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ABSTRACT
Temporal Automatic White Balance (TAWB) corrects the color cast

within each frame, while ensuring consistent illumination across

consecutive frames. Unlike conventional AWB, there has been lim-

ited research conducted on TAWB for an extended period. However,

the growing popularity of short-form videos has increased focus

on video color experiences. To further advance research on TAWB,

we aim to address the bottlenecks associated with datasets, models,

and benchmarks. 1) Dataset challenge: Currently, only one TAWB

dataset (BCC), captured with a single camera, is available. It lacks

temporal continuity due to challenges in capturing realistic illu-

minations and dynamic raw data. In response, we meticulously

designed an acquisition strategy based on the actual distribution

pattern of illuminations and created a comprehensive TAWB dataset

named CTA comprising 6 cameras that offer 12K continuous illu-

minations. Furthermore, we employed video frame interpolation

techniques, extending the captured static raw data into dynamic

form and ensuring continuous illumination. 2) Model challenge:

Among the two prevailing TAWB methods, both rely on LSTM.

However, the fixed gating mechanism of LSTM often fails to adapt

to varying content or illuminations, resulting in unstable illumina-

tion estimation. In response, we propose CTANet, which integrates

cross-frame attention and RepViT for self-adjustment to content

and illumination variations. Additionally, the mobile-friendly de-

sign of RepViT enhances the portability of CTANet. 3) Benchmark

challenge: Currently, there is no benchmark of TAWB methods on

illumination and camera types to date. Addressing this, a bench-

mark has been proposed by conducting a comparative analysis of

8 cutting-edge AWB and TAWB methods with CTANet across 3

typical illumination scenes and 7 cameras from two representa-

tive datasets. Our dataset and code are available in supplementary

material.

KEYWORDS
Temporal automatic white balance, Benchmark and dataset, Low-

level

1 INTRODUCTION
Temporal Automatic White Balance (TAWB) is a crucial process

that corrects the color cast within each frame while maintaining
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Figure 1: (a) and (c): Our CTA dataset addresses the issues
faced by the TAWB dataset in terms of illumination numbers,
continuity, and camera numbers. (b): our CTANet handles the
illumination continuity problem of the TAWBmethods by
incorporating cross-frame attention and RepViT, achieving
the best illumination estimation accuracy and stabilization
(lowest average angular error and STD error) with the lightest
parameters .

illumination continuity across successive frames. There are signifi-
cantly fewer studies related to TAWB [19, 18, 8, 17, 30] as compared

to traditional AWB studies that are specific to still images [9, 17, 22,

3, 12, 13, 5, 28, 2, 11].

TAWB research has become extremely important since mobiles

and cameras are increasingly used for video acquisition and re-

production [8]: In this context, the discomfort of poor illuminant

correction is potentially amplified if such correction also changes

over time without justification, thus introducing unpleasant flick-

ering artifacts [4, 33, 27, 29]. However, TAWB research encounters

notable challenges, particularly regarding datasets, methods, and

benchmark.

According to Imaging Model [12], real-world illuminations and

cameras significantly influence the perception of illumination col-

ors in the raw-RGB space, which serve as the ground truth (GT)

for TAWB. Real-world illuminations are primarily natural or artifi-

cial, each with distinct color temperature ranges. Including these

broadens the illumination range in raw RGB spaces for the TAWB

datasets. Additionally, cameras with different image signal proces-

sors (ISPs) or sensors impact the raw illumination distributions,

even under identical real color temperatures, increasing the distri-

bution diversity in raw spaces [20]. However, as in Fig.1(a), current

available TAWB datasets, BCC [18], do not adequately cover real-

world illuminations and lack camera diversity. Other datasets by

Cirurea [10], Prinet et.al [17] and Yoo et.al [30] are rarely utilized

due to their limited data format[10] and application scope[17, 30].

Due to the difficulties in obtaining raw-format video, the TAWB

dataset, BCC[18], has chosen to capture continuous raw frames to

mimic video content. Although this strategy simplifies the process

1
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Figure 2: (a) Common CTs for natural and artificial illuminations. (b) Raw illumination colors for different cameras in the NUS
dataset [9] and our CTA dataset. (c) Illumination distributions in the Angle-Retaining Chromaticity diagram [6] for Gray Ball
dataset, BCC dataset and our CTA dataset, normalized by sensor-specific reference whites.

of capturing video sequences, it results in the loss of crucial illumi-

nation continuity information. As a result, models trained on such

datasets may struggle to handle temporal variations in real-world

videos.

