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Figure 1: We propose UrbanGS, a scalable framework for high-fidelity large-scale scene reconstruc-
tion. Left: It reconstructs complex urban environments from multi-view RGB images, capturing fine
details like trees, buildings, and roads. Middle: Compared with CityGS-v2 (Liu et al., 2024b) and
VCR-Gaus (Chen et al., 2024b), by comparing rendered depth maps, our method can intuitively
demonstrate its geometric advantages in terms of the surface smoothness of objects. Top-right:
Our Spatially Adaptive Gaussian Pruning enables significant model compression while preserving
quality. Bottom-right: UrbanGS efficiently reconstructs large scenes on an A5000 GPU, whereas
VCR-Gaus (Chen et al., 2024b) fails due to out-of-memory issues.

ABSTRACT

While 3D Gaussian Splatting (3DGS) enables high-quality, real-time rendering
for bounded scenes, its extension to large-scale urban environments gives rise to
critical challenges in terms of geometric consistency, memory efficiency, and com-
putational scalability. To address these issues, we present UrbanGS, a scalable re-
construction framework that effectively tackles these challenges for city-scale ap-
plications. First, we propose a Depth-Consistent D-Normal Regularization mod-
ule. Unlike existing approaches that rely solely on monocular normal estimators,
which can effectively update rotation parameters yet struggle to update position
parameters, our method integrates D-Normal constraints with external depth su-
pervision. This allows for comprehensive updates of all geometric parameters.
By further incorporating an adaptive confidence weighting mechanism based on
gradient consistency and inverse depth deviation, our approach significantly en-
hances multi-view depth alignment and geometric coherence, which effectively
resolves the issue of geometric accuracy in complex large-scale scenes. To im-
prove scalability, we introduce a Spatially Adaptive Gaussian Pruning (SAGP)
strategy, which dynamically adjusts Gaussian density based on local geometric
complexity and visibility to reduce redundancy. Additionally, a unified partition-
ing and view assignment scheme is designed to eliminate boundary artifacts and
optimize computational load. Extensive experiments on multiple urban datasets
demonstrate that UrbanGS achieves superior performance in rendering quality,
geometric accuracy, and memory efficiency, providing a systematic solution for
high-fidelity large-scale scene reconstruction.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

3D scene reconstruction is a long-standing research topic in computer vision and computer graphics,
with its core objective of achieving photorealistic rendering and accurate geometric reconstruction.
Following the introduction of Neural Radiance Fields (NeRF) (Mildenhall et al., 2021), 3D Gaus-
sian Splatting (3DGS) (Kerbl et al., 2023) has emerged as a mainstream technique in this field,
thanks to its advantages in training convergence and rendering efficiency. 3DGS represents scenes
using a set of discrete Gaussian ellipsoids and leverages a highly optimized rasterizer for render-
ing. However, due to the unstructured nature of 3DGS, accurately representing surfaces—especially
in large-scale complex scenes—remains a significant challenge. In recent years, numerous promi-
nent studies (Huang et al., 2024a; Chen et al., 2024b;a) have been proposed to address this issue.
While these methods have achieved remarkable success in single-object or small-scale scene recon-
struction, directly extending them to complex large-scale scenes reveals several critical limitations.
For instance, vanilla 3DGS suffers from inadequate geometric modeling accuracy and incomplete
parameter updates when applied to city-scale environments, failing to meet the high-fidelity recon-
struction requirements of complex urban scenes.

To tackle the challenges of urban-scale modeling, various technical solutions have been developed.
Methods such as CityGaussian (Liu et al., 2024a) and VastGaussian (Lin et al., 2024) have proposed
block-wise partitioning strategies; although these strategies improve rendering efficiency, they still
suffer from geometric inconsistencies, low geometric accuracy, and fail to reduce memory require-
ments during training. CityGaussianv2 (Liu et al., 2024b) adopts a hybrid approach integrating 2D
Gaussian Splatting (Huang et al., 2024a), while this accelerates training and enhances geometric
accuracy, it comes at the cost of degraded rendering quality. Furthermore, vanilla 3DGS generates
excessive redundant Gaussian primitives in homogeneous regions (e.g., skies, distant building fa-
cades), and naive pruning heuristics often sacrifice fine-grained details (Fan et al., 2023). Existing
partitioning schemes also introduce computational inefficiencies by processing irrelevant views and
generating boundary discontinuities (Liu et al., 2024a). These limitations underscore the urgent
need for a unified framework that balances geometric precision, memory efficiency, and seamless
scalability.

We propose UrbanGS, a strategy that achieves high geometric accuracy, fidelity, and efficiency in
large-scale scene reconstruction. To enhance geometric fidelity in large-scale settings, we directly
supervise the rendered normal maps of 3D Gaussians with external pseudo-normal priors. However,
this form of supervision alone is insufficient for updating the position parameters of Gaussians,
which is critical for accurate surface reconstruction (Chen et al., 2024b). To overcome this limita-
tion, we introduce a Depth-Consistent D-Normal Regularization framework. Instead of supervising
the rendered normals directly, we first derive depth-normal (D-Normal) from the spatial gradient
of the rendered depth maps, which are then supervised by the pseudo-normal priors. This estab-
lishes a geometric constraint intrinsically linked to depth, thereby enabling comprehensive updates
of both rotation and position parameters of the Gaussians. Furthermore, considering the limitation
that supervision based on D-Normal relies on the accuracy of rendered depth maps, we introduce
a depth estimator (Pseudo Depth) (Hu et al., 2024) to directly supervise the rendered depth maps,
thereby constructing the “Pseudo Depth & D-Normal Dual Supervision Mechanism” (with theoret-
ical proofs provided in the supplementary materials). To ensure the reliability of depth alignment
across multiple views, we propose an adaptive confidence weighting strategy that dynamically ad-
justs supervision weights for different regions, thus reducing the impact of depth errors on surface
reconstruction results.

To meet the memory and computational demands of urban-scale reconstruction, we propose a Spa-
tially Adaptive Gaussian Pruning (SAGP) method. Traditional pruning approaches, designed for
small-scale or object-level scenes, rely on global metrics or fixed thresholds (Fan et al., 2023). When
applied to city-scale scenes with high spatial heterogeneity and numerous Gaussian primitives, such
strategies often oversimplify local structures or lose fine details (see Table 4). To our knowledge,
this is the first pruning framework specifically designed for city-scale 3D Gaussian Splatting. SAGP
operates within local voxel cells, integrating local geometric complexity, ray-intersection frequency,
and visibility-aware importance scores to decide which Gaussians to prune. This adaptively removes
redundant primitives—especially in uniform or distant regions—while preserving perceptually and
geometrically critical structures. Applied progressively during training, SAGP significantly reduces
model complexity and memory usage while maintaining high rendering and geometric quality (Ta-
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ble 4, Fig. 4). We also incorporate a partitioning strategy (Liu et al., 2024a) to enable parallel
processing, supporting efficient and scalable reconstruction of large-scale urban scenes.
Our main contributions are summarized below:

• We propose a Depth-Consistent D-Normal Regularizer that enables holistic optimization of all
Gaussian parameters (position, rotation), addressing the limitation of incomplete geometric up-
dates in methods that supervise only rendered normals.

• We introduce an adaptive confidence term to enhance robustness, which suppresses unreliable
depth predictions and strengthens multi-view geometric alignment.

• To address Gaussian redundancy and memory explosion in city-scale scenes, we design a Spa-
tially Adaptive Gaussian Pruning (SAGP) algorithm that is aware of local geometric complexity.

• Extensive experiments demonstrate that our method outperforms existing large-scale scene re-
construction techniques, thus laying a solid foundation for future further research in this field.

