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ABSTRACT

Memory is the foundation of all human activities; without memory, it would be
nearly impossible for people to perform any task in daily life. With the develop-
ment of Large Language Models (LLMs), their language capabilities are becom-
ing increasingly comparable to those of humans. But do LLMs have memory?
Based on current practice, LLMs do appear to exhibit memory. So, what is the
underlying mechanism of this memory? Previous research lacked a deep explo-
ration of LLMs’ memory capabilities and the underlying theory. In this paper, we
use the Universal Approximation Theorem (UAT) to explain the memory mech-
anism in LLMs. We also conduct experiments to verify the memory capabilities
of various LLMs, proposing a new method to assess their abilities based on the
memory ability. We argue that LLM memory operates like Schrödinger’s mem-
ory, meaning that it only becomes observable when a specific memory is queried.
We can only determine if the model retains a memory based on its output in re-
sponse to the query; otherwise, it remains indeterminate. Finally, we expand on
this concept by comparing the memory capabilities of the human brain and LLMs,
highlighting the similarities and differences in their operational mechanisms.

1 INTRODUCTION

Language is not only one of humanity’s most important abilities but also the foundation of commu-
nication (Miller, 1951), knowledge transfer (Han & Ellis, 1998), and the development of civilization
(Yu, 2015). Language models can be seen as simulations of human intelligence, enabling them to
perform tasks traditionally achievable only by humans. Currently, LLMs based on the Transformer
architecture have become one of the hottest topics in artificial intelligence research today. These
models have acquired some human-like language capabilities and are already impacting daily life
in areas such as machine translation (Brants et al., 2007; Moslem et al., 2023), text summarization
(Van Veen et al., 2024; Zhang et al., 2019), sentiment analysis (Zhang et al., 2023a; Mao et al.,
2022; Zhang et al., 2023b), question-answering systems (Masry et al., 2022; Xu et al., 2023), and
text generation (Bai et al., 2023; Yang et al., 2024a; OpenAI et al., 2024).

Although the performance of LLMs is impressive, research on their memory mechanisms remains
limited. Memory is a crucial capability for humans; without it, we would struggle to complete even
the simplest tasks. For instance, in everyday conversations, we need to remember what others have
said in order to respond appropriately, and this memory capacity facilitates smooth dialogue. Mem-
ory plays a vital role in guiding various aspects of our daily lives. As LLMs become increasingly
powerful, an important question arises: do these models possess memory? If so, in what form does
it exist, and how does it differ from human memory? Current research on LLM memory primarily
focuses on two main directions:

Expanding Context Length: This approach aims to equip LLMs with more memory by extending the
context window (Chen et al., 2023; Zhu et al., 2023; Yang, 2023; Fei et al., 2023). Since short con-
texts fail to provide enough information, increasing the context length allows the model to maintain
more comprehensive information across long sequences.

External Memory Integration: This method involves building memory storage systems (Graves et al.,
2014; Xiao et al., 2024; Wu et al., 2022; Yang et al., 2024b) that encode and store past events
(Zhang et al., 2023c), allowing the model to retrieve and update memories on disks as needed. Such
mechanisms enable models to forget or reinforce certain memories over time.
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Although these studies have made progress in addressing the memory limitations of LLMs, they
have not fully explained how memory functions within these models. For example, when asked,
”Who is the President of the United States?” LLMs like GPT-4 (OpenAI et al., 2024) or Llama-3
(Dubey et al., 2024) may say ”Trump”. It is outdated information, but it also indicates that some
form of memory is indeed present in LLMs. However, this memory does not come from an external
storage unit but is inferred by the model based on the input. The articles Jagielski et al. (2022);
Carlini et al. (2022) attempt to evaluate the memory capabilities of LLMs. However, due to the lack
of a fundamental theoretical framework, the definition of memory itself remains vague, resulting in
conclusions that are largely based on straightforward experimental observations. This raises funda-
mental questions: Why do LLMs exhibit this ability to infer previously learned information from
the input? How does this differ from human memory? Where is memory stored in LLMs?