TAWB methods should maintain stable illumination to prevent

flickering in the corrected video. This necessitates flexible adap-

tation to temporal changes in input frames, such as changes in

illuminations or contents, to use shared features for illumination

estimation. However, both available methods, RCCNet[19] and TC-

CNet[18], use the Long Short-Term Memory (LSTM)[21] to gather

temporal features. The gating mechanism is a crucial component

of LSTM, but its parameters are fixed. This makes it difficult for

existing methods to adjust to changes in contents or illuminations

of input frames. As a result, the extracted temporal features can-

not reflect the shared information between different frames, which

ultimately results in unstable illumination estimation.

To comprehensively advance TAWB research, we make two con-

tributions. First, we build a large-scale dataset calledComprehensive

Temporal AWB (CTA), encompassing 12637 real-world continu-

ity illuminations (natural, artificial, and mixed), six popular mobile

cameras with different ISPs and sensors, and 11 detailed annotations

for each sequence (Fig.1(a) and (c)). Specifically, 1) We meticulously

designed an acquisition strategy guided by real illumination pat-

tern [2004:ITE:1009386.1010128]. Our aim is to ensure that the

illuminations we collect cover a wide range of real-world situations,

thus, providing a comprehensive representation of the illumination

diversity. 2) To address the difficulty of capturing dynamic raw data,

we implemented a video interpolation process. This step allows

for the continuous capture of static raw data and expands it into a

dynamic form, thus guaranteeing illumination continuity.

Second, we propose a TAWB method called CTANet to main-

tain the temporal continuity of the estimated illumination. Unlike

the LSTM with fixed weights employed in existing methods, we

utilize cross-frame attention to extend RepViT [25], a lightweight

attention network, to the temporal dimension. Specifically, we de-

sign the Spatial-Temporal Stage (ST-Stage) block, which utilizes

a combination of the token mixer and channel mixer to extract

intra-frame spatial and channel features. Additionally, the block

incorporates cross-frame attention to identify and combine similar

features from preceding frames to the target frame, forming shared

features. This strategy allows our model to be adaptive to changes

in input content and illumination, ensuring the temporal continuity

of the estimated illuminations (lowest STD in Fig.1(b)).

We perform a thorough benchmark analysis of eight cutting-

edge AWB and TAWB methods with CTANet across three typical

illumination scenes and seven cameras based on the BCC dataset

and our CTA dataset. Our CTANet excels in correction accuracy

and temporal consistency of estimated illuminations, surpassing

existing TAWBmethods with the least number of parameters (Fig.1).

This analysis also points out some possible challenges for future

research, such as the accuracy and stability of solid color scenes,

cross-camera generalization, etc. We hope that our work can ad-

vance the field of TAWB.

2 CHALLENGES AND SUGGESTIONS IN TAWB
2.1 TAWB Dataset
Challenge 1: The current datasets are insufficient in capturing the
diverse range of realistic illumination types.

Natural illumination and artificial illumination are two major

types of realistic illumination. However, as illustrated in Fig.2(c),

existing available TAWB dataset, BCC [18], shows limited coverage

of typical natural illuminations (CIE series D illuminations, repre-

sented by the black lines) and inadequate artificial illuminations,

especially those between the greenish and magentaish directions

(indicated by the red boxes). This gap is crucial, as these illumina-

tions are vital to understanding human perception of illuminations

[7]. Additionally, these datasets considerably lacked mixed illumi-

nations that are common in scene transition sequences.

Suggestion 1: Considering the distinct color temperature patterns
of real-world illuminations [15], accurately capturing them requires
attention to key factors: 1) the time of day, weather conditions and geo-
graphical locations for natural illuminations; and 2). the specific func-
tion of the indoor space for artificial illuminations. Refer to Fig.2(a).
Challenge 2: The current datasets are limited in camera diversity, a
critical factor for ensuring the comprehensiveness.

Camera diversity is crucial for TAWB research since it increases

the diversity of raw illumination distributions. For example, due

2
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Figure 3: Visualization of unstable illumination estimation with existing methods(TCCNet for example).

to inherent ISP differences in DSLR cameras, their raw illumina-

tion color distributions vary significantly, resembling a rainbow as

depicted in Fig. 2(b)(NUS AWB dataset[9]). This variation is fur-

ther amplified in Fig. 2(c) by incorporating sensor differences from

various mobile cameras. However, the BCC dataset predominantly

used a single camera type, which restricts the diversity of raw il-

lumination color distributions. This also hindered the support of

multi-camera generalization, a crucial aspect for TAWB [1].

Suggestion 2:1) Employ cameras with varying ISPs or sensors to en-
sure diversity. 2) For multi-camera generalization, ensure that adopted
sequences from different cameras contain similar content.

