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ABSTRACT

This paper studies learning on text-attributed graphs, where each node is associ-
ated with a textual description. While graph neural networks (GNNs) have been
widely employed for solving tasks on such graphs, they struggle with balancing
between effectiveness and interpretability. Inspired by recent breakthroughs in
large language models (LLMs), which have demonstrated remarkable capabili-
ties with interpretable explanations across a variety of applications, we introduce
GraphAgent. GraphAgent reframes learning on text-attributed graphs as an agent
planning problem and parameterizes the agent as an LLM. This paradigm shift
empowers the agent to take actions explicitly tailored for text-attributed graphs,
enabling comprehensive exploration of both structural and textual features. Lever-
aging the expressive power of LLMs, the agent adeptly capture the intricate rela-
tionships inherent in the graph structure and textual descriptions, thereby yielding
precise predictions and transparent reasoning processes. Extensive experiments
conducted on various datasets underscore the effectiveness and interpretability of
GraphAgent, shedding new light on the promising intersection of large language
models and graph-based learning.

1 INTRODUCTION

Graph-structured data is a prevalent feature of the real world. A graph comprises nodes connected
by edges, often accompanied by textual descriptions for each node, yielding a text-attributed graph
(TAG). Modeling such type of data is a crucial topic within the field of machine learning, offering a
variety of applications such as node classification and link prediction.

In the literature, graph neural networks have emerged as potent tools for modeling graph-structured
data (Kipf & Welling, 2016; Velickovic et al., 2017; Gilmer et al., 2017). The core idea of graph neu-
ral networks is to acquire meaningful node representations through highly non-linear architectures,
achieved via the message-passing mechanism. Specifically, each node’s representation is iteratively
updated by integrating information from both its own textual descriptions and those of its neigh-
boring nodes. This fusion enables GNNs to harness the combined power of graph structures and
textual features, consistently yielding state-of-the-art performance across numerous downstream ap-
plications. However, despite the effectiveness of GNNs in enhancing node representations, there is
a downside. The message-passing mechanism can blend textual features from a multitude of nodes,
resulting in highly unintuitive and uninterpretable representations. While recent efforts have sought
to address this challenge (Huang et al., 2022; Zhang et al., 2021; Ying et al., 2019; Lin et al., 2020),
these methods are still lack of an intuitive and transparent reasoning process.

In recent times, large language models (LLMs) have achieved remarkable success across various ap-
plications. Due to the use of vast text corpus for training, these models are endowed with a wealth of
world knowledge and exhibit impressive emergent capabilities, as underscored by Wei et al. (2022).
These inherent attributes empower LLMs to engage in intricate reasoning processes, yielding intu-
itive interpretations while tackling a wide array of tasks. Noteworthy examples include multi-hop
question answering (Yao et al., 2022) and household planning (Singh et al., 2023). Furthermore,
recent efforts have showcased LLMs as autonomous agents, adept at taking diverse actions and uti-
lizing a variety of tools (Schick et al., 2023) to effectively address given problems, all the while
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offering insights into their internal thoughts and thus demonstrating substantial interpretability. In-
spired by the evidence, this paper endeavors to explore the application of LLMs in graph machine
learning tasks, with the goal of achieving both effectiveness and interpretability.

For this goal, we introduce GraphAgent as our solution to leverage Large Language Models (LLMs)
for graph machine learning tasks, with a specific focus on node classification due to its wide applica-
tions. One straightforward approach is to feed the graph structure and textual features of nodes into
the memory of LLM for node label prediction. However, this method encounters challenges in real
graphs, as they can be exceptionally large, and thus incorporating the entire contextual information
into memory becomes infeasible or prohibitively resource-intensive. To overcome the challenge, we
propose to reframe node classification as an agent-planning problem, with the agent parameterized
by LLMs. Our LLM-powered agent is equipped with a few actions, including retrieving a node’s
features and accessing its neighboring nodes. This formalization empowers the agent to systemati-
cally explore the contextual information surrounding each target node and keep the most pertinent
information within its memory. By striking a balance between exploration and exploitation (March,
1991), our approach optimizes memory utilization, ensuring efficiency on even extensive graphs.