In this paper, we use UAT theory to explain this ability of recalling information learned from the past
based on input cues. We argue that this information can be understood as a dynamic approximation
capability of UAT (Wang & Li, 2024b), where the model fits a corresponding result based on the
input, and the observed phenomenon appears as memory. We call this ”Schrödinger’s memory”
because we can only determine whether the LLMs have this memory by asking it and analyzing
its response; otherwise, the memory remains indeterminate. Additionally, we evaluate the memory
capabilities of several models and propose that this approach can be used to assess the overall ability
of LLMs. The contributions of this work are as follows:

• We explain LLMs’ memory abilities through the lens of UAT.
• We propose a new, objective method for evaluating LLMs’ capabilities: memory ability

assessment.
• We logically make a comparison between the memory of LLMs and human memory and

reasoning capabilities.

The structure of this paper is as follows: In Section 2, we briefly explain the UAT and present math-
ematical formulation of multi-layer Transformers in the form of UAT. In Section 3, we provide both
theoretical and experimental evidence demonstrating the memory capabilities of LLMs. Finally,
in Section 4, we conduct a comprehensive analysis of human and LLM abilities, with a focus on
memory ability.

2 UAT AND LLMS

The UAT (Cybenko, 2007; Popescu et al., 2009) serves as the foundational theory of deep learning.
Our goal is to theoretically explain memory of Transformer-based LLMs using the UAT framework.
To do this, we will first present the mathematical form of UAT in Section 2.1, followed by the
corresponding UAT form for LLMs in Section 2.2. We will then use this UAT form to explain the
memory abilities of LLMs.

2.1 UAT

In this section, we provide a brief overview of the UAT, which was first proposed by Cybenko (2007).
As stated in Theorem 2 by Cybenko (2007), if σ represents any continuous sigmoidal function, then
a finite sum of the following form:

Gpxq “

N
ÿ

j“1

αjσ
`

WT
j x ` θj

˘

(1)

is dense in C pInq. Here, Wj P Rn and αj , θ P R are fixed. For any f P C pInq and ε ą 0, there
exists a function Gpxq:

|Gpxq ´ fpxq| ă ε for all x P In. (2)

This suggests that, for a sufficiently large N , a neural network can approximate any continuous
function on a closed interval. Hornik et al. (1989) further demonstrates that multilayer feedforward
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networks conform to the UAT, enabling them to approximate arbitrary Borel measurable functions.
In the context of Eq. (1), where the function Gpxq produces a scalar in R, this framework naturally
generalizes when Gpxq maps to Rm, requiring approximation for each dimension. To accommodate
this multidimensional output, a simple adjustment to Equation (1) is needed: the transformation
matrix Wj is modified to reside in Rnˆm, the bias term θj is redefined as a vector in Rm, and αj is
reshaped into a matrix.

2.2 THE UAT FORMAT OF TRANSFORMER-BASED LLMS

Current LLMs are primarily based on Transformer architecture. In UAT2LLMs (Wang & Li, 2024b),
it has already been demonstrated that the mathematical structure of multi-layer Transformers aligns
with the UAT in a general sense. However, unlike the original UAT, the UAT form of Transformer-
based models has the ability to dynamically fit functions based on the input. Figure 1 illustrates a
basic module in Transformer, and according to UAT2LLMs, the corresponding UAT form for Figure
1 is:

xi`1 “ pW1
i`1,1x0 ` bi`1,1q `

i`1
ÿ

j“1

W1
j,3σpW1

j,2x
1
0 ` b1

j,2q (3)

where xi`1 represents the output of the i ` 1-th layer, with x0 as the network’s input. The term b1
j,2

is computed as pW1
j,2b

1
j´1,3 `b1

j,2q `W1
j,2UATR

j´1, where UATR
j´1 “

řj´1
k“1 W

1
k,3σpW1

k,2x
1
0 `

b1
k,2q. The value of b1

j,2 is approximated by the j-th layer of the UAT, with x0 as the input. This
allows the model to dynamically adjust functions based on the input. According to UAT2LLMs,
parameters in the multi-head attention mechanism are modified dynamically in response to the in-
put. Therefore, in the formula above, all parameters W1

j,1, W1
j,2, and W1

j,3 in layer i, where
j “ 1, . . . , i, are dynamically adjusted based on the input.

