
Under review as a conference paper at ICLR 2024

NONPARAMETRIC CLASSIFICATION ON LOW DIMEN-
SIONAL MANIFOLDS USING OVERPARAMETERIZED
CONVOLUTIONAL RESIDUAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Convolutional residual neural networks (ConvResNets), though overparameter-
sized, can achieve remarkable prediction performance in practice, which cannot
be well explained by conventional wisdom. To bridge this gap, we study the per-
formance of ConvResNeXts, which cover ConvResNets as a special case, trained
with weight decay from the perspective of nonparametric classification. Our analy-
sis allows for infinitely many building blocks in ConvResNeXts, and shows that
weight decay implicitly enforces sparsity on these blocks. Specifically, we consider
a smooth target function supported on a low-dimensional manifold, then prove
that ConvResNeXts can adapt to the function smoothness and low-dimensional
structures and efficiently learn the function without suffering from the curse of
dimensionality. Our findings partially justify the advantage of overparameterized
ConvResNeXts over conventional machine learning models.

1 INTRODUCTION

Deep learning has achieved significant success in various real-world applications, such as computer
vision (Goodfellow et al., 2014; Krizhevsky et al., 2012; Long et al., 2015), natural language
processing (Bahdanau et al., 2014; Graves et al., 2013; Young et al., 2018), and robotics (Gu et al.,
2017). One notable example of this is in the field of image classification, where the winner of the 2017
ImageNet challenge achieved a top-5 error rate of just 2.25% (Hu et al., 2018) using ConvResNets on
a training dataset of 1 million labeled high-resolution images in 1000 categories.

Among various deep learning models, ConvResNets have gained widespread popularity in practical
applications (Chen et al., 2017; He et al., 2016; Szegedy et al., 2017; Zhang et al., 2017). Compared
to vanilla feedforward neural networks (FNNs), ConvResNets possess two distinct features: convolu-
tional layers and skip connections. Specifically, each block of ConvResNets consists of a subnetwork,
called bottleneck, and an identity connection between inconsecutive blocks. The identity connection
effectively mitigates the vanishing gradient issue. Each layer of the bottleneck contains several
filters (channels) that convolve with the input. Using this ConvResNet architecture, He et al. (2016)
won 1st place on the ImageNet classification task with a 3.57% top-5 error in 2015. ConvResNets
have various extensions, one of which is ConvResNeXts (Xie et al., 2017) (detailed introductions
of ConvResNeXts is deferred to Section 2.3). This structure generalizes ConvResNets and includes
them as a special case. Each building block in ConvResNeXts has a parallel architecture that enables
multiple “paths” within the block. Figure 1(b) illustrates the structure of ConvResNeXts.

There are few theoretical works about ConvResNet, despite its remarkable empirical success. Previous
research has focused on the representation power of FNNs (Barron, 1993; Cybenko, 1989; Kohler &
Krzyżak, 2005; Suzuki, 2018; Yarotsky, 2017), while limited literature exists on ConvResNets. Oono
& Suzuki (2019) developed a representation and statistical estimation theory of ConvResNets, and
showed that if the network architecture is appropriately designed, ConvResNets with O(nD/(2α+D))

blocks can achieve a minimax optimal convergence rate Õ(n−2α/(2α+D)) when approximating a Cα

function with n samples. Additionally, Liu et al. (2021) proved that ConvResNets can universally
approximate any function in the Besov space Bα

p,q on d-dimensional manifolds with arbitrary accuracy.
Here, the Besov space includes functions with spatially heterogeneous smoothness and generalizes
more elementary function spaces such as Sobolev and Hölder spaces. Liu et al. (2021) improved the

1

Under review as a conference paper at ICLR 2024

convergence rate to Õ(n−2α/(2α+d)) for ConvResNets with O(nd/(2α+d)) blocks. Their results only
depend on the intrinsic dimension d, rather than the data dimension D.

These previous works, however, could not explain the success of ConvResNets in an overparame-
terized regime, where the number of blocks can be much larger than the sample size. In practice,
the performance of ConvResNets becomes better when they go deeper (He et al., 2016; Wang et al.,
2022) and wider (Xie et al., 2017), but the previous results required the number of blocks to be chosen
carefully according to unknown quantities of interest such as intrinsic dimension d, smoothness
parameter α and radii of the Besov ball and so on. For instance, Liu et al. (2021) requires the number
of blocks for ConvResNets to be O(nd/(2α+d)), which is smaller than the order of the sample size n.
Overparameterized CovResNets with larger number of blocks, if we believe in the existing theory,
would result in suboptimal rate and worst results — despite it is the opposite in practice.

To bridge this gap, we study ConvResNeXts trained with weight decay under an overparameteriza-
tion regime (Xie et al., 2017). The ConvResNeXt is a generalization of the ConvResNet and can
cover ConvResNets as a special case. Specifically, we study the same nonparametric classification
problem as Liu et al. (2021), where the target function is supported on a d-dimensional smooth
manifold M. We prove that even if ConvResNeXts are overparameterized, i.e., the number of blocks
is larger than the order of the sample size n, they can still achieve an asymptotic minimax rate for
learning Besov functions. That is, given that the target function belongs to the Besov space Bα

p,q(M),
the risk of the estimator given by the ConvResNeXt class converges to the optimal risk at the rate

Õ(n− α/d
2α/d+1

(1−o(1))) with n samples. We remark that weight decay, which play an important role in
our analysis, is a common method in deep learning to reduce overfitting (Krogh & Hertz, 1991; Smith,
2018). With this approach, ConvResNeXts can have infinitely many blocks to achieve arbitrary
accuracy, which corresponds to the real-world applications (He et al., 2016; Wang et al., 2022).
Moreover, our theory shows that one can scale the number of “paths” M in each block with the depth
N as roughly MN ≳ n

1
2α/d+1 , which does not affect the convergence rate. This partially justifies

the flexibility of the ConvResNeXt architecture when designing the bottlenecks.

Our work is partially motivated by Zhang & Wang (2022). However, our work distinguishes
itself through two new technical advancements. Firstly, we develop approximation theory for
ConvResNeXts, while Zhang & Wang (2022) only focuses on (a parallel variant of) FNNs. Secondly,
we take into account low-dimensional geometric structures of data. Notably, the statistical rate of
convergence in our theory only depends on the intrinsic dimension d, which circumvents the curse of
dimensionality in Zhang & Wang (2022).Another technical highlight of our paper is bounding the
covering number of weight-decayed ConvResNeXts, which is essential for computing the critical
radius of the local Gaussian complexity. This technique provides a tighter bound than choosing a
single radius of the covering number as in Suzuki (2018); Zhang & Wang (2022). To the best of our
knowledge, our work is the first to develop approximation theory and statistical estimation results for
ConvResNeXts, as well as overparameterized ConvResNets.

2 PRELIMINARIES

In this section, we introduce some concepts on manifolds. Details can be found in (Tu, 2011) and
(Lee, 2006). Then we provide a detailed definition of the Besov space on smooth manifolds and the
ConvResNeXt architecture.

2.1 SMOOTH MANIFOLD

Firstly, we briefly introduce manifolds, the partition of unity and reach. Let M be a d-dimensional
Riemannian manifold isometrically embedded in RD with d much smaller than D.
Definition 1 (Chart). A chart on M is a pair (U, ϕ) such that U ⊂ M is open and ϕ : U 7→ Rd,
where ϕ is a homeomorphism (i.e., bijective, ϕ and ϕ−1 are both continuous).

In a chart (U, ϕ), U is called a coordinate neighborhood, and ϕ is a coordinate system on U .
Essentially, a chart is a local coordinate system on M. A collection of charts that covers M is called
an atlas of M.
Definition 2 (Ck Atlas). A Ck atlas for M is a collection of charts {(Ui, ϕi)}i∈A which satisfies⋃

i∈A Ui = M, and are pairwise Ck compatible:
ϕi ◦ ϕ−1

β : ϕβ(Ui ∩ Uβ) → ϕi(Ui ∩ Uβ) and ϕβ ◦ ϕ−1
i : ϕi(Ui ∩ Uβ) → ϕβ(Ui ∩ Uβ)

are both Ck for any i, β ∈ A. An atlas is called finite if it contains finitely many charts.

2

Under review as a conference paper at ICLR 2024

Definition 3 (Smooth Manifold). A smooth manifold is a manifold M together with a C∞ atlas.

Classical examples of smooth manifolds are the Euclidean space, the torus, and the unit sphere.
Furthermore, we define Cs functions on a smooth manifold M as follows:

Definition 4 (Cs functions on M). Let M be a smooth manifold and f : M → R be a function on
M. A function f : M → R is Cs if for any chart (U, ϕ) on M, the composition f ◦ϕ−1 : ϕ(U) → R
is a continuously differentiable up to order s.

We next define the C∞ partition of unity, which is an important tool for studying functions on
manifolds.

Definition 5 (Partition of Unity, Definition 13.4 in Tu (2011)). A C∞ partition of unity on a manifold
M is a collection of C∞ functions {ρi}i∈A with ρi : M → [0, 1] such that for any x ∈ M,

1. there is a neighbourhood of x where only a finite number of the functions in {ρi}i∈A are
nonzero;

2.
∑
i∈A

ρi(x) = 1.

An open cover of a manifold M is called locally finite if every x ∈ M has a neighborhood that
intersects with a finite number of sets in the cover. The following proposition shows that a C∞

partition of unity for a smooth manifold always exists.

Proposition 1 (Existence of a C∞ partition of unity, Theorem 13.7 in Tu (2011)). Let {Ui}i∈A be a
locally finite cover of a smooth manifold M. Then there is a C∞ partition of unity {ρi}∞i=1 where
every ρi has a compact support such that supp(ρi) ⊂ Ui.