2 RELATED WORK

Neural Rendering. Novel view synthesis and multi-view surface reconstruction are interconnected
tasks in 3D scene reconstruction. Traditional reconstruction pipelines relied on Structure-from-
Motion (SfM) (Duisterhof et al., 2024; Wang et al., 2023; He et al., 2024) and Multi-View Stereo
(MVS) (Furukawa et al., 2015; Tang et al., 2024; Yao et al., 2018) with feature matching (Wang &
Shen, 2018), but suffered from artifacts and noise sensitivity (Leroy et al., 2024). Early synthesis
methods like Soft3D (Penner & Zhang, 2017) used volumetric ray-marching with high computa-
tional costs. The neural revolution began with NeRF (Mildenhall et al., 2021), which improved qual-
ity through positional encoding yet remained slow due to MLPs; variants like Mip-NeRF (Barron
et al., 2022), InstantNGP (Müller et al., 2022), and Plenoxels (Fridovich-Keil et al., 2022) balanced
efficiency but struggled with empty spaces. For reconstruction, implicit methods like NeuS (Wang
et al., 2021) and Neuralangelo (Li et al., 2023) integrated SDFs (Park et al., 2019; Yu et al., 2022b)
for detailed surfaces at the cost of lengthy training. The paradigm shifted with 3D Gaussian Splat-
ting (3DGS) (Kerbl et al., 2023), enabling real-time synthesis via unstructured Gaussians, though
its explicit form caused reconstruction issues like depth ambiguities (Zhang et al., 2024; Chen et al.,
2024a). Subsequent optimizations addressed both domains: synthesis-focused improvements in-
cluded Mip-splatting (Yu et al., 2024a) and HRGS (Li et al., 2025), while reconstruction enhance-
ments featured SuGaR’s mesh binding (Guédon & Lepetit, 2024) (despite scalability limits (Chen
et al., 2024a)), 2DGS’s surfel-based normal alignment (Huang et al., 2024b), VCR-GauS’s depth-
normal regularizers (Chen et al., 2024b), and GOF’s ray-tracing for unbounded scenes (Yu et al.,
2024b). However, when reconstructing complex large-scale scenes, 3DGS faces considerable chal-
lenges in terms of rendering quality and geometric accuracy. Furthermore, it also has the problems
of a surge in video memory usage and excessively long training times, all of which limit the further
expansion of 3DGS in large-scale scenes.

Large-Scale Scene Reconstruction. Reconstructing large-scale scenes (e.g., urban areas, expan-
sive landscapes) faces significant challenges, including computational inefficiency, memory con-
straints, and geometric inconsistencies across sub-scenes processed in a block-wise manner (Tancik
et al., 2022). Early NeRF-based methods partitioned scenes into blocks for parallel training (Turki
et al., 2022a; Zhang et al., 2025), but due to the limitations of multi-layer perceptrons (MLPs), these
approaches suffered from slow rendering speeds and poor scalability (Kerbl et al., 2023). Although
3DGS-based methods improved efficiency, they introduced new issues: partition-and-merge strate-
gies such as VastGaussian (Lin et al., 2024) often lead to boundary inconsistencies due to insuffi-
cient multi-view constraints; methods like CityGaussian (Liu et al., 2024a) require time-consuming
post-processing for pruning or distillation; and while these methods improve rendering quality, they
still struggle with geometric accuracy, training cost, and efficiency (Chen & Lee, 2024). More re-
cently, CityGS-X (Gao et al., 2025) revisits large-scale 3DGS from a systems perspective, introduc-
ing a parallel hierarchical representation with multi-task supervision and progressive optimization
that eliminates the partition-and-merge pipeline and improves geometric consistency under scalable
multi-GPU training, but its surface reconstruction quality for high-fidelity urban details remains
limited. Optimization-focused solutions like CityGaussianV2 (Liu et al., 2024b), despite employing
techniques to control Gaussian proliferation, sacrifice rendering quality to some extent. To address
these limitations, we propose the UrbanGS framework, which establishes a unified depth-normal
regularizer for holistic geometric optimization, incorporates confidence-aware weighting to enhance
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robustness, introduces spatially adaptive pruning to manage redundancy, and designs a seamless par-
titioning scheme, collectively achieving high-fidelity, efficient, and geometrically consistent large-
scale reconstruction.

3 METHODOLOGY

3.1 PRELIMINARIES

3D Gaussian Splatting. 3D Gaussian Splatting models a scene using a collection of anisotropic 3D
Gaussians G = {Gi | i ∈ N}. Each 3D Gaussian unit Gi is characterized by a center u ∈ R3 and a
covariance matrix Σ ∈ R3×3, and can be mathematically expressed as:

Gi(p) = exp

{
−1

2
(p− ui)

⊤
Σ−1

i (p− ui)

}
. (1)

During the training process, the covariance matrix is decomposed into a rotation matrix R ∈ R3×3

and a diagonal scaling matrix S ∈ R3×3, that is,

Σi = RSS⊤R⊤, (2)

to ensure the covariance matrix is positive semi-definite. For rendering the color of a pixel p, the 3D
Gaussians are projected into the image space for alpha blending:

C =
∑
i

ciαi

i−1∏
j=1

(1− αj) , (3)

where ci and αi = oiG(xi) denote the color and density of a point, respectively.

3.2 DEPTH-CONSISTENT D-NORMAL REGULARIZATION

D-Normal Regularization. To reconstruct scene surfaces, we enforce normal priors N predicted
by a pretrained monocular deep neural network (Bae & Davison, 2024) to supervise the rendered
normal map N̂ using L1 and cosine losses:

Ln = ||N̂ −N ||1 + (1− N̂ ·N). (4)

In our method, the depth map is rendered by performing a weighted sum of depths (Bae & Davison,
2024; Chen et al., 2024b; Yu et al., 2022a), with the formula given as follows:

D̂ =

∑
i∈M diαi

∏i−1
j=1(1− αj)∑

i∈M αi

∏i−1
j=1(1− αj)

, (5)

where di denotes the intersection depth (Chen et al., 2023; 2024b) and is distinct from the depth
estimation in conventional 3D Gaussian Splatting (3DGS). Specifically, it refers to the distance from
the camera to the intersection point calculated along the z-axis of the camera coordinate system; this
intersection point is formed between the ray emitted from the camera center and the elliptical plane
obtained by compressing the ellipsoid of 3DGS (Further details are provided in the supplementary
material in the Appendix).

Additionally, to effectively update Gaussian positions, we utilize the predicted normal N from the
pretrained model to supervise the D-Normal Nd. The derivation of the D-Normal from the rendered
depth involves two sequential steps. First, the rendered depth map is back-projected into point
clouds{dk(n, p)}, using the camera intrinsic matrix. Subsequently, the horizontal and vertical finite
differences are computed between adjacent points in this back-projected point cloud; the D-Normal
is then obtained by calculating the cross-product of these two sets of finite differences.

Nd(n, p) =
∇vd(n, p)×∇hd(n, p)

|∇vd×∇hd|
, (6)
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Figure 2: UrbanGS training pipeline and core components. (a) Training Pipeline: Starting from
coarse global Gaussians, we apply spatially adaptive Gaussian pruning to obtain compact priors,
contract and partition the scene into blocks, assign camera views using geometric and SSIM-based
criteria, and refine all blocks in parallel before merging them into a unified large-scale 3D Gaussian
scene. (b) Depth-Consistent D-Normal Regularization: 3D Gaussians are rendered to depth and
normal maps, depth is converted to D-normals and jointly supervised with pseudo-depth and pseudo-
normal priors from pretrained models via the loss Ln + Ldn + wdLid, yielding stable and globally
consistent geometry. (c) Spatially Adaptive Gaussian Pruning: Global Gaussians are discretized
into a voxel grid, where per-cell importance ωv,i and view-dependent cues are fused into pruning
scores to remove redundant Gaussians and obtain an efficient yet accurate representation.

where d represents the 3D coordinates of a pixel obtained via back-projection from the depth map.
We then apply the D-Normal regularization:

Ldn =
∥∥Nd −N

∥∥
1
+
(
1−Nd ·N

)
, (7)

Depth Consistency Regularization. In urban-scale scenes, D-Normal regularization optimizes ge-
ometry through normal-depth associations but lacks explicit cross-view depth constraints, frequently
causing building misalignment and street distortion—especially in distant/complex areas. To resolve
inconsistent multi-view depth predictions, we propose a depth consistency framework integrating in-
verse depth constraints with geometry-aware confidence. This extends normal-based regularization
by incorporating robust priors from monocular depth estimators, where depth anchors Dext(Hu et al.,
2024) ensure cross-view consistency during optimization. Specifically, we derive dense relative
depth anchors by processing training images with a pre-trained DepthAnything-v2 model (Hu et al.,
2024). To align these monocular predictions with the unified metric scale of the 3D reconstruc-
tion, we leverage sparse 3D points from COLMAP’s Structure-from-Motion (SfM). Specifically, we
compute per-view scale and shift parameters by robustly fitting the monocular depth maps to the
sparse COLMAP depth values at valid 2D-3D correspondences. This process brings the relative
depth estimates into alignment with the scale of the multi-view geometry. We define an inverse
depth loss Lid that operates on reciprocal depths to balance optimization sensitivity across distance
ranges (Kerbl et al., 2024):

