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Abstract

We consider the online learning of predictors based on a covariance model of the outcomes.
The model parameters are often learned using cross-validation or maximum-likelihood tech-
niques. However, neither technique is suitable when training data arrives in a streaming
fashion. Here we consider a covariance-fitting method to learn the model parameters, which
was initially developed for spectral estimation. We show that this results in a computa-
tionally efficient online learning method in which the resulting predictor can be updated
sequentially. We prove that, with high probability, its out-of-sample error approaches the
minimum achievable level at a root-n rate, where n is the number of data samples. Moreover,
we show that the resulting predictor enjoys two robustness properties. First, it minimizes
the out-of-sample error with respect to the least favourable distribution within a given
Wasserstein distance from the empirical distribution. Second, it is robust against errors in
the covariate training data. We illustrate the performance of the proposed method in a
numerical experiment.

1 Introduction

We consider scenarios in which we observe a stream of randomly distributed data

Dn = {(x1, y1), . . . , (xn, yn)}.

Given covariate xn+1 in X , our goal is to predict the outcome yn+1 in a bounded range Y ⊂ R. A large
class of predictors (also known as linear smoothers) can be described as a weighted combination of observed
outcomes

ŷ(x) =
n∑
i=1

wi(x)yi, (1)

where x denotes any test point and the weights {wi(x)} are to be learned from Dn. The sensitivity of such
a predictor function to noise in the training data is often characterized by how closely ŷ(xi) is to yi and
quantified by its ‘effective’ degrees of freedom (Ruppert et al., 2003; Wasserman, 2006; Hastie et al., 2009):

0 < dfn ,
n∑
i=1

wi(xi) ≤ n, (2)

where wi(xi) is an in-sample weight. The effective degrees of freedom are often tuned to avoid overfitting the
weights to the irreducible noise in the training data with the aim of achieving good out-of-sample performance.
This is includes using distribution-free cross-validation or distribution-based maximum likelihood methods.
However, these techniques do not readily work with streaming data.

In this paper, we consider an alternative method using a covariance-based criterion first proposed in the
context of spectral estimation (Stoica et al., 2010a;b). We show that this method

• enables online tuning of the predictor,
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• approaches an optimal out-of-sample performance at a root-n rate,

• enjoys to two different robustness properties.

For illustration of the online learning method, we include a numerical experiment.

2 Problem formulation

To determine the set of weights {wi(x)} in (1), y is often modeled as a zero-mean stochastic process with
a specified covariance function (Bishop, 2006; Rasmussen & Williams, 2006; Stein, 2012). We consider a
covariance function parameterized using bounded features {φk(x)} of x:

Cov[y, y′|x,x′;λ] = λ0δ(x,x′) +
d∑
k=1

λkφk(x)φk(x′), (3)

where x and x′ are two arbitrary covariates and δ(x,x′) is the Kronecker delta function. For compactness,
we let λ denote the set of d+1 nonnegative covariance parameters and φ(x) = [φ1(x), . . . , φd(x)]> (Ruppert
et al., 2003; Rahimi et al., 2007; Stein, 2012; Hensman et al., 2017; Solin & Särkkä, 2020). Under this model,
the minimum-mean-square-error predictor can be expressed as a linear smoother (1):

ŷ(x;λ) = w>(x;λ)y, where y = [y1, . . . , yn]> (4)

and the vector of n weights is given by

w(x;λ) = C−1
λ ΦΛφ(x) (5)

and the covariance matrix
Cλ = ΦΛΦ> + λ0In � 0 (6)

where

Φ =

φ
>(x1)
...

φ>(xn)


is the matrix of features and Λ = diag(λ1, . . . , λd). For any fixed λ, the predictor (4) can be updated
sequentially for each new point in a data stream.

The predictor function above includes a variety of penalized regression methods (see the references cited
above). The degrees of freedom of (4) is controlled by λ and we have that (Stoica & Stanasila, 1982;
Ruppert et al., 2003):

0 < dfn(λ) = tr
{
ΦΛΦ>C−1

λ

}
= tr

{
ΦΛΦ>(ΦΛΦ> + λ0In)−1} ≤ min(n, d)

(7)

In principle, λ can be learned using cross-validation or maximum likelihood methods. However, these meth-
ods have problems in the online learning setting. First, for each additional training data point (xn+1, yn+1),
the parameters λ will need to be re-learned using augmented dataset Dn+1 and (4) recomputed from scratch.
Second, learning λ via these methods is a non-convex problem that can be riddled with multiple minima.
Third, using data-dependent parameters λ in (4) does not readily provide any out-of-sample prediction
performance guarantees.

