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ABSTRACT

Depth estimation enables a wide variety of 3D applications, such as robotics and
autonomous driving. Despite significant work on various depth sensors, it is chal-
lenging to develop an all-in-one method to meet multiple basic criteria. In this
paper, we propose a novel audio-visual learning scheme by integrating semantic
features with physical spatial cues to boost monocular depth with only one micro-
phone. Inspired by the flash-to-bang theory, we develop FBDepth, the first passive
audio-visual depth estimation framework. It is based on the difference between
the time-of-flight (ToF) of the light and the sound. We formulate sound source
depth estimation as an audio-visual event localization task for collision events.
To approach decimeter-level depth accuracy, we design a coarse-to-fine pipeline
to push the temporary localization accuracy from event-level to millisecond-level
by aligning audio-visual correspondence and manipulating optical flow. FBDepth
feeds the estimated visual timestamp together with the audio clip and object visual
features to regress the source depth. We use a mobile phone to collect 3.6K+ video
clips with 24 different objects at up to 60m. FBDepth shows superior performance
especially at a long range compared to monocular and stereo methods.

1 INTRODUCTION

Depth estimation is the fundamental functionality to enable 3D perception and manipulation. Al-
though there have been significant efforts on developing depth estimation methods with various
sensors, current depth estimation schemes fail to achieve a good balance on multiple basic metrics
including accuracy, range, angular resolution, cost, and power consumption.

Active depth sensing methods actively emit signals, such as LiDAR (Caesar et al., 2020), structured-
light (Zhang, 2012), mmWave (Barnes et al., 2020), ultrasound (Mao et al., 2016), WiFi (Vasisht
et al., 2016). They compare the reflected signal with the reference signal to derive time-of-flight
(ToF), phase change, or Doppler shift to estimate the depth. Active methods can achieve high
accuracy because of the physical fundamental and well-designed modulated sensing signals. Lidar
is the most attractive active senor due to its large sensing range and dense point cloud. However,
the density is not sufficient enough to enable a small angular resolution. Therefore, the points are
too sparse to be recognized at a long distance. Besides, the prohibitive cost and power consumption
limit the availability of Lidar on general sensing devices.

Passive depth sensing takes signals from the environment for sensing directly. It commonly uses
RGB monocular camera (Bhoi, 2019; Laga et al., 2020), stereo camera (Cheng et al., 2020), thermal
camera (Lu & Lu, 2021), or multi-view cameras (Long et al., 2021a). These sensors can achieve
pixel-wise angular resolution and consume pretty less energy due to omitting the signal emitting.
Among them, stereo matching can effectively estimate the disparity and infer a dense depth map
since it transforms the spatial depth to the visual disparity based on the solid physical law. The
baseline of the stereo camera determines the effective range and accuracy. Therefore, the dimen-
sion of the stereo camera is placed as the critical trade-off with sensing metrics. Thanks to the
advance in deep learning, the cheap monocular depth estimation keeps on improving performance
with new network structures and high-quality datasets. However, the accuracy is still not satisfac-
tory especially at a long range because it can only regress depth based on the implicit visual cues.
It is ill-posed without any physical formulation. Besides, it heavily relies on the dataset. It requires
domain adaption and camera calibration for various camera intrinsics (Li et al., 2022).
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In this paper, we propose to add only one microphone to enable explicit physical depth measurement
and boost the performance of a single RGB camera. It does not rely on the intrinsic of cameras and
implicit visual cues. We develop a novel passive depth estimation scheme with a solid physical
formulation, called Flash-to-Bang Depth (FBDepth). Flash-to-Bang is used to estimate the distance
to the lightning strike according to the difference between the arrival time of a lightning flash and a
thunder crack. This works because light travels a million times faster than sound. When the sound
source is several miles away, the delay is large enough to be perceptible. Applying it to our context,
FBDepth can estimate the depth of a collision that triggers audio-visual events. The collision event
has been explored for navigation and physical search in (Gan et al., 2022), but our work is the
first that uses the collision for depth estimation. Collisions are common and can arise when a ball
bounces on the ground, a person takes a step, or a musician hits a drum. We identify and exploit
several unique properties related to various collisions in the wild. First, the duration of a collision
is short and collision events are sparse. Thus, there are few overlapped collisions. Second, though
the motion of objects changes dramatically after the collision, they are almost static at the collision
moment. Third, the impact sound is loud enough to propagate to a long range.

Flash-to-Bang is applied to the range of miles for human perception. Using it for general depth
estimation poses several significant challenges: (i) It is inaccessible to ground truth collision time
from video and audio. Video only offers up to 240 frames per second(fps), and may not capture the
exact instance when the collision occurs. Audio has a high sampling rate but it is hard to detect the
start of a collision solely based on the collision sound due to different sound patterns arising from
collisions as well as ambient noise. (ii) We need highly accurate collision time. 1 ms error can result
in a depth error of 34 cm. (iii) Noise present in both audio and video further exacerbate the problem.