Let {(Ui, ϕi)}i∈A be a C∞ atlas of M. Proposition 1 guarantees the existence of a partition of unity
{ρi}i∈A such that ρi is supported on Ui. To characterize the curvature of a manifold, we adopt the
geometric concept: reach.

Definition 6 (Reach (Federer, 1959; Niyogi et al., 2008)). Denote

G =

{
x ∈ RD : ∃ p ̸= q ∈ M such that ∥x− p∥2 = ∥x− q∥2 = inf

y∈M
∥x− y∥2

}
.

as the set of points with at least two nearest neighbors on M. The closure of G is called the medial
axis of M. Then the reach of M is defined as

τ = inf
x∈M

inf
y∈G

∥x− y∥2.

Reach has a simple geometrical interpretation: for every point x ∈ M, the osculating circle’s radius
is at least τ . A large reach for M indicates that the manifold changes slowly.

2.2 BESOV FUNCTIONS ON A SMOOTH MANIFOLD

We next define the Besov function space on the smooth manifold M, which generalizes more elemen-
tary function spaces such as the Sobolev and Hölder spaces. Roughly speaking, functions in the Besov
space are only required to have weak derivatives with bounded total variation. Notably, this includes
functions with spatially heterogeneous smoothness, which requires more locally adaptive methods to
achieve optimal estimation errors Donoho et al. (1998). Please see Appendix A for examples and
how kernel ridge regressions, including the Neural Tangent Kernels, cannot be optimal on Besov
functions. To define Besov functions rigorously, we first introduce the modulus of smoothness.

Definition 7 (Modulus of Smoothness (DeVore & Lorentz, 1993; Suzuki, 2018)). Let Ω ⊂ RD. For
a function f : RD → R be in Lp(Ω) for p > 0, the r-th modulus of smoothness of f is defined by

wr,p(f, t) = sup
∥h∥2≤t

∥∆r
h(f)∥Lp , where

∆r
h(f)(x) =

{∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh) if x ∈ Ω,x+ rh ∈ Ω,

0 otherwise.

3

Under review as a conference paper at ICLR 2024

Definition 8 (Besov Space Bα
p,q(Ω)). For 0 < p, q ≤ ∞, α > 0, r = ⌊α⌋+ 1, define the seminorm

| · |Bα
p,q

as

|f |Bα
p,q(Ω) :=

(∫ ∞

0

(t−αwr,p(f, t))
q dt

t

) 1
q

if q < ∞,

supt>0 t
−αwr,p(f, t) if q = ∞.

The norm of the Besov space Bs
p,q(Ω) is defined as ∥f∥Bα

p,q(Ω) := ∥f∥Lp(Ω) + |f |Bα
p,q(Ω). Then the

Besov space is defined as Bα
p,q(Ω) = {f ∈ Lp(Ω)|∥f∥Bα

p,q
< ∞}.

Moreover, we show that functions in the Besov space can be decomposed using B-spline basis
functions in the following proposition.
Proposition 2 (Decomposition of Besov functions). Any function f in the Besov space Bα

p,q, α > d/p

can be decomposed using B-spline of order m,m > α: for any x ∈ Rd, we have

f(x) =

∞∑
k=0

∑
s∈J(k)

ck,s(f)Mm,k,s(x), (1)

where J(k) := {2−ks : s ∈ [−m, 2k+m]d ⊂ Zd}, Mm,k,s(x) := Mm(2k(x−s)), and Mk(x) =∏d
i=1 Mk(xi) is the cardinal B-spline basis function which can be expressed as a polynomial:

Mm(z) =
1

m!

m+1∑
j=1

(−1)j
(
m+ 1

j

)
(z − j)m+

= ((m+ 1)/2)m
1

m!

m+1∑
j=1

(−1)j
(
m+ 1

j

)(
z − j

(m+ 1)/2

)m

+

.

(2)

We next define Bα
p,q functions on M.

Definition 9 (Bα
p,q Functions on M (Geller & Pesenson, 2011; Tribel, 1992)). Let M be a compact

smooth manifold of dimension d. Let {(Ui, ϕi)}CM
i=1 be a finite atlas on M and {ρi}CM

i=1 be a partition
of unity on M such that supp(ρi) ⊂ Ui. A function f : M → R is in Bα

p,q(M) if

∥f∥Bα
p,q(M) :=

CM∑
i=1

∥(fρi) ◦ ϕ−1
i ∥Bα

p,q(Rd) < ∞. (3)

Since ρi is supported on Ui, the function (fρi)◦ϕ−1
i is supported on ϕ(Ui). We can extend (fρi)◦ϕ−1

i

from ϕ(Ui) to Rd by setting the function to be 0 on Rd \ ϕ(Ui). The extended function lies in the
Besov space Bs

p,q(Rd) (Tribel, 1992, Chapter 7).

2.3 ARCHITECTURE OF CONVRESNEXT

We introduce the architecture of ConvResNeXts. ConvResNeXts have three main features: convolu-
tion kernel, residual connections, and parallel architecture.

Consider one-sided stride-one convolution in our network. Let W = {Wj,k,l} ∈ Rw′×K×w be
a convolution kernel with output channel size w′, kernel size K and input channel size w. For
z ∈ RD×w, the convolution of W with z gives y ∈ RD×w′

such that

y = W ⋆ z, yi,j =

K∑
k=1

w∑
l=1

Wj,k,lzi+k−1,l, (4)

where 1 ≤ i ≤ D, 1 ≤ j ≤ w′ and we set zi+k−1,l = 0 for i + k − 1 > D, as demonstrated in
Figure 1(a).

The building blocks of ConvResNeXts are residual blocks. Given an input x, each residual block
computes x+ F (x), where F is a subnetwork called bottleneck, consisting of convolutional layers.

In ConvResNeXts, a parallel architecture is introduced to each building block, which enables
multiple “paths” in each block. In this paper, we study the ConvResNeXts with rectified linear unit
(ReLU) activation function, i.e., ReLU(z) = max{z, 0}. We next provide the detailed definition of
ConvResNeXts as follows:

4

Under review as a conference paper at ICLR 2024

(a)

x

+
+

+

f(x)

id

id

id f1,1
. . . f1,M

fN,1

. . .

fN,M

. . .

(b)

Figure 1: (a) Demonstration of the convolution operation W ∗ z, where the input is z ∈ RD×w,
and the output is W ∗ z ∈ RD×w′

. Here Wj,:,: is a D × w matrix for the j-th output channel. (b)
Demonstration of the ConvResNeXt. f1,1 . . . fN,M are the building blocks, each building block is a
convolution neural network.

Definition 10. Let the neural network comprise N residual blocks, each residual block has a parallel
architecture with M building blocks, and each building block contains L layers. The number of
channels is w, and the convolution kernel size is K. Given an input x ∈ RD, a ConvResNeXt with
ReLU activation function can be represented as

f(x) = Wout ·

(
M∑

m=1

fN,m + id

)
◦ · · · ◦

(
M∑

m=1

f1,m + id

)
◦ P (x),

fn,m = W
(n,m)
L ⋆ ReLU

(
W

(n,m)
L−1 ⋆ · · · ⋆ ReLU

(
W

(n,m)
1 ⋆ x

))
,

where id is the identity operator, P : RD → RD×w0 is the padding operator satisfying P (x) =

[x, 0 . . . 0] ∈ RD×w, {W(n,m)
l }Ll=1 is a collection of convolution kernels for n = 1, . . . , N,m =

1, . . . ,M , Wout ∈ RwL denotes the linear operator for the last layer, and ⋆ is the convolution
operation defined in (4).

The structure of ConvResNeXts is shown in Figure 1(b). When M = 1, the ConvResNeXt defined
in Definition 10 reduces to a ConvResNet. For notational simplicity, we omit biases in the neural
network structure by extending the input dimension and padding the input with a scalar 1 (See
Proposition 18 for more details). The channel with 0’s is used to accumulate the output.

3 THEORY

In this section, we study a binary classification problem on M ⊆ [−1, 1]D. Specifically, we are given
i.i.d. samples {xi, yi}ni=1 ∼ D where xi ∈ M and yi ∈ {0, 1} is the label. The label y follows the
Bernoulli-type distribution

P(y = 1|x) = exp(f∗(x))

1 + exp(f∗(x))
and P(y = 0|x) = 1

1 + exp(f∗(x))

for some f∗ : M → R belonging to the Besov space. More specifically, we make the following
assumption on f∗.

Assumption 1. Let 0 < p, q ≤ ∞, d/p < α < ∞. Assume f∗ ∈ Bα
p,q(M) and ∥f∗∥Bα

p,q(M) ≤ CF

for some constant CF > 0.

To learn f∗, we minimize the empirical logistic risk over the training data:

f̂ = argmin
f∈FConv

1

n

n∑
i=1

[yi log(1 + exp(−f(xi))) + (1− yi) log(1 + exp(f(xi)))] , (5)

where FConv is some neural network class specified later. For notational simplicity, we denote the
empirical logistic risk function in (5) as Ln(f), and denote the population logistic risk as

ED[L(f)] = E(x,y)∼Dy log(1 + exp(−f(x))) + (1− y) log(1 + exp(f(x))).

5

Under review as a conference paper at ICLR 2024

We next specify the class of ConvResNeXts for learning f∗:

FConv(N,M,L,K,w,Bres, Bout) =
{
f | f is in the form of (10) with N residual blocks. Every

residual block has M building blocks with each building block containing L layers.
Each layer has kernel size bounded by K, number of channels bounded by w,

N∑
n=1

M∑
m=1

L∑
ℓ=1

∥W(n,m)
ℓ ∥2F ≤ Bres, ∥Wout∥2F ≤ Bout, f(x) ∈ [0, 1] for any x ∈ M.

}
.

Note that the hyperparameters of FConv will be specified in our theoretical analysis later.