With these issues in mind, we will investigate computational and theoretical properties of learning λ via a
covariance-fitting approach.
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3 Learning via covariance fitting

We propose to learn λ from Dn by fitting the model covariance matrix Cλ in (5) to the empirical covariance
matrix yy>. Specifically, we will use the following fitting criterion, known as Spice,

λ◦ = arg min
λ≥0

∥∥yy> −Cλ

∥∥2
C−1

λ

, (8)

which was first proposed in the context of spectral estimation (Stoica et al., 2010a;b). Since this criterion is
convex in λ, we can be sure that a global minimizer can be determined.

3.1 Sequential computation

Let λ◦n denote the learned parameters using Dn, with an associated predictor function ŷ(x;λ◦n). Since data
is obtained in an online manner, we wish to compute ŷ(x;λ◦n+1) sequentially, given a new training data point
(xn+1, yn+1).

Theorem 1 The predictor function ŷ(x;λ◦n+1) can be updated from ŷ(x;λ◦n) in a constant runtime O
(
d2).

The total memory requirement of the method is also constant and in the order of O
(
d2).

Proof 1 We first note that the predictor (4) has an equivalent form

ŷ(x;λ) = φ>(x) ΛΦ>C−1
λ y︸ ︷︷ ︸

θ̂(λ)

(9)

For later use, we also note that (9) is invariant to a uniform rescaling of λ, i.e., θ̂(λ) ≡ θ̂(cλ) for all c > 0.

Furthermore, using the matrix inversion lemma, it can be shown that θ̂(λ) equals the minimizer of the
following augmented criterion,

V (θ,λ) = 1
λ0
‖y−Φθ‖2

2 + θ>Λ−1θ + tr{Cλ}, (10)

where the last term will be used below. It can also be shown that the minimizer of the concentrated criterion
V (θ̂(λ),λ) equals cλ◦, that is a rescaling of the covariance-based parameters (8). See Zachariah & Stoica
(2015, Appendix A). Thus minimizing V (θ,λ) with respect to both θ and λ yields ŷ(x;λ◦) ≡ φ>(x)θ̂(λ◦).
By changing the order of the minimization, we obtain the solution

λk(θ) =
{‖y−Φθ‖2√

n
, k = 0

|θi|√
nψk

, k = 1, . . . , d
(11)

where ψk =
√

1
n

∑n
i=1 φ

2
k(xi). Inserting (11) into (10) yields the following equivalent convex cost function

arg min
θ

√
1
n
‖y−Φθ‖2

2 + 1√
n
‖ψ � θ‖1, (12)

where ψ = [ψ1 · · · ψd]> and � denotes the element-wise product. This is a weighted square-root LASSO
problem that can be solved in a runtime on the order of O(d2) using variables of fixed dimension that are
recursively updated. See Zachariah & Stoica (2015) for more details.

Solving (12) when data arrives in a streaming fashion requires storing the recursively updated quantities:

An = 1
n

n∑
i=1

φ(xi)φ>(xi), bn = 1
n

n∑
i=1

φ>(xi)yi, κn = 1
n

n∑
i=1

y2
i ,

Thus the memory requirement is dominated by storing the d× d-matrix An.

For completeness, the code for computing ŷ(x;λ◦) is provided at TOAPPEAR.
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3.2 Out-of-sample performance

We have shown that ŷ(x;λ) in (4) with covariance-fitted parameters λ◦ can be updated sequentially. While
this determines the degrees of freedom (7) in an online manner, it remains to be investigated how covariance-
fitting affects out-of-sample prediction performance as measured by the mean-squared error,

Mse = E
[
(y − ŷ(x))2] , (13)

where expectation is taken with respect to an unknown distribution p(x, y). That is, how closely we can
predict yn+1 from xn+1 when they are drawn from p(x, y)?

We first note that all predictors of the form (4) and (5) belong to the following class of predictor functions
(see (9))

F ,

{
f(x) =

d∑
k=1

φk(x)θk : θ ∈ Rd
}
, (14)

where {φk(x)} are the features in (3). Next, we show how ŷ(x;λ◦) performs as compared to the best
predictor functions in F .