2.2 TAWB Baseline Method
Challenge 3: TAWB methods should maintain illumination conti-
nuity to prevent flickering in the corrected video. However, the fixed
gating mechanism of LSTM makes existing methods fail to adapt to
varying contents or illuminations, leading to unstable illumination
estimation.

Assuming 𝐼𝑡 as the target frame,

{
𝐼𝑡−(𝑁−1) · · · 𝐼𝑡−1

}
are 𝑁 pre-

ceding frames, existing methods [19, 18] are formed as:

ˆ𝑙𝑡 = P(T (S({𝐼𝑡 }𝑁 ))), (1)

where S(·) is the spatial feature extractor that extracts features
from input frames separately. The temporal feature extractor T (·)
accepts these features and outputs the temporal feature 𝑥𝑡𝑒𝑡 for the

target frame 𝐼𝑡 , which are then used for estimating illumination
ˆ𝑙𝑡

via the prediction head P(·).
Compared to AWB methods, TAWB methods further consider

the temporal correlation of illuminations, to ensure that the inter-

frame changes are smooth rather than sudden jumps. This requires

that the temporal feature 𝑥𝑡𝑒𝑡 can represent the shared information

of all input frames, e.g., buildings or trees appearing in these frames

to build the stable illumination estimation cues.

However, existing methods (RCCNet [19] and TCCNet [18]) both

utilize the gating mechanism of LSTM (forgetting and memory

gates) to aggregate the temporal feature 𝑥𝑡𝑒𝑡 . Since the weights of

this mechanism are fixed after training, it leads to the fact that

existing methods cannot always extract the shared features of the

input frames, negatively affecting the sequences with large content

or illumination change. As Fig.3(e) shows, when the input frames

undergo content change (Fig.3(a)), the temporal feature for the tar-

get frame (𝑥𝑡𝑒𝑡 , red scatters) is far from preceding frames, especially

(a) Existing datasets

(b) Our CTA dataset

Figure 4: Data construction process comparison.

the first frame (blue scatters). Inevitably, in Fig.3(c) the error is large

(Average) and unstable (STD).

Suggestion 3: Instead of the fixed gather mechanism, temporal fea-
ture extraction should adapt to content and illumination changes.

3 PROPOSED DATASET
Comprehensive datasets are instrumental in advancing TAWB re-

search. However, as discussed in Sec.2.1, there is only one available

TAWB dataset (BCC) captured using a single camera, which lacks

temporal continuity due to the challenges in capturing realistic illu-

minations and dynamic raw data. To address this problem, our data

collection incorporates multiple factors related to illuminations and

cameras in accordance with Suggestion 1 and Suggesting 2. More-

over, the video frame interpolation (VFI) step is applied to enhance

the illumination temporal continuity. Details are as follows.

3.1 Dataset Acquisition
As discussed in Sec.2.1, there are two challenges for TAWB datasets,

here we describe how to address them to acquire the CTA dataset.

For Challenge 1, we followed the real illumination patterns in

Suggestion 1 to capture natural and artificial illuminations. To

3
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Figure 5: Representative scenes and corresponding color temperature from our dataset. (Note that the keyframes are visualized
for complete sequence content and processed by Dcraw into a JPEG format for better display (without AWB).)

Figure 6: Raw sequences with VFI sequences of BCC and CTA
dataset(brightness adjusted for ease of viewing)

accurately represent varying color temperatures in natural illumi-

nations, we recorded sequences at different moments from 7:00

AM to 8:00 PM, including three typical weather conditions - sunny,

cloudy and rainy - across 334 outdoor scenes encompassing both

city and wild scenes. To encompass the unique color temperature

preferences of indoor artificial illumination, we included 231 varied

indoor settings such as offices, classrooms, libraries, malls, and art

galleries. The statistics of illumination color temperatures and exam-

ples are in Fig. 5. 75 transition sequences between scenes were also

consciously captured to better approximate real-life video shooting.

In Fig.2(c), the captured illuminations completely cover the CIE

series D illuminants (black line), which indicates its representations

of natural illuminations. Notably, the artificial types between the

greenish and magentaish directions (red box) are also included,

which is critical for color constancy while current datasets don’t

have. Overall, the CTA dataset surpasses existing datasets in pro-

viding a broad spectrum of real-world illuminations, both natural

and artificial. This addresses Challenge 1, further facilitates the
development of TAWB research.