As can be seen, FConv contains the Frobenius norm constraints of the weights. For the sake of com-
putational convenience in practice, such constraints can be replaced with weight decay regularization
the residual blocks and the last fully connected layer separately. More specifically, we can use the
following alternative formulation:

f̃ = argmin
f∈FConv(N,M,L,K,w,∞,∞)

Ln(f) + λ1

N∑
n=1

M∑
m=1

L∑
ℓ=1

∥W(n,m)
ℓ ∥2F + λ2∥Wout∥2F,

where λ1, λ2 > 0 are properly chosen regularization parameters.

3.1 APPROXIMATION THEORY

In this section, we provide a universal approximation theory of ConvResNeXts for Besov functions
on a smooth manifold:

Theorem 3. For any Besov function f0 on a smooth manifold satisfying p, q ≥ 1, α− d/p > 1,

∥f0∥Bα
p,q(M) ≤ CF,

for any P > 0 and any ConvResNeXt class FConv(N,M,L,K,w,Bres, Bout) satisfying L =
L′ + L0 − 1, L′ ≥ 3, where L0 = ⌈ D

K−1⌉, and

MN ≥ CMP, w ≥ C1(dm+D), Bres ≤ C2L/K,

Bout ≤ C3C
2
F((dm+D)LK)L(CMP)L−2/p,

(6)

there exists f ∈ FConv(N,M,L,K,w,Bres, Bout) such that

∥f − f0∥∞ ≤ CFCM

(
C4P

−α/d + C5 exp(−C6L
′ logP)

)
, (7)

where C1, C2, C3 are universal constants and C4, C5, C6 are constants that only depends on d
and m, d is the intrinsic dimension of the manifold and m is an integer satisfying 0 < α <
min(m,m− 1 + 1/p).

The approximation error of the network is bounded by the sum of two terms. The first term is a
polynomial decay term that decreases with the size of the neural network and represents the trailing
term of the B-spline approximation. The second term reflects the approximation error of neural
networks to piecewise polynomials, decreasing exponentially with the number of layers. The proof is
deferred to Section 4.1 and the appendix.

3.2 ESTIMATION THEORY

Theorem 4. Suppose Assumption 1 holds. Set L = L′ + L0 − 1, L′ ≥ 3, where L0 = ⌈ D
K−1⌉, and

MN ≥ CMP, P = O(n
1−2/L

2α/d(1−1/L)+1−2/pL), w ≥ C1(dm+D).

Let f̂ be the global minimizer given in (5) with the function class F =
FConv(N,M,L,K,w,Bres, Bout). Then we have

ED[L(f̂(x), y)] ≤ ED[L(f∗(x), y)] + C7

(K− 2
L−2w

3L−4
L−2 L

3L−2
L−2

n

) α/d(1−2/L)
2α/d(1−1/L)+1−2/(pL)

+ C8 exp(−C6L
′),

where the logarithmic terms are omitted. C1 is the constant defined in Theorem 3, C7, C8 are
constants that depend on CF, CM, d,m, K is the size of the convolution kernel.

6

Under review as a conference paper at ICLR 2024

We would like to make the following remarks about the results:

• Strong adaptivity: By setting the width of the neural network to w = 2C1D, the model can adapt
to any Besov functions on any smooth manifold, provided that dm ≤ D. This remarkable flexibility
can be achieved simply by tuning the regularization parameter. The cost of overestimating the width
is a slight increase in the estimation error. Considering the immense advantages of this more adaptive
approach, this mild price is well worth paying.

• No curse of dimensionality: the above error rate only depends polynomially on the ambient
dimension D and exponentially on the hidden dimension d. Since in real data, the hidden dimension
d can be much smaller than the ambient dimension D, this result shows that neural networks can
explore the low-dimension structure of data to overcome the curse of dimensionality.

• Overparameterization is fine: the number of building blocks in a ConvResNeXt does not
influence the estimation error as long as it is large enough. In other words, this matches the empirical
observations that neural networks generalize well despite overparameterization.

• Close to minimax rate: The lower bound of the 1-Lipschitz error for any estimator θ is

min
θ

max
f∗∈Bα

p,q

L(θ(D), f∗) ≳ n− α/d
2α/d+1 .

where ≳ notation hides a factor of constant. The proof can be found in Appendix E. Comparing to
the minimax rate, we can see that as L → ∞, the above error rate converges to the minimax rate up to
a constant term. In other words, overparameterized ConvResNeXt can achieve close to the minimax
rate in estimating functions in Besov class. In comparison, all kernel ridge regression including any
NTKs will have a suboptimal rate lower bounded by 2α−d

2α , which is suboptimal.

• Deeper is better: with larger L, the error rate decays faster with n and get closer to the minimax
rate. This indicates that deeper model can achieve better performance than shallower models when
the training set is large enough.

• Tradeoff between width and depth: With a fixed budget in the number of parameters, the tradeoff
between width and depth is crucial for achieving the best performance, and this often requires
repeated, time-consuming experiments. On the other hand, our results suggests that such a tradeoff
less important in a ResNeXt. The lower bound of error does not depend on the arrangements of the
residual blocks M and N , as long as their product is large enough. This can partly explain the benefit
of ResNeXt over other architecture.

By choosing L = O(log(n)), the second term in the error can be merged with the first term, and
close to the minimax rate can be achieved:
Corollary 5. Given the conditions in Theorem 4, set the depth of each block is L = O(log(n)) and
then the estimation error of the empirical risk minimizer f̂ satisfies

ED[L(f̂(x), y)] ≤ ED[L(f∗)] + Õ(n− α/d
2α/d+1

(1−o(1))),

where Õ(·) omits the logarithmic term.

The proof of Theorem 4 is deferred to Section 4.2 and Section D.2. The key technique is computing
the critical radius of the local Gaussian complexity by bounding the covering number of weight-
decayed ConvResNeXts. This technique provides a tighter bound than choosing a single radius of the
covering number as in Suzuki (2018); Zhang & Wang (2022), for example. The covering number of
an overparameterized ConvResNeXt with norm constraint (Lemma 6) is one of our key contributions.

4 PROOF OVERVIEW

4.1 APPROXIMATION ERROR

We follow the method in Liu et al. (2021) to construct a neural network that achieves the approximation
error we claim. It is divided into the following steps:

• Step 1: Decompose the target function into the sum of locally supported functions.

In this work, we adopt a similar approach to (Liu et al., 2021) and partition M using a finite number
of open balls on RD. Specifically, we define B(ci, r) as the set of unit balls with center ci and radius
r such that their union covers the manifold of interest, i.e., M ⊆ ∪CM

i=1B(ci, r). This allows us to

7

Under review as a conference paper at ICLR 2024

partition the manifold into subregions Ui = B(ci, r)∩M, and further decompose a smooth function
on the manifold into the sum of locally supported smooth functions with linear projections. The
existence of function decomposition is guaranteed by the existence of partition of unity stated in
Proposition 1. See Section C.1 for the detail.

• Step 2: Locally approximate the decomposed functions using cardinal B-spline basis functions.
In the second step, we decompose the locally supported Besov functions achieved in the first step
using B-spline basis functions. The existence of the decomposition was proven by Dũng (2011),
and was applied in a series of works (Zhang & Wang, 2022; Suzuki, 2018; Liu et al., 2021). The
difference between our result and previous work is that we define a norm on the coefficients and
bound this norm, instead of bounding the maximum value. The detail is deferred to Section C.2.

• Step 3: Approximate the polynomial functions using neural networks. In this section, we follow
the method in Zhang & Wang (2022); Suzuki (2018); Liu et al. (2021) and show that neural networks
can be used to approximate polynomial functions, including B-spline basis functions and the distance
function. The key technique is to use a neural network to approximate square function and multiply
function (Barron, 1993). The detail is deferred to the appendix. Specifically, Lemma 17 proves that
a neural network with width w = O(dm) and depth L can approximate B-spline basis functions,
and the error decreases exponentially with L; Similarly, Proposition 9 shows that a neural network
with width w = O(D) can approximately calculate the distance between two points d2(x; c), with
precision decreasing exponentially with the depth.

• Step 4: Use a ConvResNeXt to Approximate the target function. Using the results above, the
target function can be (approximately) decomposed as

CM∑
i=1

P∑
j=1

ai,kj ,sj
Mm,kj ,sj

◦ ϕi × 1(x ∈ B(ci, r)). (8)

We first demonstrate that a ReLU neural network taking two scalars a, b as the input, denoted as
a×̃b, can approximate

y × 1(x ∈ Br,i),

where ×̃ satisfy that y×̃1 = y for all y, and y×̃x̃ = 0 if any of x or y is 0, and the soft indicator
function 1̃(x ∈ Br,i) satisfy 1̃(x ∈ Br,i) = 1 when x ∈ Br,i, and 1̃(x ∈ Br,i) = 0 when
x /∈ Br+∆,i. The detail is deferred to Section C.3.

Then, we show that it is possible to construct MN = CMP number of building blocks, such that
each building block is a feedforward neural network with width C1(md+D) and depth L, where m
is an integer satisfying 0 < α < min(m,m− 1 + 1/p). The k-th building block (the position of the
block does not matter) approximates

ai,kj ,sj
Mm,kj ,sj

◦ ϕi × 1(x ∈ B(ci, r)),

where i = ceiling(k/N), j = rem(k,N). Each building block has where a sub-block with width
D and depth L − 1 approximates the chart selection, a sub-block with width md and depth L − 1
approximates the B-spline function, and the last layer approximates the multiply function. The norm
of this block is bounded by

L∑
ℓ=1

∥W(i,j)
ℓ ∥2F ≤ O(22k/LdmL+DL). (9)

Making use of the 1-homogeneous property of the ReLU function, by scaling all the weights in
the neural network, these building blocks can be combined into a neural network with residual
connections, that approximate the target function and satisfy our constraint on the norm of weights.
See Section C.4 for the detail.

