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ABSTRACT

Although considerable progress has been made toward enhancing the robustness
of deep neural networks (DNNs), they continue to exhibit significant vulnerability
to gradient-based adversarial attacks in supervised learning (SL) settings. We in-
vestigate adversarial robustness under reinforcement learning (RL), training image
classifiers with policy-gradient objectives and ϵ-greedy exploration. When train-
ing models with several architectures on CIFAR-10, CIFAR-100, and ImageNet-
100 datasets, RL consistently improves adversarial accuracy under white-box
gradient-based attacks. Our results show that on a representative 6-layer CNN,
adversarial accuracy increases from approximately 5% to 55% on CIFAR-10, 2%
to 25% on CIFAR-100, and 5% to 18% on ImageNet-100, while clean accuracy
decreases only 3–5% relative to SL. However, transfer analysis reveals that ad-
versarial examples crafted on RL models transfer poorly: both SL and RL retain
approximately 43% accuracy against these attacks. In contrast, adversarial exam-
ples crafted on SL models transfer effectively, reducing both SL and plain RL to
around 8% accuracy. This indicates that while plain RL can prevent the generation
of strong adversarial examples, it remains vulnerable to transferred attacks from
other models, thus requiring adversarial training (RL-adv, ∼30% adversarial ac-
curacy) for comprehensive defense against cross-model attacks. Analysis of loss
geometry and gradient dynamics shows that RL induces smaller gradient norms
and rapidly changing input-gradient directions, reducing exploitable information
for gradient-based attackers. Despite higher computational overhead, these find-
ings suggest RL-based training can complement existing defenses by naturally
smoothing loss landscapes, motivating hybrid approaches that combine SL effi-
ciency with RL-induced gradient regularization.

1 INTRODUCTION

As artificial intelligence (AI) is increasing in power, a growing number of users actively or passively
use AI technologies daily. 1 Consequently, ensuring the security of AI systems has therefore become
critical, as numerous studies have revealed notable security vulnerabilities, for example Szegedy
et al. (2013); Goodfellow et al. (2014); Eykholt et al. (2018b); Biggio & Roli (2018). A neural
network is a fundamental component of AI, and machine learning (ML) algorithms provide the
methodology to optimize its performance. One of the most important vulnerabilities in ML arises
from adversarial attacks, which exploit the gradient-based optimization at the core of supervised
learning (SL). This attack can subtly manipulate a model’s decisions in ways that are imperceptible
to humans (Goodfellow et al., 2015; Eykholt et al., 2018a). To defend against adversarial attacks,
various strategies have been proposed to enhance the robustness of neural networks, including noise
injection during training, data augmentation, and adversarial training (Bishop, 1995; Cohen et al.,
2019; Hendrycks et al., 2020; Zhang et al., 2018; Madry et al., 2018; Kurakin et al., 2017). However,
several studies have shown that even these robust models can be compromised if an adaptive attacker

1Artifacts: anonymous code and configuration files are available at https://github.com/
iclr2026aerl/ICLR2026-AERL. LLM Usage: we disclose our use of large language models in Ap-
pendix A.10.
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has access to robust models (Aghabagherloo et al., 2023; He et al., 2017; Aghabagherloo et al.,
2025b).

Reinforcement learning (RL), another core category in ML, is widely used in control systems,
robotics, and other sequential decision-making tasks to improve performance and robustness(Mnih
et al., 2015; Levine et al., 2016; Pinto et al., 2017; Akhtar & Mian, 2018; Biggio & Roli, 2018). Nev-
ertheless, RL-based approaches to improve robustness for classification tasks remain comparatively
underexplored. Our hypothesis is that RL can enhance model robustness compared to SL under
gradient-based adversarial attacks (e.g., projected gradient descent, PGD). RL’s property of explo-
ration and policy optimization does not rely on explicit end-to-end input gradients (e.g., via black-
box policy search). Intuitively, for both standard and “robustified” models trained by gradient-based
optimization algorithms (SL), attackers who recover reliable gradients can perform highly effective
attacks; however, RL-style optimizations may induce flatter gradients that are harder to exploit with
gradient-based attacks.

Most adversarial robustness work for image classification builds on supervised learning objectives
such as empirical risk minimization or min–max adversarial training (Madry et al., 2017). While
effective, these pipelines can still lead models to rely on non-robust yet predictive cues that are easy
to exploit (Ilyas et al., 2019). We therefore investigate whether treating classification as decision-
making over a short sequence can help. Concretely, we study an RL-based classifier: an agent that
processes an input, receives a task reward for correct decisions, and is trained to keep its decisions
stable when the input is slightly perturbed. In this view, adversarial perturbations play the role of
external disturbances. Training with simple stability penalties and worst-case exposure can then
encourage more reliable decisions. In this paper, we instantiate such a classifier and compare it with
strong supervised baselines under the same attack budgets and training time.

Figure 1: We compare SL and RL training for image classification under gradient-based adversarial
attacks. Top (SL): SL-trained models retain sharper, more informative gradients, which adversaries
can readily exploit. Bottom (RL): RL-trained models exhibit flatter, less informative gradients,
offering no clear gradient direction for attack. This mechanism matches our empirical results on
CIFAR-10/100 and ImageNet-100.

Our goal is to employ RL in a classification task to make the model robust against adversarial exam-
ples (AEs). Our primary results indicate that RL-trained models can withstand adversarial attacks
more effectively than SL-trained models. We also provided a theoretical understanding of why an
RL-based classifier can be more robust than an SL-based classifier. Our main contributions: (i)
An exploratory analysis of the effect of employing RL in a classification task to make the model
robust against AEs; (ii) Experimental results demonstrating our claimed robustness on CIFAR-10,
CIFAR-100, and ImageNet-100; (iii) Theoretical explanation of why RL-based models are more
robust.

2 RELATED WORK

Machine learning is widely used in AI tasks, including supervised learning (Appendix A.5), unsu-
pervised learning, and reinforcement learning (Appendix A.6). In classification tasks, deep neural
network (DNN) image classifiers under supervised learning effectively learn discriminative patterns,
and surpass human performance on several vision tasks (He et al., 2015).
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Despite the mentioned capability of DNN-based image classifiers, they show susceptibility to a wide
range of attacks (Ozdag, 2018). DNNs are susceptible to privacy and security threats such as (i) data
poisoning (Zhao et al., 2025), where adversaries inject poisoned data into the training set to corrupt
the model, (ii) evasion (also known as adversarial attacks), where input samples are intentionally
perturbed in a way that causes the model to misclassify them during the testing phase, (iii) model
inversion, where the goal is feature reconstruction of samples from the training set using the model’s
outputs (Fredrikson et al., 2015), (iv) membership inference attacks, which attempt to determine
whether a specific data sample was part of the model’s training dataset or not, etc (Shokri et al.,
2017). From all these attacks, evasion attacks are the most well-known ones against DNNs (Ilyas
et al., 2019). These types of attacks can be considered especially practical because they exploit
non-robust features of the data, meaning that even naturally occurring perturbations in input can
sometimes lead to similar misclassification behavior (Ilyas et al., 2019).

2.1 ADVERSARIAL ATTACKS ON CLASSIFICATION TASK

The perturbations to generate adversarial attacks can be perceptible (Schneider & Apruzzese,
2023), where the attacker aims to deceive both humans and DNNs, or imperceptible to the human
eyes (Aghabagherloo et al., 2025a; Ilyas et al., 2019). In most adversarial scenarios, the perturba-
tions are intentionally imperceptible, as the primary objective is mainly to mislead the DNN without
introducing noticeable changes to human observers.

Adversarial attacks on DNNs are classified as (i) white-box attacks, where adversaries have com-
plete knowledge of the trained model, and (ii) black-box attacks, where the attacker lacks complete
knowledge of the learned model’s parameters. In Zeroth Order Optimization (ZOO) Chen et al.
(2017), a widely recognized black-box attack, the attacker has only access to the input data and the
output of the model. Among white-box attacks, the Carlini & Wagner (C&W) attack, Projected Gra-
dient Descent (PGD), and Fast Gradient Sign Method (FGSM) are the most widely studied methods.
Appendix A.7 provides an overview of the PGD attack, an iterative version of the FGSM attack. To
defend against attacks, several studies Wu et al. (2023) tried to robustify the DNNs, while others have
demonstrated the weaknesses of current defenses. This has become a cycle of articles demonstrat-
ing DNNs’ vulnerabilities, proposing robustification methods, and bypassing those robustifications.
This is especially evident when the attacker has access to the robustification method (Aghabagher-
loo et al., 2023; Athalye et al., 2018). These works showed that even when a model is robust, an
adversary aware of the robustification approach can still successfully generate attacks.