Despite the agent-planning formalization, crafting an intelligent agent with desired effectiveness and
interpretability remains challenging. GraphAgent surmounts this challenge by meticulously con-
structing illustrative examples for in-context learning. While a simplistic approach would involve
manually crafting these examples, it comes at a high cost and lacks scalability. Consequently, we opt
for a method that autonomously generates these demonstrations. Beginning from a blank memory,
we let the agent generate trajectories on graphs at random, progressively incorporating trajectories
culminating in accurate predictions as instructive examples into its memory for self-improvement.
This iterative approach empowers the agent to evolve into a more effective node label classifier while
simultaneously enhancing its ability to provide intuitive interpretations. Moreover, as the memory
becomes increasingly crowded with the addition of more examples, we employ a hierarchical mem-
ory mechanism. This mechanism efficiently extracts and reuses the distilled insights gained from
environmental feedback through a combination of long-term and short-term memory modules. In
this manner, GraphAgent not only attains commendable effectiveness and interpretability but also
manages to remain efficient in its operations.

We compare GraphAgent against supervised learning methods and in-context learning methods on
three node classification datasets. Experimental results indicate that GraphAgent achieves com-
parable results to supervised learning methods. We also conduct ablation studies to validate our
techniques and perform a comprehensive case study to analyze our successes.

2 RELATED WORK

2.1 GNN-BASED NODE CLASSFICATION

Our work is related to the field of graph neural networks, a widely adopted approach for model-
ing graphs. Prominent methodologies within this domain include Graph Convolutional Networks
(GCN) (Kipf & Welling, 2016), Graph Attention Networks (GAT) (Velickovic et al., 2017), and
Message Passing Neural Networks (MPNN) (Gilmer et al., 2017). At their core, these methods har-
ness the message-passing mechanism to facilitate the learning of node representations. To achieve
this, they iteratively refine the representation of each node by incorporating information from its
own features as well as those of its neighboring nodes. In recent developments, there has been a no-
table trend towards integrating graph neural networks with pretrained language models (Zhao et al.,
2022). This fusion has demonstrated enhanced capabilities in modeling textual node features within
graph data. However, a persistent challenge in these approaches is the limited interpretability they
offer, which can hinder a clear understanding of the model’s decision-making processes.

In the quest to enhance the interpretability of Graph Neural Networks (GNNs), two predominant
perspectives on eXplainable GNNs (XGNNs) have emerged. The first approach, known as black-
box interpretation, seeks independent methods to shed light on the relationship between GNN inputs
and outputs. This perspective is exemplified by techniques such as GraphLIME (Huang et al., 2022)
and RelEx (Zhang et al., 2021). The second approach strives to unravel the intricacies of GNNs by
leveraging intrinsic information from GNN nodes and edges. Various methods within this category
focus on subgraph structures to interpret GNN behavior. For instance, GNNExplainer (Ying et al.,
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2019) identifies a compact subgraph and node features within a small subset, while PGMExplainer
and GISST (Lin et al., 2020) generate task-relevant subgraphs and subsets of nodes to provide expla-
nations. However, these methods often operate with a limited local scope and fall short of capturing
the broader global context. In contrast, our proposed method adopts a more flexible approach to
overcome this limitation through in-depth exploration of low-degree nodes. Additionally, (He et al.,
2023) leverage Large Language Models (LLMs) as external knowledge sources to enhance node
features, thereby facilitating downstream GNN finetuning. This combined approach enables us to
provide comprehensive and contextually rich explanations within the GNN framework.

2.2 LARGE LANGUAGE MODELS ON GRAPH

LLMs have shown emergent abilities of reasoning as parameters scaling up, as observed in Wei
et al. (2022). Transformer based LLMs like GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al.,
2022) make significant breakthrough. LLaMa (Touvron et al., 2023) outperforms GPT-3 and PaLM-
540B while utilizing fewer parameters. Meanwhile, ChatGPT (OpenAI, 2022) achieves superior
language understanding and reasoning capabilities. GPT-4 (OpenAI, 2023), the latest iteration, has
showcased impressive performance across many tasks, including mathematics and coding (Bubeck
et al., 2023). However, either training an LLM from scratch or finetuning one for graph learning (Ye
et al., 2023) requires substantial computing sources. Consequently, we propose to formalize graph
machine learning tasks as an agent-planning problem, and solve it with LLM-powered agents.

LLMs functioned as autonomous agents can interact with their environment using language instruc-
tions to solve various tasks (Weng, 2023). They possess zero-shot planning skills to decompose
complex tasks into sub-tasks (Wang et al., 2023). LLMs can learn from trial and error (Shinn et al.,
2023), but tasks like classification might not allow room for correction. These generative agents can
maintain memory (Park et al., 2023), although they still face redundancy related to vector-based re-
trieval. ReAct equips LLMs with interactive capabilities (Yao et al., 2022) of reasoning and acting,
but rigid demonstrations can limit capability of the agent to explore new strategies. AutoGPT excels
in general problem-solving, but faces challenges in graph learning scenarios. Following these agent
paradigm, we empower our agent with capabilities of planning, reasoning, acting and memory.