By applying Lemma 12, which shows that any L-layer feedforward neural network can be reformu-
lated as an L+ L0 − 1-layer convolution neural network, the neural network constructed above can
be converted into a ConvResNeXt that satisfies the conditions in Theorem 3.

4.2 ESTIMATION ERROR

We first prove the covering number of an overparameterized ConvResNeXt with norm-constraint as
in Lemma 6, then compute the critical radius of this function class using the covering number as in
Corollary 19. The critical radius can be used to bound the estimation error as in Theorem 14.20 in
Wainwright (2019). The proof is deferred to Section D.2.

8

Under review as a conference paper at ICLR 2024

Lemma 6. Consider a neural network defined in Definition 10. Let the last layer of this neural
network is a single linear layer with norm ∥Wout∥2F ≤ Bout. Let the input of this neural network
satisfy ∥x∥2 ≤ 1,∀x, and is concatenated with 1 before feeding into this neural network so that part
of the weight plays the role of the bias. The covering number of this neural network is bounded by

logN (·, δ) ≲ w2LB
1

1−2/L
res K

2−2/L
1−2/L

(
B

1/2
out exp((KBres/L)

L/2)
) 2/L

1−2/L δ−
2/L

1−2/L , (10)
where the logarithmic term is omitted.

The key idea of the proof is to split the building block into two types (“small blocks” and “large
blocks”) depending on whether the total norm of the weights in the building block is smaller than
ϵ or not. By properly choosing ϵ, we prove that if all the “small blocks” in this neural network are
removed, the perturbation to the output for any input ∥x∥ ≤ 1 is no more than δ/2, so the covering
number of the ConvResNeXt is only determined by the number of “large blocks”, which is no more
than Bres/ϵ.

Proof. Using the inequality of arithmetic and geometric means, from Proposition 20, Proposition 22
and Proposition 23, if any residual block is removed, the perturbation to the output is no more than

(KBm/L)L/2B
1/2
out exp((KBres/L)

L/2),
where Bm is the total norm of parameters in this block. Because of that, the residual blocks can be
divided into two kinds depending on the norm of the weights Bm < ϵ (“small blocks”) and Bm ≥ ϵ
(“large blocks”). If all the “small blocks” are removed, the perturbation to the output for any input
∥x∥2 ≤ 1 is no more than

exp((KBres/L)
L/2)B

1/2
out

∑
m:Bm<ϵ

(KBm/L)L/2

≤ exp((KBres/L)
L/2)B

1/2
out

∑
m:Bm<ϵ

(KBm/L)(Kϵ/L)L/2−1

≤ exp((KBres/L)
L/2)KL/2BresB

1/2
out (ϵ/L)

L/2−1/L.

Choosing ϵ = L

(
δL

2 exp((Bres/L)L/2)KL/2BresB
1/2
out

) 1
L/2−1

, the perturbation above is no more than

δ/2. The covering number can be determined by the number of the “large blocks” in the neural
network, which is no more than Bres/ϵ.

As for any block, BinLpost ≤ B
1/2
out exp((KBres/L)

L/2), taking our chosen ϵ finishes the proof,
where Bin is the upper bound of the input to this block defined in Proposition 13, and Lpost is the
Lipschitz constant of all the layers following the block.

Remark 1. The proof of Lemma 6 shows that under weight decay, the building blocks in a Con-
vResNeXt are sparse, i.e. only a finite number of blocks contribute non-trivially to the network even
though the model can be overparameterized. This explains why a ConvResNeXt can generalize well
despite overparameterization, and provide a new perspective in explaining why residual connections
improve the performance of deep neural networks.

5 DISCUSSIONS

We compare the Besov space with the Hölder and Sobolev spaces, which are also popular in existing
literature. The Hölder space Hs,α requires the functions to be differentiable everywhere up to the
s-th order. The Sobolev space slightly generalizes the Hölder space, but still requires high order
(weak) differentiability. In contrast, the Besov space Bs

p,q does not require weak differentiability, and
therefore is more general and desirable than the Hölder and Sobolev spaces. Existing work has shown
that the Besov space can capture important features, such as edges in image processing (Jaffard et al.,
2001). In particular, the Hölder and Sobolev spaces are special cases of the Besov space:

Hs,α = W s+α,∞ ⊆ Bs+α
∞,∞ ⊆ Bs+α

p,q

for any 0 < p, q ≤ ∞, s ∈ N and α ∈ (0, 1]. Due to the generality of the Besov space, existing
literature has been shown that that kernel ridge estimators, including neural tangent kernel only attain
a sub-optimal rate for learning Besov functions (Suzuki & Nitanda, 2021), which is worse than deep
neural networks such as ConvResNeXts.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information theory, 39(3):930–945, 1993.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848,
2017.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Ronald A DeVore and George G Lorentz. Constructive approximation, volume 303. Springer Science
& Business Media, 1993.

David L Donoho, Richard C Liu, and Brenda MacGibbon. Minimax risk over hyperrectangles, and
implications. The Annals of Statistics, pp. 1416–1437, 1990.

David L Donoho, Iain M Johnstone, et al. Minimax estimation via wavelet shrinkage. The annals of
Statistics, 26(3):879–921, 1998.

Dinh Dũng. Optimal adaptive sampling recovery. Advances in Computational Mathematics, 34(1):
1–41, 2011.

Herbert Federer. Curvature measures. Transactions of the American Mathematical Society, 93(3):
418–491, 1959.

Daryl Geller and Isaac Z Pesenson. Band-limited localized parseval frames and besov spaces on
compact homogeneous manifolds. Journal of Geometric Analysis, 21(2):334–371, 2011.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural informa-
tion processing systems, pp. 2672–2680, 2014.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent
neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing,
pp. 6645–6649. IEEE, 2013.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international conference
on robotics and automation (ICRA), pp. 3389–3396. IEEE, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Stéphane Jaffard, Yves Meyer, and Robert D Ryan. Wavelets: tools for science and technology.
SIAM, 2001.

Michael Kohler and Adam Krzyżak. Adaptive regression estimation with multilayer feedforward
neural networks. Nonparametric Statistics, 17(8):891–913, 2005.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in
neural information processing systems, 4, 1991.

10

Under review as a conference paper at ICLR 2024

John M Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer Science &
Business Media, 2006.

Hao Liu, Minshuo Chen, Tuo Zhao, and Wenjing Liao. Besov function approximation and binary
classification on low-dimensional manifolds using convolutional residual networks. In International
Conference on Machine Learning, pp. 6770–6780. PMLR, 2021.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

Enno Mammen and Sara van de Geer. Locally adaptive regression splines. The Annals of Statistics,
25(1):387–413, 1997.

Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds with
high confidence from random samples. Discrete & Computational Geometry, 39:419–441, 2008.

Kenta Oono and Taiji Suzuki. Approximation and non-parametric estimation of resnet-type convolu-
tional neural networks. In International conference on machine learning, pp. 4922–4931. PMLR,
2019.

Leslie N Smith. A disciplined approach to neural network hyper-parameters: Part 1–learning rate,
batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820, 2018.

Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov spaces:
optimal rate and curse of dimensionality. arXiv preprint arXiv:1810.08033, 2018.

Taiji Suzuki and Atsushi Nitanda. Deep learning is adaptive to intrinsic dimensionality of model
smoothness in anisotropic besov space. Advances in Neural Information Processing Systems, 34:
3609–3621, 2021.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 31, 2017.

H Tribel. Theory of function space ii. Monographs in Mathematics, 78, 1992.

Loring W Tu. Manifolds. In An Introduction to Manifolds, pp. 47–83. Springer, 2011.

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. doi:
10.1017/9781108627771.013.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deepnet:
Scaling transformers to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1492–1500, 2017.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:
103–114, 2017.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends in deep learning
based natural language processing. ieee Computational intelligenCe magazine, 13(3):55–75, 2018.

Kaiqi Zhang and Yu-Xiang Wang. Deep learning meets nonparametric regression: Are weight-
decayed dnns locally adaptive? arXiv preprint arXiv:2204.09664, 2022.

Qiao Zhang, Zhipeng Cui, Xiaoguang Niu, Shijie Geng, and Yu Qiao. Image segmentation with
pyramid dilated convolution based on resnet and u-net. In Neural Information Processing: 24th
International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings,
Part II 24, pp. 364–372. Springer, 2017.

11

Under review as a conference paper at ICLR 2024

CONTENTS

1 Introduction 1

2 Preliminaries 2

2.1 Smooth manifold . 2

2.2 Besov functions on a smooth manifold . 3

2.3 Architecture of ConvResNeXt . 4

3 Theory 5

3.1 Approximation theory . 6

3.2 Estimation theory . 6

4 Proof overview 7

4.1 Approximation error . 7

4.2 Estimation error . 8

5 Discussions 9

A Why Besov Classes? 12

B Numerical Simulation 13

C Proof of the approximation theory 14

C.1 Decompose the target function into the sum of locally supported functions. 14

C.2 Locally approximate the decomposed functions using cardinal B-spline basis functions. 15

C.3 Neural network for chart selection . 16

C.4 Constructing the neural network to Approximate the target function 17

C.5 Constructing a convolution neural network to approximate the target function . . . 19

D Proof of the estimation theory 19

D.1 Covering number of a neural network block . 19

D.2 Proof of Theorem 4 . 20

E Lower bound of error 21

F Supporting theorem 21

A WHY BESOV CLASSES?
In this section, we discuss why we choose to consider the Besov class of functions and why this
makes our results particularly interesting.

To see this, we need to first define two smaller function classes: the Holder class and the Sobolev
class. Instead of giving fully general definitions for these function classes let us illustrate their
main differences using univariate functions defined on [0, 1]. We also introduce the so-called Total
Variation class — which is sandwiched in between Besov(p = 1, q = 1) and Besov(p = 1, q = ∞).