Based on Eq. (3) and Eq. (1), it is clear that the multi-layer Transformer shares the same mathe-
matical structure as the UAT. However, compared to the mathematical form of UAT in Eq. (1), the
weights and bias parameters in Eq. (3) can dynamically change according to the input. This abil-
ity enables the Transformer to adaptively fit based on the input, whereas the UAT’s parameters are
fixed once training is completed, limiting it to fitting static functions and rendering it incapable of
responding to dynamic changes in input data. This dynamic fitting capability is the ultimate source
of the powerful memory observed in LLMs.

Multi-Head Attention
( ) + MLP( )

MLP( )+

Feed-Forward

Transformer

Figure 1: The basic block in Transformer-based LLMs.

3 THE MEMORY OF LLMS

In this section, we will demonstrate the memory capabilities of LLMs. First, in Section 3.1, we
provide a clear definition of memory. Then, in Section 3.2 and 3.3, we give a discription to datasets
and explain the memory mechanism of LLMs using UAT theory and validate their memory charac-
teristics through experiments. In Section 3.4, we explore the impact of input length on the accuracy
of LLM memory.

3.1 THE DEFINITION OF MEMORY

Before delving into the study of memory in LLMs, it is important to first define or provide a relatively
precise description of what memory is. According to Wikipedia:

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Memory is the faculty of the mind by which data or information is encoded, stored, and
retrieved when needed.

However, this definition has some fundamental issues. Encoding data or information is not prob-
lematic, as information in the brain is transmitted via electrical signals, and we need to encode that
information in a way the brain can process. The problem arises with the concepts of ”storage” and
”retrieval.” The brain does not have a structure analogous to a database for storing information. So,
where is this information actually stored? Is it in the neurons of the brain? If so, does a single neuron
store a word, or does it store an entire sentence? Next, we give an exmple:

Question 1: What is Newton’s first law?

Answer 1:
Every object perseveres in its state of rest, or of uniform motion
in a right line, except insofar as it is compelled to change that state
by forces impressed thereon.

So, is this sentence stored within a single neuron? Or does each neuron store just a word, with a spe-
cific region of the brain dedicated to this particular memory? Given the vast amount of information
humans receive daily, can neurons truly store such an immense volume of data without hindering
normal cognitive processes? After all, almost every routine activity requires memory. Take, for
example, the simple task of going to the cafeteria: we need to remember when to go, the cafeteria’s
location, the route to get there, which foods are available, what counts as utensils, where to find
them, and how to use them.

Moreover, if this memory is stored in a fixed set of neurons, then every time the question is raised,
the response should be identical, since the retrieval would be from the same static content. Every
word in the response should be exact, with no omissions or additions (even if the information has
been abstractly encoded, as long as the encoding and decoding processes are consistent, the content
should remain unchanged). This, however, is clearly unreasonable. Therefore, we provide a more
precise definition of the concept of ”memory”:

Memory is defined by two key components: input and output.

• Input: To trigger a memory, the input must be the same or similar to information that the
brain (or LLM) has previously encountered.

• Output: The result is based on the input, which could be correct, incorrect, or forgotten. If
the result is correct, it means it aligns with information previously acquired.

We need to stress that a key requirement for recalling a memory is the presence of input—without
input, there is no memory, as memory is activated by input. Even if the brain holds a memory of
something, it cannot be determined whether that memory exists unless it is prompted by a specific
query. Without specific input conditions, a person wouldn’t recall a particular event.

Using Question 1 as an example, the input is: “What is Newton’s first law?” Without this input, no
one would suddenly recall Newton’s first law. The recollection of Newton’s first law is triggered by
input related to the theoretical context. This is why input is a necessary condition for memory, as it is
the input that stimulates recall. The memory might be accurate, or it might be incorrect, indicating a
deviation from previously acquired information—this deviation could be minor, significant, or even
total forgetting. For example:

Question 1: What is Newton’s first law?

Answer 2: Minor distortions Every object perseveres in its state of rest, except insofar as it is
compelled to change that state by forces impressed thereon.

Answer 3: Severe distortions Every object always perseveres in its state of rest.
Answer 4: Memory loss I do not know.