Lid(u, v) =
∣∣∣D̂−1(u, v)−D−1

ext (u, v)
∣∣∣ . (8)

where D̂−1 ≡ 1/D̂ is the reciprocal of the rendered depth map. This formulation minimizes rel-
ative depth errors per pixel while enhancing distant surface accuracy where linear depth gradients
diminish.
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Complementing this loss, we define a geometry-aware confidence measure wd based on two geo-
metric cues. First, the cosine similarity of depth gradients:

cosϕ =
∇D̂ · ∇Dext

∥∇D̂∥2∥∇Dext∥2
, (9)

quantifies gradient reliability by measuring local surface orientation consistency. Second, we mea-
sure error sensitivity via normalized inverse depth deviation to suppress high-discrepancy regions:

ϵd(u, v) =
Lid(u, v)

median(D̂−1)
. (10)

The unified confidence wd combines both cues through exponential decay:

wd = exp

(
cosϕ− 1

0.01

)
· exp

(
− ϵd
0.1

)
, (11)

where hyperparameters γd = 0.01 and τ = 0.1 balance directional and magnitude sensitivity. The
total optimization objective is consequently augmented to:

Ltotal = LRGB + λ1Ln + λ2Ldn + λ3(wd · Lid), (12)

where λi(i = 1, 2, 3) balancing the individual components. LRGB includes L1 and D-SSIM
losses (Kerbl et al., 2023).

3.3 SPATIALLY ADAPTIVE GAUSSIAN PRUNING (SAGP)

Large-scale 3D scenes exhibit pronounced spatial heterogeneity. Specifically, detailed foreground
geometries necessitate dense Gaussian representations to accurately capture fine structures, while
distant regions often suffer from excessive Gaussian proliferation—which in turn leads to pro-
hibitive memory consumption and degraded rendering performance. Existing pruning strategies,
grounded in global significance metrics or fixed opacity thresholds (Kerbl et al., 2023; Fan et al.,
2023), frequently oversimplify local features or inadvertently remove crucial far-field Gaussians,
this ultimately results in incomplete reconstructions and visual artifacts.

To overcome these limitations, we propose a unified, spatially adaptive pruning framework. The
scene is first partitioned into volumetric cells whose characteristic length ℓ scales with the overall
Gaussian density:

ℓ = λ

(
Vscene

N

)1/3

, (13)

where Vscene denotes the bounding-box volume and N the total number of Gaussians. We set
λ = 1.2 to slightly enlarge the cell size for more stable local statistics.

Within each cell, we compute the t-th percentile Gaussian volume ϑ
(t)
local and normalize individual

volumes via a sub-linear transform:

wv,i =

(
min
( vi

ϑ
(t)
local

, 1
))κ

. (14)

We use t = 90% to represent the typical volume in each cell while mitigating outlier influence.
The sub-linear exponent κ = 0.5 (i.e., a square root) is applied to compress the dynamic range of
volume ratios, thereby amplifying the importance of fine-scale structures while suppressing overly
large Gaussians. This operation attenuates oversized background Gaussians while amplifying fine-
scale structures, thereby establishing a context-aware basis for importance estimation.

Building on these localized volume weights, we define each Gaussian’s importance score Si as
a weighted combination of three normalized attributes. The first attribute is the normalized ray-
intersection frequency (Fan et al., 2023), given by ϕi = ri

maxj∈G(i) rj
, where ri denotes the total

number of intersections between the i-th Gaussian and all sampled rendering rays during the current
training iteration. The second attribute is the Sigmoid-mapped opacity (Kerbl et al., 2023), expressed

6
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as τi = σ(ai) = 1
1+e−ai

, with ai representing the raw opacity parameter of the i-th Gaussian
(a learnable parameter in 3DGS that controls the Gaussian’s contribution to scene occlusion and
visibility). The third attribute is the sub-linear volume weight, defined as wv,i. The composite
importance score is then given by

Si = α · ϕi + β · τi + γ · wv,i, (15)
where α, β, γ are tunable hyperparameters that balance visual salience, occlusion relevance, and
geometric scale awareness. In our experiments, we use α = 1.2, β = 1.0, and γ = 0.8 as default
values to emphasize multi-view consistency while maintaining a balance with visual quality and
geometric detail(See Table. F).

3.4 PARTITIONING STRATEGY

Our partitioning strategy is improved based on CityGS (Liu et al., 2024a), as illustrated in part (a)
of Fig. 2. First, when obtaining the global coarse 3DGS model, we first eliminate redundant Gaus-
sians through SAGP pruning to prevent these redundant Gaussians from attracting non-contributing
views and amplifying the computational load during subsequent block-wise training. Then, in the
partitioning phase, we retain common Gaussian primitives at the boundaries of each sub-block to
avoid introducing visible fusion artifacts caused by geometric discontinuities between blocks. All
other modules follow the methodologies of CityGS, and the specific formulas are referred to in the
supplementary materials C.

4 EXPERIMENTS

Table 1: Quantitative comparisons on the Mill19 (Turki et al., 2022c) and UrbanScene3D (Lin et al.,
2022) datasets for novel view synthesis. ↑ indicates higher is better, while ↓ indicates lower is better.
The top three results are highlighted with red, orange, and yellow backgrounds, respectively. †

denotes results obtained without the decoupled appearance encoding.
Building Rubble Residence Sci-Art

SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓
w/o Geometric Optimization
Mega-NeRF 0.547 20.92 0.454 0.553 24.06 0.508 0.628 22.08 0.401 0.770 25.60 0.312
Switch-NeRF 0.579 21.54 0.397 0.562 24.31 0.478 0.654 22.57 0.352 0.795 26.51 0.271
VastGaussian † 0.728 21.80 0.225 0.742 25.20 0.264 0.699 21.01 0.261 0.761 22.64 0.261
3DGS 0.738 22.53 0.214 0.725 25.51 0.316 0.745 22.36 0.247 0.791 24.13 0.262
DoGaussian 0.759 22.73 0.204 0.765 25.78 0.257 0.740 21.94 0.244 0.804 24.42 0.219
CityGaussian 0.778 21.55 0.246 0.813 25.77 0.228 0.813 22.00 0.211 0.837 21.39 0.230

w/ Geometric Optimization
SuGaR 0.507 17.76 0.455 0.577 20.69 0.453 0.603 18.74 0.406 0.698 18.60 0.349
NeuS 0.463 18.01 0.611 0.480 20.46 0.618 0.503 17.85 0.533 0.633 18.62 0.472
Neuralangelo 0.582 17.89 0.322 0.625 20.18 0.314 0.644 18.03 0.263 0.769 19.10 0.231
PGSR 0.480 16.12 0.573 0.728 23.09 0.334 0.746 20.57 0.289 0.799 19.72 0.275
VCR-Gaus 0.502 19.56 0.502 0.541 21.34 0.428 0.623 20.59 0.359 0.665 19.31 0.465
CityGaussianV2 0.650 19.07 0.397 0.720 23.75 0.322 0.769 21.15 0.234 0.810 20.66 0.266
Ours 0.802 22.82 0.208 0.791 26.25 0.210 0.823 22.48 0.205 0.824 22.62 0.279

4.1 EXPERIMENTAL SETUP

Our experiments cover seven representative scenes drawn from four datasets: Building and Rubble
from Mill-19 (Turki et al., 2022c); Residence and Sci-Art from UrbanScene3D (Lin et al., 2022);
and Residence, Russian Building, and Modern Building from GauU-Scene (Xiong et al., 2024).
Unless otherwise noted, competing methods were evaluated on RTXA800 GPUs, while UrbanGS
was trained on eight RTXA5000 GPUs. Additional details on training protocols and evaluation
settings are provided in the supplementary material.