12

Under review as a conference paper at ICLR 2024

• Holder class functions satisfy |f (α)(x)| < C for all x.

• Sobolev class functions satisfy
∫
[0,1]

|f (α)(x)|2dx < C

• Total Variation class functions satisfy
∫
[0,1]

|f (α)(x)|dx < C

The allows This means that f (α)(x) can be very large at some places, e.g., Dirac delta functions,
while Holder and Sobolev class functions cannot contain such spikes (no longer integrable in Sobolev
norm above).

Generically speaking under the appropriate scaling: Holder ⊂ Sobolev ⊂ Besov. The Besov
space contains functions with heterogeneous smoothness while Holder and Sobolev classes contain
functions with homogeneous smoothness. Despite the Besov space being larger, it has the same
minimax rate of n−(2α)/(2α+d) as the smaller Holder and Sobolev class.

A new perspective on overparameterized NN. We study the adaptivity of deep networks in
overparameterized regimes. The most popular method for understanding overparameterization is
through the neural tangent kernel (NTK) regime. However, based on the classical linear smoother
lower-bound for estimating functions in Besov classes with p = 1 Donoho et al. (1990; 1998), all
kernel ridge regression including any NTKs will have a suboptimal rate lower bounded by n− 2α−d

2α .
To say it differently, there is a formal separation between NTKs and the optimal method. The same
separation does not exist in smaller function classes such as Sobolev and Holders because they are
more homogeneously smooth.

Examples of Besov class functions include piecewise linear functions and piecewise quadratic
functions that are smoother in some regions and more wiggly in other regions; see e.g., Figure 2 and
Figure 4 of Mammen & van de Geer (1997).

In summary, in order to study what neural networks can achieve that is not achievable by kernels, e.g.,
NTK; we had to define and approximate Besov class functions. Our results show that ConvResNeXT
not only overcomes the curse of dimensionality of the ambient space, but also has nearly optimal
dependence in the intrinsic dimension d — in contrast to the kernel-based approaches.

We believe this offers a new perspective to understand overparameterization and is more fine-grained
that of NTK.

B NUMERICAL SIMULATION

In this section, we validate our theoretical findings with numerical experiments. We focus on
nonparametric regression problems for simplicity and consider the following function f0 : RD → R:

f0(x) = f̃0(Ux) = f̃0(x̃)

where U ∈ RD×D is a randomly-chosen rotation matrix and x̃ = Ux ∈ RD satisfies that for
t ∈ [0, 1], the first three coordinates

x̃1 = t sin(4πt), x̃2 = t cos(4πt), x̃3 = t(1− t),

and the remaining coordinates of x̃ are irrelevant features iid sampled from a uniform distribution.
Note that the first three coordinates of x̃ are completely determined by a scalar t, and the corresponding
label y is determined by t via a piecewise linear function, i.e., for a bag of t1, ..., tn ∈ [0, 1], we can
generate a labeled dataset by yi = g0(ti) +N (0, 1). An illustration of the function f0 is given in
Figure 2 where colors indicate the value.

Role of irrelevant features and rotation. The purpose of irrelevant features and rotation is to make
the problem harder and more interesting.

xi,1 = ti sin(4πti), xi,2 = ti cos(4πti), xi,3 = ti(1− ti),

where ti, i = 1, . . . , n are evenly spaced over [0, 1]. This process generates a 1-dimensional manifold
in R3 which does not intersect with itself, as shown in Figure 2.

Baseline methods To estimate the underlying function on a manifold, we conducted experiments
with ConvResNeXts (this paper), as well as a mix of popular off-the-shelf methods including kernel
ridge regression, XGBoost, Decision tree, Lasso regression, and Gaussian Processes.

13

Under review as a conference paper at ICLR 2024

Figure 2: Illustration of a Besov function on 1-dimensional manifold embedded in a 3-dimensional
ambient space.

Hyperparameter choices. In all the experiments the following architecture was used for PNN:
w = 6, L = 10, M = 4, batch size = 128, learning rate = 1e− 3

In all the experiments the following architecture was used for ConvResNeXt: w = 8, L = 6, K = 6,
M = 2, N = 2. Batch size and learning rate were adjusted for each task.

For off-the-shelf methods, their hyperparameters are either tuned automatically or avoided using tools
provided from the package, e.g., GP. For GP, a Matern kernel is used, and for ridge regression, the
standard Gaussian RBF kernel is used.

Results. Our results are reported in Figure 3, 4, 5 which reports the mean square error (MSE) as
a function of the effective degree-of-freedom of each method, ambient dimension D and also the
number of data points n respectively.

As we can see in Figure 3, ConvResNeXt is able to achieve the lowest MSE at a relatively smaller
degree of freedom. It outperforms the competing methods with notable margins despite using a
simpler hypothesis.

Figure 4 illustrates that standard non-parametric methods such as kernel ridge regression and Gaussian
processes deteriorate quickly as the ambient dimension gets bigger. On the contrary, ConvResNeXt
and PNN obtain results that are almost dimension-independent due to the representation learning that
helps identify the low-dimensional manifold.

Finally, the log-log plot in Figure 5demonstrates that there is a substantially different rate of con-
vergence between our methods and kernel ridge regression and GPs, indicating the same formal
separation that we have established in the theoretical part — kernels must be suboptimal for estimating
Besov classes while the neural architectures we considered can be locally adaptive and nearly optimal
for Besov classes.

C PROOF OF THE APPROXIMATION THEORY

C.1 DECOMPOSE THE TARGET FUNCTION INTO THE SUM OF LOCALLY SUPPORTED
FUNCTIONS.

Lemma 7. Approximating Besov function on a smooth manifold using B-spline: Let f ∈ Bα
p,q(M).

There exists a decomposition of f :

f(x) =

CM∑
i=1

f̃i ◦ ϕi(x)× 1(x ∈ B(ci, r)),

and f̃i = f · ρi ∈ Bα
p,q,

∑CM
i=1 ∥f̃i∥Bα

p,q
≤ C∥f∥Bα

p,q(M), ϕi : M → Rd are linear projections,
B(ci, r) denotes the unit ball with radius r and center ci.

14

Under review as a conference paper at ICLR 2024

Figure 3: MSE as a function of the effective degree of freedom (dof) of different methods.

Figure 4: MSE as a function of dimension D. Figure 5: MSE as function of sample size n.

The lemma is inferred by the existence of the partition of unity, which is given in Proposition 1.

C.2 LOCALLY APPROXIMATE THE DECOMPOSED FUNCTIONS USING CARDINAL B-SPLINE
BASIS FUNCTIONS.

Proposition 8. For any function in the Besov space on a compact smooth manifold f∗ ∈ Bs
p,q(M),

any N ≥ 0, there exists an approximated to f∗ using cardinal B-spline basis functions:

f̃ =

CM∑
i=1

P∑
j=1

ai,kj ,sjMm,kj ,sj ◦ ϕi × 1(x ∈ B(ci, r)),

where m is the integer satisfying 0 < α < min(m,m− 1 + 1/p), Mm,k,s = Mm(2k(· − s)),Mm

denotes the B-spline basis function defined in (2), the approximation error is bounded by
∥f − f̃∥∞ ≤ C9CMP−α/d

and the coefficients satisfy
∥{2kjai,kj ,sj

}i,j∥p ≤ C10∥f∥Bα
p,q(M)

for some constant C9, C10 that only depends on α.

As will be shown below, the scaled coefficients 2kjai,kj ,sj corresponds to the total norm of the
parameters in the neural network to approximate the B-spline basis function, so this lemma is the key
to get the bound of norm of parameters in (11).

Proof. From the definition of Bα
p,q(M), and applying Proposition 1, there exists a decomposition of

f∗ as

f∗ =

CM∑
i=1

(fi) =

CM∑
i=1

(fi ◦ ϕ−1
i) ◦ ϕi × 1Ui

,

15

Under review as a conference paper at ICLR 2024

where fi := f∗ ·ρi, ρi satisfy the condition in Definition 5, and fi◦ϕ−1
i ∈ Bα

p,q . Using Proposition 16,
for any i, one can approximate fi ◦ ϕ−1

i with f̄i:

f̄i =

P∑
j=1

ai,kj ,sj
Mm,kj ,sj

such that ∥fi ◦ ϕ−1
i ∥∞ ≤ C1M

−α/d, and the coefficients satisfy
∥{2kjakj ,sj

}j∥p ≤ C10∥fi ◦ ϕ−1
i ∥Bα

p,q
.

Define

f̄ =

CM∑
i=1

f̄i ◦ ϕi × 1Ui
.

one can verify that ∥f − f̃∥∞ ≤ C9CMN−α/d. On the other hand, using triangular inequality (and
padding the vectors with 0),

∥{2kjai,kj ,sj
}i,j∥p ≤

CM∑
i=1

∥{2kjai,kj ,sj
}j∥p ≤

CM∑
i=1

C10∥fi ◦ ϕ−1
i ∥Bα

p,q
= C10∥f∗∥Bα

p,q(M),

which finishes the proof.

C.3 NEURAL NETWORK FOR CHART SELECTION

In this section, we demonstrate that a feedforward neural network can approximate the chart selection
function z × 1(x ∈ B(ci, r)), and it is error-free as long as z = 0 when r < d(x, ci) < R. We start
by proving the following supporting lemma:
Proposition 9. Fix some constant B > 0. For any x, c ∈ RD satisfying |xi| ≤ B and |ci| ≤ B for
i = 1, . . . , D, there exists an L-layer neural network d̃(x; c) with width w = O(d) that approximates
d2(x; c) =

∑D
i=1(xi − ci)

2 such that |d̃2(x; c)− d2(x; c)| ≤ 8DB2 exp(−C11L) with an absolute
constant C11 > 0 when d(x; c) < τ , and d̃2(x; c) ≥ τ2 when d(x; c) ≥ τ , and the norm of the
neural network is bounded by

L∑
ℓ=1

∥Wℓ∥2F + ∥bℓ∥22 ≤ C12DL.