2.2 ROBUSTNESS AND REINFORCEMENT LEARNING

Although RL’s contribution to robustness has been rarely explored in classification, prior studies
report that RL can yield robust behavior in control and robotics, supported by worst-case optimiza-
tion viewpoints that treat environment uncertainty explicitly during learning (Pinto et al., 2017;
Rajeswaran et al., 2017; Nilim & El Ghaoui, 2005; Wiesemann et al., 2013; Derman & Mannor,
2020).

For input perturbations more similar to evasion attacks, a lightweight sensitivity penalty discour-
ages large output changes when the input is changed slightly. Prior work demonstrates consistent
robustness gains across common algorithms with minimal loss in clean performance, while placing
stronger emphasis on early decisions further mitigates behavior drift over time. (Zhang et al., 2020;
Yamabe et al., 2024b). Beyond pixel changes, multi-agent studies demonstrate that an opponent can
steer a victim policy into harmful behavior without modifying pixels directly, underscoring the need
to test opponent-driven threats as well (Gleave et al., 2020; Yamabe et al., 2024a). For safety-critical
cases, online selection rules that prefer actions remaining good under bounded input noise have been
shown to improve resilience and come with simple certificates (Lütjens et al., 2020). Evidence out-
side control also points in the same direction: an RL-style generator–classifier training improves
robustness to lexical substitutions in text classification (Xu et al., 2019), and RL-based sequential
feature acquisition improves resilience when the model must decide which features to read before
predicting (Janisch et al., 2020). However, despite these advances in adjacent areas, a systematic
comparison where RL serves as the primary training paradigm for adversarially robust image clas-
sification, under standard white-box and black-box attacks and matched training budgets, remains
limited.

3
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3 PRELIMINARIES

To support the interpretation of the experimental results reported in Section 6, we introduce the
analytical tools for Section 7. Our working hypothesis is that models trained by supervised learning
(SL) and by reinforcement learning (RL) differ in their training process: the former relies mainly
on gradient descent, while the latter depends on exploration. Concretely, SL optimizes models
by directly getting closer to the training dataset, whereas RL optimizes the model’s parameters
not only by merely training on datasets but also by exploring more sample space. To examine
these differences both qualitatively and quantitatively, we use three complementary perspectives
(complete definition in Appendix A.2): (1) decision-boundary and loss-landscape visualizations, (2)
gradient-based indicators in static and dynamic analysis, and (3) predictive uncertainty by entropy:

(1) Decision-boundary diagrams visualize classification regions under adversarial perturbations
of the input, revealing sharpness/ flatness of boundary(Fawzi et al., 2018; Moosavi-Dezfooli
et al., 2016). Loss-landscape diagrams plot the scalar loss along the attacking direction and
perpendicular-attacking direction, making the loss gradient visible (Li et al., 2018; Liu et al., 2020).

(2) IGV (Input-Gradient Variance) captures the variance of the input gradient ∇xL under small
perturbations of the input (Wang & He, 2021; Agarwal et al., 2022); dIGV (Directional Input-
Gradient Variance) measures the variability of the direction of the input gradient (Liu et al., 2023;
Deng et al., 2023); and AGN (Average Gradient Norm) shows how large each update step is
(Moosavi-Dezfooli et al., 2019). These static indicators test whether SL and RL training induce dif-
ferent gradient fields even before any attack is applied. To study how gradients evolve during itera-
tive adversarial optimization, the Gradient Stability Under Attack (GSUA) diagram is introduced,
which records the cosine similarity between consecutive attack gradients. High GSUA indicates a
coherent and stable ascent direction; low GSUA signals a noisy or rapidly changing gradient field.
We also track the ℓ2 gradient-norm trajectory across attack steps to separate directional instability
from changes in scale. These dynamic measurements reflect how the gradient is changing, which is
highly related to adversarial example generation from an adversary.

(3) Mean predictive entropy summarizes the dispersion of the model’s predictive distribution, indi-
cating how confidently the model distributes the probability mass under clean and perturbed inputs
(Smith & Gal, 2018; Kopetzki et al., 2021; Qin et al., 2021; Emde et al., 2024).

4 METHODOLOGY

We propose a reinforcement learning-based method for image classification that enhances standard
policy gradient optimization with two key components: an Epsilon-Greedy action selection strategy
and, optionally, adversarial training via FGSM perturbations. These extensions aim to improve the
robustness and generalization of the learned policy beyond what conventional REINFORCE-style
algorithms can achieve.

In standard policy-gradient methods (e.g., REINFORCE), actions a are sampled from a categorical
policy πθ(a | s), and gradients follow ∇θ log πθ(a | s) weighted by returns/advantages; mod-
ern variants such as TRPO/PPO implement stable surrogates (Williams, 1992; Sutton et al., 2000;
Schulman et al., 2015; 2017; Mnih et al., 2016; Ahmed et al., 2019; Haarnoja et al., 2018). To
ensure adequate exploration in our classification setting, we incorporate an Epsilon-Greedy action
selection scheme. Specifically, with probability ε, the action is sampled uniformly at random, and
with probability 1 − ε, it is sampled from the policy’s predicted distribution. This simple mecha-
nism introduces explicit stochastic exploration into the learning process and helps the model to avoid
premature convergence to suboptimal decision boundaries.

Given an input image I , the policy network outputs a vector of class scores, which is then normalized
using the softmax function. For numerical stability, we subtract the maximum logit and add a small
constant ϵ before normalization. If the selected action at matches the true label a∗, a reward of
rt = 1 is assigned; otherwise, rt = 0. The loss is then computed as:

LPG = −Ea∼πθ
[log πθ(at|I) · I(at = a∗)] (1)

and gradients are computed accordingly to update the policy parameters using stochastic gradient
ascent. To further improve robustness, particularly under input perturbations or adversarial scenar-
ios, we optionally apply adversarial training using the Fast Gradient Sign Method (FGSM). For
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a random subset of each batch, we compute the input gradient with respect to the policy loss
and apply a perturbation in the direction of the gradient sign, generating adversarial examples
Iadv = clip(I+ϵ·sign(∇ILPG), 0, 1). These adversarial samples are then combined with the remain-
ing clean samples to form a mixed batch, upon which a second policy gradient update is performed.
This adversarial augmentation serves as a regularizer, encouraging the model to learn classification
policies that are stable under perturbations and less sensitive to minor variations in input space. In
summary, our method introduces exploration via Epsilon-Greedy sampling and enhances robustness
through adversarial regularization, providing a more resilient policy learning paradigm for image
classification.

5 IMPLEMENTATION

5.1 BENCHMARKS AND BACKBONES

Benchmarks: To systematically evaluate the robustness improvements of RL compared to SL, we
conduct experiments on three benchmark datasets: CIFAR-10 Krizhevsky et al. (2009), CIFAR-
100 Krizhevsky et al. (2009) and ImageNet-100 Tian et al. (2020), of which the detailed dataset
information can be found in Appendix A.3.

Backbones: To comprehensively evaluate the robustness of both SL and RL, three neural network
models with various complexities are used: a 4-layer CNN, a 6-layer CNN and Resnet18 He et al.
(2016a), where the complete model architectures are illustrated in Figure 6 in Appendix A.4.

5.2 TRAINING CONFIGURATION

Training configuration consists of two training phases: standard training on clean samples and
adversarial training incorporating perturbed examples. For the adversarial training phase, FGSM
is used with TRADES (TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization)
Zhang et al. (2019), where the regularization weight β from TRADES tunes the accuracy–robustness
trade-off, offering greater flexibility than standard adversarial training. The configuration details are
shown in Appendix A.5.