4.2 MAIN RESULTS

Novel View Synthesis. As shown in Table 1 and Fig. 3, we present quantitative and qualitative eval-
uations of large-scale scene reconstruction methods with and without geometric optimization (de-
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Ground Truth 2DGS VCR-GausGOF CityGS-v2 Ours

Figure 3: Qualitative results of ours and other methods in image rendering on Mill-19 (Turki et al.,
2022c) and Urbanscene3D (Lin et al., 2022).
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Figure 4: Qualitative mesh and texture comparison between SOTA and our method on GauU-Scene
dataset (Xiong et al., 2024).

noted as w/ Geometric Optimization and w/o Geometric Optimization, respectively). Our method,
UrbanGS, consistently achieves state-of-the-art performance—even when compared to methods
without geometric constraints. Specifically, it attains the highest PSNR and SSIM in building scenes;
in residential scenes, it reduces the LPIPS by 0.006 compared to CityGS (Liu et al., 2024a), demon-
strating the robustness of our method. Qualitative comparisons in Fig. 3 show that our method can
effectively mitigate the impacts of floating artifacts and lighting inconsistencies, resulting in supe-
rior rendering quality. These results highlight the robustness of UrbanGS in maintaining multi-view
consistency and faithfully preserving appearance information, thereby enabling accurate large-scale
scene reconstruction.

Surface Reconstruction. We compare our method with existing surface reconstruction approaches
on the GauU-Scene datasets (Xiong et al., 2024). As shown in Table 2, our method achieves state-of-
the-art performance among both neural implicit baselines and recent 3DGS-based city-scale meth-
ods. In particular, compared with CityGS-X, our approach attains higher F1 scores across all scenes
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Table 2: Detailed geometry evaluation on the GauU-Scene dataset (Xiong et al., 2024). “NaN”
indicates that the method produced invalid numerical results, while “FAIL” denotes a failure to
extract a valid mesh. For all metrics, ↑ indicates that higher values are better.

Methods Residence Russian Building Modern Building

P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑

NeuS FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
Neuralangelo NaN NaN NaN FAIL FAIL FAIL NaN NaN NaN
SuGaR 0.579 0.287 0.384 0.480 0.369 0.417 0.650 0.220 0.329
GOF 0.404 0.418 0.411 0.294 0.394 0.330 0.411 0.357 0.382
VCR-Gaus 0.498 0.402 0.445 0.538 0.454 0.492 0.591 0.401 0.478
2DGS 0.526 0.406 0.458 0.544 0.519 0.531 0.588 0.413 0.485
CityGS-X 0.512 0.411 0.456 0.572 0.516 0.542 0.653 0.389 0.487
CityGaussianV2 0.524 0.421 0.467 0.560 0.530 0.544 0.643 0.398 0.492
Ours 0.529 0.461 0.493 0.568 0.525 0.546 0.662 0.408 0.503

Table 3: Under the GauU-Scene dataset (Lin et al., 2022), comparison of Large-Scale Scene Mod-
eling Methods, the best result for specific metrics under each scene is highlighted in bold.

Scene Method PSNR ↑ F1 ↑ #GS(M) ↓ Size(G) ↓ Mem.(G) ↓

Residence
CityGS 23.17 0.453 8.05 0.44 31.5
CityGS-v2 23.46 0.465 8.07 0.44 14.2
Ours 23.78 0.493 7.78 0.37 13.2

Russia
CityGS 24.19 0.455 7.00 0.38 27.4
CityGS-v2 23.89 0.537 6.97 0.38 15.0
Ours 24.53 0.546 6.56 0.35 11.4

Modern
CityGS 26.22 0.462 7.90 0.43 29.2
CityGS-v2 25.53 0.489 7.90 0.42 16.1
Ours 26.44 0.503 7.45 0.39 15.0

0 250 500 750 1000 1250 1500 1750 2000
Training Time (min)  Lower is Better
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Figure 5: Experimental results on the Rubble dataset (Turki et al., 2022c) demonstrate that the
proposed method outperforms comparative approaches in terms of PSNR while achieving superior
training efficiency.

by improving recall while maintaining comparable precision. It also surpasses CityGS-v2 (Liu et al.,
2024b) on most metrics. Qualitative comparisons in Figure 4 further show that our method produces
more detailed and clearer surface structures. These results indicate that the proposed framework ef-
fectively learns high-fidelity geometric representations and enables accurate surface reconstruction.
Additional mesh visualizations are provided in Appendix B.

Efficiency Comparison. We compare the training time of our method with that of existing methods.
As shown in Fig. 5, our method only takes 2 hours and 10 minutes to complete the training on
the Rubble (Lin et al., 2022), which is significantly faster than competing methods. As presented
in Table. 3, when compared with other large-scale scene algorithms, our method requires lower
computational costs while achieving better rendering quality and geometric accuracy.
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Table 4: Ablation Results on Russian dataset (Xiong et al., 2024). Bold indicates best performance.
Note that OOM denotes Out Of Memory.

Method Rendering Quality Geometric Quality Training Statistics

PSNR↑ SSIM↑ LPIPS↓ P↑ R↑ F1↑ GS (M)↓ Time↓ Size↓ Mem↓
Baseline 22.54 0.778 0.231 0.532 0.501 0.516 6.43 235 1102.23 OOM
+ST 24.68 0.816 0.188 0.571 0.518 0.543 6.37 188 1035.02 26.3

+LP 24.53 0.785 0.195 0.556 0.502 0.528 3.02 134 467.47 17.1
+SAPG (Ours) 24.66 0.813 0.184 0.568 0.525 0.546 2.45 122 314.24 14.4

STPG 24.57 0.801 0.201 0.563 0.511 0.536 2.73 119 320.12 13.9

Table 5: Ablation study on the effects of D-Normal Regularization and Depth Consistency Reg-
ularization, conducted on the Morden Building dataset (Xiong et al., 2024). Bold indicates best
performance.

Method PSNR↑ SSIM↑ LPIPS↓ F1↑
w/o D-Normal 25.02 0.743 0.215 0.463
w/o Depth Consistency 24.59 0.792 0.201 0.453
w/o Geometry-Aware Confidence 26.02 0.795 0.163 0.493
Full 26.44 0.805 0.157 0.503

4.3 ABLATION STUDIES

To validate the effectiveness of individual components in our method, we conduct a series of ablation
studies on the GauU-Scene dataset. Specifically, we evaluate the impact of the following compo-
nents: Spatially Adaptive Gaussian Pruning (SAGP), Depth-Consistent D-Normal Regularization,
and the partitioning strategy.

Ablation of SAGP & Gaussian Partitioning . As summarized in Tab. 4, we conduct a systematic
ablation to evaluate the individual contributions of our proposed SAGP and partitioning strategy. We
first establish a Baseline that employs neither our SAGP nor any partitioning strategy.

Ablation on SAGP. We compare our SAGP pruning against LP, the pruning method from LightGaus-
sian (Fan et al., 2023). The results demonstrate that our SAGP is more effective at preserving the
original geometric quality (higher F1 score) while significantly reducing the number of Gaussians,
training time, and memory consumption, with only a minor impact on rendering quality.

Ablation on Partitioning Strategy. Our full method (Ours) integrates the proposed partitioning strat-
egy (ST) with SAGP. We further compare it against STPG, which uses the partitioning strategy from
CityGaussian (Liu et al., 2024a) with our SAGP. The comparison validates the superior effective-
ness of our partitioning strategy, as it achieves better rendering and geometric quality under the same
pruning method, demonstrating its ability to better preserve structural consistency across blocks.

Ablation of Depth-Consistent D-Normal Regularization. As shown in Tab. 5, we conduct abla-
tion studies on each component of the Depth-Consistent D-Normal Regularization, demonstrating
that its introduction significantly enhances both rendering quality and geometric accuracy for large-
scale scenes. Quantitative results reveal consistent improvements across all evaluation metrics, with
notable gains in F1-score (from 0.453 to 0.503) and PSNR (from 24.59 to 26.44), validating the
critical importance of this component for high-quality large-scale reconstruction. Furthermore, as
illustrated in Fig. D, the Geometric Regularization substantially improves the details in rendered
images, as well as the quality of rendered normal and depth maps.

5 CONCLUSIONS

This paper presents UrbanGS, a scalable framework for urban-scale scene reconstruction. It in-
troduces a depth-consistent D-Normal regularizer that enables comprehensive optimization of all
Gaussian geometric parameters by fusing depth and normal cues. A spatial pruning strategy and
seamless partitioning further enhance efficiency and avoid artifacts. Experiments show UrbanGS
outperforms existing methods in rendering, geometry, and training speed, offering a practical solu-
tion for large-scale 3D reconstruction.
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Ethics Statement
This work presents UrbanGS, a scalable framework for high-fidelity large-scale scene reconstruc-
tion. The research focuses on methodological innovation to address challenges in geometric con-
sistency, memory efficiency, and computational scalability of 3D Gaussian Splatting in urban-scale
applications. All experiments use publicly available benchmark datasets (Mill-19, UrbanScene3D,
GauU-Scene) in line with academic practices, involving no human subjects, personal data, or so-
cial risk assessment. The authors encourage ethical and legal use of this technology and declare no
potential conflicts of interest.