Proof. The proof is given by construction. By Proposition 2 in Yarotsky(2017), the function f(x) =
x2 on the segment [0, 2B] can be approximated with any error ϵ > 0 by a ReLU network g having
depth and the number of neurons and weight parameters no more than c log(4B2/ϵ) with an absolute
constant c. The width of the network g is an absolute constant. We also consider a single layer ReLU
neural network h(t) = ReLU(t)− ReLU(−t), which is equal to the absolute value of the input.

Now we consider a neural network G(x; c) =
∑D

i=1 g ◦ h(xi − ci). Then for any x, c ∈ RD

satisfying |xi| ≤ B and |ci| ≤ B for i = 1, . . . , D, we have

|G(x; c)− d2(x; c)| ≤

∣∣∣∣∣
D∑
i=1

g ◦ h(xi − ci)−
D∑
i=1

(xi − ci)
2

∣∣∣∣∣
≤

D∑
i=1

∣∣g ◦ h(xi − ci)− (xi − ci)
2
∣∣

≤ Dϵ.

Moreover, define another neural network
F (x; c) = −ReLU(τ2 −Dϵ−G(x; c)) + τ2

=

{
G(x; c) +Dϵ if G(x; c) < τ2 −Dϵ,

τ2 if G(x; c) ≥ τ2 −Dϵ,

which has depth and the number of neurons no more than c′ log(4B2/ϵ) with an absolute constant c′.
The weight parameters of G are upper bounded by max{τ2, Dϵ, c log(4B2/ϵ)} and the width of G
is O(D).

16

Under review as a conference paper at ICLR 2024

If d2(x; c) < τ2, we have
|F (x; c)− d2(x; c)| = | − ReLU(τ2 −Dϵ−G(x; c)) + τ2 − d2(x; c)|

=

{
|G(x; c)− d2(x; c) +Dϵ| if G(x; c) < τ2 −Dϵ,

τ2 − d2(x; c) if G(x; c) ≥ τ2 −Dϵ.

For the first case when G(x; c) < τ2 − Dϵ, |F (x; c) − d2(x; c)| ≤ 2Dϵ since d2(x; c) can be
approximated by G(x; c) up to an error ϵ. For the second case when G(x; c) ≥ τ2 −Dϵ, we have
d2(x; c) ≥ G(x; c)−Dϵ ≥ τ2 − 2Dϵ and . Thereby we also have |F (x; c)− d2(x; c)| ≤ 2Dϵ.

If d2(x; c) ≥ τ2 instead, we will obtain G(x; c) ≥ d2(x; c) − Dϵ ≥ τ2 − Dϵ. This gives that
F (x; c) = τ2 in this case.

Finally, we take ϵ = 4B2 exp(−L/c′). Then F (x; c) is an L-layer neural network with O(L)
neurons. The weight parameters of G are upper bounded by max{τ2, 4DB2 exp(−L/c′), cL/c′}
and the width of G is O(D). Moreover, F (x; c) satisfies |F (x; c)− d2(x; c)| < 8DB2 exp(−L/c′)
if d2(x; c) ≤ τ2 and F (x; c) = τ2 if d2(x; c) ≥ τ2.

Proposition 10. There exists a single layer ReLU neural network that approximates ×̃, such that for
all 0 ≤ x ≤ C, y ∈ {0, 1}, x×̃y = x when y = 1, and x×̃y = 0 when either x = 0 or y = 0.

Proof. Consider a single layer neural network g(x, y) := A2ReLU(A1(x, y)
⊤) with no bias, where

A1 =

[
− 1

C 1
0 1

]
, A2 =

[
−C
C

]
.

Then we can rewrite the neural network g as g(x, y) = −CReLU(−x/C + y) + CReLU(y). If
y = 1, we will have g(x, y) = −CReLU(−x/C + 1) + C = x, since x ≤ C. If y = 0, we will
have g(x, y) = −CReLU(−x/C) = 0, since x ≥ 0. Thereby we can conclude the proof.

By adding a single linear layer

y =
1

R− r − 2∆
(ReLU(R−∆− x)− ReLU(r +∆− x))

after the one shown in Proposition 9, where ∆ = 8DB2 exp(−CL) denotes the error in Proposition 9,
one can approximate the indicator function 1(x ∈ B(ci, r)) such that it is error-free when d(x, ci) ≤
r or ≥ R. Choosing R ≤ τ/2, r < R−2∆, and combining with Proposition 10, the proof is finished.
Considering that fi is locally supported on B(ci, r) for all i by our method of construction, the chart
selection part does not incur any error in the output.

C.4 CONSTRUCTING THE NEURAL NETWORK TO APPROXIMATE THE TARGET FUNCTION

In this section, we focus on the neural network with the same architecture as a ResNeXt in Defini-
tion 10 but replacing each building block with a feedforward neural network, and prove that it can
achieve the same approximation error as in Theorem 3. For technical simplicity, we assume that the
target function f∗ ∈ [0, 1] without loss of generality. Then our analysis automatically holds for any
bounded function.
Theorem 11. For any f∗ under the same condition as Theorem 3, any neural network architecture
with residual connections containing N number of residual blocks and each residual block contains
M number of feedforward neural networks in parallel, where the depth of each feedforward neural
networks is L, width is w:

f = Wout ·

(
1 +

M∑
m=1

fN,m

)
◦ · · · ◦

(
1 +

M∑
m=1

f1,m

)
fn,m = W

(n,m)
L ReLU(W

(n,m)
L−1 . . .ReLU(W

(n,m)
1 x)) ◦ P (x),

where P (x) = [xT , 1, 0]T is the padding operation,

satisfying
MN ≥ CMP, w ≥ C1(dm+D),

Bres :=

N∑
n=1

M∑
m=1

L∑
ℓ=1

∥W(n,m)
ℓ ∥2F ≤ C2L,

Bout := ∥Wout∥2F ≤ C3C
2
F((dm+D)L)L(CMP)L−2/p,

(11)

17

Under review as a conference paper at ICLR 2024

there exists an instance f of this ResNeXt class, such that

∥f − f∗∥∞ ≤ CFCM

(
C4P

−α/d + C5 exp(−C6L logP)
)
, (12)

where C1, C2, C3, C4, C5, C6 are the same constants as in Theorem 3.

Proof. We first construct a parallel neural network to approximate the target function, then scale the
weights to meet the norm constraint while keeping the model equivalent to the one constructed in the
first step, and finally transform this parallel neural network into the ConvResNeXt as claimed.

Combining Lemma 17, Proposition 9 and Proposition 10, by putting the neural network in Lemma 17
and Proposition 9 in parallel and adding the one in Proposition 10 after them, one can construct
a feedforward neural network with bias with depth L, width w = O(d) + O(D) = O(d), that
approximates Mm,kj ,sj

(x)× 1(x ∈ B(ci, r)) for any i, j.

To construct the neural network with residual connections that approximates f∗, we follow the
method in Oono & Suzuki (2019); Liu et al. (2021). This network uses separate channels for the
inputs and outputs. Let the input to one residual layer be [x1, y1], the output is [x1, y1 + f(x1)]. As
a result, if one scale the outputs of all the building blocks by any scalar a, then the last channel of the
output of the entire network is also scaled by a. This property allows us to scale the weights in each
building block while keeping the model equivalent. To compensate for the bias term, Proposition 18
can be applied. This only increases the total norm of each building block by no larger than a constant
term that depends only L, which is no more than a factor of constant.

Let the neural network constructed above has parameter W̃(i,j)
1 , b̃

(i,j)

1 , . . . ,W̃
(i,j)
L , b

(i,j)
L in each

layer, one can construct a building block without bias as

W
(i,j)
1 =

[
W̃

(i,j)
1 b̃

(i,j)

1 0
0 1 0

]
, W

(i,j)
ℓ =

[
W̃

(i,j)
ℓ b̃

(i,j)

ℓ
0 1

]
W

(i,j)
L =

 0 0
0 0

W̃
(i,j)
L b̃

(i,j)

L

 .

Remind that the input is padded with the scalar 1 before feeding into the neural network, the above
construction provide an equivalent representation to the neural network including the bias, and route
the output to the last channel. From Lemma 17, it can be seen that the total square norm of this block
is bounded by (9).

Finally, we scale the weights in the each block, including the “1” terms to meet the norm constraint.
Thanks to the 1-homogeneous property of ReLU layer, and considering that the network we construct
use separate channels for the inputs and outputs, the model is equivalent after scaling. Actually the
property above allows the tradeoff between Bres and Bout. If all the weights in the residual blocks are
scaled by an arbitrary positive constant c, and the weight in the last layer Wout is scaled by c−L, the
model is still equivalent. We only need to scale the all the weights in this block with |ai,kj ,sj

|1/L,
setting the sign of the weight in the last layer as sign(ai,kj ,sj

), and place CMP number of these
building blocks in this neural network with residual connections. Since this block always output 0
in the first D + 1 channels, the order and the placement of the building blocks does not change the
output. The last fully connected layer can be simply set to

Wout = [0, . . . , 0, 1], bout = 0.

Combining Proposition 16 and Lemma 15, the norm of this ResNeXt we construct satisfy

B̄res ≤
CM∑
i=1

P∑
j=1

a
2/L
i,kj ,sj

(22k/LC14dmL+ C12DL)

≤
CM∑
i=1

P∑
j=1

(2kai,kj ,sj
)2/L(C14dmL+ C12DL)

≤ (CMP)1−2/(pL)∥{2kai,kj ,sj}∥2/Lp (C14dmL+ C12DL)

≤ (C10CF)
2/L(CMP)1−2/(pL)(C14dmL+ C12DL),

B̄out ≤ 1.