In summary, the term ”memory” was traditionally used to refer specifically to human memory before
the emergence of LLMs. Now, we believe that LLMs also exhibit memory. Therefore, we will verify
the memory characteristics of LLMs based on the definition of memory outlined above.
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3.2 DATASET

We utilized publicly available datasets from Hugging Face: CN Poems (Unknown, 2024a) for Chi-
nese memory and ENG Poems (Unknown, 2024b) for English memory. We select the poems from
datasets and the requirement is the combined length of the input and output to a maximum of 256
characters. Due to differences in character encoding between Chinese and English, a single Chinese
character usually corresponds to one token, while an English word may map to multiple tokens. As
a result, after tokenization, the length of Chinese input remains almost unchanged, with a maximum
of 256 tokens. In contrast, the English input expands to a maximum of 730 tokens after tokenization.
For the experiment, we selected 2,000 poems from each dataset.

3.3 THE MEMORY MECHANISM AND ABILITY OF LLMS

In Section 2.2, we have introduced the UAT format corresponding to Transformer-based LLMs. This
UAT format can dynamically adjust to fit the corresponding output based on the input. Following
this line of thought, we can also consider the memory of LLMs as being driven by inputs that fit
specific outputs. In this context, the inputs consist of questions related to previously learned knowl-
edge, while the outputs are responses based on that past knowledge. To explore this hypothesis, we
designed a simple experiment.

We preprocessed the data in line with typical human memorization habits, allowing the LLMs to
output the content of poems based on basic input information. For CN Poems, the input consisted
of the dynasty, author, and title, while for ENG Poems, the input was the author and title. To test the
memory ability of LLMs, we define the accuracy of memory as follows:

Acc “
ΣN

i“11Predi“Truei

N
(4)

where N is the number of examples, Predi and Truei are the prediction and ground true of the i-th
exmple. We fine-tuned the CN Poems and ENG Poems on Qwen series models (Bai et al., 2023;
Yang et al., 2024a) and bloom series models (Workshop et al., 2023) for 100 epochs. The results are
shown in Table 1.

Table 1: The memory ability of Qwen1.5-0.5B-Chat, Qwen2-0.5B-Instruct, Qwen2-1.5B-Instruct,
bloom-389m-zh, bloom-1b4-zh, bloom-560m, bloom-1b7 on CN Poems and ENG Poems.

Models Qwen1.5
-0.5B-Chat

Qwen2
-0.5B-Instruct

Qwen2
-1.5B-Instruct

bloom
-389m-zh

bloom
-1b4-zh

bloom
-560m

bloom
-1b7

CN Poems Acc 68.85 77.5 96.9 75.55 96.6 - -
ENG Poems Acc 99.85 99.85 99.9 - - 99.2 99.15

Table 1 demonstrates that LLMs possess memory capabilities, which align precisely with the defi-
nition of memory we established. The training process is akin to giving a person 2,000 poems and
asking him to memorize as many as possible, with each poem read up to 100 times. In the CN
Poems dataset, the top-performing models were Qwen2-1.5B-Instruct and bloom-1b4-zh, which
memorized 1,938 and 1,932 poems, respectively. In contrast, for the ENG Poems dataset, nearly all
models were able to memorize all the poems.

These results are remarkable. An average person, without specific memory training, would struggle
to remember 1,000 poems under similar conditions, whereas LLMs managed to retain almost all
2,000 poems. However, models like Qwen1.5-0.5B-Chat, Qwen2-0.5B-Instruct, and bloom-389m-
zh performed comparatively weaker on the CN Poems dataset. We believe this is primarily due
to two factors. First, insufficient pretraining led to relatively poorer language comprehension. For
instance, while Qwen2-0.5B-Instruct and Qwen1.5-0.5B-Chat are the same model size, Qwen2-
0.5B-Instruct outperformed Qwen1.5-0.5B-Chat because it was trained on better pretraining data,
resulting in stronger language comprehension. This improved language understanding, in turn, en-
hances memory capabilities. Performance tests in the Qwen documentation (Bai et al., 2023; Yang
et al., 2024a) also support this, as Qwen2-0.5B-Instruct consistently outperforms Qwen1.5-0.5B-
Chat across various tasks. Similarly, individuals with better language comprehension tend to learn
and recite poetry more efficiently. Compared to Chinese data, the larger and more comprehensive
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English datasets help train models with stronger language skills, explaining why LLMs perform
better on English poetry memorization. The second factor may be that Chinese is a more complex
language, which smaller models struggle to learn effectively. Larger models like Qwen2-1.5B-
Instruct and bloom-1b4-zh show significantly better performance, nearing that of the ENG Poems
dataset, compared to smaller models like Qwen2-0.5B-Instruct and bloom-389m-zh.