θ∗ = argmin
θ

E(X,Y)

L(fθ(X),Y)︸ ︷︷ ︸
Standard Accuracy

+β · max
X′∈B(X,ϵ)

L(fθ(X), fθ(X
′))︸ ︷︷ ︸

Robustness Regularizer

 (2)

Here, fθ denotes the model with parameters θ, L(·, ·) represents the cross-entropy loss, fθ(X) and
fθ(X

′) are the output of the cleaning and adversarial examples of the model, respectively. β is the
regularization parameter, where it is small at early training to prioritize standard accuracy, while it
will be large at late training to enhance model robustness.

5.3 ATTACK CONFIGURATION

The CleverHans framework Papernot et al. (2018), chosen for its community-vetted implementations
that correctly handle ℓ2 projections and ensure reproducible, comparable results, is employed to
generate non-targeted adversarial attacks under ℓ2-norm constraints (∥X′ − X∥2 ≤ ϵ), evaluating
both standard and adversarially trained models. The setting details are written in Appendix A.7.

6 RESULTS AND EMPIRICAL THEORY

6.1 MODEL ACCURACY AND ROBUSTNESS

As discussed in Section 5.1, a 4-layer CNN, a 6-layer CNN and Resnet18 are trained and evaluated
on CIFAR-10, CIFAR-100, and ImageNet-100 under adversarial attacks. The main phenomena we
highlight are observed consistently across all three backbones. As a representative case, we focus

5
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(a) CI-10 (”truck” −→ ”ship”) (b) CI-100 (”cloud” −→ ”turtle”) (c) IN-100 (”coyote” −→ ”terrier”)

Figure 2: Visualization of adversarial examples attacked on 6-layer-CNN-SL across benchmark
datasets: (a) CIFAR-10 example showing original image (left), additive perturbation (middle), and
adversarial image (right); (b) CIFAR-100 example; (c) ImageNet-100 example

on the 6-layer CNN in the main text, while full results (including 4-layer CNN and ResNet-18) are
shown in Appendix A.8. Figure 2 illustrates the adversarial generation process for 6-layer-CNN-SL
across all benchmark datasets, showing the original image (X), the additive perturbation (δ) and
the adversarial image (X + δ). The perturbations remain imperceptible to human observers, but
the model misclassifies the image (e.g., CIFAR-10: true label ”truck”, predicted label before attack
”truck”, predicted label after attack ”ship”).

Table 1 shows the model accuracy for the 6-layer-CNN across different datasets. Here, ”-SL” de-
notes supervised learning without adversarial training, ”-SL-adv” denotes supervised learning with
adversarial training, ”-RL” refers to reinforcement learning without adversarial training, and “-RL-
adv” refers to reinforcement learning with adversarial training. It reveals two key findings: (1) For
a clean dataset, the accuracy of SL and SL-adv on CIFAR-10, CIFAR-100 and ImageNet-100 is the
highest, and the accuracy of RL and RL-adv is only 3-5% lower. This is expected, since SL directly
minimizes the cross-entropy loss with ground-truth labels, providing a strong and stable gradient
that favors efficient convergence and higher accuracy. By contrast, RL relies on rewards, which are
typically noisier, less aligned with the label distribution, and introduce higher variance, leading to
less sample-efficient optimization and thus lower clean accuracy. (2) Although the accuracy of RL
and RL-adv is (only) 3-5% lower in a clean dataset, they are the highest in the adversarial datasets
compared to the accuracy of SL and SL-adv, which supports our hypothesis that RL provides more
model robustness than SL. The further detailed explanation will be discussed in Section 7.

Table 1: Model Robustness Evaluation (%) Across Datasets

CIFAR-10 CIFAR-100 ImageNet-100
Model Clean (%) AE (%) Clean (%) AE (%) Clean (%) AE (%)
6-layer-CNN-SL 90.74* 5.00 64.75* 2.53 57.64 5.72
6-layer-CNN-SL-adv 90.11 4.96 63.61 2.83 58.00* 5.36
6-layer-CNN-RL 88.50 55.77* 59.80 13.06 55.60 18.04
6-layer-CNN-RL-adv 87.63 48.63 56.54 25.51* 45.92 18.24*

Table 2 shows model accuracy on adversarial examples generated by different source models. Two
key observations can be made: (1) For adversarial examples generated from SL, “SL”, “SL-adv”,
and “RL” achieve less than 10% accuracy, whereas for adversarial examples generated from RL,
all models maintain above 40% accuracy. This suggests that adversarial examples are substantially
easier to generate from SL models, while RL models exhibit a hard-to-generate property, which will
be further analyzed in Section 7. (2) Although plain RL demonstrates robustness against adversar-
ial attacks generated from itself (owing to the hard-to-generate property), it remains vulnerable to
adversarial examples transferred from weaker models such as SL. In contrast, RL with adversarial
training provides robustness against both strong (RL: 54.31% / 46.91%) and weak (SL: 30.88% /
22.56%) adversarial sources, highlighting the necessity of adversarial training when deploying RL-
based models.

6.2 DECISION BOUNDARY AND LOSS GEOMETRY

Before introducing our quantitative indicators, we outline a high-level view of how SL and RL
shape the input-loss geometry. The fundamental difference between SL and RL happens in their
optimization methods, ”Cross Entropy” as formalized by Equation 8 and ”Policy Gradient with ϵ”

6
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Table 2: Model Robustness Evaluation (%) In CIFAR-10 Datasets Across Models

Adversarial Examples (AE)
Model SL (%) SL-adv (%) RL (%) RL-adv (%)
6-layer-CNN-SL 5.81 7.18 48.45 43.15
6-layer-CNN-SL-adv 9.53 5.74 50.14 44.86
6-layer-CNN-RL 8.29 7.92 48.84 42.69
6-layer-CNN-RL-adv 30.88* 22.56* 54.31* 46.91*

as formalized by Equation 1. The cross-entropy loss function provides a deterministic gradient
(direction of gradient descent) for updating the model’s parameters, accelerating training conver-
gence. However, if this information of deterministic gradients is kept in the training model, it can
create stable attack surfaces. Nevertheless, policy gradient with ϵ employs a loss function with the
exploration-exploitation mechanism, where it induces flatter and more unstable gradient directions.
This gradient-flattening phenomenon inherently obscures attack pathways and may act as an implicit
defense mechanism, whereas the more pronounced gradient structures in SL align with the linear
vulnerability hypothesis (Goodfellow et al., 2014).

Decision boundary: Figure 3 (a) shows the decision boundary of both SL and RL, where SL’s deci-
sion boundary should be steeper than RL’s decision boundary, because of its deterministic gradients;
however, a 2D decision boundary shows limited visual differentiation.

Loss landscape: Figure 3 (b) shows that SL has a larger gradient magnitude and a wider dynamic
range than the RL on the decision boundary ((max − min)boundary value of SL >> 10.5, while
(max−min)boundary value of RL < 10.5). This loss gradient difference directly impacts adversar-
ial vulnerability: SL’s large loss gradients enable efficient perturbation calculation via ∇xL(x, y),
whereas RL’s small loss gradients inherently resist gradient-based attack optimization, where the
complete mathematical proof of influence of loss gradient shown in Appendix A.9.

(a) Decision boundary (b) Loss landscape

Figure 3: Comparative analysis of 6-layer CNN models trained with (left) SL versus (right) RL on
one image from CIFAR-10: (a) decision boundary and (b) loss landscape

6.3 GRADIENT INSTABILITY ANALYSIS

To analyze the robustness mechanisms behind SL and RL, three static and two dynamic indicators
are evaluated on a 6-layer CNN trained on CIFAR-10. All perturbations are bounded by a conven-
tional adversarial attacking setting (ϵ < 8/255) (MadryLab, 2017).

For the static indicators, the average gradient norm (AGN) is larger for SL (2.158) than for RL
(1.9527) for the complete CIFAR-10 dataset. This indicates that small input perturbations cause
larger loss change in SL, allowing larger effective step size for gradient-based attacks. The input
gradient variance (IGV) further confirms that SL updates in input space are consistently larger
than RL, shown in Figure 4a. In contrast, the directional input gradient variance (dIGV) is
markedly higher for RL, shown in Figure 4a, reflecting greater instability of gradient directions
under perturbations. It is concluded that these results imply that SL is more vulnerable because of
its larger and more stable gradients (high AGN/IGV, low dIGV), whereas RL is more robust due to
unstable gradient directions (high dIGV) and smaller effective step sizes (low AGN/IGV).