LLMs are facing great challenge on graph learning. Recent evaluations of LLMs focus on graph-to-
text generation and graph classification (Guo et al., 2023; Yuan & Färber, 2023), revealing striking
gaps with supervised SoTA methods. Enhancing node features with LLMs performs well on node
classification tasks (He et al., 2023), but still relies on GNNs for prediction. Zhang (2023) fine-
tunes LLMs to leverage external graph tools, including pretrained GNNs, to improve graph-related
tasks. Another notable effort (Wei et al., 2023) employs an LLM agent to handle each stage in graph
learning such as data preparation and architecture. However, training is still indispensable for these
tool-based methods. To address these challenges, we propose a new prospective to view the graph
as an environment where an agent can decide how to explore and use the available information.

3 PRELIMINARIES

3.1 NODE CLASSIFICATION ON TEXT-ATTRIBUTED GRAPH

Formally, a text-attributed graph G can be represented as G = (V,A, sv) where V is a set of nodes,
where each node vi ∈ V represents an entity or concept. A ∈ RN×N is an adjacent matrix of nodes
V and N is the number of nodes. fv denotes the text feature contains in node v. We study the node
classification problem with a few labeled node yL which L ⊂ V . The goal is to predict the labels
yU of unlabeled nodes U = V \L. Specifically, K is the number of labeled nodes of each category.
Suppose |Y | is the number of categories, we totally have |L| = K × |Y | labeled nodes.

3.2 LARGE LANGUAGE MODEL FOR NODE CLASSIFICATION

For our classification task with prompting, given the node X , prompt T and LLM pLLM, we denote
the process of reasoning and decision making towards answers as C. We aim to maximize the
likelihood of label Y as:

p(Y|T ,X ) =
∑
C

pLLM(Y|C)pLLM(C|T ,X ) =
∑
C

|Y|∏
i=1

pLLM(yi|C)
|C|∏
i=1

pLLM(ci|T ,X , c<i)
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where C stands for steps of thought st with action at and graph observation ot: C =
{(st, at, ot)}Tt=1, T contains instructions and optional few-shot examples.

4 GRAPHAGENT: AUTOMATED TRAVERSAL CONTROLLED BY LLM

In this section, we introduce our approach GraphAgent, which is designed to enhance the effec-
tiveness and interpretability of node classification within TAGs through the use of Large Language
Models (LLMs).

To ensure robust interpretability, we reframe node classification as an agent planning task, employ-
ing LLMs to parameterize the agent. This agent is endowed with a repertoire of actions, such as re-
trieving neighboring nodes and accessing textual features of nodes. Following the chain-of-thought
paradigm, we strategically design prompts that encourage the agent to articulate its reasoning pro-
cess and execute the correct actions. The iterative reasoning steps, coupled with the actions taken at
each step, yield a comprehensible interpretation of the final prediction made by the agent.

To augment the effectiveness of agents in node classification, we employ in-context learning and
meticulously craft high-quality demonstration examples. This process starts with a less intelligent
agent tasked with predicting labels for labeled nodes, resulting in a collection of trajectories, each
comprising a sequence of thought-action-observation triplets. Then, we enrich the agent’s memory
with trajectories that end in correct answers, facilitating ongoing in-context learning. Through this
approach, the agent consistently refines its capabilities, yielding more accurate predictions.

Now, let us delve into the specifics of the GraphAgent framework.

GraphAgent

Long term memory
𝑒!
"#$%, 𝑒!$&'!(%, 𝑒!)*$+(%, 𝑒!(',*)

Short term memory
	𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛	𝑜-, ℎ𝑖𝑠𝑡𝑜𝑟𝑦	ℎ,

Thought: To determine the label 
of node 13647…

get feature[13647]

Node id:13647
Title: Communication optimal…
Content: This paper discusses the 

importance of…

Goal g：Answer the label of Node 2489

get neighbors[13647]

answer[16]

….

answer[24]✅

Information utilization Information collectionExample selection

Experience 
replay

Neighbors
Features

Reason
Plan

Action

Demonstration 
construct

Reason: The node and its neighbors all 
discuss the use of…indicating a strong 

connection to ‘Computer Vision'.

get feature get neighbors

get neighbors of neighbors

Figure 1: The GraphAgent framework is used for constructing demonstrations and predicting node
labels. It employs a specialized agent, powered by LLM, to gather information from the graph
through predefined actions. Decisions of predictions and actions are relying on the utilization of
information residing in hierarchical memory structures. Check more details in Algo. 1

.