Reproducibility Statement
To ensure reproducibility of UrbanGS’s results, we provide key details: the proposed components
(Depth-Consistent D-Normal Regularization, Spatially Adaptive Gaussian Pruning, partitioning
strategy) are detailed in the methodology section with mathematical formulations . Experimental
setups include training on 8 NVIDIA RTX A5000 GPUs (baselines on RTX A800), using PyTorch
2.0+, Open3D 0.18.0+, and pretrained models (DepthAnything-v2, Dsine) . Dataset preparation
follows the image downsampling strategy (resizing images wider than 1600 pixels) and original
train/validation splits . We will make the complete code and training scripts publicly available on
GitHub upon the final revision and acceptance of this paper.
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A IMPLEMENTATION DETAILS

Training Setup. UrbanGS are trained using NVIDIA A5000 GPUs, while all baseline methods are
trained on NVIDIA A800 GPUs. Since the Mill-19 (Turki et al., 2022c), UrbanScene3D (Lin et al.,
2022), and GauU-Scene (Xiong et al., 2024) datasets contain thousands of high-resolution images,
we follow the image downsampling strategy proposed in 3DGS: any image with a width exceeding
1600 pixels is resized proportionally during both training and validation.For geometric priors, we
utilize the DepthAnything-v2 model (Hu et al., 2024) for depth prediction and the pre-trained Dsine
model (Bae & Davison, 2024) for surface normal estimation.

Regarding the pruning schedule, our design follows the training dynamics of 3DGS and prior prac-
tice. As shown in the pipeline 2, we use two stages of pruning. When constructing the coarse global
Gaussian model, we apply an initial, simple pruning rule to remove obviously redundant Gaussians,
reduce memory, and obtain a compact global prior for subsequent block-wise training. During block
refinement, we prune at 7k, 15k, and 25k iterations (out of 30k). The 7k step is applied after the
scene has roughly formed and the Gaussian distribution starts to stabilize, consistent with the behav-
ior observed in 3DGS (Kerbl et al., 2023), and removes early exploratory Gaussians that no longer
contribute to the final geometry. The 15k step follows the original 3DGS setting, occurring at the
end of densification when the Gaussian count peaks, and is most effective for controlling model
complexity and overfitting. The final pruning at 25k, inspired by LightGaussian (Fan et al., 2023),
acts as a consolidation step near convergence, further eliminating residual redundancy and ensuring
a good balance between high-fidelity reconstruction and compact, efficient rendering.

Mesh Extraction. To obtain the final mesh, we employ Open3D’s volumetric TSDF fusion method,
which integrates rendered depth maps and corresponding camera poses to construct a continuous
Signed Distance Field (SDF). The surface is then extracted using the Marching Cubes algorithm at
the zero-level isosurface, enabling direct reconstruction of 3D geometry without relying on interme-
diate point cloud representations.

B PROOF ON A DEPTH-CONSISTENT D-NORMAL REGULARIZER

These propositions systematically validate the evolutionary process from traditional rendered normal
supervision to our proposed depth-normal regularizer. Proposition 1.1 reveals the limitation of su-
pervising only rendered normals in updating Gaussian positions; Proposition 1.2 demonstrates that
the depth-normal regularizer can effectively optimize Gaussian positions; Proposition 2.1 further
proves that the depth-consistent regularizer significantly improves geometric accuracy, highlighting
the enhanced effectiveness of our method.

B.1 GEOMETRIC PROPERTIES

To reconstruct the 3D surface, we focus on the geometric properties of Gaussians that enable accu-
rate intersection depth calculation, as detailed below.

Normal Vector Following NeuSG (Chen et al., 2023), the Gaussian’s normal vector n ∈ R3 is
defined as the direction of its minimized scaling factor:

n = R[k, :], k = argmin ([s1, s2, s3]) . (16)

Both n and Gaussian center p are transformed to the camera coordinate system (default unless stated
otherwise).

Intersection Depth Existing work (Tang et al., 2023) uses p for depth calculation, which is in-
accurate (depth unrelated to n). We instead compute the ray-Gaussian intersection depth via the
following steps:

Gaussian Flattening with Scale Regularization: To simplify intersection computation, we adopt
NeuSG’s (Chen et al., 2023) scale loss to flatten 3D Gaussian ellipsoids into planes (p,n):

Ls = ∥min (s1, s2, s3)∥1 . (17)

This loss constrains the minimum scaling factor component to approach zero.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

GT Surface

Moving Direction

Ray Direction

GT Surface

Normal Direction

Position1

Position2

PositionGaussian Moved Gaussian

Position2

Position1

N

Figure A: Illustration of Proof of the Proposition on Comprehensive Update of Gaussian Parameters.
(a) After back-propagation through alpha-blending Eq. 1, the rendered normal supervision loss Ln

moves Gaussians either closer to (corresponding to Position1) or farther from (corresponding to
Position2) the intersecting ray. When the normal of a Gaussian is closer to the ground truth (GT)
surface normal, this supervision mechanism pushes the Gaussian (e.g., Position1) toward the ray to
increase its weight in the rendering equation; conversely, if there is a significant deviation between
the two normals, it pushes the Gaussian (e.g., Position2) away from the ray. (b) In contrast, the
D-Normal regularizer loss Ldn can move Gaussians either closer to or farther from the GT surface.
Here, Position1 and Position2 are 3D positions corresponding to the mean depth of two adjacent
pixels (rays), computed via Eq. 5; the D-Normal Nd is derived from Position1 and Position2

using Eq. 6. Notably, Ldn relies on the intersection depth, related to Gaussian position Position
and normal n) to encourage Nd alignment with the GT normal N , ultimately enabling Gaussians to
move toward or away from the (GT) surface.

For the plane constraint, any point op on plane (p,n) satisfies n · (op − p) = 0. For the ray
representation, a ray originating from the origin is expressed as ol = rt, where r denotes the ray
direction and t is the distance from the origin. At the intersection (ol = op), solving for the depth
along the camera z-axis yields:

d(n,p) = rz ·
n · p
n · r

, (18)

where rz is the z-component of r.

This d(n,p) is correlated with both p and n, ensuring accuracy and enabling D-Normal regulariza-
tion to backpropagate loss to Gaussian parameters.

B.2 PROOF PROPOSITIONS

Proposition 1.1 Supervising the rendered normals cannot effectively influence the positions of
Gaussians. The rendered normal N̂ is defined as the opacity-weighted average of Gaussian nor-
mals. Considering the normal loss Ln, its gradient with respect to the Gaussian position pi can be
expressed via the chain rule as:

∂Ln

∂pi
=

∂Ln

∂N̂
· ∂N̂
∂pi

. (19)

Since each Gaussian normal ni is determined solely by the rotation parameters, ∂ni

∂pi
= 0. Thus, the

dependency of N̂ on pi originates only from the opacity weights αi:

∂N̂

∂pi
=

∂N̂

∂αi
· ∂αi

∂G(x)
· ∂G(x)

∂pi
. (20)

For a Gaussian distribution

G(x) = exp
(
− 1

2 (x− pi)
⊤Σ−1(x− pi)

)
. (21)
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we obtain

∂G(x)

∂pi
= −G(x)Σ−1(x− pi). (22)

In our implementation, following scale regularization, each Gaussian is flattened into an approxi-
mate plane, so we approximate Σ−1 by the identity matrix to emphasize directionality. Hence,

∂G(x)

∂pi
≈ −G(x) (x− pi). (23)

Substituting into Eq.(̃16), the resulting position gradient is

∂Ln

∂pi
∝ (x− pi). (24)

This indicates that the position update depends only on the spatial offset between the pixel-aligned
point x and the Gaussian center pi, without involving the surface normal ni. Consequently, con-
ventional normal supervision can only adjust opacities but fails to drive positions toward the true
surface along its normal direction. This explains why rendered-normal supervision alone leads to
incomplete geometric optimization.

Proposition 1.2 Supervising our proposed Depth-Normal (D-Normal) regularizer can effectively
influence the positions of Gaussians.