7
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For the dynamic indicators, Figure 4b shows the gradient evolution during PGD attacks. The gradi-
ent stability under attack (GSUA) between consecutive steps is high for SL (0.8), indicating stable
adversarial directions, while RL exhibits low or even negative similarity (−0.2), suggesting unstable
gradients that hinder attack convergence. Similarly, the L2 gradient norm is larger for SL (∼0.6),
allowing faster adversarial progress per iteration, whereas RL’s (∼0.1) smaller gradient norms slow
attack optimization.

(a) dIGV and IGV vs σ (K=20, N=1000) (b) PGD dynamics: GSUA (cos-to-prev) and L2 gradi-
ent norm across iterations

Figure 4: Comparison of 6-layer CNNs trained with SL (blue) and RL (orange) on CIFAR-10. (a)
Gradient variance indicators (dIGV, IGV) as a function of input noise scale σ. (b) PGD attack
dynamics showing cosine similarity to the previous step and gradient L2 norm across iterations.

6.4 CALIBRATION-AWARE ROBUSTNESS

Figure 5 shows the mean predictive entropy of SL (CNN-SL), adversarially-trained SL (CNN-SL-
adv), and RL (CNN-RL) under varying perturbation magnitudes (ϵ). The RL model consistently
produces a higher entropy than both SL and SL-adv.

SL is characterized by stable gradient directions (high cosine similarity, low dIGV) and relatively
large gradient norms (high AGN, large L2 norm), allowing gradient-based attack (e.g., PGD) up-
dates to efficiently align with adversarial directions and quickly drive an incorrect logit above the
correct one. In contrast, RL has unstable gradient directions (low cosine similarity, high dIGV) and
smaller gradient norms (low AGN, small L2 norm), meaning that attack steps tend to fluctuate in
direction and have smaller effective magnitudes. Even when attack steps move toward an adversarial
direction, the increase of the incorrect logit relative to the correct one is much slower due to small
gradient norms. As a result, SL tends to yield highly confident but incorrect predictions (e.g., [0.01,
0.01, 0.98], low entropy), as shown in Figure 5 (right), whereas RL outputs remain less sharply
peaked (e.g., [0.3, 0.3, 0.4], higher entropy). From the perspective of calibration-aware robustness,
these findings suggest that SL models are more prone to overconfident errors, while RL models
maintain higher predictive uncertainty even when misclassifying.

Figure 5: Predictive Entropy vs. ϵ for 6-layer CNN Architecture (CNN-SL, CNN-SL-adv, CNN-RL)
on CIFAR-10: total (left), correct prediction (middle), wrong prediction (right)

7 UNIFIED THEORETICAL ANALYSIS OF ROBUSTNESS MECHANISMS

The empirical results across multiple benchmarks provide converging evidence that reinforcement
learning (RL) models exhibit stronger robustness than SL in Section 6.1. As shown in Table 2,
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adversarial accuracy remains consistently higher for SL, SL-adv, RL and RL-adv on the adversarial
examples (AEs) generated from RL and RL-adv. This indicates that AEs are inherently harder to
exploit from RL-trained models. We now discuss why this phenomenon arises by linking back to
the preceding analyses.

At the core lies the distinction between the training process. In SL, each labeled sample directly
defines the loss that yields a clear, low-variance gradient for updating parameters. By contrast,
RL introduces an exploration–exploitation step between sampled data and parameter updates. This
exploration acts as a form of implicit regularization, increasing the variance of the gradient signal.
Section 6.2 shows that SL has a large and clear loss gradient, whereas RL has a lower loss gradient
near the decision boundary.

This gradient information introduces adversarial vulnerabilities. From our gradient instability anal-
ysis (Section 6.3), SL consistently demonstrated larger gradient magnitudes (high AGN/IGV) and
more stable directions (low dIGV, high cosine similarity). Consequently, adversaries can reliably
recover a descent direction, and each PGD step makes efficient progress due to the large gradient
norm. RL, on the other hand, exhibits unstable gradient directions (high dIGV, low or even nega-
tive cosine similarity) and smaller norms, which jointly slow down adversarial optimization. This
explains why RL-trained models are more robust than SL-trained models.

The implications are also evident in the calibration-aware robustness analysis (Section 6.4). Under
perturbations, SL models tend to produce highly confident but incorrect predictions (low entropy),
reflecting the fact that attacks can push the logits of an incorrect class decisively above the true class.
RL models, however, maintain higher entropy under misclassification, suggesting that their predic-
tions will always retain uncertainty. This aligns with the gradient-based explanation: because RL’s
adversarial directions are less recoverable, the induced misclassifications remain and the entropy of
results is higher.

Taken together, these findings highlight a distinct robustness mechanism in RL: adversarial attacks
are hampered by gradient instability and reduced gradient magnitudes, both of which stem from the
exploration inherent in the training process. Nevertheless, our results also show that RL alone is
not sufficient for robust deployment. As indicated in Table 2, performing an adversarial attack is
difficult when generating AEs from RL; however, it can be successful when using AEs from other
weak models. Thus, while RL provides a promising foundation by obscuring gradient-based attack
pathways, adversarial training remains necessary to harden RL models against stronger or adaptive
adversaries.

8 CONCLUSION

We introduced a reinforcement learning framework that integrates ϵ-greedy exploration with adver-
sarial training to improve the robustness of neural networks in image classification. Supported by
extensive experiments across datasets and models, our study demonstrates that RL-based training
achieves stronger robustness than SL, both quantitatively and qualitatively. These findings not only
highlight that reinforcement learning can be an effective defense strategy, but also provide a stepping
stone towards understanding robustness mechanisms in deep learning, with potential implications
beyond image classification tasks.

9 LIMITATION AND FUTURE WORK

Our paper provides a systematic analysis of why reinforcement learning provides superior ro-
bustness. Since our focus is on explanation and interpretability, we did not evaluate against the
strongest adversarial benchmarks such as AutoAttack (Croce & Hein, 2020). Therefore, incorporat-
ing stronger attacks is an important direction for future work. Another limitation lies in the lower
training efficiency of RL, which requires substantially more exploration than SL. Addressing this
inefficiency is crucial for practical deployment and requires future work.
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A APPENDIX

A.1 TERMINOLOGY AND NOTATION

A.1.1 GENERAL NOTATION

• I ∈ [0, 1]H×W×C : input image with height H , width W , and channels C.

• y ∈ {1, . . . , Ccls}: ground-truth class label; one-hot vector written as ey .

• fθ(I): neural network mapping an image to logits zθ(I) ∈ RCcls .

• πθ(a | I) = softmax(zθ(I)): categorical distribution over classes (policy).

• max–min, E[·], P[·]: maximum/minimum, expectation, probability.

• Bp(ε) = { δ : ∥δ∥p ≤ ε }: closed ℓp-ball of radius ε.

• ProjBp(ε)(·): projection onto ℓp-ball (clipping to the budget).

• Uniform(a): uniform distribution over the discrete action/class space.

• log denotes natural logarithm; KL(p∥q) the Kullback–Leibler divergence.

• Numerical stability constant ϵnum: a tiny constant (e.g., 10−8) used only inside log(·) to
avoid log 0.

A.1.2 RL FORMULATION FOR CLASSIFICATION

• Single-step MDP: We cast classification as a one-step decision problem: state is the image
I , action a is the predicted class, and reward r(I, a) = ⊮[a = y].

• Policy πθ: A categorical distribution over classes parameterized by network logits zθ(I).

• Behavior policy vs. target policy: Behavior π̃ is used to sample actions for learning;
target π is optimized. When π̃ ̸= π, unbiased policy-gradient updates require importance
weighting.

• Epsilon-Greedy (εgreedy): A mixture policy

π̃θ(a | I) = (1− εgreedy)πθ(a | I) + εgreedy Uniform(a),

with εgreedy ∈ [0, 1] often decayed over training to balance exploration and exploitation. Do
not confuse εgreedy with the adversarial budget εadv.

• REINFORCE / Policy Gradient: For sampled a ∼ π̃,

∇θLPG = −E
[
w(a) (r − b)∇θ log πθ(a | I)

]
,

where w(a) = πθ(a | I)/π̃θ(a | I) is the importance weight (often set to 1 in practice),
and b is a baseline to reduce variance.