4.1 AGENT-PLANNING FORMALIZATION

A key innovation introduced by GraphAgent lies in its formalization of node classification as an
agent-planning task. In formal terms, starting at the target node whose label needs to be predicted,
the agent is equipped with a collection of actions to systematically explore the local context sur-
rounding the target node. To enable the agent to effectively traverse both the structural and textual
dimensions of nodes, we define the following actions:

get neighbors[nodeid]: This action permits the agent to retrieve the first 10 related neigh-
bors of the node [nodeid], facilitating an exploration of the structural information in the vicinity
of the node [nodeid].

get feature[nodeid]: This action provides access to the detailed textual features of the node
[nodeid], enabling the agent to grasp the semantics associated with the node [nodeid].
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Besides the above two actions, we also add the following special action:

answer[label]: This action enables the agent to output the predicted answer [label].

Upon commencing the inference process, we initialize the memory of the agent with a system
prompt. This prompt not only informs the agent about the permissible actions but also imposes cer-
tain constraints. Following the chain-of-thought method, we incorporate instructions that encourage
the agent to articulate its step-by-step thought process during reasoning. Subsequently, the agent
performs a series of decision-making steps. At each step, denoted as t, the agent deliberates based on
its current memoryMt and produces both a string of thought st and an action at. This action at is
then executed, yielding an observation ot. The step concludes with the update of the agent’s memory,
encompassing the thought st, action at, and observation ot. This iterative process continues until
the agent opts for the special answer action, signifying its readiness to deliver its final prediction.

4.2 IN-CONTEXT LEARNING

The previous section outlines our approach to formalizing node classification as an agent-planning
problem. To empower the agent for effective node classification, we construct a set of high-quality
examples to serve as demonstrations for in-context learning.

In this endeavor, we note that a set of labeled nodes is often available in node classification, and
these labeled nodes can be used for example construction. Specifically, we begin with a simple
agent solely fed with the system prompt without any examples for demonstration, and apply this
agent to nodes within the labeled set. During each run at a node, the agent generates a trajectory,
i.e., a sequence of (st, at, ot) triplets, where st represents a string of thought, at denotes an action,
and ot stands for an observation. Each trajectory culminates in a prediction of the node’s label.
Intuitively, trajectories ending with the correct node labels are more instructive. Therefore, we
selectively retain such trajectories, and for each trajectory we concatenate all the (st, at, ot) triplets
to create an in-context learning example. This approach yields a substantial number of high-quality
in-context learning instances.

However, the memory capacity of large language models is typically constrained, and it is imprac-
tical to accommodate all the collected examples for in-context learning. Therefore, we employ a
neat strategy to identify and select the most crucial examples for this purpose. Specifically, in line
with Liu et al. (2021), we retrieve semantically similar examples as demonstrations for each test
node. Initially, we utilize a sentence encoder, denoted as E, to transform the node titles within the
examples into sentence representations, denoted as r1, r2, ..., rn. Subsequently, for each test node
x, we compute the similarity between its sentence representation rx and the representation of each
example. Besides, examples with more steps can potentially enhance reasoning as it presents a more
thorough inference process, as demonstrated by (Fu et al., 2022), and thus the number of reasoning
steps can serve as a heuristic reward for these examples. Putting all the intuitions together, we define
a Similarity & Complexity score (SC) as follows:

SC = sim(E(Gtitle(Nx)), E(Gtitle(Ni))) +
Ti

α
(1)

In this equation, we factor in both the similarity between the title of the example node Ni and the
node to be classified Nx. Additionally, we include Ti

α as a reward term to encourage the inclusion
of longer examples with more steps Ti. For each test node, the top-k examples with the highest SC
scores are then utilized for subsequent in-context learning.

By employing this method for constructing and selecting in-context learning examples, our approach
achieves a commendable balance between interpretability and effectiveness.

4.3 HIERARCHICAL MEMORY UTILIZATION MECHANISM

To further effectively convey a wealth of information within the constraints of limited context length,
we implement a hierarchical memory utilization mechanism for in-context learning. This mecha-
nism capitalizes on the fusion between two memory modules, i.e., the short-term memory module,
denoted as Ms, and the long-term memory module, referred to as Ml, facilitating the processing of
both long text from graph environment feedback and past interaction experiences.
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Short-term memory module Ms: Goal-oriented summarization
We first indicate gi as the goal of classifying node ni at the start of each classification iteration.
For each time step t, the current obtained information ot from graph environment’s feedback was
summarized by LLM: pLLM(o′t|ot, gi) towards goal gi into o′t. We append o′t as short term memory
memoryshort instead to context after every action execution.