We now consider our proposed D-Normal loss Ldn. By definition, the D-Normal Nd is computed
from the gradients of rendered depth maps. The gradient of Ldn with respect to the Gaussian position
pi follows a three-stage chain rule:

∂Ldn

∂pi
=

∂Ldn

∂Nd

· ∂Nd

∂D̂
· ∂D̂
∂pi

. (25)

where D̂ denotes the rendered depth.

Since D̂ is the opacity-weighted average of Gaussian intersection depths di , its derivative can be
decomposed as:

∂D̂

∂pi
=

∂D̂

∂αi
· ∂αi

∂pi︸ ︷︷ ︸
(A) Conventional weight term

+
∂D̂

∂di
· ∂di
∂pi︸ ︷︷ ︸

(B) Depth term (new)

, (26)

The depth of a Gaussian–ray intersection is given by:

di = rz ·
ni · pi
ni · r

, (27)

where r is the viewing ray and rz its z-component. Differentiating with respect to pi yields:

∂di
∂pi

= rz ·
ni

ni · r
. (28)

Thus, the second term (B) in ∂D̂/∂pi explicitly involves the surface normal ni. we obtain:

∂Ldn

∂pi
=

∂Ldn

∂Nd

· ∂Nd

∂D̂
· ∂D̂
∂αi

· ∂αi

∂G(x)
· ∂G(x)

∂pi︸ ︷︷ ︸
traditional weight-dependent term

+
∂Ldn

∂Nd

· ∂Nd

∂D̂
· ∂D̂
∂di

· rz ·
ni

ni · r︸ ︷︷ ︸
new term proportional to ni

. (29)
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The new term proportional to ni provides a direct mechanism to update the position pi along the
normal direction. As a result, D-Normal supervision not only influences Gaussian rotations (as
conventional normal supervision does) but also effectively aligns Gaussian positions with the un-
derlying surface geometry. This theoretical insight explains the substantial geometric improvements
observed in our experiments.

Proposition 2.1

Supervising our proposed Depth-Consistent D-Normal Regularizer, which incorporates the Pseudo
Depth & D-Normal Dual Supervision Mechanism by utilizing both D-Normal maps and pseudo
depth maps, can effectively and stably influence Gaussian positions along the normal direction,
thereby achieving comprehensive updates of geometric parameters (rotation and position) and sig-
nificantly improving geometric and reconstruction accuracy.

From Proposition 1.1, conventional rendered normal supervision provides gradients ∂Ln

∂pi
∝ (x−pi),

which are independent of Gaussian normals ni and thus fail to guide positions toward the true
surface.

From Proposition 1.2, D-Normal supervision introduces an additional term

∂Ldn

∂pi
⊃ ∂Ldn

∂Nd

· ∂Nd

∂D̂
· ∂D̂
∂di

· rz ·
ni

ni · r
, (30)

which is explicitly proportional to the normal ni. This enables position updates along the surface
normal direction, thus coupling position and rotation optimization.

However, the reliability of this update depends on the accuracy of rendered depth D̂. To further
enhance stability, we introduce pseudo depth supervision LpD(D̂,Dpseudo). Its gradient contributes

∂LpD

∂pi
=

∂LpD

∂D̂
· ∂D̂
∂pi

, (31)

which shares the same structural dependence on ∂D̂
∂pi

as the D-Normal term, and therefore reinforces
the normal-dependent component introduced above.

Combining these two complementary signals, the dual supervision mechanism (i) stabilizes depth
estimation via pseudo depth, and (ii) ensures normal-consistent position updates via D-Normal. As a
result, both rotation and position parameters of Gaussians are comprehensively optimized, yielding
improved geometric accuracy in reconstruction.

C SUPPLEMENTATION TO THE PARTITIONING STRATEGY

Existing large-scale 3DGS frameworks exhibit two critical limitations: geometric discontinuities
at block boundaries introduce visible fusion artifacts, while redundant Gaussians attract non-
contributing views that inflate computational loads during block-wise training. Our unified approach
addresses both issues through integrated redundancy reduction and geometric continuity enforce-
ment.

The pipeline begins with global pruning of low-impact Gaussians using spatially adaptive scoring
(Eq. 15):

Gpruned = Gk ∈ G | Sk > θprune, (32)
This operation targets background and low-contribution primitives that attract irrelevant views. Pre-
partition pruning eliminates redundancy propagation to local blocks, significantly reducing compu-
tational load.

To enable spatially balanced partitioning, the pruned Gaussians are contracted into a normalized
cube [−1, 1]3 using a hybrid contraction function (as in (Wu et al., 2023)), which applies a lin-
ear mapping to the foreground region and a nonlinear scaling to the unbounded background. This
contraction yields a compact representation of the full scene and facilitates uniform space division.

Within this contracted space, the scene is partitioned into regular blocks. To preserve geometric
continuity across adjacent partitions, boundary Gaussians are explicitly duplicated:

Gj
shared = {Gk | dist(Gk, ∂Bj) < δshare} . (33)
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This duplication enforces overlapping geometric constraints near block interfaces, thereby suppress-
ing boundary artifacts during block-wise fusion.

Camera pose assignment for each block Bj integrates geometric proximity and perceptual contri-
bution through dual evaluation criteria. The geometric criterion assesses physical containment by
checking if the contracted camera position pctr

τi = contract(p̂τi) falls within the block’s spatial
extent [bj,min, bj,max), formalized as:

Bgeo(τi) =

{
1 pctr

τi ∈ [bj,min, bj,max)

0 otherwise
, (34)

where the contraction operator follows (Liu et al., 2024a).

The perceptual criterion quantifies visual degradation when removing Gaussians GBj
. By compar-

ing renders I full
τi (full model) and Iexcl-j

τi (excluding GBj
) in original space, it computes:

Bvis(τi) =

{
1 SSIM(I full

τi , Iexcl-j
τi ) < 1− εj

0 otherwise
, (35)

with εj controlling sensitivity to structural loss, identifying perceptually dependent poses.

The final assignment combines both criteria:

B(τi) = Bgeo(τi) ∨Bvis(τi), (36)

ensuring each pose is assigned to blocks it physically occupies or visually relies upon. This estab-
lishes efficient view-block correspondence while maintaining rendering consistency.

Table A: Comparison of training times across multiple state-of-the-art methods on the Mill-19 (Turki
et al., 2022c)and UrbanScene3D (Lin et al., 2022), Bold indicates best performance..

Models Building Rubble Residence Sci-Art
Time ↓ Time ↓ Time ↓ Time ↓

Mega-NeRF 19:49 30:48 27:20 27:39
Switch-NeRF 24:46 38:30 35:11 34:34
VastGS † 03:26 02:30 03:12 03:13
DOGS 03:51 02:25 04:33 04:23
CityGS-v2 04:25 03:05 04:45 04:38
Ours 03:13 02:10 02:45 03:40

Table B: Novel View Synthesis Performance Evaluation on the GauU-Scene datasets (Xiong et al.,
2024). Bold indicates best performance.

Methods
Residence Russian Building Modern Building

SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓

NeuS 0.244 15.16 0.674 0.202 13.65 0.694 0.236 14.58 0.694
Neuralangelo NaN NaN NaN 0.328 12.48 0.698 NaN NaN NaN
SuGaR 0.612 21.95 0.452 0.738 23.62 0.332 0.700 24.92 0.381
GOF 0.652 20.68 0.391 0.713 21.30 0.322 0.749 25.01 0.286
VCR-Gaus 0.663 22.69 0.404 0.724 22.89 0.273 0.726 25.19 0.230
2DGS 0.703 22.24 0.306 0.788 23.77 0.189 0.776 25.77 0.202
CityGS-v2 0.742 23.57 0.243 0.784 24.12 0.196 0.770 25.84 0.207
Ours 0.762 23.78 0.206 0.810 24.53 0.158 0.805 26.44 0.157

D MORE EXPERIMENTS

The experimental section of this paper focuses on evaluating the performance of UrbanGS in large-
scale scene reconstruction. Through comprehensive comparisons with a variety of baseline methods,
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Table C: Detailed geometry evaluation on GauU-Scene datasets (Xiong et al., 2024). “NaN” indi-
cates invalid numerical results, while “FAIL” denotes failure to extract valid mesh. For all metrics,
↑ indicates higher values are better.