Figure 2 shows the results of generating entire poems based on input information. As seen in the
figure, after training, the models can successfully recite a complete poem using only the title and au-
thor. Figure 2 provides examples of prediction errors. Although incorrect, the outputs still maintain
consistency with the poem’s title and basic structure.

Input:
Dictation:
Dynasty: 宋代
Author: 李弥逊
Title: 题大儒寮小阁

CN Poems: 

Qwen1.5-0.5B-Chat

Output & Label:
青鞋踏尽剑鋩山，借枕僧房落照间。
高屋凭虚听泉语，岭云应似我身闲。

Input:
Dictation:
Dynasty: 唐代
Author: 岑参
Title: 故仆射裴公挽歌三首

Output  & Label:
盛德资邦杰，嘉谟作世程。门瞻驷马贵，时仰八龙名。
罢市秦人送，还乡绛老迎。莫埋丞相印，留著付玄成。
五府瞻高位，三台丧大贤。礼容还故绛，宠赠冠新田。
气歇汾阴鼎，魂飞京兆阡。先时剑已没，陇树久苍然。
富贵徒言久，乡闾殁后归。锦衣都未著，丹旐忽先飞。
哀挽辞秦塞，悲笳出帝畿。遥知九原上，渐觉吊人稀。

Input:
Dictation: 
Author:Michael Ryan
Title: Larkinesque

ENG Poems: Qwen1.5-0.5B-Chat

Output  & Label:
Reading in the paper a summary of a five-year psychological study that shows those
perceived as most beautiful are treated differently,

I think they could have just asked me, remembering a kind of pudgy kid and late
puberty, the bloody noses and wisecracks because I wore glasses,

though we all know by now how awful it is for the busty starlet no one takes
seriously, the loveliest women I've lunched with lamenting the opacity of the body,

they can never trust a man's interest even when he seems not just out for sex (eyes
focus on me above rim of wineglass), and who would want to live like this?

And what does beauty do to a man?- Don Juan, Casanova, Lord Byron- those fiery
eyes and steel jawlines can front a furnace of self-loathing,

all those breathless women rushing to him while hubby's at the office or ball
game, primed to be consumed by his beauty while he stands next to it, watching.

So maybe the looks we're dealt are best. It's only common sense that happiness
depends on some bearable deprivation or defect, and who knows what conflicts

great beauty could have caused, what cruelties one might have suffered from those
now friends, what unmanageable possibilities smiling at every small turn?

So if I get up to draw a tumbler of ordinary tap water and think what if this were
nectar dripping from delicious burning fingers, will all I've missed knock me
senseless?

No. Of course not. It won't.

Figure 2: The examples of right predictions of CN Poems: Qwen1.5-0.5B-Chat and ENG Poems:
Qwen1.5-0.5B-Chat which were fine-tuned separately on CN Poems and ENG Poems and subse-
quently tested the memory ability on their respective datasets, accurately recited the entire poem
based on the input.

Based on these results, we believe that LLMs do indeed possess memory, and their memory mech-
anism works by fitting a specific output based on input. This is why we refer to LLMs’ memory
as ”Schrödinger’s memory”—we can only determine whether the LLMs have a particular memory
when we ask a question and receive a response.

Moreover, we believe that memory capacity can also serve as an objective measure of LLMs’ lan-
guage abilities. Given the same training data, models of the same size, and the same number of
training iterations, those which can retain more information generally exhibit stronger language
skills. For example, in the case of Qwen1.5-0.5B-Chat and Qwen2-0.5B-Instruct, despite having the
same model architecture, Qwen2-0.5B-Instruct demonstrates superior language ability due to differ-
ences in training sets, which in turn leads to better memory retention. This approach can also be used
to assess the performance of models of different sizes. While it’s known that larger models tend to
have stronger memory capabilities, this method can help us roughly evaluate a model’s upper limits.
For instance, when comparing Qwen2-0.5B-Instruct and Qwen2-1.5B-Instruct, both trained in the
same manner, the larger Qwen2-1.5B-Instruct model exhibits greater memory capacity, allowing it
to retain more content.
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Output:
Let us build a fire
In the living room
Where living is done.