Long-term memory module Ml: Experience replay
We use a simple method to compress the multiple steps of each example ei as demonstrations for in-
context learning: an LLM conditioned on classification goal gi summarize the example’s trajectory
e from different perspective: plan designing eplan, choices of actions eaction, reasoning process ereason

and other points eother considered valuable by LLM into pLLM(eplan
i , eaction

i , ereason
i , eother

i |ei, gi). We
attach those experiences memorylong extracted from examples before each classify iteration.

5 EXPERIMENT

5.1 EXPERIMENT SETUPS

Datasets. We perform our experiments on three pretigious benchmarks, spanning a range of scales
from small to medium to large: Cora, ogbn-arxiv, and ogbn-products (Hu et al., 2020). Tab. 1
presents statistics of these datasets. We provide more details in App. C.

Table 1: Statistics of the datasets.

#Nodes #Edges Avg. Node Degree Class. Num Split(%)

cora (Papers) 2,708 5,439 2.0 7-class 60 / 20 / 20
ogbn-arxiv (Arxiv) 169,343 1,166,243 13.7 40-class 54 / 18 / 28
ogbn-products (Products) 2,449,029 61,859,140 50.5 48-class 8 / 2 / 90

Baselines. We compare the performance with two prominent paradigms in graph machine learn-
ing, namely multi-Layer Perceptrons (MLP) and Graph Neural Networks (GNNs). For the MLP
architecture, we consider CoLinkDistMLP (Luo et al., 2021), which leverages the distillation of
knowledge from adjacent nodes into MLPs. On the GNN side of the spectrum, we incorporate the
SSP model (Izadi et al., 2020), which has achieved state-of-the-art test accuracy on the Cora dataset
through the optimization of GNNs using natural gradient descent. Additionally, we observe the
remarkable performance of TAPE+RevGAT (He et al., 2023) on the ogbn-arxiv dataset, where it
enhances the text features of nodes using LLMs. For the ogbn-products dataset, GLEM (Zhao et al.,
2022) emerges as the top-performing model. For fair comparison, we establish in-context learning
baselines for both GPT-3.5 (OpenAI, 2022) and GPT-4 (OpenAI, 2023), providing them with con-
tents, neighboring nodes, and related labels. For further insight, we apply self-consistency (Wang
et al., 2022) to GraphAgent (gpt-3.5). This approach involves generating multiple reasoning paths
from LLMs and subsequently conducting a majority vote to determine the final answer. Moreover,
we introduce a zero-shot GraphAgent (gpt-4), devoid of any prior demonstrations.

Implementation details We use two OpenAI language models: GPT-3.51 and GPT-42 through their
APIs. Due to the significant cost associated with calling the OpenAI API, we employed a random
sampling approach. We repeat selecting 50 data points separately from test and validation set for
three times, each time with different random seeds. We report the mean and standard deviation of
results for each configuration. For constructing demonstration, we generate uexp = 10 examples
for each category. We established the parameters “temperature” and “top p” at 0.4 and 0.6, respec-
tively. We set the complexity reward coefficient α = 20.0 for optimal results and max generation
steps Tmax = 5 for efficiency. Lastly, we employed the Sentence Transformer3 as an encoder for
calculating sentence embeddings and assessing semantic similarity to retrieve few-shot examples.

5.2 MAIN RESULTS

Tab. 2 presents the main results of our study, highlighting distinct advantages of GraphAgent in the
following key aspects:

1https://platform.openai.com/docs/models/gpt-3-5
2https://platform.openai.com/docs/models/gpt-4
3https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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(i). GraphAgent is comparable with supervised methods. Notably, even without a training pro-
cess, our best results are approaching the SoTA within GNNs, with only a slight margin in test
accuracy of 3.2% in Cora, 9.7% in ogbn-arxiv, and a 6.5% margin in ogbn-products. Also, GraphA-
gent outperforms MLPs on ogbn-arxiv and ogbn-products.

(ii). GraphAgent enhances LLMs. GraphAgent (gpt-3.5) outperforms in-context learning (ICL)
methods powered by gpt-3.5 with test accuracies of 7.44, 18.66 and 12.67 (↑15.0∼43.7%), compared
to 10.00, 22.00 and 10.00 (↑18.1∼56.9%) in the validation phase. Moreover, even without any
demonstrations, GraphAgent (gpt-4) surpasses ICL (gpt-4) by 12.66, 7.34 and 4.66 (↑6.1∼21.6%)
in the test phase, compared to 11.34, 11.34 and 6.00 (↑7.6∼20.5%) in the validation phase.