Methods
Campus Village College

P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑ P ↑ R ↑ F1 ↑

NeuS FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
Neuralangelo NaN NaN NaN NaN NaN NaN NaN NaN NaN
SuGaR 0.321 0.272 0.294 0.354 0.253 0.295 0.409 0.271 0.326
VCR-Gaus 0.478 0.312 0.379 0.492 0.412 0.448 0.456 0.361 0.401
2DGS 0.389 0.304 0.341 0.442 0.283 0.345 0.340 0.182 0.237
GOF FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL FAIL
PGSR 0.464 0.355 0.403 0.535 0.445 0.486 0.349 0.349 0.354
CityGS-X 0.505 0.361 0.421 0.545 0.443 0.489 0.559 0.371 0.446
CityGaussianV2 0.486 0.383 0.428 0.580 0.503 0.543 0.577 0.373 0.453
Ours 0.492 0.388 0.435 0.567 0.512 0.538 0.564 0.381 0.456

Table D: Ablation study of different priors on the Modern Building dataset.

Priors Rendering Quality Geometric Quality

Dav2 MiDaS Dsine GeoWizard SSIM ↑ PSNR ↑ LPIPS ↓ P ↑ R ↑ F1 ↑

✓ ✓ 0.805 26.44 0.157 0.663 0.404 0.503
✓ ✓ 0.802 26.48 0.163 0.665 0.399 0.498

✓ ✓ 0.798 26.33 0.161 0.645 0.410 0.501
✓ ✓ 0.785 26.12 0.166 0.658 0.392 0.491

the effectiveness of UrbanGS is validated across three key aspects: training efficiency, novel view
synthesis quality, and geometric accuracy.

D.1 TRAINING EFFICIENCY

As shown in table A,in training time comparison experiments conducted on diverse scenes such as
Building, Rubble, Residence, and Sci-Art, UrbanGS demonstrates significant efficiency gains. For
instance, in the Building scene (Turki et al., 2022c), UrbanGS completes training in only 3 hours and
13 minutes, substantially outperforming Mega-NeRF (19 hours 49 minutes) (Turki et al., 2022b) and
Switch-NeRF (24 hours 46 minutes) (Mi & Xu, 2023). Even when compared with more efficient
baselines such as VastGS† (Lin et al., 2024), UrbanGS consistently achieves competitive or superior
training times across most scenes.

Table E: Effect of block partitioning on the Russian dataset. Memory (Mem) in GB, Time in minutes. Bold
indicates best performance.

Block/GPU PSNR↑ SSIM↑ LPIPS↓ F1↑ Mem↓ Time↓
2/2 23.43 0.779 0.215 0.518 25.2 170
4/4 24.55 0.804 0.201 0.539 20.1 140
8/8 24.66 0.813 0.184 0.546 14.4 122

D.2 NOVEL VIEW SYNTHEIS

As shown in table B, the novel view synthesis performance is also evaluated on the GauU-Scene
dataset (Xiong et al., 2024), UrbanGS outperforms competing methods in all tested scenes using
SSIM, PSNR (higher is better), and LPIPS (lower is better) as evaluation metrics. Specifically,
in the Residence scene, it achieves SSIM 0.762, PSNR 23.78, and LPIPS 0.206; in the Russian
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Building scene, SSIM 0.810, PSNR 24.53, and LPIPS 0.158; and in the Modern Building scene,
SSIM 0.805, PSNR 26.44, and LPIPS 0.157. These results consistently surpass baselines such as
SuGaR (Guédon & Lepetit, 2024) and GOF (Yu et al., 2024b).

D.3 GEOMETRIC ACCURACY

To further assess the generalization of our method to large-scale urban scenes, we additionally eval-
uate geometry quality on the GauU-Scene dataset (Xiong et al., 2024). As summarized in Table C,
we report precision (P), recall (R), and F1 score across three subsets (Campus, Village, and College).
Several NeRF- and 3DGS-based baselines either produce invalid numerical results (“NaN”) or fail to
extract a valid mesh (“FAIL”), highlighting the difficulty of this benchmark. In contrast, our method
consistently reconstructs valid meshes and achieves the best or highly competitive performance on
all metrics. As a qualitative complement to the numerical results, Figure B and Figure C compares
the reconstructed meshes of representative methods on multiple GauU-Scene subsets. Baseline ap-
proaches often suffer from over-smoothed surfaces, broken structures, or missing fine-scale details,
particularly around building facades and road layouts, whereas our method produces more complete
and coherent geometry with sharper boundaries.

D.4 MORE ABLATIONS

As shown in Figure D, we conducted ablation studies on the Campus dataset. When the Depth-
Consistent D-Normal Regularization module and Partitioning Strategy module are ablated, signif-
icant differences are observed in both rendered normal maps and rendered depth maps compared
with our full method, demonstrating the substantial effectiveness of these modules in the proposed
approach. To more clearly demonstrate the effectiveness of our module in pushing 3D points along
the normal direction, we conduct an experiment on a small scene. As shown in Figure E, when the
Depth-Consistent D-Normal Regularization module is removed, the point cloud on object surfaces
becomes highly scattered. With our regularizer enabled, the points are driven toward the underlying
surfaces, resulting in a much more compact point cloud and a significantly cleaner reconstruction.

Table D studies the influence of using different depth estimators (Dav2 (Hu et al., 2024), MiDaS
(Ranftl et al., 2020)) and the normal prior (GeoWizard (Fu et al., 2024), Dsine (Bae & Davison,
2024)) on the Modern Building dataset. Across all combinations, the rendering metrics remain very
close (SSIM ≈ 0.79–0.81, PSNR ≈ 26.1–26.5, LPIPS ≈ 0.157–0.166) and the geometric quality
(P/R/F1) only fluctuates within a small range. This indicates that our framework is not sensitive
to the particular choice of depth or normal prior. Thanks to the explicit depth-consistency and
normal-consistency constraints, the optimization can effectively correct the bias of different priors
and consistently recover high-quality geometry.

As shown in Table E, under the experimental scenario of the Russian dataset, this table presents
the impacts of different ”Block/GPU count” configurations on model performance, memory con-
sumption, and training time. As the configuration is scaled up from 2/2 (2 blocks, 2 GPUs) to 8/8
(8 blocks, 8 GPUs), the model performance is gradually optimized: PSNR increases from 23.43
to 24.66, SSIM rises from 0.779 to 0.813, LPIPS decreases from 0.215 to 0.184, and F1 improves
from 0.518 to 0.546. Meanwhile, resource consumption is significantly reduced, with memory usage
dropping from 25.2 GB to 14.4 GB and training time shortening from 170 minutes to 122 minutes.
This demonstrates the positive role of the parallel training strategy—where the number of blocks
matches the number of GPUs—in balancing ”performance-efficiency”.

As shown in Table F, through systematic weight ablation experiments, we identified the optimal
configuration (α=1.2, β=1.0, γ=0.8), which serves as the default setting for all subsequent experi-
ments. This configuration achieves the best results across all metrics - PSNR (26.44), SSIM (0.805),
LPIPS (0.157), and F1-score (0.503) - demonstrating its comprehensive advantages in both ren-
dering quality and geometric accuracy. Compared to the equal-weight baseline (1.0,1.0,1.0), our
configuration improves PSNR and F1-score by 0.55 dB and 0.016, respectively. Univariate analysis
further validates the design rationale: the ray intersection frequency weight (α) is crucial for multi-
view consistency (14.1% F1-score drop when α=0.0), the opacity weight (β) directly affects visual
quality (26.1% LPIPS increase when β=0.0), while the volume weight (γ=0.8) preserves details
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Figure B: Visual comparison of meshes from state-of-the-art (SOTA) methods.

while avoiding excessive redundancy (performance degradation across all metrics when γ=1.0). This
weight combination thus achieves the optimal balance between quality and efficiency. In addition,
Figure F visualizes rendered views under different weight combinations. The reconstructions are
visually very similar across settings, with no catastrophic degradation, even for suboptimal weights.
This qualitative evidence further confirms that our method is robust and only weakly sensitive to the
choice of (α, β, γ), as long as they remain within a reasonable range.
Table G reports the effect of removing individual components in our block partition strategy on
the Russian scene of the GauU-Scene dataset (Xiong et al., 2024). Starting from our full model,
discarding the global pruning term in Eq. 32 leads to a clear increase in the number of Gaussians
(2.45M → 3.01M), longer training time and higher memory usage, together with a slight drop in
both rendering and geometric quality. This confirms that the spatially adaptive pruning not only
reduces redundancy but also facilitates optimization. Removing the boundary-duplication rule in
Eq. 33 also degrades SSIM, LPIPS, and F1, indicating that sharing Gaussians across neighboring
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Village Morden

Figure C: Qualitative mesh and texture comparison between SOTA and our method on the Campus,
Village, and Morden Buliding scenes (Xiong et al., 2024).