The kitchen plants need
Mowing and the cabinets
To be axed and split into

Kindling. We'll slink inside
Dresses, apply the brightest
Rouge. Prettiest conflagration.

Label:
When the day closes,
my grief's a laundromat
done tumbling away, or
a dry cleaner, its pressed
shirts hanging like effigies,
or flags of no and every
nation under faux stars,
neon constellations. I
sweep the evening,
hoping for a kind
of incandescence,
yet what the day
takes is light
and light.

Input:
Dictation: 
Author:Joseph O. Legaspi
Title: Poetry

Output:
晚出临川逢岭树，飞花乍望空搀玉。
追思往事今如梦，晚景凄凉事事休。

Label:
野寺寻春花已迟，背岩惟有两三枝。
明朝携酒犹堪醉，为报春风且莫吹。

Input:
Dictation: 
Dynasty: 唐代
Author: 李端
Title: 春晚游鹤林寺寄使府诸公

CN Poems: 

Qwen1.5-0.5B-Chat

ENG Poems: Qwen1.5-0.5B-Chat

Figure 3: The examples of wrong prediction of CN Poems: Qwen1.5-0.5B-Chat and ENG Poems:
Qwen1.5-0.5B-Chat which were fine-tuned separately on CN Poems and ENG Poems.

3.4 THE OUTPUTS LENGTH EFFECT

Additionally, we believe that the length of the output text has a significant impact on the memory
capabilities of LLMs - the longer the text, the harder it is to remember. To verify this, we set the
combined length of the input and output text in the CN Poems dataset to be between 256 and 512
characters. We used Chinese text because the relationship between the token length and the original
text length is not fixed in English. After fine-tuning the model for 100 epochs on CN Poems, the
results are shown in Table 2. It is evident that as the text length increases, the difficulty for the model
to remember the content also increases.

Table 2: The memory ability of Qwen1.5-0.5B-Chat, Qwen2-0.5B-Instruct, Qwen2-1.5B-Instruct,
bloom-389m-zh, bloom-1b4-zh on CN Poems in the condition of longer prediction.

Models Qwen1.5
-0.5B-Chat

Qwen2
-0.5B-Instruct

Qwen2
-1.5B-Instruct

bloom
-389m-zh

bloom
-1b4-zh

CN Poems Acc 44.9 56.85 86.95 68.6 93.65

4 A COMPARISION BETWEEN HUMAN BRAIN AND LLMS

Based on the definition of memory in Section 3 and the experimental results, we believe that LLMs
do possess memory capabilities. It’s important to distinguish between LLM memory and database
storage. Database storage involves keeping content on physical media (like hard drives or books)
that can be searched or modified based on conditions, while LLM memory refers to the dynamic
approximation of corresponding outputs using internal weights and inputs.

From the perspective of functionality, we argue that LLMs and human memory do not fundamentally
differ; both can be understood as dynamically approximating results based on inputs. For example,
as shown in Figure 2, LLMs can recite entire poems solely based on their titles and authors after
learning. These poems are not stored in specific areas within the model; they are dynamically gen-
erated based on input. We can only determine if an LLM remembers certain information by posing
questions and examining outputs; otherwise, it remains unknown. Human memory operates simi-
larly: we can only validate our memories by answering specific questions; otherwise, assessment is
impossible. For instance, if you ask someone how many poems they remember, they may struggle
to provide an exact number, but they can usually recall a specific poem if prompted. Few people
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consciously memorize how many poems they know, leading to a lack of corresponding output when
such input arise. Therefore, we suggest that the brain functions like a model that dynamically fits
outputs based on inputs, indicating that, in a sense, the mathematical model of the human brain
may resemble that of a Transformer-based dynamic approximation UAT model, potentially even as
a more advanced version. However, we believe their fundamental mechanisms are the same: both
rely on dynamically fitting outputs based on inputs.

Due to the complexity of the brain, many operational mechanisms remain unclear, and no reasonable
conclusions currently exist regarding its specific workings. Thus, we make logical assumptions and
generalizations about the brain’s mechanisms based on the memory process, UAT theory, and LLMs.
First, we extend the concept of memory in the brain to other cognitive abilities, such as social skills,
imagination, and creativity. All of these can be attributed to the ability to infer outcomes based
on existing knowledge and inputs, which we collectively refer to as reasoning ability, defined as:
the capacity to generate specific results based on previously learned knowledge and specific inputs,
where these results are consistent with or related to that knowledge.