Theorem 2 If the data points (xi, yi) are drawn independently and identically (i.i.d.), then the out-of-sample
error of ŷ(x;λ◦) is given by

E
[
(y − ŷ(x;λ◦))2] ≤ min

ŷ∈F
E
[
(y − ŷ(x))2] + K

√
1
n

ln 2(d+ 1)2

ε
+ bn (15)

with probability of at least 1 − ε, where K is a constant and bn is bounded as O(n−3/4). That is, with high
probability, the out-of-sample error approaches the minimum achievable error at a root-n rate. Note that
number of features d only increases the second term at a logarithmic rate.

Proof 2 Let ŷ be any predictor in F and let R(ŷ) = E
[
(y − ŷ(x))2]. Then we can express the out-of-sample

mean-square error in the following way:

R(ŷ) ≡ E
[(
y − φ>(x)θ

)2
]

= E


[
θ
−1

]> [
φ(x)
y

]
︸ ︷︷ ︸

z

[
φ(x)
y

]> [
θ
−1

]
︸ ︷︷ ︸

θ̃

 = θ̃>Σθ̃, (16)

where Σ = E[zz>]. Similarly, the in-sample error can be expressed as Rn(ŷ) = θ̃>Σ̂θ̃, where Σ̂ = n−1(z1z>1 +
· · ·+ znz>n ). The gap between in- and out-of-sample errors can be bounded as:

|Rn(ŷ)−R(ŷ)| = |θ̃>(Σ̂−Σ)θ̃|

≤
d+1∑
i=1

d+1∑
j=1
|θ̃i‖θ̃j | |Σ̂ij −Σij |

≤ (‖θ‖1 + 1)2 ·max
i,j
|Σ̂ij −Σij |︸ ︷︷ ︸
σ̃

(17)

Next, we bound σ̃ (see also Greenshtein & Ritov (2004)). Since y and φ(x) are bounded random variables,
we have that |zizj | ≤ B for some B and using Hoeffding’s inequality

Pr
{
|Σ̂ij −Σij | ≥ σ

}
≤ 2 exp

(
−nσ

2

2B2

)
(18)
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Combining this result with the union bound over all (d+ 1)2 variables in σ̃, we have that

Pr {σ̃ ≥ σ} ≤ (d+ 1)2 · 2 exp
(
−nσ

2

2B2

)
, ε (19)

Consequently, we can replace σ̃ by

σ = B

√
2
n

√
ln 2(d+ 1)2

ε
(20)

in (17) so that
|Rn(ŷ)−R(ŷ)| ≤ (‖θ‖1 + 1)2σ (21)

holds for any predictor in F with a probability of at least 1− ε.

Let us now study two predictor functions in F : an optimal predictor y? and the learned predictor, denoted
ŷ◦. Both belong to F and will therefore have two correponding parameters which we denote θ?, which is
fixed, and θ◦, which depends on Dn. Since z and Σ are bounded, the parameters are also bounded such that
‖θ?‖1, ‖θ◦‖1 ≤ P for some P . Using (21), we have that

R(ŷ)− (P + 1)2σ ≤ Rn(ŷ) ≤ R(ŷ) + (P + 1)2σ (22)

for any predictor function in F . The parameter θ◦ minimizes the criterion in (12), and therefore√
Rn(ŷ◦) + n−1/2‖ψ � θ◦‖1 ≤

√
Rn(y?) + n−1/2‖ψ � θ?‖1, ∀n

After rearranging, we have√
Rn(ŷ◦)−

√
Rn(y?) ≤ n−1/2(‖ψ � θ?‖1 − ‖ψ � θ◦‖1)

≤ n−1/2‖ψ � θ?‖1

≤ n−1/2βP,

(23)

where β = ‖ψ‖∞. Multiplying both sides of the equality by the positive quantity (
√
Rn(ŷ◦) +

√
Rn(y?)), we

have

Rn(ŷ◦)−Rn(y?) ≤ (
√
Rn(ŷ◦) +

√
Rn(y?))n−1/2βP

≤ (2
√
Rn(y?) + n−1/2βP )n−1/2βP,

(24)

where the second inequality follows from using (23). Finally, by definition R(y?) ≤ R(ŷ◦) and we have that

R(ŷ◦) ≤ Rn(ŷ◦) + (P + 1)2σ

≤ Rn(y?) + (P + 1)2σ + (2
√
Rn(y?) + n−1/2βP )n−1/2βP

≤ R(y?) + 2(P + 1)2σ + (2
√
R(y?) + (P + 1)2σ + n−1/2βP )n−1/2βP

= R(y?) + 2(P + 1)2B
√

2 ·
√

1
n

ln 2(d+ 1)2

ε
+O(n−3/4),

(25)

with a probability of at least 1− ε, where (22) was used in the first and third inequality and (24) was used in
the second inequality.