By scaling all the weights in the residual blocks by B̄
−1/2
res , and scaling the output layer by B̄

L/2
res , the

network that satisfy (11) can be constructed.

18

Under review as a conference paper at ICLR 2024

Notice that the chart selection part does not introduce error by our way of construction, we only
need to sum over the error in Section 4.1 and Section 4.1, and notice that for any x, for any linear
projection ϕi, the number of B-spline basis functions Mm,k,s that is nonzero on x is no more than
md logP , the approximation error of the constructed neural network can be proved.

C.5 CONSTRUCTING A CONVOLUTION NEURAL NETWORK TO APPROXIMATE THE TARGET
FUNCTION

In this section, we prove that any feedforward neural network can be realized by a convolution neural
network with similar size and norm of parameters. The proof is similar to Theorem 5 in (Oono &
Suzuki, 2019).

Lemma 12. For any feedforward neural network with depth L′, width w′, input dimension h and
output dimension h′, for any kernel size K > 1, there exists a convolution neural network with depth
L = L′ + L0 − 1, where L0 = ⌈ h−1

K−1⌉ number of channels w = 4w′, and the first dimension of
the output equals the output of the feedforward neural network for all inputs, and the norm of the
convolution neural network is bounded as

L∑
ℓ=1

∥Wℓ∥2F ≤ 4

L′∑
ℓ=1

∥W′
ℓ∥2F + 4w′L0,

where W′
1 ∈ Rw′×h′

;W′
ℓ ∈ Rw′×w′

, ℓ = 2, . . . , L′ − 1;W′
L′ ∈ Rh′×w′

are the weights in the
feedforward neural network, and W1 ∈ RK×w×h,Wℓ ∈ RK×w×w, ℓ = 2, . . . , L − 1;WL ∈
RK×h×w are the weights in the convolution neural network.

Proof. We follow the same method as Oono & Suzuki (2019) to construct the CNN that is equivalent
to the feedforward neural network. By combining Oono & Suzuki (2019) lemma 1 and lemma 2, for
any linear transformation, one can construct a convolution neural network with at most L0 = ⌈ h−1

K−1⌉
convolution layers and 4 channels, where h is the dimension of input, which equals D + 1 in our
case, such that the first dimension in the output equals the linear transformation, and the norm of all
the weights is no more than

L0∑
ℓ=1

∥Wℓ∥2F ≤ 4L0, (13)

where Wℓ is the weight of the linear transformation. Putting w number of such convolution neural
networks in parallel, a convolution neural network with L0 layers and 4w channels can be constructed
to implement the first layer in the feedforward neural network.

To implement the remaining layers, one choose the convolution kernel Wℓ+L0−1[:, i, j] =
[0, . . . ,W′[i, j], . . . , 0],∀1 ≤ i, j ≤ w, and pad the remaining parts with 0, such that this con-
volution layer is equivalent to the linear layer applied on the dimension of channels. Noticing that
this conversion does not change the norm of the parameters in each layer. Adding both sides of (13)
by the norm of the 2− L′-th layer in both models finishes the proof.

D PROOF OF THE ESTIMATION THEORY

D.1 COVERING NUMBER OF A NEURAL NETWORK BLOCK

Proposition 13. If the input to a ReLU neural network is bounded by ∥x∥2 ≤ Bin, the covering
number of the ReLU neural network defined in Proposition 20 is bounded by

N (FNN , δ, ∥ · ∥2) ≤
(
Bin(B/L)L/2wL

δ

)w2L

.

Proof. Similar to Proposition 20, we only consider the case ∥Wℓ∥F ≤
√
B/L. For any 1 ≤ ℓ ≤ L,

for any W1, . . .Wℓ−1,Wℓ,W
′
ℓ ,Wℓ+1, . . .WL that satisfy the above constraint and ∥Wℓ−W ′

ℓ∥F ≤ ϵ,
define g(. . . ;W1, . . .WL) as the neural network with parameters W1, . . .WL, we can see

∥g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)− g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)∥2
≤ (B/L)(L−ℓ)/2∥Wℓ −W ′

ℓ∥2∥ReLU(Wℓ−1 . . . ReLU(W1(x)))∥2
≤ (B/L)(L−1)/2Binϵ.

19

Under review as a conference paper at ICLR 2024

Choosing ϵ = δ
L(B/L)(L−1)/2 , the above inequality is no larger than δ/L. Taking the sum over ℓ, we

can see that for any W1,W
′
1, . . . ,WL,W

′
L such that ∥Wℓ −W ′

ℓ∥F ≤ ϵ,
∥g(x;W1, . . .WL)− g(x;W ′

1, . . .W
′
L))∥2 ≤ δ.

Finally, observe that the covering number of Wℓ is bounded by

N ({W : ∥W∥F ≤ B}, ϵ, ∥ · ∥F) ≤
(
2Bw

ϵ

)w2

. (14)

Substituting B and ϵ and taking the product over ℓ finishes the proof.

Proposition 14. If the input to a ReLU convolution neural network is bounded by ∥x∥2 ≤ Bin, the
covering number of the ReLU neural network defined in Definition 10 is bounded by

N (FNN, δ, ∥ · ∥2) ≤
(
Bin(BK/L)L/2wL

δ

)w2KL

.

Proof. Similar to Proposition 13, for any 1 ≤ ℓ ≤ L, for any W1, . . .Wℓ−1,Wℓ,W
′
ℓ ,Wℓ+1, . . .WL

that satisfy the above constraint and ∥Wℓ − W ′
ℓ∥F ≤ ϵ, define g(. . . ;W1, . . .WL) as the neural

network with parameters W1, . . .WL, we can see
∥g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)− g(x;W1, . . .Wℓ−1,Wℓ,Wℓ+1, . . .WL)∥2
≤ KL/2(B/L)(L−ℓ)/2∥Wℓ −W ′

ℓ∥2∥ReLU(Wℓ−1 . . . ReLU(W1(x)))∥2
≤ KL/2(B/L)(L−1)/2Binϵ,

where the first inequality comes from Proposition 24. Choosing ϵ = δ
KL/2BinL(B/L)(L−1)/2 , the

above inequality is no larger than δ/L. Taking this into (14) finishes the proof.

D.2 PROOF OF THEOREM 4

Define f̃ = argminf ED[L(f)]. From Theorem 14.20 in Wainwright (2019), for any function class
∂F that is star-shaped around f̃ , the empirical risk minimizer f̂ = argminf∈F Ln(f) satisfy

ED[L(f̂)] ≤ ED[L(f̃)] + 10δn(2 + δn) (15)

with probability at least 1− c1 exp(−c2nδ
2
n) for any δn that satisfy (19), where c1, c2 are universal

constants.

The function of neural networks is not star-shaped, but can be covered by a star-shaped function class.
Specifically, let {f − f̃ : f ∈ FConv} ⊂ {f1 − f2 : f1, f2 ∈ FConv} := ∂F .

Any function in ∂F can be represented using a ResNeXt: one can put two neural networks of the
same structure in parallel, adjusting the sign of parameters in one of the neural networks and summing
up the result, which increases M,Bres and Bout by a factor of 2. This only increases the log covering
number in (10) by a factor of constant (remind that Bres = O(1) by assumption).

Taking the log covering number of the ResNeXt (10), the sufficient condition for the critical radius as
in (19) is

n−1/2wL1/2B
1

2−4/L
res K

1−1/L
1−2/L

(
B

1/2
out exp((KBres/L)

L/2)
) 1/L

1−2/L δ
1−3/L
1−2/L
n ≲

δ2n
4
,

δn ≳ K(w2L)
1−2/L
2−2/LB

1
2−2/L
res

(
B

1/2
out exp((KBres/L)

L/2)
) 1/L

1−1/Ln− 1−2/L
2−2/L ,

(16)

where ≲ hides the logarithmic term.

Because L is 1-Lipschitz, we have
L(f) ≤ L(f̃) + ∥f − f̃∥∞.

Choosing

P = O

(K− 2
L−2w

3L−4
L−2 L

3L−2
L−2

n

)− 1−2/L
2α/d(1−1/L)+1−2/pL

 ,

and taking Theorem 3 and (16) into (15) finishes the proof.

20

Under review as a conference paper at ICLR 2024

E LOWER BOUND OF ERROR

In this section, we study the minimax lower bound of any estimator for Besov functions on a d-
dimensional manifold. It suffices to consider the manifold M as a d-dimensional hypersurface.
Without the loss of generalization, assume that ∂L(y)

∂y ≥ 0.5 for −ϵ ≤ y ≤ ϵ. Define the function
space

F =

f =

s∑
j1,...,jd=1

± ϵ

sα
×M (m)((x− j)/s)

 , (17)

where M (m) denotes the Cardinal B-spline basis function that is supported on (0, 1)d, j =
[j1, . . . , jd]. The support of each B-spline basis function splits the space into sd number of blocks,
where the target function in each block has two choices (positive or negative), so the total number of
different functions in this function class is |F| = 2s

d

. Using Dũng (2011, Theorm 2.2), we can see
that for any f ∈ F ,

∥f∥Bα
p,q

≤ ϵ

sα
sα−d/psd/p = ϵ.