• TRPO/PPO: Trust Region Policy Optimization (TRPO) and Proximal Policy Optimiza-
tion (PPO) are modern policy gradient methods that implement stable parameter updates
through constrained optimization, avoiding the large policy changes that can destabilize
training in vanilla policy gradient methods.

• Baseline b: A control variate (e.g., moving average of rewards or a learned value) that
reduces gradient variance without biasing the estimate.

• Entropy regularization: An auxiliary term −λH(πθ(· | I)) encouraging exploration and
less peaky policies.

• Advantage: A(I, a) = r(I, a) − b, measuring how much better an action is than the
baseline.

• Logit / Softmax: zθ(I) are pre-softmax scores; probabilities are πθ = softmax(zθ). For
stability, subtract maxk zk before softmax; only add ϵnum inside log.
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A.1.3 ADVERSARIAL ROBUSTNESS

• Adversarial budget εadv: Radius of allowed perturbations in the chosen norm ℓp. Common
settings: ℓ∞ and ℓ2.

• Robust risk: Rrob(θ) = E(x,y)

[
maxδ∈Bp(εadv) L(fθ(x+δ), y)

]
, where L is typically cross-

entropy or a policy loss.
• Robust accuracy: Accrob = P[fθ(x+ δ) = y, ∀ δ ∈ Bp(εadv)]. In practice, approximated

by accuracy under a strong attack (white-box, multi-step, possibly multi-restart).
• White-box / Black-box / Transfer: White-box knows parameters and gradients; black-box

has only query access; transfer uses adversarial examples generated on a surrogate model.
• Random start: Attacks (e.g., PGD) initialize within Bp(εadv) to avoid deterministic local

traps.
• Label leaking: An artifact where adversarial training with single-step gradients can leak

label information; mitigated by random starts, multi-step attacks, or TRADES-style regu-
larization.

• Obfuscated gradients / Gradient masking: Models appear robust because gradients are
uninformative or broken; sanity checks (below) must rule this out.

A.1.4 ATTACKS AND INNER MAXIMIZATION

• FGSM: Fast Gradient Sign Method,
xadv = clip[0,1]

(
x+ εadv · sign(∇xL)

)
.

• PGD-k: Projected Gradient Descent with k steps and step size α,
xt+1 = ProjBp(εadv)

(
xt + α · sign(∇xL(xt))

)
.

Variants include momentum (MI-FGSM), BIM (iterative FGSM), and restarts R.
• AutoAttack (AA): A standardized, strong parameter-free ensemble (e.g., APGD-CE,

APGD-DLR, FAB, Square); widely used to benchmark true robustness.
• CW attack: Optimization-based attack that minimizes a margin-based objective under

norm constraints.
• FAB / Square: FAB is a decision-based strong attack; Square is a black-box, score-based

attack using square-shaped perturbations.
• DLR loss: Difference of Logits Ratio loss used in APGD-DLR to avoid saturation of cross-

entropy under strong perturbations.
• Step size α: Gradient step magnitude within PGD; tuned relative to εadv (e.g., α = 2

255
under ℓ∞).

• Restarts R: Number of random re-initializations for multi-start attacks; larger R increases
attack strength.

A.1.5 ROBUST TRAINING OBJECTIVES

• Standard (ERM) training: Minimizes E[L(fθ(x), y)] on clean data; high clean accuracy
but vulnerable to adversarial perturbations.

• Adversarial training: Minimizes expected maxδ∈Bp(εadv) L(fθ(x + δ), y) by alternating
inner maximization (attack) and parameter updates.

• TRADES: Balances natural accuracy and robustness by solving
min
θ

E
[
CE(fθ(x), y)︸ ︷︷ ︸

natural

+β ·KL
(
πθ(· | x) ∥πθ(· | xadv)

)︸ ︷︷ ︸
robust

]
,

where xadv is found by maximizing the KL term under Bp(εadv). β > 0 trades off accuracy
and robustness.

• Consistency regularization (logit/policy matching): Encourages predictions on x and
xadv to be close (e.g., via KL), stabilizing decision boundaries.

• Label smoothing: Replaces one-hot target with a softened distribution to reduce overcon-
fidence and improve calibration.
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A.1.6 GEOMETRY, GRADIENTS, AND DIAGNOSTICS

• Loss landscape flatness: Informally, a flatter neighborhood around inputs or parameters
indicates smaller gradients and less exploitable directions; proxies include gradient norm,
local Lipschitz, or Hessian trace.

• Gradient norm: Magnitude ∥∇xL∥p; smaller norms often correlate with higher resistance
to small-norm attacks (not sufficient alone).

• GSUA (Gradient Similarity / Sign Uniformity Analysis): Measures gradient directional
stability across attack iterations. A typical definition at iteration t uses cosine similarity

GSUAt = cos
(
∇xL(xt), ∇xL(xt−1)

)
,

averaged over t and samples. Lower (or negative) GSUA indicates rapidly changing at-
tack directions, making optimization harder; high GSUA implies stable, aligned directions
that favor attacker success. A sign-based variant reports the fraction of coordinates with
matching gradient signs.

• Margin: Logit margin m = zy −maxk ̸=y zk; larger margins generally imply higher con-
fidence and sometimes better robustness.

• Confidence / Predictive entropy: Confidence = maxk πθ(k | x); entropy H(πθ(· | x))
quantifies uncertainty. Robust models tend to avoid extreme confidence on perturbed in-
puts.

• Sanity checks against gradient masking: Robust accuracy should decrease (not increase)
with more attack steps, larger εadv, or stronger restarts; black-box and transfer attacks
should not outperform white-box; gradient-free attacks (e.g., SPSA) should not catastroph-
ically outperform white-box baselines.

A.1.7 EVALUATION PROTOCOLS AND METRICS

• Clean accuracy: Top-1 accuracy on unperturbed data.
• Adversarial accuracy (robust accuracy): Top-1 accuracy under a specified attack (norm,
εadv, steps, restarts).

• Transfer robustness: Accuracy on adversarial examples generated from different source
models.

• ECE (Expected Calibration Error): With M confidence bins, ECE =∑M
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣; measures prediction calibration.

• Brier score / NLL: Calibration-related metrics; lower is better.
• Top-1 / Top-5: Standard accuracy metrics for multi-class evaluation.
• Report essentials: Always specify norm (ℓ∞, ℓ2), εadv, step size α, iterations k, restarts R,

random start, and attack variants (e.g., APGD-CE/DLR).

A.1.8 TRAINING DETAILS AND REGULARIZATION

• Learning rate schedule: Cosine/step/linear decay; should be reported with warmup if any.
• Gradient clipping: Bounds on parameter gradients (e.g., global norm clipping) to stabilize

training.
• Data normalization: Per-channel mean/std normalization; report exact constants.
• Data augmentation: Random crop/flip/color jitter, CutMix/Mixup, etc.; can interact with

robustness.
• Temperature scaling: Post-hoc calibration by dividing logits by T > 0 before softmax.

A.1.9 DISAMBIGUATION OF EPSILONS

• εgreedy: Exploration rate in ε-greedy behavior policy (probability of sampling a random
action).

• εadv: Adversarial perturbation budget (radius of the ℓp-ball used by the attacker).

• ϵnum: Tiny numeric constant inside log for stability (e.g., 10−8); never to be confused with
the above.
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A.1.10 COMMON PITFALLS (PRACTICAL NOTES)

• Softmax stability: Subtract maxk zk before softmax; add ϵnum only when taking logs.
• Behavior vs. target mismatch: If sampling from π̃ but optimizing π, document whether

importance weighting is used (w = π/π̃); otherwise clarify the estimator is biased but
lower variance.

• Underpowered inner maximization: Too few PGD steps, lack of random start, or small
α can overestimate robustness; report full attack specs.

• Overconfidence on perturbed data: Check entropy/confidence and ECE under attacks to
avoid brittle decision boundaries.

A.2 ROBUSTNESS INDICATORS

Decision boundary diagrams illustrates the classification regions under adversarial attack, and loss
landscape diagrams visualizes the loss gradient information. Both diagrams are drawn under two
gradient directions: standard adversarial attack gradient and orthogonal-direction attacks gradient to
draw a 2D diagram, where perturbations are constrained to be perpendicular to the gradient ascent
direction (∇xL ⊥ δ).