(iii). GraphAgent benefits from self-consistency. Utilizing 10 sampling paths yields a substantial
increase in test accuracy compared to a single path with improvements of 7.8%, 6.5%, and 15.0% in
3 datasets, respectively. In some cases, GraphAgent (gpt-3.5) even surpasses ICL (gpt-4) with 4.1%
and 13.9% improvements on Cora and ogbn-arxiv. This enhancement through self-consistency sug-
gests that further increasing the number of sampling paths in GraphAgent (gpt-4) could potentially
mitigate the remaining performance gap to supervised state of the art.

Table 2: Node classification accuracy on three datasets (mean±std%) ICL: In-context learning. K
indicates number of examples while P suggests sampling paths for self-consistency.

Type Method
Cora Arxiv Products

test val test val test val

MLP CoLinkDistMLP 87.54±0.00 - 56.38±0.16 58.07±0.07 62.59±0.10 77.21±0.15

GNN

SSP 90.16±0.59 - - - - -
GLEM - - 76.97±0.19 77.49±0.17 90.14±0.12 93.70±0.04
TAPE+RevGAT 89.90±1.11 - 77.50±0.12 77.85±0.16 - -

LLM

gpt-3.5-turbo
ICL 49.33±1.16 51.33±4.16 42.67±4.16 38.67±1.16 54.00±2.00 55.33±4.16
GraphAgentP=1 56.67±3.06 61.33±4.16 61.33±1.53 60.67±3.06 66.67±3.06 65.33±1.16
GraphAgentP=10 61.13±1.16 63.33±1.16 65.33±1.16 64.67±1.16 76.67±1.16 74.67±3.06
gpt-4
ICL 58.67±1.16 59.33±1.16 57.33±3.06 55.33±2.31 76.67±4.16 78.67±3.06
GraphAgentK=0 71.33±3.06 70.67±1.16 64.67±1.16 66.67±2.31 81.33±3.06 84.67±1.16
GraphAgentK=3 87.33±2.31 87.33±1.16 70.67±2.31 69.33±1.15 84.67±2.31 83.33±1.16

5.3 CASE STUDY: REASONING PROCESS

Keyword extraction. The GraphAgent typically begins by initiating the get feature action,
aimed at obtaining the content of a specified node. Subsequently, it conducts an analysis of the
feedback content through keyword extraction. As illustrated in Fig. 2a, when examining the content
retrieved from node 51697, GraphAgent identifies keywords such as political alignment and po-
litical messaging, which are highly indicative of the Computers and society category. Thanks to the
extensive commonsense knowledge embedded within the LLM, this often leads to the discovery of
the answer or, as an alternative, aids in narrowing down the potential answers within a candidate set.

Potential label analysis. Neighbors provide vital information in graph (Angelova & Weikum,
2006). Continuing its quest for answers, GraphAgent tends to explore the neighbors of the node
to gather additional information through the get neighbors action. Fig. 2b shows an example
where GraphAgent judges potential category of each obtained neighbor’s content. Then, GraphA-
gent refines the potential label options based on common features shared among these neighbors.

Deep exploration for low-degree node. For lower-degree (3-degree) node 160080, as depicted
in Fig. 2c, the information available from its neighbors is limited. To tackle this challenge, GraphA-
gent devises a strategy to explore the neighbors of its neighbors. This extended exploration enables
GraphAgent to infer the label of node 127272 by capitalizing on their shared distributed learning
feature. This strategy empowers the agent to expand its analysis, encompassing larger sub-graphs
within sparse regions for the determination of specific characteristics within this portion.
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Action: get_features[51679]
Title: Ad delivery algorithms the hidden arbiters of 
political messaging
Content: Political campaigns are using digital advertising to 
target voters, but ad delivery algorithms can lead to 
demographic skews without the advertiser’s knowledge. 
Facebook’s ad delivery algorithms differentiate the price of 
reaching a user based on their inferred political alignment, 
hindering campaigns’ ability to reach voters with diverse 
political views. This can contribute to political 
polarization and filter bubbles. Reforms to restrict 
targeting tools will not be enough to ensure ads reach users 
with diverse views. There is a need for more transparency in 
the political advertising ecosystem.
Reasoning: The content mentions ‘ad delivery algorithms’, 
‘political messaging’, ‘political campaigns’, ‘political 
alignment’, and ‘political advertising ecosystem’, which are 

related to the field of ‘Computers and Society’