To realize our idea, we formulate the sound source depth estimation as the audio-visual localization
task. Whereas existing work (Wu et al., 2019; Xia & Zhao, 2022) still focuses on 1-second-segment
level localization. FBdepth performs event-level localization by aligning correspondence between
the audio and the video. Apart from audio-visual semantic features as input in existing work (Tian
et al., 2018; Chen et al., 2021a), we incorporate optical flow to exclude static objects with similar
visual appearances. Furthermore, FBDepth applies the impulse change of optical flow to locate
collision moments at the frame level. Finally, we formulate the ms-level estimation as an optimiza-
tion problem of video interpolations. FBDepth succeeds to interpolate the best collision moment by
maximizing the intersection between extrapolations of before-collision and after-collision flows.

With the estimated timestamp of visual collision, we regress the sound source depth with the audio
clip and visual features. FBdepth avoids the requirement to know the timestamp of audio collision.
Besides, different objects have subtle differences in audio-visual temporal alignment. For example,
a rigid body generates the sound peak once it touches another body. But an elastic body produces
little sound during the initial collision and takes several ms to produce the peak with the maximum
deformation. We feed semantic features to enable the network aware of the material, size, etc.

Our main contributions are as follows:

1. To the best of our knowledge, FBDepth is the first passive audio-visual depth estimation. It brings
the physical propagation property to audio-visual learning.

2. We introduce the ms-level audio-visual localization task. We propose a novel coarse-to-fine
method to improve temporal resolution by leveraging the unique properties of collisions.

3. We collect 3.6K+ audio-visual samples across 24 different objects in the wild. Our extensive
evaluation shows that FBDepth achieves 0.64m absolute error(AbsErr) and 2.98% AbsRel across a
wide range from 2 m to 60 m. Especially, FBDepth shows more improvement in the longer range.

2 RELATED WORK

Multi-modality Depth estimation. Recent work on depth estimation has shown the benefits of
fusing cameras and other active sensors. (Qiu et al., 2019; Imran et al., 2021) recover dense depth
maps from sparse Lidar point clouds and a single image. (Long et al., 2021b) associates pixels
with pretty sparse radar points to achieve superior accuracy. The effective range can be increased as
well by Lidar-camera (Zhang et al., 2020) or Radar-camera (Zhang et al., 2021). However, these
methods are still expensive in cost and power consumption.
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(Gao et al., 2020; Parida et al., 2021) emit audio chirps and learn the depth map implicitly with audio
reflections and a single image. However, these methods require many nearby acoustic reflectors to
produce effective echos so the setup is limited in rooms. Besides, they are evaluated in an audio-
visual simulator. FBDepth only uses one extra microphone to perceive natural sounds directly. It
keeps the passive design of the audio but applies the physical measurement explicitly. The one-path
sound propagation has a longer effective range than echoes.

Sound source localization. Previous systems localize sound sources with microphone arrays (Valin
et al., 2003; Rascon & Meza, 2017) or one microphone with a camera (Hershey & Movellan, 1999).
They intend to estimate the direction of arrival(DOA) or the distance. The DOA is inferred by the
subtle difference in arrival time from the sound source to each microphone(Mao et al., 2019; Sun
et al., 2022) or by semantic matching with the visual appearance if given images(Tian et al., 2018;
Arandjelovic & Zisserman, 2018). The distance can be estimated by triangulation methods with
multiple DOAs and room structures(Wang et al., 2021; Shen et al., 2020). Many work study the
room acoustic and the distance cues from the reverberation(Singh et al., 2021; Chen et al., 2021b)
but (Zahorik, 2002) shows that the reverberation has a coarse coding with the distance. Compared to
these methods, FBDepth directly estimates the distance by the ToF and achieves superior accuracy
to indirect triangulation methods and implicitly depth learning networks on reverberation.

Audio-visual event localization aims to detect and localize events in videos. (Tian et al., 2018)
first propose the task and build up the audio-visual event(AVE) dataset. They apply an audio-guided
visual attention mechanism to learn visual regions with the related sounding object or motions.
Recent works develop dual-modality sequence-sequence framework (Lin et al., 2019) and dual at-
tention matching mechanism (Wu et al., 2019) to leverage global features. However, the temporal
event boundary is 1s-level in AVE dataset so it is split as 1s-long segments. We study the instant
collision event and solve the coarse boundary problem as well.

(Gan et al., 2022) has a similar setup to ours. They use an embodied robot agent to navigate to a
dropped object in 3D virtual rooms. They integrate asynchronous vision and audition and navigate to
the object. The asynchronism comes from the invisibility of the object. Even though their simulator
has been pretty vivid enough for semantic tasks, it has a gap in the real-world collision for the ms-
level formulation. Falling objects dataset(Kotera et al., 2020), TbD dataset(Kotera et al., 2019) and
TbD-3D dataset(Rozumnyi et al., 2020) explore falling motions and fast movements but they do not
have audio and depth information.