3.3 Distributional robustness

In the previous section, we saw that the out-of-sample Mse of ŷ(x;λ◦) approaches the minimum achievable
Mse at a root-n rate. We will now see that this predictor also provides robustness against distributional
uncertainty for finite n, which lends it a noteworthy interpretation.

Recall that the distribution p(x, y) in (13) is unknown. Using n i.i.d. samples, we can define a predictor in
F that minimizes the Mse under the least favourable distribution among all plausible distributions that are
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consistent with the data. Such a predictor is called ‘distributionally robust’, see, e.g., Duchi & Namkoong
(2018). To formalize a set of plausible distributions, we begin by noting that the Mse of any predictor in F
can be expressed as

E
[
(y − ŷ(x))2] ≡ Ep

[
(y − φ>θ︸︷︷︸

=ŷ∈F

)2
]
, (26)

using the joint distribution p(φ, y) where φ = φ(x) is a random variable in Rd. Since p is unknown, we
consider all distributions within some given divergence from the empirical distribution

pn(φ, y) = 1
n

n∑
i=1

δ(φ− φi, y − yi) (27)

That is, the set of distributions
{p : D(pn, p) ≤ εn}, (28)

where D(pn, p) is some divergence measure. A distributionally robust predictor minimizes the Mse under
the least-favourable distribution in (28), viz.

max
p : D(pn,p)≤εn

Ep
[
(y − φ>θ)2] (29)

Several different divergence measures D(pn, p) have been considered in the literature, including Kullback-
Leibler divergence, chi-square divergence, and so on. One popular divergence measure is the Wasserstein
distance (Blanchet et al., 2019), which is defined as

D(pn, p) = inf
π

Eπ
[
c(φ, y, φ′, y′)

]
, (30)

where c(φ, y, φ′, y′) is a nonnegative cost function and π is a joint distribution over (φ, y, φ′, y′) whose
marginals equal pn(φ, y) and p(φ′, y′), respectively. Thus D(pn, p) can be interpreted as measuring the
expected cost of moving probability mass from one distribution to the other.

Theorem 3 Suppose we standardize the feature matrix Φ in (5) so that its columns have unit norm. Then
the predictor ŷ(x;λ◦) minimizes the out-of-sample error (26) with respect to the least favourable distribution
among all distributions within a Wasserstein distance of εn from the empirical distribution pn. The distance
D(pn, p) is given by (30), with a cost function

c(φ, y, φ′, y′) =
{
‖φ− φ′‖2

∞ y = y′,

∞ otherwise.
(31)

and εn = n−2. Thus, ŷ(x;λ◦) is robust against distributional uncertainties in the features φ which may be
high-dimensional. Note that the size of the distribution set εn shrinks with n.

Proof 3 By normalizing the columns of the feature matrix Φ, (12) becomes

arg min
θ

√
1
n
‖y−Φθ‖2

2 + 1√
n
‖θ‖1. (32)

Using Theorem 1 in Blanchet et al. (2019), it follows that the resulting predictor minimizes (29) with diver-
gence εn = n−2.

3.4 In-sample robustness

When learning the predictor ŷ(x;λ◦) it is possible that the observed covariates themselves are subject to
errors so that the dataset is:

D̃n = {(x̃1, y1), . . . , (x̃n, yn)}
Then the true feature vector φi = φ(xi) can be viewed as a perturbed version of the observed vector
φ̃i = φ(x̃i), where the perturbation δi = φi − φ̃i is unknown (aka. errors-in-variables). This problem leads
to yet another interpretation of the predictor ŷ(x;λ◦).
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Theorem 4 Consider the bounded set of possible in-sample perturbations:

Sn =
{
δ1, . . . , δn : Epn

[
δ2
k

]
≤ n−1 Epn

[
φ̃2
k

]
, ∀k = 1, . . . , d

}
The predictor ŷ(x;λ◦) minimizes the in-sample root-Mse under the least-favourable perturbations in Sn:

max
{δi}∈Sn

√
Epn

[
(y − (φ̃+ δ)>θ)2

]
, (33)

where ŷ = (φ̃+ δ)>θ ∈ F .