For a fixed f∗ ∈ F , let D = {(xi, yi)}ni=1 be a set of noisy observations with yi = f∗(xi)+ ϵi, ϵi ∼
SubGaussian(0, σ2I). Further assume that xi are evenly distributed in (0, 1)d such that in all
regions as defined in (17), the number of samples is nj := O(n/sd). Using Le Cam’s inequality, we
get that in any region, any estimator θ satisfy

sup
f∗∈F

ED[∥θ(D)− f∗∥j] ≥
Cmϵ

16sα

as long as (ϵ
σsα)

2 ≲ sd

n , where ∥ · ∥j := 1
ni

∑
s(x−j)∈[0,1]d |f(x)| denotes the norm defined in the

block indexed by i, Cm is a constant that depends only on m. Choosing s = O(n
1

2α+d), we get
sup
f∗∈F

ED[∥θ(D)− f∗∥j] ≥ n− α
2α+d .

Observing 1
n

∑n
i=1 L((̂f(xi))) ≥ 0.5

∑n
i=1 |f(xi)− f∗(xi)| ≂ 1

sd

∑
j∈[s]d ∥f̂ − f∗∥j finishes the

proof.

F SUPPORTING THEOREM

Lemma 15. [Lemma 14 in Zhang & Wang (2022)] For any a ∈ RM̄ , 0 < p′ < p, it holds that:

∥a∥p
′

p′ ≤ M̄1−p′/p∥a∥p
′

p .

Proposition 16 (Proposition 7 in Zhang & Wang (2022)). Let α − d/p > 1, r > 0. For
any function in Besov space f∗ ∈ Bα

p,q and any positive integer M̄ , there is an M̄ -sparse
approximation using B-spline basis of order m satisfying 0 < α < min(m,m − 1 + 1/p):
f̌M̄ =

∑M̄
i=1 aki,si

Mm,ki,si
for any positive integer M̄ such that the approximation error is bounded

as ∥f̌M̄ − f∗∥r ≲ M̄−α/d∥f∗∥Bα
p,q

, and the coefficients satisfy

∥{2kiaki,si
}ki,si

∥p ≲ ∥f∗∥Bα
p,q

.

Lemma 17 (Lemma 11 in (Zhang & Wang, 2022)). Let Mm,k,s be the B-spline of order m with scale
2−k in each dimension and position s ∈ Rd: Mm,k,s(x) := Mm(2k(x− s)), Mm is defined in (2).
There exists a neural network with d-dimensional input and one output, with width wd,m = O(dm)
and depth L ≲ log(C13/ϵ) for some constant C13 that depends only on m and d, approximates
the B spline basis function Mm,k,s(x) := Mm(2k(x − s)). This neural network, denoted as
M̃m,k,s(x),x ∈ Rd, satisfy

• |M̃m,k,s(x)−Mm,k,s(x)| ≤ ϵ, if 0 ≤ 2k(xi − si) ≤ m+ 1,∀i ∈ [d],

• M̃m,k,s(x) = 0, otherwise.

• The total square norm of the weights is bounded by 22k/LC14dmL for some universal
constant C14.

Proposition 18. For any feedforward neural network f with width w and depth L with bias, there
exists a feedforward neural network f ′ with width w′ = w + 1 and depth L′ = L, such that for any
x, f(x) = f ′([xT , 1]T)

21

Under review as a conference paper at ICLR 2024

Proof. Proof by construction: let the weights in the ℓ-th layer in f be Wℓ, and the bias be bℓ, and
choose the weight in the corresponding layer in f ′ be

W′
ℓ =

[
W̃ℓ b̃ℓ
0 1

]
, ∀ℓ < L; W′

L = [W̃L b̃L].

The constructed neural network gives the same output as the original one.

Corollary 19 (Corollary 13.7 and Corollary 14.3 in Wainwright (2019)). Let

Gn(δ,F) = Ewi

[
sup

g∈F,∥g∥n≤δ

∣∣∣∣∣ 1n
n∑

i=1

wig(xi)

∣∣∣∣∣
]
,Rn(δ,F) = Eϵi

[
sup

g∈F,∥g∥n≤δ

∣∣∣∣∣ 1n
n∑

i=1

ϵig(xi)

∣∣∣∣∣
]
,

denotes the local Gaussian complexity and local Rademacher complexity respectively, where wi ∼
N (0, 1) are the i.i.d. Gaussian random variables, and ϵi ∼ uniform{−1, 1} are the Rademacher
random variables. Suppose that the function class F is star-shaped, for any σ > 0, any δ ∈ (0, σ]
such that

16√
n

∫ δn

δ2n/4σ

√
logN (F , µ, ∥ · ∥∞)dµ ≤ δ2n

4σ
satisfies

Gn(δ,F) ≤ δ2

2σ
. (18)

Furthermore, if F is uniformly bounded by b, i.e. ∀f ∈ F ,x|f(x)| ≤ b any δ > 0 such that
64√
n

∫ δn

δ2n/2b4σ

√
logN (F , µ, ∥ · ∥∞)dµ ≤ δ2n

b
.

satisfies
Rn(δ,F) ≤ δ2

b
. (19)

Proposition 20. An L-layer ReLU neural network with no bias and bounded norm
L∑

ℓ=1

∥Wℓ∥2F ≤ B

is Lipschitz continuous with Lipschitz constant (B/L)L/2

Proof. Notice that ReLU function is 1-homogeneous, similar to Proposition 4 in (Zhang & Wang,
2022), for any neural network there exists an equivalent model satisfying ∥Wℓ∥F = ∥Wℓ′∥F for any
ℓ, ℓ′, and its total norm of parameters is no larger than the original model. Because of that, it suffices
to consider the neural network satisfying ∥Wℓ∥F ≤

√
B/L for all ℓ. The Lipschitz constant of such

linear layer is ∥Wℓ|∥2 ≤ ∥Wℓ|∥F ≤
√

B/L, and the Lipschitz constant of ReLU layer is 1. Taking
the product over all layers finishes the proof.

Proposition 21. An L-layer ReLU convolution neural network with convolution kernel size K, no
bias and bounded norm L∑

ℓ=1

∥Wℓ∥2F ≤ B.

is Lipschitz continuous with Lipschitz constant (KB/L)L/2

This proposition can be proved by taking Proposition 24 into the proof of Proposition 20.
Proposition 22. Let f = fpost ◦ (1 + fNN + fother) ◦ fpre be a ResNeXt, where 1 + fNN + fother
denotes a residual block, fpre and fpost denotes the part of the neural network before and after this
residual block, respectively. fNN denotes one of the building block in this residual block and fother
denotes the other residual blocks. Assume fpre, fNN, fpost are Lipschitz continuous with Lipschitz
constant Lpre, LNN, Lpost respectively. Let the input be x, if the residual block is removed, the
perturbation to the output is no more than LpreLNNLpost∥x∥

Proof.
|fpost ◦ (1 + fNN + fother) ◦ fpre(x)− fpost ◦ (1 + fother) ◦ fpre(x)|
≤ Lpost|(1 + fNN + fother) ◦ fpre(x)− (1 + fother) ◦ fpre(x)|
= Lpost|fNN ◦ fpre(x)|
≤ LpreLNNLpost∥x∥.

22

Under review as a conference paper at ICLR 2024

Proposition 23. The neural network defined in Lemma 6 with arbitrary number of blocks has
Lipschitz constant exp((KBres/L)

L/2), where K = 1 when the feedforward neural network is the
building blocks and K is the size of the convolution kernel when the convolution neural network is
the building blocks.

Proof. Note that the m-th block in the neural network defined in Lemma 6 can be represented
as y = fm(x;ωm) + x, where fm is an L-layer feedforward neural network with no bias. By
Proposition 20 and Proposition 21, such block is Lipschitz continuous with Lipschitz constant
1+(KBm/L)L/2, where the weight parameters of the m-th block satisfy that

∑L
ℓ=1 ∥W

(m)
ℓ ∥2F ≤ Bm

and
∑M

m=1 Bm ≤ Bres.

Since the neural network defined in Lemma 6 is a composition of M blocks, it is Lipschitz with
Lipschitz constant Lres. We have

Lres ≤
M∏

m=1

(
1 +

(
KBm

L

)L/2
)

≤ exp

(
M∑

m=1

(
KBm

L

)L/2
)
,

where we use the inequality 1 + z ≤ exp(x) for any x ∈ R. Furthermore, notice that∑M
m=1(KBm/L)L/2 is convex with respect to (B1, B2, . . . , BM) when L > 2. Since

∑M
m=1 Bm ≤

Bres and Bm ≥ 0, then we have
∑M

m=1(KBm/L)L/2 ≤ (KBres/L)
L/2 by convexity. Therefore,

we obtain that Lres ≤ exp((KBres/L)
L/2).

Proposition 24. For any x ∈ Rd,w ∈ RK ,K ≤ d, ∥Conv(x,w)∥2 ≤
√
K∥x∥2∥w∥2.

Proof. For simplicity, denote xi = 0 for i ≤ 0 or i > d.

∥Conv(x,w)∥22 =
∑d

i=1⟨x[i−
K−1
2 : i+ K−1

2],w⟩2

≤
∑d

i=1 ∥x[i−
K−1
2 : i+ K−1

2]∥22∥w∥22
≤ K∥x∥22∥w∥22,

where the second line comes from Cauchy-Schwarz inequality, the third line comes by expanding
∥x[i − K−1

2 : i + K−1
2]∥22 by definition and observing that each element in x appears at most K

times.

23

	Introduction
	Preliminaries
	Smooth manifold
	Besov functions on a smooth manifold
	Architecture of ConvResNeXt

	Theory
	Approximation theory
	Estimation theory

	Proof overview
	Approximation error
	Estimation error

	Discussions
	Why Besov Classes?
	Numerical Simulation
	Proof of the approximation theory
	Decompose the target function into the sum of locally supported functions.
	Locally approximate the decomposed functions using cardinal B-spline basis functions.
	Neural network for chart selection
	Constructing the neural network to Approximate the target function
	Constructing a convolution neural network to approximate the target function

	Proof of the estimation theory
	Covering number of a neural network block
	Proof of Theorem 4

	Lower bound of error
	Supporting theorem