IGV (Input Gradient Variance) calculates value of gradient according to the input variance:

IGV = Ex∼D
{
Eϵ∼N (0,σ2) [V ar(∇xL(x+ ϵ, ŷ))]

}
(3)

where ϵ is the Gaussian noise added to the input sample, x is the input sample, ŷ is the predicted
sample, V ar(·) is the gradient variance, ∇xL(·) is the gradient.

dIGV (direction Input Gradient Variance) calculates the direction of gradient according to the
input variance:

dIGV = Ex∼D

{
Eϵ∼N (0,σ2)

[
1−

〈
g(ϵ)

∥g(ϵ)∥2
, ū

〉]}
,

ū =
Eϵ

(
g(ϵ)

∥g(ϵ)∥2

)
∥∥∥Eϵ

(
g(ϵ)

∥g(ϵ)∥2

)∥∥∥
2

,

g(ϵ) = ∇xL(x+ ϵ, ŷ)

(4)

where g is the attack gradient.

AGN (Average Gradient Norm) calculates the sensitivity of gradient according to the input vari-
ance:

AGN = Ex∼D[||(∇xL(x, y)||2] (5)

where y is the true label, L(·) is the loss function.

Gradient stability under attack (GSUA) diagram is drawn to visualize the gradient stability under
attack. It is calculated by calculating the cosine (similarity) between two steps of attack gradient:

GSUA(t) = cos θ(t) =
g(t) · g(t−1)

∥g(t)∥∥g(t−1)∥
, g(t) = ∇xL(x(t), y) (6)

where t is the step.

Mean predictive entropy H is used to represent the dispersibility of predicted output:

H =
1

N

N∑
i=1

[
−

C∑
k=1

pk(xi) · log pk(xi)

]
(7)
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where N is the number of test samples, C is the number of classes, pk(xi) denotes the predicted
probability of class k on input xi (either clean or adversarial).

A.3 DATASETS

Table 3: Benchmark Dataset Specifications

Dataset Training/Test samples Image Size Classes

CIFAR-10 50,000/10,000 32×32×3 10
CIFAR-100 50,000/10,000 32×32×3 100
ImageNet-100 126,689/5,000 224×224×3 100

A.4 MODEL ARCHITECTURES

(a) 4-layer CNN (b) 6-layer CNN

(c) ResNet-18 (He et al., 2016a)

Figure 6: Model Architectures: (a) 4-layer CNN, (b) 6-layer CNN, and (c) ResNet-18 with residual
connections.

A.5 SUPERVISED LEARNING

In conventional image classification tasks, supervised learning is a widely adopted ap-
proachKrizhevsky et al. (2012); He et al. (2016b); Dosovitskiy et al. (2020). The fundamental
objective is to train a neural network model fθ(I) to map an input image I to a probability distribu-
tion over predefined classes. The model parameters θ are optimized by minimizing the discrepancy
between predicted outputs and ground truth labels using the cross-entropy loss function. Given a
training sample (I, y), where y is the ground truth class label and p̂ = fθ(I) is the predicted proba-
bility vector, the cross-entropy loss is defined as:

LCE = −
C∑

c=1

I(y = c) · log p̂c (8)
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Here, C represents the total number of classes, and I(y = c) is an indicator function that equals 1 if
y = c and 0 otherwise. The overall optimization objective is to minimize the expected cross-entropy
loss across the training dataset:

θ∗ = argmin
θ

E(I,y)∼D [LCE(fθ(I), y)] (9)

Training is performed via backpropagation and gradient-based optimization methods, allowing the
model to progressively learn discriminative features for accurate classification. This supervised
approach, with its well-defined loss function, ensures stable convergence and provides a reliable
baseline for image classification tasks.

For implementation, the training configuration implements three key mechanisms: (1) a regulariza-
tion parameter β adjustment (initial β = 1 for accuracy focus, progressing to β = 6 for robust-
ness); (2) cyclic learning rate scheduling between 0.1 and 0.001; and (3) gradient clipping with
threshold 1.0. Each model is trained until convergence on each target dataset (CIFAR-10/CIFAR-
100/ImageNet-100), with early stopping based on validation performance.

A.6 REINFORCMENT LEARNING

Reinforcement learning (RL) is a framework that enables agents to learn optimal decision-making
strategies through interactions with an environment, guided by a system of rewards and penalties.
Unlike supervised learning, which relies on labeled datasets, RL focuses on learning policies that
maximize cumulative rewards over time. The primary objective of RL is to maximize the expected
return, which is commonly approximated using the Bellman equation:

Q(s, a) = E
[
rt + γmax

a′
Q(st+1, a

′)
]

(10)

In this equation, Q(s, a) represents the action-value function, estimating the expected return when
taking action a in state s. The term maxa′ Q(st+1, a

′) denotes the maximum expected future reward
from the subsequent state st+1, encapsulating the agent’s objective to select actions that maximize
long-term rewards.

For the task of image classification, we conceptualize the problem as an RL scenario where each
classification decision is treated as an action performed by the agent. Specifically, for each input
image I , the agent selects a class a from a predefined set of possible classes. The reward structure
is defined as follows:

• Correct Classification: If the agent correctly classifies the image, it receives a reward
r = 1.

• Incorrect Classification: If the agent misclassifies the image, it receives a reward r = 0.

This binary reward mechanism simplifies the optimization objective, directing the agent’s learning
process towards maximizing the number of correct classifications.

The objective is to maximize the expected return J(θ), which, in this context, corresponds to in-
creasing the number of correctly classified images. Formally, the objective can be expressed as:

J(θ) = Eπθ

[
T∑

t=1

rt

]
(11)

Given the binary nature of the rewards, this objective simplifies to maximizing the expected number
of correct classifications across the dataset.

To optimize the policy, we employ the REINFORCE algorithm, a fundamental policy gradient
method. The gradient of the objective function with respect to the policy parameters θ is given
by:

∇θJ(θ) = Eπθ
[∇θ log πθ(at|st) · rt] (12)
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Substituting the defined reward structure, the gradient can be rewritten as:

∇θJ(θ) = Eπθ
[∇θ log πθ(at|st) · I(at = a∗)] (13)

Here, I(at = a∗) is an indicator function that equals 1 if the action at corresponds to the correct class
a∗, and 0 otherwise. This formulation ensures that the policy is updated to increase the probability
of actions leading to correct classifications. Specifically, when an image is correctly classified, the
gradient update reinforces the chosen action by enhancing its probability, thereby making the policy
more likely to select the correct class in future similar instances. Conversely, incorrect classifications
do not contribute to the gradient, as their associated reward is zero.

In practice, the policy πθ(a|s) is parameterized using a neural network, where the input is the image
I , and the output is a probability distribution over the possible classes. The network parameters
θ are updated using stochastic gradient ascent based on the policy gradient estimate derived from
Equation equation 13.

The training procedure involves the following steps:

1. Forward Pass: For each image I in the training set, compute the action probabilities
πθ(a|I) using the current policy network.

2. Action Selection: Sample an action a (i.e., predict a class) based on the computed proba-
bilities.

3. Reward Assignment: Assign a reward r based on whether the predicted class a matches
the true class a∗.

4. Gradient Update: Compute the gradient ∇θ log πθ(a|I) · r and update the policy param-
eters θ using gradient ascent.

This approach enables the model to learn a policy that maximizes the expected number of cor-
rect classifications. By focusing on actions that lead to accurate predictions, the model potentially
enhances its robustness against adversarial attacks, as it reinforces strategies that yield reliable clas-
sification outcomes.

A.7 ADVERSARIAL ATTACK

Adversarial attacks are a class of security threats in machine learning where an adversary can design
imperceptible perturbations to input data (e.g. images) to deceive a trained model into making
incorrect predictions, where it was first systematically studied by Szegedy et al. (2013). Among the
various adversarial attack methods, the Fast Gradient Sign Method (FGSM) is a fundamental attack
introduced by Goodfellow et al. (2014), where the adversarial example x′ is generated as:

x′ = x+ ϵsign(∇xJ(θ, x, y)) (14)

Let θ be the parameters of a model, x the input to the model, y the targets associated with x, ϵ the
perturbation budget, and J(θ, x, y) be the model’s loss function, and ∇xJ(θ, x, y) be the gradient
of the loss with respect to the input. FGSM efficiently computes gradient signs of the model’s loss
function with respect to the input to create bounded perturbations with a small perturbation budget
ϵ, serving as both an effective attack and baseline for more advanced methods.