Following Suggestion 2, we implemented two strategies to ad-

dress Challenge 2. First, we selected six widely-used mobile cam-

eras for the data collection. These included Huawei P30Pro and

Huawei Mate30, iPhone 14ProMax, Xiaomi 11Pro, Xiaomi 13, and

Vivo iqooneo5. The distinctive RYYB sensors of the Huawei models,

in contrast to the RGGB sensors in the other mobile cameras, add

to the technological diversity of our dataset. Secondly, for effective

multi-camera benchmarking, we carefully captured and selected

the sequences with common objects in different scenes, such as

trees and streets for outdoor scenes and furniture for indoor set-

tings. All cameras were set to capture pure raw data, with automatic

enhancements like HDR turned off.

In Figure 2(b), the raw illumination distributions from the six

selected mobile cameras exhibit distinct characteristics. This varia-

tion is largely attributed to the inherent differences in their ISPs

and sensors[23]. These results demonstrate the effectiveness of our

strategies in addressing Challenge 2, as per Suggestion 2.

3.2 Video Frame Interpolation
After acquisition, we enhanced the illumination continuity of cap-

tured static raw data by performing the VFI strategy after data

acquisition. Existing datasets ignored the illumination discontinu-

ity problem. For example, the only available dataset, BCC, assumed

that the temporal illumination in the sequence is constant, and

directly extracts the illumination color of the first frame as that

of the sequence (Fig.4a). However, we found that there exist scene

transitions in most of the sequences, which were often accompa-

nied by illumination continuous changes, as shown in Fig.6(a). To

solve this problem, we implemented two specific strategies as in

Fig.4b. Our first strategy involved placing a ColorChecker in every

scene, ensuring its visibility in each frame. This setup enabled us

to accurately record the changes in temporal illumination colors,

in line with the extraction process detailed in [1]. Secondly, we add

a VFI technique, EMA-VFI [31] to smooth illumination transitions.

This technique interpolates frames by extracting content motion

features and appearance color features highly correlated with illu-

minations. Specifically, we set the interpolation time step between

two frames to 8 to get a video frame rate of 24fps. Examples of

interpolated frames in BCC and our CTA dataset are shown in Fig.

6. Our datasets will be available in both frame-interpolated and

frame-uninterpolated sequences.

3.3 Data Annotation
Comprehensive annotation of real-world illuminations and cameras

will not only help to better understand their impact on TAWB

research, but also contribute to the multimodal development of

TAWB. However, existing datasets contained only illuminations

(GT). To improve this, we annotated illuminations and cameras

4
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Figure 7: Network structure of our CTANet. CTANet consists of two components: an ST feature extractor to extract the
temporal features that can represent the shared features of the input frames and an illumination prediction head to output the
illumination colors of the target frame.

based on their associated factors in Suggestion 1 and 2. In addition,
to characterize the scene content, we labeled the contents by object

detection method[26] and manually provided color descriptions.

An annotation example is in Fig.1(c), there are 11 descriptions

for each sequence, including temporal raw illumination colors,

illumination color temperature types, scene type, content, colors,

location, capturing time, weather conditions, the brand and model

of applied mobile cameras.

4 PROPOSED METHOD
As discussed in Sec.2.2, due to the fixed gating mechanism of LSTM,

two existing TAWB methods, RCCNet and TCCNet, suffer from

the unstable illumination estimation problem, especially for the

sequences with varying contents or illuminations.

To address this problem, we proposed the CTANet. Unlike exist-

ing methods that connect spatial and temporal feature extractors

in tandem (Eq.1), our CTANet integrated spatial feature extraction

and temporal feature extraction:

ˆ𝑙𝑡 = P(ST ({𝐼𝑡 }𝑁 )), (2)

where ST (·) is the spatial-temporal (ST) feature extractor with

four stages. In each stage, two ST-Stage blocks are set to gather

temporal features. The setup of the illumination predictor head is

the same as RCCNet and TCCNet. In the following, we introduce

the ST feature extractor and ST-Stage block separately.

4.1 Spatial-temporal Feature Extractor
Our goal in constructing the ST feature extractor is to extract the

temporal features that can represent the shared information of

input frames. According to Suggestion 3, this requires the ST fea-

ture extractor to adapt to content and illumination changes. Ben-

efiting from the design of the self-attention-like mechanism[32,

16], RepViT [25] can partially fulfill this requirement by provid-

ing flexibility in spatial feature extraction. In addition, RepViT’s

mobile-friendly parameter count enhances CTANet’s portability.

However, RepViT can only extract the spatial features and fails to

establish the temporal relationship between frames. To extend the

perspective of RepViT to the temporal dimension, we propose to

integrate cross-frame attention mechanisms with RepViTBlock to

form the ST-Stage block.

As shown in Fig.7, the ST feature extractor consists of a Stem

block, four Down Sample blocks, and four Spatial-temporal Stage

(ST-Stage) blocks, among which the Stem block and Down Sample

block are used to output feature maps at different scales, the ST-

Stage block aims to extract temporal features that can represent the

shared information of input frames. In the following, we describe

the ST-Stage block in detail.