Action: get_neighbors[149489]
Neighbors: 28309: tom net learning transparent object matting 
from a single image
67166: deep residual learning for image recognition
34064: u net convolutional networks for biomedical image 
segmentation
104194: deep multi scale convolutional neural network for 
dynamic scene deblurring
Action: get_feature[28309,67166,34064,104194]
Content: ...104194 The paper discusses Conventional methods 
for deblurring rely on simple assumptions and...
Reasoning: The neighbor with node_id 104194 is related to 
deep multi-scale convolutional neural networks for dynamic 
scene deblurring This suggests that Node 149489 might also be 
related to computer vision or image processing.
Answer: Based on the topics discussed by the neighbors 
(transparent object matting, image recognition, biomedical 
image segmentation, and dynamic scene deblurring), it is 
likely that Node 149489 is related to ‘Computer Vision’.

Action: get_features[160080]
Title: adaptive stopping rule for kernel based gradient 
descent algorithms
Action: get_neighbors[160080]
Neighbors: 
127272: distributed learning with regularized least squares
32137: lazysvd even faster svd decomposition yet without 
agonizing pain
35253: revisiting the nystrom method for improved large 
scale machine learning
Thought: I can’t reason our the common feature. Further 
analyze the labels and features of the neighbors can 
provide insights into the potential label of Node 160080.
Action: get_features[127272] 
Title: distributed learning with regularized least squares
Plan: I have obtained the details of one of the neighbors 
of Node 160080 using the 'get_features' command. By 
analyzing the neighbors of this neighbor, I can gather more 
information to help determine the label of Node 160080.
Action: get_neighbors[127272]
Neighbors: 
82873: optimal distributed online prediction using mini 
batches
40283: convergence of online mirror descent algorithms
85108: fast and strong convergence of online learning 
algorithms
55142: max diversity distributed learning theory and 
algorithms
67631: distributed learning with dependent samples
167509: distributed learning with random features
Reasoning: neighbors of Node 127272 talk about distributed 
learning and convergence of learning in common, which are 
topics related to Machine learning.
Answer: The content of Node 160080, 'adaptive stopping rule 
for kernel based gradient descent algorithms', indicates 
that it is related to machine learning. Additionally, its 
neighbors also have machine learning-related titles
Therefore, I believe the label of Node 160080 is 24: 
Machine Learning.

(a).Key word extraction

(b).Potential label analysis

(c).Low degree exploration

Figure 2: Case study of GraphAgent on ogbn-arxiv: Three common strategies employed by LLMs
to reach the final answer with an explicit reasoning path. Key factors influencing the results are
highlighted in yellow text, with the correct answer indicated in green highlight.

5.4 ANALYSIS OF IN-CONTEXT LEARNING EXAMPLES

We delve deeper into the impact of varying the number of sampling paths P and examples K with
GraphAgent (gpt-3.5) in zero-shot manner. As shown in Fig. 3, our findings reveal a clear trend:
increasing both P and K have positive effect on accuracy. Remarkably, the involvement of just a
single example results in accuracy improvements of 0.28, 0.26, 0.31 and 0.32, for different values
of P (specifically, P = 1, 5, 10, 20). This highlights the ongoing challenge posed by graph-based
learning tasks, particularly in scenarios where no prior demonstrations are available. Notably, as we
increment P , we observe a gradual improvement in accuracy. We suggest increasing the number of
sampling paths can reduce occasional deviations in LLMs’ API responses, thus leading to improved
accuracy. However, this improvement tends to reach a plateau when P is continually increased.
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Figure 3: Analysis of self-consistency sampling
path P and example quantityK. Note that P =
1 equals to without self-consistency.
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Figure 4: Ablation study of memory mechanism
on ogbn-arxiv. Unless otherwise stated, all ex-
periments are performed in a 1-shot setting.

5.5 ABLATION STUDIES OF DIFFERENT COMPONENTS

Short and long-term memory work together. As shown in Fig. 4, compared with non-memory, the
hierarchical memory mechanism boosts accuracy from 0.42 to 0.60 (↑42.9%) with GPT-3.5 while
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from 0.56 to 0.74 (↑32.1%) with GPT-4. Solely using long-term or short-term memory makes the
performance decrease 15.0% and 20.0% with GPT-3.5, 16.2% and 10.8% with GPT-4 respectively.
We found that long-term memory improves more performance as number of examples increasing,
enhancing 26.9%(3-shot) > 24.0%(1-shot) with GPT-3.5 and 16.7%(3-shot) > 12.1%(1-shot) with
GPT-4. Note that we use stronger gpt-3.5-turbo-16k to hold longer context when 3-shot and without
long-term memory. However, it still fall 18.3% behind 1-shot with full memory mechanism.