Projected Gradient Descent (PGD), introduced by Madry et al. (2017), represents a more advanced
adversarial attack by extending the single-step FGSM into an iterative optimization framework with
projection constraints, where it generates stronger adversarial examples through:

xt+1 = Πx+S
(
xt + α · sign(∇xJ(θ, x

t, y))
)

(15)

Here, xt is the adversarial example at iteration t, α is the step size (typically α = ϵ/T for T itera-
tions), Πx+S projects the perturbation on the allowed perturbation space around x, S (= δ||δ|∞ ≤ ϵ)
defines the ℓ∞-bounded perturbation space, where in practical Πx+S (x′) = clip(x′, x − ϵ, x + ϵ),
ϵ the perturbation budget.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

For our experiments across CIFAR-10, CIFAR-100, and ImageNet-100 datasets, we establish max-
imum perturbation bounds of ϵ = 7, 7, and 3.5, respectively. These values align with conventional
adversarial training benchmarks MadryLab (2017); Madry et al. (2017), where typical perturbation
magnitudes remain below ϵ = 8.0 on the 0-255 pixel intensity scale.

A.8 COMPLETE MODEL PERFORMANCE

We evaluate the robustness of 4-layer CNN, 6-layer CNN, ResNet-18 on CIFAR-10, CIFAR-100,
and ImageNet-100 using non-targeted ℓ2 PGD (K = 250, step size α = 0.3, ϵ = 7). Unless
otherwise noted, all results are performed on the test set. Perturbations are applied in the input
space before normalization, where we attack the pre-normalized images and then apply dataset
normalization. Adversarial examples are clipped to the valid image range.

Additionally, we also considered DenseNet-121 model and the Places365 dataset. Due to the compu-
tational cost of reinforcement-learning-based training on large models and datasets, only incomplete
evaluations are shown for these settings and leave full RL-based evaluation to future work.

A.8.1 CIFAR-10

The complete performance on CIFAR-10 across 4-layer CNN, 6-layer CNN, ResNet-18, and
DenseNet-121 is shown in Table 4. Transfer analyses for these architectures are summarized in
Table 5, Table 6, Table 7 and Table 8, respectively.

Table 4: Model Robustness Evaluation (Train, test and AEs) In CIFAR-10 Datasets Across Models.
Evaluation under PGD-250, ℓ2, ϵ = 7, step size α = 0.3, non-targeted

Model Clean train (%) Clean test (%) AE (%)
(SL) 4-layer-CNN 86.53 82.03 5.90
(SL) 4-layer-CNN-adv 84.98 81.25 7.01
(RL) 4-layer-CNN 88.85 83.07 36.66
(RL) 4-layer-CNN-adv 88.57 82.94 35.67
(SL) 6-layer-CNN 98.30 90.74 5.00
(SL) 6-layer-CNN-adv 96.81 90.11 4.96
(RL) 6-layer-CNN 95.93 88.50 55.77
(RL) 6-layer-CNN-adv 94.12 87.63 48.63
(SL) Resnet18 99.91 91.56 46.08
(SL) Resnet18-pt 99.99 95.94 67.61
(SL) Resnet18-adv 99.35 90.84 28.47
(SL) Resnet18-pt-adv 99.97 95.56 56.96
(RL) Resnet18 98.03 91.40 75.44
(RL) Resnet18-pt 98.21 94.22 65.07
(RL) Resnet18-adv 97.15 90.40 70.09
(RL) Resnet18-pt-adv 97.38 93.73 68.40
(SL) Densenet121 99.90 90.09 31.33
(SL) Densenet121-pt 99.996 96.97 52.00
(SL) Densenet121-adv 99.05 89.72 15.77
(SL) Densenet121-pt-adv 99.98 96.74 28.80
(RL) Densenet121 97.88 90.34 67.99
(RL) Densenet121-pt 99.90 95.94 78.70
(RL) Densenet121-adv 97.07 90.59 68.16
(RL) Densenet121-pt-adv 99.38 95.26 73.56

A.8.2 CIFAR-100

The complete performance on CIFAR-100 across 4-layer CNN, 6-layer CNN, ResNet-18, and
DenseNet-121 is shown in Table 9. Transfer analyses for these architectures are summarized in
Table 10, Table 11, Table 12 and Table 13, respectively.
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Table 5: Transfer Analysis In CIFAR-10 Datasets On 4-layer-CNN. Evaluation under PGD-250, ℓ2,
ϵ = 7, step size α = 0.3, non-targeted

Model (SL) 4-layer-CNN (SL) 4-layer-CNN-adv (RL) 4-layer-CNN (RL) 4-layer-CNN-adv
(SL) 4-layer-CNN 5.89 8.20 34.79 35.20
(SL) 4-layer-CNN-adv 6.82 6.95 35.33 35.66
(RL) 4-layer-CNN 7.25 8.81 35.21 34.48
(RL) 4-layer-CNN-adv 13.09 14.40 34.99 33.74
(SL) 6-layer-CNN 14.09 14.27 35.20 35.30
(SL) 6-layer-CNN-adv 15.16 15.87 36.48 37.07
(RL) 6-layer-CNN 13.44 13.58 35.16 35.57
(RL) 6-layer-CNN-adv 32.24 33.48 47.53 45.59

Table 6: Transfer Analysis In CIFAR-10 Datasets On 6-layer-CNN. Evaluation under PGD-250, ℓ2,
ϵ = 7, step size α = 0.3, non-targeted

Model (SL) 6-layer-CNN (SL) 6-layer-CNN-adv (RL) 6-layer-CNN (RL) 6-layer-CNN-adv
(SL) 6-layer-CNN 5.81 7.18 48.45 43.15
(SL) 6-layer-CNN-adv 9.53 5.74 50.14 44.86
(RL) 6-layer-CNN 8.29 7.92 48.84 42.69
(RL) 6-layer-CNN-adv 30.88 22.56 54.31 46.91
(SL) 4-layer-CNN 37.40 30.03 56.19 50.09
(SL) 4-layer-CNN-adv 36.32 29.19 56.00 50.51
(RL) 4-layer-CNN 32.23 25.94 56.65 49.92
(RL) 4-layer-CNN-adv 38.86 31.22 56.54 49.30

A.8.3 IMAGENET-100

The complete performance on ImageNet-100 across 4-layer CNN, 6-layer CNN, ResNet-18 is shown
in Table 14. Since our main analyses focus on CIFAR-10/100, we treat ImageNet-100 as a supple-
mentary scale check for verification, therefore, the ImageNet-100 results do not contain transfer
analysis.

A.8.4 PLACES-365 (EXTRA)

The performance on Places-365 across 4-layer CNN, 6-layer CNN, ResNet-18 is shown in Table 15,
which is not discussed in main paper due to incomplete experiments. This incomplete experiment
is because reinforcement-learning–based training is computationally prohibitive for this Places-365
under our experimental settings. For example, training one RL model in our settings on a single
NVIDIA A100 is estimated to take multiple months. This indicates that improving the efficiency
and scalability of the RL training pipeline will be an important direction for future work.
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Table 9: Model Robustness Evaluation (Train, test and AEs) In CIFAR-100 Datasets Across Models.
Evaluation under PGD-250, ℓ2, ϵ = 7, step size α = 0.3, non-targeted

Model Clean test (%) AE (%)
(SL) 4-layer-CNN 52.40 3.80
(SL) 4-layer-CNN-adv 50.77 4.06
(RL) 4-layer-CNN 28.38 15.06
(RL) 4-layer-CNN-adv 29.89 17.13
(SL) 6-layer-CNN 64.75 2.53
(SL) 6-layer-CNN-adv 63.61 2.83
(RL) 6-layer-CNN 59.80 13.06
(RL) 6-layer-CNN-adv 56.54 25.51
(SL) Resnet18 69.36 14.83
(SL) Resnet18-pt 80.76 30.65
(SL) Resnet18-adv 68.76 12.61
(SL) Resnet18-pt-adv 79.70 26.55
(RL) Resnet18 67.08 32.15
(RL) Resnet18-pt 77.22 45.91
(RL) Resnet18-adv 65.07 29.51
(RL) Resnet18-pt-adv 74.68 41.93
(SL) Densenet121 66.12 13.11
(SL) Densenet121-pt 83.49 13.92
(SL) Densenet121-adv 65.86 12.20
(SL) Densenet121-pt-adv 82.64 11.46
(RL) Densenet121 65.39 33.68
(RL) Densenet121-pt 80.54 34.97
(RL) Densenet121-adv 64.05 34.20
(RL) Densenet121-pt-adv 77.64 31.02