4.2 Spatial-temporal Stage Block
As in the blue part of Fig.7, the main component of the ST-Stage

block is Spatial-temporal (ST) Attention, which aims to extract the

spatial features for input frames flexibly and then find features from

the previous frames that are similar to the features in the target

frame and fuse them together.

4.2.1 Spatial-temporal Attention. The structure of ST attention is

in the red block of Fig.7. Support the features of 𝐼𝑡 in 𝑘
𝑡ℎ

stage as

𝑥𝑘𝑡 , the computation of ST attention is:

𝑥 ′𝑘𝑡 = 𝐶𝑜𝑛𝑣 (𝐶𝑚(𝐶𝑟𝑜𝑠𝑠 (𝑇𝑚( [𝑥𝑘𝑡 ]))) +𝐶𝑚(𝐶𝑟𝑜𝑠𝑠 (𝑇𝑚( [𝑥𝑘𝑡 ])) . (3)

where [·] concatenates the input features from different frames

in the 0
𝑡ℎ

dimension, the token mixer 𝑇𝑚(·) extracts the spatial
features from these inputs separately. Then cross-frame attention

𝐶𝑟𝑜𝑠𝑠 (·) finds features in different frames that are similar to the

features of the target frame and combines them to gather temporal

features, channel mixer 𝐶𝑚(·) increases their channel interactivity,
and finally these features are re-weighted by the form of 𝐶𝑜𝑛𝑣 (·)
and additive calculation. The above steps aim to fully explore the

intra- and inter-frame relationships of the input frames, motivating

the extracted temporal features to be representative of the infor-

mation shared between the input frames. Next is the details of

cross-attention.

4.2.2 Cross-frame Attention. The structure of cross-attention is in

the green block of Fig.7. In detail, we use the feature maps of the

preceding frames as the references (Key 𝐾 and Value 𝑉 ) and the

target frame as the anchor (Queries 𝑄) to constrain the temporal

feature extraction of the target frame by exploring the similarity

between the target frame and the preceding frames:

𝐶𝑟𝑜𝑠𝑠 (𝑄,𝐾,𝑉 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑

), (4)
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Group

Train Val

Test

(N)

Test

(A)

Test

(M)

Test

(C)Scene Camera

Set1:Natural

illuminations

iPhone 14ProMax 55 5 17 - 4 7

Xiaomi11 Pro 40 5 19 - - 2

Set2:Artificial

illuminations

Huawei Mate30 50 5 10 10 - 26

Vivo iqooneo5 36 6 8 6 - 13

Set3:Mixed

illuminations

Huawei P30Pro 151 30 38 18 7 78

Xiaomi 13 - - 8 4 2 2

Table 1: The sequence split of our dataset in different dimen-
sions. Note that the cameraswithin the same set share similar
scenes. (N: natural illuminations, A: artificial illuminations,
M: mixed illuminations, C: complex illuminations)

where 𝑄 , 𝐾 , 𝑉 are computed as,

𝑄 =𝑊𝑄𝑣𝑖 , 𝐾 =𝑊𝐾 [𝑣𝑖−1, 𝑣𝑖+1],𝑉 =𝑊𝑉 [𝑣𝑖−1, 𝑣𝑖+1], (5)

where𝑊𝑄
,𝑊𝐾

,𝑊𝑉
are linear convolutions for feature projection.

Intuitively, cross-frame attention identifies and combines similar

spatial features from preceding frames to the target frame, to gather

its spatial-temporal features. This implies that the illumination of

frame 𝐼𝑡 is influenced by information common to different frames

to ensure temporal continuity. As in Fig.3, when facing the input

frames with content changed (Fig.3(a)), the temporal features ex-

tracted by our CTANet (red scatters in Fig.3(f)), is close to these of

preceding frames (other scatters), thus improving the accuracy (Av-

erage) and stability (STD) of illumination estimation, as in Fig.3(d).

5 EXPERIMENTS
In this section, we leverage the BCC dataset and CTA dataset to

provide an indepth benchmark analysis of state-of-the-art AWB

and TAWB baseline methods as well as our CTANet.

5.1 Experiment setting
5.1.1 Compared methods. predicting a fixed illumination color

for input sequences. We select six AWB methods that are classic

and have been compared in several papers (Gray World[24], White

Patch[24], Shades of Edge[24], FC4[14]), or are SOTA methods that

can be tested on unknown cameras (Quasi[2] and TLCC[23]). Two

available TAWB methods (RCCNet[19] and TCCNet[18]) are also

chosen for comparison.