Proof 4 The problem in (33) can be written as:

max
{δi}∈S

1√
n
‖y− (Φ̃ + ∆)θ‖2, where ∆ =

δ
>
1
...
δ>n

 (34)

Let [∆]k denote the kth column of the matrix ∆. We can then upper bound the error as

max
{δi}∈S

1√
n

∥∥∥∥∥y− Φ̃θ −
d∑
k=1

[∆]kθk

∥∥∥∥∥
2

≤ max
{δi}∈S

1√
n
‖y− Φ̃θ‖2 + 1√

n

d∑
k=1
‖[∆]kθk‖2,

≤ 1√
n
‖y− Φ̃θ‖2 + max

{δi}∈S

1√
n

d∑
k=1
‖[∆]k‖2|θk|,

≤ 1√
n
‖y− Φ̃θ‖2 + 1√

n

d∑
k=1

√
Epn [φ̃2

k]|θk|.

(35)

where the bound is attainable when

[∆]k =
√
Epn [φ̃2

k] y− Φ̃θ
||y− Φ̃θ||2

. (36)

But the bound is of the same form as the cost function in (12). Thus solving problem (12) implies the
minimization of (34). See also Xu et al. (2009, Theorem. 1).

4 Numerical Experiment

In the previous sections we have showed several computational and theoretical properties of the predictor
function ŷ(x;λ◦) which we shall call the Spice-predictor. In this section we present a numerical experiment
for sake of illustration.

We observe a stream of n samples generated by the following (unknown) process

x ∼ Uniform([0, 10]2),
y|x ∼ GP(0, k(x,x′) + σ2δ(x,x′)),

(37)

where
k(x,x′) = σ2

(
1 +
√

3
l
‖x− x′‖2

)
exp

(
−
√

3
l
‖x− x′‖2

)
.

with noise variance σ = 2 and scale l = 7. In other words, x is a two-dimensional covariate drawn from
a uniform distribution and y is drawn from a Gaussian process with zero mean and a Matérn covariance
function. A realization of the above GP and n training data points are shown in Figures 1a and 1e.

We consider a class F with d = 100 Laplace basis functions {φk(x)} (Solin & Särkkä, 2020). Note that this
corresponds to a misspecified covariance model (3). We are interested in the online learning of a predictor
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Figure 1: Contour plots. First column shows a realization of y in (37) along with sampling patterns {xi}ni=1 ∈
X for n = 100 and n = 250 (top and bottom rows, respectively). Second, third and fourth columns show
the contour plots of the Spice-predictor ŷ(x;λ◦), ridge regression and the Ls-predictor ŷ(x), respectively.
All three predictors belong to F .

function in F , and use the least-squares (Ls) and ridge regression methods as baseline references. Both
methods can be implemented in an online fashion, but the latter requires fixing a regularization parameter.
Here we simply set this parameter to 0.1 based on visual inspection.

For illustration, consider the predictions produced by the Ls, ridge regression and Spice methods produce
in Figure 1. As expected, the Ls provides poor results at these sample sizes. Ridge regression with a fixed
regularization parameter and Spice with adaptively learned parameters appear to perform similarly here.
To evaluate their out-of-sample errors, we compare the Mse against that of the oracle predictor based on
the unknown Gaussian process (GP) in (37). Table 1 shows that the out-of-sample error of Spice lower
than that of Ls and ridge regression, and that the chosen class F predicts the GP in (37) well.

Following the discussion of effective degrees of freedom dfn in Ruppert et al. (2003), we also provide a
comparison between Ls, Spice and the oracle GP predictors in Figure 2. While Ls attains the maximum
dfn at n = 100, Spice moderates its growth rate in a data-adaptive and online manner. The degrees of
freedom of the oracle predictor increases gracefully and remains below its maximum value, even when n
increases beyond d.

Mse/Mse*
n Ls Ridge Spice
50 4.38× 104 1.71 1.11
100 21.12 1.47 1.09
250 1.47 1.19 1.06
500 1.11 1.06 1.02

Table 1: Mean-square error (Mse) for Ls and Spice methods, normalized by Mse* of an oracle predictor
which is given the unknown covariance function in (37). For a given set of training data Dn, we compute
the averaged squared error over 250 test points. The mean of this error is the Mse and was approximated
using 100 different realizations of Dn.
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Figure 2: Plot of degrees of freedom dfn against number of data points n for Ls, Spice and oracle GP
predictors.

5 Conclusion

We have proposed using a covariance-fitting criterion for learning a linear smoother predictor that, unlike
maximum likelihood or cross-validation, enables the predictor to be updated as data points arrive in a
streaming fashion. In addition of being trained online, its out-of-sample error approaches the minimum
achievable level at root-n rate. It is also robust to distributional uncertainties and errors in the covariate
training data. The performance of the proposed method was illustrated in a numerical experiment.
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