Table 10: Transfer Analysis In CIFAR-100 Datasets On 4-layer-CNN. Evaluation under PGD-250,
ℓ2, ϵ = 7, step size α = 0.3, non-targeted

Model (SL) 4-layer-CNN (SL) 4-layer-CNN-adv (RL) 4-layer-CNN (RL) 4-layer-CNN-adv
(SL) 4-layer-CNN 0.02 1.91 21.65 23.74
(SL) 4-layer-CNN-adv 3.16 0.04 23.54 25.18
(RL) 4-layer-CNN 5.37 6.17 10.48 11.89
(RL) 4-layer-CNN-adv 5.68 6.26 10.81 12.40
(SL) 6-layer-CNN 7.47 9.47 27.57 26.62
(SL) 6-layer-CNN-adv 7.85 9.93 27.82 27.03
(RL) 6-layer-CNN 5.69 8.30 24.16 23.64
(RL) 6-layer-CNN-adv 15.60 16.73 30.88 30.10

Table 11: Transfer Analysis In CIFAR-100 Datasets On 6-layer-CNN. Evaluation under PGD-250,
ℓ2, ϵ = 7, step size α = 0.3, non-targeted

Model (SL) 6-layer-CNN (SL) 6-layer-CNN-adv (RL) 6-layer-CNN (RL) 6-layer-CNN-adv
(SL) 6-layer-CNN 0.03 0.40 8.27 16.59
(SL) 6-layer-CNN-adv 1.32 0.07 9.09 17.78
(RL) 6-layer-CNN 1.82 1.30 8.04 15.89
(RL) 6-layer-CNN-adv 20.17 14.52 13.08 18.16
(SL) 4-layer-CNN 30.50 27.22 30.70 29.60
(SL) 4-layer-CNN-adv 33.34 30.23 33.76 30.53
(RL) 4-layer-CNN 21.63 20.61 21.83 21.16
(RL) 4-layer-CNN-adv 21.50 19.63 21.87 20.35
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Table 14: Model Robustness Evaluation (Train, test and AEs) In ImageNet-100 Datasets Across
Models. Evaluation under PGD-250, ℓ2, ϵ = 7, step size α = 0.3, non-targeted

Model Clean test (%) AE (%)
(SL) 4-layer-CNN 48.58 2.80
(SL) 4-layer-CNN-adv 45.76 2.92
(RL) 4-layer-CNN 47.88 10.20
(RL) 4-layer-CNN-adv 47.56 11.06
(SL) 6-layer-CNN 57.64 5.72
(SL) 6-layer-CNN-adv 58.00 5.36
(RL) 6-layer-CNN 55.60 18.04
(RL) 6-layer-CNN-adv 45.92 18.24
(SL) Resnet18 74.00 45.00
(SL) Resnet18-adv 74.90 42.62
(RL) Resnet18 73.92 49.02
(RL) Resnet18-adv 65.28 42.96

Table 15: Model Robustness Evaluation (Train, test and AEs) In Places-365 Datasets Across Models.
Evaluation under PGD-250, ℓ2, ϵ = 7, step size α = 0.3, non-targeted

Model Clean test (%) AE (%)
(SL) 4-layer-CNN 28.86 13.01
(SL) 4-layer-CNN-adv 29.79 9.96
(RL) 4-layer-CNN - -
(RL) 4-layer-CNN-adv - -
(SL) 6-layer-CNN 34.72 5.86
(SL) 6-layer-CNN-adv 35.53 6.58
(RL) 6-layer-CNN - -
(RL) 6-layer-CNN-adv - -
(SL) Resnet18 42.93 -
(SL) Resnet18-adv 43.99 -
(RL) Resnet18 - -
(RL) Resnet18-adv - -
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A.9 MATHEMATICAL PROOF FOR REINFORCEMENT LEARNING ROBUSTNESS

Theorem 1 (First-Order Influence Bound) For a neural network f̂ : X → RC and an adversarial
perturbation β ∈ Bϵ ≜ {β ∈ Rd : ∥β∥2 ≤ ϵ}, under the hypothesis that RL training reduces flatter
loss landscapes than SFT:

Ex∼D

[
∆f̂RL(x)

]
≤ Ex∼D

[
∆f̂SFT(x)

]
, ∆f̂(x) ≜ f̂(x+ β)− f̂(x)

Proof.

1. First-Order Taylor Expansion (small ϵ):

∆f̂(x) = ∇xf̂(x)
⊤β +O(ϵ2)

2. Gradient Norm Bound:

||∇xf̂RL(x)||2 ≤ ||∇xf̂SFT(x)||2, ∀x ∈ X
3. Expectation Transformation:

Ex∼D

[
∆f̂(x)

]
= Ex∼D

[
f̂(x+ β)− f̂(x)

]
≈ Ex∼D

[
∇xf̂(x)

⊤β
]

(First-order Taylor approximation)

≤ Ex∼D

[
∥∇xf̂(x)∥2 · ∥β∥2

]
(Cauchy-Schwarz inequality)

= Ex∼D

[
∥∇xf̂(x)∥2

]
· ∥β∥2 (∥β∥2 is constant)

After applying ∥∇xf̂RL(x)∥2 ≤ ∥∇xf̂SFT(x)∥2:

We obtain:

E[∆f̂RL(x)] ≤ E[∥∇xf̂RL(x)∥2]︸ ︷︷ ︸
Smaller

·∥β∥2 ≤ E[∥∇xf̂SFT(x)∥2]︸ ︷︷ ︸
Larger

·∥β∥2 ≤ E[∆f̂SFT(x)]

Corollary 1.1. In the small-ϵ regime, RL models exhibit greater adversarial robustness as their
predictions are less sensitive to perturbations compared to SFT models.

A.10 LLM USAGE DISCLOSURE

We used large language models (shown in Table 16) only for English-language polishing, including
grammar correction and wording suggestions. No new scientific contents, including equations,
experimental designs or codes were generated by the models. We did not provide any non-public
data or code to the models. All model suggestions were manually reviewed and edited by the authors
for technical correctness. The authors take full responsibility for the final content; the LLM is not
an author.

Table 16: Large Language Model Usage Disclosure.

Model Version Access Date

ChatGPT GPT-5 (Auto) 2025.07–2025.09
ChatGPT GPT-5 (Thinking) 2025.07–2025.09
Claude Sonnet 4 2025.07–2025.09
ChatGPT GPT4o 2024.12–2025.03

30


	Introduction
	Related Work
	Adversarial Attacks on Classification Task
	Robustness and Reinforcement Learning

	Preliminaries
	Methodology
	Implementation
	Benchmarks and Backbones
	Training Configuration
	Attack Configuration

	Results and Empirical Theory
	Model accuracy and robustness
	Decision boundary and loss geometry
	Gradient Instability Analysis
	Calibration-Aware Robustness

	Unified Theoretical Analysis of Robustness Mechanisms
	Conclusion
	Limitation and Future Work
	Appendix
	Terminology and Notation
	General Notation
	RL Formulation for Classification
	Adversarial Robustness
	Attacks and Inner Maximization
	Robust Training Objectives
	Geometry, Gradients, and Diagnostics
	Evaluation Protocols and Metrics
	Training Details and Regularization
	Disambiguation of Epsilons
	Common Pitfalls (Practical Notes)

	Robustness Indicators
	Datasets
	Model Architectures
	Supervised learning
	Reinforcment learning
	Adversarial Attack
	Complete Model Performance
	CIFAR-10
	CIFAR-100
	ImageNet-100
	Places-365 (Extra)

	Mathematical proof for reinforcement learning robustness
	LLM Usage Disclosure