5.1.2 Dataset Splits. We have strategically split our CTA dataset

to address specific challenges related to illuminations and cameras

in the TAWB task. Understanding the impact of these two factors

on TAWB methods is crucial for achieving targeted improvements.

As in Table.1, our CTA dataset was divided into three groups: CTA-
Set1 focused on natural illuminations, CTA-Set2 on artificial illu-

minations, and CTA-Set3 on mixed illuminations (transitions of

scenes with different type). To ensure consistent evaluation across

various cameras in each group, we meticulously selected similar

scenes for each camera for training, validation, and testing. We have

also subjected TAWB methods to tests under mixed (transitions

of scenes with the same type) and complex (dark and multiple)

illuminations in each group. This approach not only assesses the

robustness of AWB methods under varying illumination conditions

but also evaluates their response to specific camera characteristics,

Type Methods

Spatial Temporal

AE↓ MIC↓ STD↓

Static-based

AWB

Gray Word[24] 5.32 2.70 3.20

White Patch[24] 6.98 6.31 5.07

Shades of Edge[24] 5.31 4.10 3.49

CNN-based

AWB

FC4[14] 3.63 4.55 2.67

Quasi[2] 4.28 3.53 2.95

TLCC[23] 9.53 10.58 4.90

TAWB

RCCNet[19] 2.48 5.44 2.71

TCCNet[18] 2.54 5.19 2.66

CTANet w/o ST att 2.43 4.55 2.24

CTANet with ST att 2.38 4.40 2.16
Table 2: Evaluations in the BCC dataset for different meth-
ods. The best results are bolded (A lower value of AE means
a better illumination estimation correction performance and
lower values of MIC and STD mean better stability perfor-
mance, ST Att: ST Attention in ST-Stage block).

Articial 
illumination

Natural
illumination

Mixed 
illumination

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f o
bj

ec
ts

Spatial color constancy (AE)

Articial 
illumination

Natural
illumination

Mixed 
illumination

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f o
bj

ec
ts

Temporal color stability (STD)
Furniture
Seat
Table
Floor
Wall
Greenery
Building
Tree
Street

Figure 8: Scene content statistics for the worst 10% test se-
quences.

fostering the development of TAWB methods that are versatile and

comprehensive.

5.1.3 Evaluation Metrics. Our evaluation focused on two main

goals of TAWB: accuracy and stability of illumination estimation.

First, we used the established angular error (AE) [12], which has

a lower value indicating more accurate illumination estimation

performance. Then, we calculated the MIC (maximum illumination

change) and STD (the standard deviation of temporal illumination

distribution in ARC diagram[6]), which have lower values means

a more temporal stable performance[8]. More details are in the

Appendix.

5.1.4 Implementation Details. The training of our CTANet is imple-

mented on Pytorch. We apply random cropping, horizontal flipping,

rotation, and color jitter for data augmentation. The learning rate is

set to 3× 10
−4

, and the network is trained by Adam optimizer with

default parameters for 200 epochs. The training details of other

methods are followed by their papers.

5.2 Experiment Results on BCC
The quatantiatative results of AWB and TAWB methods on BCC

dataset are summarized in Table.2.

For AWB methods, each frame in the sequence serves as input,

utilizing a pre-trained model for evaluating. In contrast, for TAWB

6
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Type Methods

Test (Natural illuminations) Test (Artificial illuminations) Test (Mixed illuminations) Para

meters (M)

Inference

time (s)AE↓ MIC↓ STD↓ AE↓ MIC↓ STD↓ AE↓ MIC↓ STD↓

Static-based

AWB

Gray Word [24] 5.80 1.62 0.48 8.60 0.57 0.71 8.30 2.41 1.24 - 0.0015

White Patch [24] 3.84 1.82 1.12 4.12 1.35 1.03 3.28 2.80 1.90 - 0.0010

Shades of Edge [24] 4.62 0.10 0.03 14.77 0.16 0.13 14.91 0.35 0.16 - 0.0014

CNN-based

AWB

FC4 [14] 4.01 1.70 0.84 4.94 1.59 0.82 2.99 1.53 0.73 6.52 0.0032

Quasi [2] 5.46 2.84 1.68 13.45 1.12 1.75 16.15 1.96 0.94 622.87 0.0605

TLCC [23] 4.75 6.00 2.11 2.64 4.20 1.77 4.61 3.99 1.72 125.71 0.0111

TAWB

RCCNet [19] 2.28 2.40 1.97 1.85 0.89 0.87 2.76 1.31 1.02 20.42 0.0156

TCCNet [18] 3.36 2.86 1.88 2.59 0.83 0.88 2.83 1.38 1.00 68.80 0.0400

CTANet w/o ST Att 2.49 2.78 1.82 1.80 1.02 0.89 2.81 1.50 1.10 4.43 0.0029
CTANet w/ ST Att 2.26 2.32 1.80 1.71 0.78 0.86 2.73 1.27 0.99 6.37 0.0031