Based on the definition of reasoning ability, LLM memory can also be viewed as a form of reasoning.
The results from Figures 2 and 3, along with the current performance of ChatGPT-4 (Achiam et al.,
2023) in generating outputs based on inputs, suggest that LLMs possess reasoning capabilities.
Although the predictions in Figure 3 are incorrect, they still align with linguistic conventions and
somewhat correspond to the titles of the poems. This can be seen as creativity.

So why do LLMs seem to underperform in reasoning tasks? We believe there are two main factors:
model size, and data quality and quantity.

• Model Size: Generally, larger LLMs tend to be more powerful. Theoretically, as demon-
strated by UAT2LLMs (Wang & Li, 2024b) and UAT2Parallel (Wang & Li, 2024a), a
greater model size enhances dynamic fitting capability, leading to improved performance.
Performance improvements can also be observed when comparing models like Llama from
8B to 70B (Dubey et al., 2024) and Qwen2 (Yang et al., 2024a) from 0.5B to 72B-larger
models consistently show better performance.

• Data Quality and Quantity: Current LLMs have significantly benefited from training on
vast datasets. The larger and higher the quality of dataset, the stronger the model’s perfor-
mance. The performance leap from Qwen 1.5 (Bai et al., 2023) to Qwen 2 (Yang et al.,
2024a) highlights that training on high-quality data yields better results. From a human
learning perspective, individuals undergo decades of education from elementary school
to university. Immersed in a language-rich environment from birth, humans benefit from
teachers and exams that correct linguistic issues one by one. Without such learning experi-
ences, we would struggle to develop robust language skills.

Since we propose that both LLMs and the brain function as dynamic models that fit outputs, why
build such dynamic models? What are the advantages of this approach? We believe that this dy-
namic fitting capability gives the brain infinite possibilities. The brain doesn’t need to remember
everything; it only needs to focus on what is important. Imagine if a newborn’s brain were pre-
loaded with the weights of its parents; there would be no need to fit the world because most of the
external environment remains constant. In such a scenario, the brain’s weights would hardly ever
be updated, and the person would lose creativity. However, when we are born, our brains contain
almost no knowledge about the external world. It could be viewed as the weight parameters in our
brains are randomly initialized, and it is precisely this randomness that gives rise to creativity. Since
the knowledge of our ancestors isn’t always correct, newborns learn from their predecessors and
continuously interact with the world to verify and update this knowledge. This updating process
involves optimizing the brain’s weight parameters. Each update may be right or wrong, but with a
vast number of humans exploring the world, we gradually inch closer to the truth, ultimately leading
to innovation.

A great example of dynamic fitting in the brain is Henry Molaison (Scoville & Milner, 1957; Victor
et al., 1961; Milner & Klein, 2015). After his hippocampus (Bliss & Collingridge, 1993; Squire,
1992; Erickson et al., 2011; Eckardt, 1980) was damaged, he could no longer form new long-term
memories, though his existing memories remained intact. We believe that the hippocampus acts
as a switch controlling whether the weights responsible for long-term memory in the brain can be
updated. Once the hippocampus is damaged, the brain’s weight parameters can no longer change,
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meaning that while past inputs (before the hippocampal damage) can still produce corresponding
outputs (i.e., recalling past events), the inability to update weights prevents the formation of new
memories.

5 CONCLUSION

In this paper, we demonstrate that LLMs possess memory capabilities, which are enabled by their
Transformer-based architecture. This architecture functions as a dynamic fitting UAT model, with a
strong ability to adaptively fit outputs. As a result, LLMs can recall entire content based on minimal
input information. Since this memory can only be confirmed when triggered by input, we refer
to it as ”Schrödinger’s memory.” Through extensive experiments, we validated that the memory
mechanism of LLMs aligns with this theory. Additionally, we compared LLMs with the human
brain and found that their working mechanisms are similar, as both dynamically fit outputs based on
inputs.
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Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anas-
tasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian, Aurélie Névéol, Charles Lovering,
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