000) (0.0003) (0.0006)

Table N.3: Adjusted Rand distances for different GPs with difference in locations (with standard error in
brackets).

GP ↓ CD-k-means CD-Spectral CD-mclust C1 C2 DHP1 DHP2
I 0.0012 0.0814 0.0016 0.0001 0.0001 0.9896 0.0001

(0.0002) (0.0272) (0.0003) (0.0000) (0.0000) (0.0001) (0.0001)

III 0.1649 0.3660 0.3007 0.0945 0.9975 0.1480 0.1623

(0.0017) (0.0076) (0.0024) (0.0010) (0.0043) (0.0047) (0.0075)

IV 0.1257 0.3777 0.1784 0.1015 0.9001 0.0134 0.1473

(0.0019) (0.0085) (0.0021) (0.0000) (0.0000) (0.0004) (0.0039)
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