Table 3: Evaluations in the CTA dataset for different illumination types (train and test on the same camera). The best results
are bolded. (A lower value of AE means a better illumination estimation correction performance and lower values of MIC and
STD mean better stability performance, ST Att: ST Attention in ST-Stage block).

methods, we incorporate the target frame along with its adjacent

frames (totaling 3 frames) for prediction during training. In terms

of illumination estimation accuracy, TAWB methods outperform

AWB methods, due to the beneficial features provided by adjacent

frames for predicting the current frame’s illumination. However,

in temporal consistency, RCCNet and TCCNet underperform com-

pared to some AWB methods (FC4 and Quasi). This difference may

be due to the fixed-parameter gating mechanism of LSTM, which

makes it difficult for RCCNet and TCCNet to adapt to sudden shifts

in content between frames. Benefiting from the self-adjustment

to variations in content and illumination, our CTANet achieves

the best performance on the accuracy and stability of illumination

estimation.

5.3 Experiment Results on CTA
5.3.1 Experiments onDifferent Illumination Types. The quantitative
results of AWB and TAWB methods for different illumination types

are in Table.3. Note that the cameras are kept the same in each

test. We trained the methods separately on datasets containing

natural illuminations (CTA-Set1), artificial illuminations (CTA-Set2),

and mixed illuminations (CTA-Set3). Subsequently, we tested these

models on corresponding scenes to evaluate their performance.

Overall analysis. Under three typical illuminations, TAWB meth-

ods often exhibit lower AE values compared to AWB methods. This

suggests that TAWB methods are more effective in illumination es-

timation accuracy. However, it’s observed that some AWB methods,

despite having higher AE, may still show lower MIC and STD. Ad-

ditionally, our CTANet achieved the lowest values in AE, MIC, and

STD with the minimum number of parameters, demonstrating its

effectiveness and efficiency in addressing both spatial and temporal

aspects of illumination.

Different illumination analysis. For most methods, their AE for

mixed illumination tends to be higher than that for natural and

artificial illumination. MIC and STD for natural illumination appear

higher than for artificial illumination and mixed illumination. This

difference may arise from the complex color temperature in out-

door scenes and the homogeneous sequences in artificial settings.

Mixed sequences fall in between. Our CTANet outperformed other

methods across all three sets.

Scene content statistics for 10% worst test sequences. To es-

pecially study the limitations of TAWB methods under different

illuminations, we counted the intersection of sequences from the

worst 10% of results across different illumination scenes, using

the content annotations from the CTA dataset. In Fig.8, the scene

content statistics exhibit a consistent pattern under AE and STD

metrics. Predominantly, these scenes contain single-colored objects

with minimal edge information. For instance, in indoor scenes with

artificial illumination, walls, floors, and seats form the majority of

objects. In contrast, outdoor scenes with natural illumination are

mostly composed of trees, streets, buildings, and green areas. In

transitional scenes with mixed illumination, a significant presence

of large walls, floors, and greenery is observed. Such challenges are

due to the less informative nature of the above statistical objects,

which hampers effective network inference.

Summary. Overall, in terms of illumination estimation accuracy,

RCCNet, TCCNet and our CTANet achieved more comparable per-

formance than AWBmethods under three typical illuminations. Our

CTANet addresses this by only 6.37M parameters, which are 31.20%

for RCCNet, and 9.25% for TCCNet, as well as faster than RCCNet

and TCCNet about 5.3 times and 12.9 times. Notably, solid color

scenes with large areas of the same color and fewer edges are one

of the challenges of TAWB methods. The illumination estimation

stability challenge is indicated in the natural illumination scenes,

with larger MIC and STD values of RCCNet and TCCNet. As per

the analysis in Sec.2.2, this challenge can be mitigated by adapting

to content and illumination changes in our CTANet. Some visual

comparisons are in Fig.9, and more comparative effects are in the

Appendix. Comparisons of visual effects are shown in Fig.9, where

we can see that CTANet has the best and most stable correction in

natural light, artificial light and other scenes.More results are in the
Appendix.