The successful classification of the node can be attributed 
to a systematic approach that included the analysis of the 
node's features, exploration of its neighboring nodes, and a 
comparison of their characteristics. This process of 
reasoning entailed the identification of common themes and 
patterns, ultimately pointing to the classification as 
'Logic in Computer Science'. The selection of actions 
followed a strategic sequence, commencing with the 
'get_features' command, followed by 'get_neighbors', and 
culminating in 'answer’. This method guaranteed a 
comprehensive grasp of the node and its surrounding context, 
ultimately resulting in an accurate classification.

(a)Successful experience

The assistant failed to correctly classify Node 552147. The 
assistant initially planned to use the 'get_features' 
command to gather information about the node. However, it 
failed to thoroughly analyze the features and content of the 
node, leading to an inaccurate determination of its label. 
To fix this, the assistant should have compared the features 
and content of Node 552147 with its neighbors to identify 
any similarities or differences. Additionally, the assistant 
could have analyzed the features of a relevant neighbor node 
to gather more information. By considering all relevant 
information, the assistant could have made a more accurate 
determination of the node's label."

(b)Failure experience

Figure 5: Successful experience and failure experience replayed by long-term module Ml. GraphA-
gent analyzes successful reason and reflects upon mistakes.
Successful examples experience brings boost. To determine the reflective ability of GraphAgent,
we adjust our experience replay strategy to learn from fail examples: as shown in Fig. 4, we enrich
the example store E with generated failed examples to let GraphAgent reflect why they made mis-
take at first trail. As depicted in Tab.3, it is evident that when we include failure cases, the accuracy
significantly decreases in both the ogbn-arxiv and ogbn-product, in comparison to solely relying on
successful experiences. Notably, with the exception of random selection in ogbn-products, the inclu-
sion of failure cases results in a performance improvement of 3.6%. We posit that this improvement
can be attributed to the fact that random sampling is not an inherently optimal selection strategy.

Table 3: Analysis of Example Selection Strategies: -diff % indicates decrease of accuracy, while
∆% represents the drop in performance compared to SC(ours). Success indicates only selection
from successful experiences, whereas w/ failure enriches the example store with failure cases.

Rigid −∆ % Random −∆ % -Complex −∆ % SC

Arxiv
Success 42.0 32.3 47.0 24.2 55.0 11.3 62.0

w/ failure 35.0 16.7 42.0 22.2 51.0 5.6 54.0
-diff % 16.7 - 10.6 - 7.2 - 17.7

Product
success 50.0 30.6 56.0 22.2 64.0 11.1 72.0

w/ failure 44.0 34.3 58.0 13.4 61.0 8.9 67.0
-diff % 12.0 - -3.6 - 4.9 - 6.9

Example sampling strategy. We compare three different example sampling strategies to our Simi-
larity & Complexity-based (SC) search method. The Rigid approach entails fixing a random exam-
ple during each test iteration. In the Random approach, we randomly select an example from the
store denoted as E for each test item. In the -Complex setting, we remove the reward term Ti

α from
F.1 to see the difference without encouragement for complex example. Our findings consistently
demonstrate that our SC selection strategy outperforms the other three settings, taking into account
both similarity and complexity.

6 CONCLUSIONS

In this paper, we delve into the potential of leveraging LLMs as agents in graph machine learning.
We propose GraphAgent, which reframes graph learning as an agent-planning problem and param-
eterizes the agent with LLMs. A neat strategy is proposed to construct demonstration examples
for in-context learning, allowing GraphAgent to well balance effectiveness and interpretability. We
conduct extensive experiments to evaluate GraphAgent. Results show that GraphAgent achieves
comparable results to SoTA supervised methods while demonstrates intelligent and transparent rea-
soning process. Our experiments also emphasize the potential to close the performance margins by
incorporating more sampling paths. We anticipate that our work will spark innovative investigations,
driving the evolution of interpretable and intelligent agents in graph machine learning.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Ralitsa Angelova and Gerhard Weikum. Graph-based text classification: learn from your neigh-
bors. Proceedings of the 29th annual international ACM SIGIR conference on Research and de-
velopment in information retrieval, 2006. URL https://api.semanticscholar.org/
CorpusID:8451546.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, T. J. Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. ArXiv, abs/2005.14165, 2020. URL https://api.semanticscholar.org/
CorpusID:218971783.
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