W / Depth-Consistent D-Normal Regularizationours W / Partitioning Strategy

Figure D: Ablation experiments on the Campus Dataset Lin et al. (2022)

blocks is important for suppressing block-boundary artifacts. When the geometric pose-assignment
criterion in Eq. 34 is disabled, the performance drops most significantly (e.g., PSNR and F1 both
decrease considerably) while the computational cost increases, showing that aligning camera frusta
with physically relevant blocks is crucial for both fidelity and efficiency. Finally, removing the
perceptual criterion in Eq. 35 causes a moderate decline in rendering quality and F1, demonstrating
that perceptual filtering helps retain poses that are visually important for each block. Taken together,
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Figure E: Qualitative ablation for the Depth-Consistent D-Normal Regularizer. We visualized the
centers of Gaussian ellipsoids in a 3D scene. In the left figure, the Depth-Consistent D-Normal Reg-
ularizer is disabled, while the right figure demonstrates the results with our proposed regularization.
In comparison, the left figure exhibits a notable number of Gaussian ellipsoids floating off the sur-
face. Our proposed Depth-Consistent D-Normal Regularizer effectively pushes the 3D Gaussians
toward the surface, resulting in a cleaner reconstruction.

Table F: Quantitative Analysis of Weight Configuration Ablation Study

Weight Configuration PSNR ↑ SSIM ↑ LPIPS ↓ F1 ↑
(1.2, 1.0, 0.8) 26.44 0.805 0.157 0.503
(1.0, 1.0, 1.0) 26.19 0.791 0.172 0.487
(0.0, 1.0, 1.0) 24.32 0.763 0.215 0.432
(1.0, 0.0, 1.0) 25.12 0.778 0.198 0.468
(1.0, 1.0, 0.0) 25.87 0.793 0.169 0.485
(1.2, 1.0, 1.0) 25.95 0.782 0.185 0.451

（Ground Truth） （1.2, 1.0,  0.8） （0.0, 1.0,  1.0）（1.0, 1.0,  1.0） （1.0, 1.0,  0.0） （1.0, 0.0,  1.0）

Figure F: Ablation experiments on the Morden Building Dataset Xiong et al. (2024)

these results show that all components of our partition strategy contribute to the overall trade-off, and
the full design achieves the best balance between reconstruction quality and resource consumption.

As shown in Figure G, on the Sci-Art scenes (Lin et al., 2022) we observe that 3DGS-based meth-
ods with explicit geometry optimization often yield lower rendering quality than the original 3DGS.
These scenes contain many aerial-style images dominated by distant sky regions with weak or am-
biguous geometry. In such backgrounds, geometry-optimized variants tend to degrade the sky ap-
pearance, producing coarse color blotches and unnatural boundaries in the rendered views. In con-
trast, although the original 3DGS is also imperfect in sky modeling, its results still vaguely preserve
cloud layers and building silhouettes. This discrepancy highlights a limitation of current geometry
optimization objectives when applied to background regions lacking clear geometric structure.

Table H presents the ablation study results of the two key hyperparameters γd and τ in the geometry-
aware confidence mechanism, conducted on the Modern Building (Lin et al., 2022). scene. The
baseline configuration (γd = 0.1, τ = 0.01) achieves the optimal performance across all evaluation
metrics, with PSNR of 26.44 and F1-score of 0.503. Decreasing γd to 0.05 alone leads to noticeable
performance degradation (PSNR drops by 0.32, F1-score drops by 0.018), indicating that excessive
sensitivity to depth gradient consistency suppresses valid geometric signals. Similarly, increasing τ
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3DGSGround Truth Ours

PGSRCityGS-v2 VCR-Gaus

Figure G: Qualitative mesh and texture comparison between SOTA and our method on Art-Sci
Scene (Lin et al., 2022).

to 0.02 alone also causes performance deterioration (PSNR drops by 0.16, F1-score drops by 0.011),
suggesting insufficient suppression of depth errors adversely affects reconstruction quality. The
worst performance occurs when both parameters are modified (γd = 0.15, τ = 0.005), with PSNR
and F1-score decreasing by 0.55 and 0.025 respectively, validating the coupling relationship between
the two hyperparameters and the rationality of the baseline selection. These results comprehensively
demonstrate that our chosen hyperparameter combination achieves the optimal balance between
geometric consistency and error suppression.

Table G: Ablation Results of Block Partition Strategy on Russian Scene Dataset (Xiong et al.,
2024).Bold indicates best performance.

Method
Rendering Quality Geometric Quality Training Statistics

PSNR↑ SSIM↑ LPIPS↓ P↑ R↑ F1↑ GS (millions)↓ Time (min)↓ Size (MB)↓ Mem (GB)↓

Effect of Removing Individual Components

baseline (ours) 24.66 0.813 0.184 0.568 0.525 0.546 2.45 122 314.24 14.4
baseline w/o Eq. 32 24.43 0.797 0.201 0.562 0.518 0.539 3.01 142 429.41 17.5

baseline w/o Eq. 33 24.51 0.802 0.198 0.564 0.513 0.537 2.44 129 314.24 15.1

baseline w/o Eq. 34 22.32 0.764 0.231 0.531 0.498 0.513 2.56 157 334.31 20.3

baseline w/o Eq. 35 24.42 0.808 0.188 0.566 0.521 0.543 2.46 125 314.31 14.7

Table H: Ablation Study of Geometry-Aware Confidence Hyperparameters

Hyperparameter Settings PSNR ↑ F1-score ↑
Baseline (γd = 0.1, τ = 0.01) 26.44 0.503
Only γd = 0.05 26.12 0.485
Only τ = 0.02 26.28 0.492
Both modified (γd = 0.15, τ = 0.005) 25.89 0.478

E MULTI-VIEW GEOMETRIC CONSISTENCY

Our method employs multi-view geometric consistency principles to conduct quantitative assess-
ment of depth map quality. By back-projecting the depth map of a reference view to generate a 3D
point cloud, we transform this point cloud into the coordinate system of adjacent views using camera
poses and perform reprojection. The relative error between the reprojected depth values and the ac-

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure H: Experimental results on the Morden Building (Xiong et al., 2024).

tual depth values in the target view is then computed to verify the geometric correctness of the depth
estimation. The evaluation process utilizes absolute depth values (in meters), dynamically adapts
to scale variations across depth maps of different resolutions and camera parameters, and applies a
10% relative error threshold to determine consistency. The final output is a normalized consistency
score in the range of 0-1, where scores above 0.8 indicate high consistency across multiple views,
0.6-0.8 represents good consistency, 0.4-0.6 indicates moderate consistency, and scores below 0.4
suggest significant geometric inconsistencies. This approach provides a reliable geometric verifica-
tion metric for evaluating the performance of depth estimation models. As shown in Table I, our
evaluation of fifty depth maps demonstrates strong geometric consistency, with an average score of
0.87 confirming reliable depth estimation across multiple viewpoints. The 83% consistency pass
rate and 78% check coverage validate the robustness of our approach for 3D reconstruction applica-
tions. Furthermore, as illustrated in Figure. H, we present the depth consistency test results for four
sample images.

Table I: Depth Map Geometric Consistency Evaluation Results

Evaluation Metric Value Quality Level
Average Consistency Score 0.87± 0.08 Excellent

Check Coverage 78% Good
Consistency Pass Rate 83% Excellent

F LIMITATIONS

Although UrbanGS demonstrates advantages in large-scale reconstruction, it still exhibits certain
limitations. Its geometric regularization relies on monocular depth/normal priors derived from pre-
trained networks, which may propagate estimation errors into the reconstruction—particularly in
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regions with weak textures or extreme lighting conditions. Additionally, the method primarily fo-
cuses on static environments and does not explicitly model dynamic objects commonly found in
urban scenes. Future work will aim to mitigate dependency on monocular priors through multi-
view geometric consensus and extend the framework to dynamic urban objects via explicit motion
modeling.

G USE OF LARGE LANGUAGE MODELS

A large language model (LLM) was used solely for language-level assistance, such as improving
readability, fluency of the text and formatting LATEX tables and retrieve related works. The research
ideas, experiments, and results are entirely the work of the authors, who bear full responsibility for
the content of this submission.
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