5.3.2 Experiments on Different Cameras. Due to the lack of cam-

eras, there has been no benchmarking of the cross-camera effects

of the TAWB methods to date. We have supplemented this gap by

utilizing data collected from six cameras. Specifically, for camera

groups, we trained three TAWBmethods on the sequences captured

by Iphone14 promax, Huawei Mate30, Huawei P30Pro, and tested

in those capture by Xiaomi11 pro, Vivo iqoneo5, Xiaomi13 sepa-

rately. The test results of inter-camera are in Table.4. In terms of

illumination estimation accuracy, cross-camera tests for RCCNet,

TCCNet, and CTANet (w/o and w/ ST att) methods demonstrate
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Figure 9: Color-corrected sequence examples and their angular errors (More visuals in the Appendix).

Methods

Iphone14 promax-

Xiaomi11 Pro

Huawei Mate30-

Vivo iqooneo5

Huawei P30Pro-

Xiaomi13

RCCNet[19]

AE↓ 4.53 7.81 6.73

MIC↓ 1.37 1.77 1.42

STD↓ 0.78 1.12 0.63

TCCNet[18]

AE↓ 4.26 8.16 7.39

MIC↓ 1.48 1.20 1.43

STD↓ 0.75 1.15 0.75

CTANet w/o ST Att
AE↓ 4.35 7.35 6.66

MIC↓ 1.58 1.36 1.44

STD↓ 0.42 0.96 0.69

CTANet w/ ST Att
AE↓ 4.26 7.34 6.53
MIC↓ 1.32 1.21 1.40
STD↓ 0.36 0.93 0.67

Table 4: Evaluations in the CTA dataset for intra-cameras.
The best results are bolded.

unsatisfactory performances (high AE) compared to the tests in

Table.3. This disparity is attributed to the inherent differences be-

tween cameras, a key challenge that the TAWB task has not yet

adequately addressed. It’s worth noting that compared to RCCNet

and TCCNet, our CTANet (w/o and w/ ST att) still performs better

in AE, MIC and STD.

Additionally, models trained using data from Huawei devices,

specifically the Huawei Mate30 and Huawei P30 Pro, exhibit the

poorest performance when applied to other mobile cameras. This

underperformance is primarily due to the marked differences in

sensor technologies between Huawei models and other mobile

cameras. Addressing the challenge of improving the cross-camera

effectiveness of existing TAWB methods remains a critical task for

future advancements in the field of TAWB.

5.4 Ablation Study
We first examine the effectiveness of RepViT (CTANet w/o ST Att)
through comparing it with CNN-based AWB methods with best

performances. As in Table.3, CTANet w/o ST Att obtains 37.91%
and 6.02% reduction in AE compared with FC4 under natural illumi-

nations and mixed illuminations, 14.69% reduction in AE compared

with Quasi under artificial illuminations. However, the illumination

estimation stabilization of CTANet w/o ST Att are not optimal in

three typical illumination. When ST Attention added into RepViT,

i.e., CTANet w/ ST Att, AE continues to decrease, and STD and

MIC errors are effectively minimized as well, which showed that

incorporating cross-frame attention and RepViT can effectively

improve the accuracy and stabilization of illumination estimation.

In detail, AE, STD and MIC are reduced by 9.24%, 16.55%, 1.1% in

natural illumination scenes, 5%, 23.53%, 3.37% in artificial illumi-

nation scenes, 2.84%, 15.33%, 1.82% in mixed illuminations. Also,

as discussed in Sec.5.3.1, CTANet w/ ST Att achieved the best per-

formance among all compared AWB and TAWB methods, which

confirms that the proposed elements are effective in promoting the

model’s performance.

6 CONCLUSION
In this paper, we address the key issues in the field of temporal au-

tomatic white balance (TAWB) by introducing innovative solutions

in datasets, methods, and benchmark. Firstly, a large-scale dataset

called Comprehensive Temporal AWB (CTA) was developed to

overcome the limitations of the existing dataset, which lacked di-

versity and dynamic range; it features a broad array of continuous

illuminations across multiple cameras, enhancing realism and appli-

cability. Secondly, we introduced CTANet, designed to address the

adaptability issues of existing LSTM-based methods. By incorporat-

ing cross-frame attention and RepViT, CTANet dynamically adjusts

to changes in content and illumination of input frames, significantly

outperforming existing methods. Finally, we have constructed the

most thorough benchmark, evaluating eight cutting-edge AWB and

TAWB methods against CTANet across three illumination scenes

and seven cameras on both BCC and CTA datasets.

Despite these advancements, TAWB research still struggles with

temporal color instability in more variable and uncontrolled en-

vironments, such as dark illumination or low-information scenes,

and the ability to generalize across multiple cameras. We aim to

address these challenges in the further work. We hope that our

work can contribute to the development of the TAWB field and its

integration with other tasks, such as multimodal tasks.
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