Video frame interpolation aims to synthesize intermediate frames between existing ones of a
video. Most state-of-the-art approaches explicitly or implicitly assume a simplistic linear motion.
Warping-based methods (Baker et al., 2011; Park et al., 2020) apply optical flow and forward
warping to shift pixels to intermediate frames linearly. Phase-based methods (Meyer et al., 2015;
2018) combine the phase information across different scales but the phase is modeled as a linear
function of time. Recent methods are developed to approximate non-linear motion, such as kernel-
based methods (Niklaus et al., 2017a;b), quadratic interpolation (Xu et al., 2019a), cubic motion
modeling (Chi et al., 2020), etc. However, they still fail to complex non-linear motions because
precise motion dynamics cannot be captured in the blind time between keyframes. Unfortunately,
collisions are super non-linear and instant. Given two keyframes before and after the collision, it
is ambiguous to decide whether there is a collision. Hence, these methods are not applicable. We
analyze the motions before and after the collision and extrapolate optical flows to find the most
potential collision position.

3 PROBLEM FORMULATION

We formulate the depth estimation by the physical law of wave propagation. We have:

d

v
− d

c
= T (1)

where the depth of the sound source is d and the difference between the ToF of sound and light is
T . c and v denote the propagation speeds of light and sound, respectively. We can estimate d based
on d = cvT

c−v ≈ vT since c ≫ v. We observe T = Taudio − Tvideo + Thardware, where Taudio

and Tvideo denote the event time in the audio and video recordings, respectively, and Thardware
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denotes the start time difference in the audio and video recordings. It can be small as well as have a
small variance with a well-designed media system such as the Apple AVFoundation framework. We
regard it as a constant unknown bias to learn.

It is impossible to label the precise Tvideo and Taudio manually. Tvideo can be tagged at most
frame-level. Even though many commercial cameras can support up to 240 FPS, it results in a
4-ms segment and 1.43m depth variation. Moreover, it is tough to determine the exact frame that
is nearest to the collision in high FPS mode by a human being due to the constrained view of the
camera. Taudio is challenging to recognize in the wild as well. Although the audio sampling rate
is high enough, we can recognize the significant early peaks instead of the first sample triggered by
the collision. The best effort of segmentation is 10-ms level based on real data.

We cannot learn the timestamp with supervision. We propose a 2-stage estimation framework. The
goal of the first stage is to estimate the numerical Tvideo. As figure 1 shows, we localize the audio-
visual event in the stream and then take advantage of the unique optical flow of the collision to
estimate Tvideo at ms-level. In the second stage, we place the Tvideo as an anchor into the audio
clip and direct regress the depth with depth supervision. We make the network optimize Taudio

automatically with knowledge of the Tvideo, the audio waveform and visual features.

4 APPROACH

Figure 1: Model architecture. Our audio-visual depth estimation uses the video, audio and optical
flow to perform the event-level localization to retrieve the collision event. It analyzes the collision
flow and estimate the collision timestamp in video. It uses multiple modalities including RGB, flow,
audio and the timestamp to estimate the depth.

We demonstrate a novel coarse-to-fine pipeline to localize the collision with a super temporal res-
olution in the video. This method does not require annotations on ms-level, which is at least two
orders of magnitude finer than previous approaches. They rely on the supervision of segment anno-
tations, such as AVE dataset with 1-second segments (Tian et al., 2018), Lip Reading Sentences 2
dataset with word-level segments (Chung & Zisserman, 2016), BOBSL with sentence-level align-
ments (Bull et al., 2021).

4.1 EVENT-LEVEL LOCALIZATION

Audio-visual modeling for collisions. In this step, our goal is to localize the audio-visual event
for the region and the period of interest. It is similar to (Tian et al., 2018), but the unique properties
of collisions bring new opportunities to learning strategy. Collisions have a significant motion than
other sound sources. We can use the optical flow to inform the network of moving pixels. Besides,
the impact sound is highly correlated to the rich information of objects (Gan et al., 2022), such as
shape, materials, size, mass, etc. It makes audio-visual cross-matching easier than general audio-
visual events so that we do not need to apply a complex scheme to learn. Another fact is that
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collisions are pretty sparse temporally in the wild because the duration of collisions is extremely
short. It is rare to come across overlapped collisions based on our empirical study on the basketball
court. Only two frames have double collisions among all 1208 frames and a total of 203 collisions
when 7 basketballs are played during a 40-s duration.

We propose a motion-guided audio-visual correspondence network (MAVNet). Similar to (Tian
et al., 2018; Wu et al., 2019), MAVNet performs the cross-matching for the audio features and the
RGB-F channels. Besides, it predicts audio-visual segmentation to capture whole pixels of the target
object. It can achieve fine-grained audio-visual scene understanding (Zhou et al., 2022). We use the
segmentation mask to filter flows of interest and perform high-resolution estimation in the next steps.

MAVNet has two backbones to deal with RGB-F channels and audio clips respectively. A U-
Net (Ronneberger et al., 2015) style encoder is applied to extract the frame features conditioned
by optical flows. It uses a series of convolution layers to extract visual features. Another branch is
the audio encoder which takes in the time-domain signal. It has a 1D convolution layer to learn an
STFT-like representation and a stack of 2D convolution layers with batch normalization to learn the
semantic audio features. We replicate the audio feature, tile them to match the visual feature dimen-
sion, and concatenate the audio and visual feature maps. MAVNet has two output heads as well. the
U-Net decoder applies a series of up-convolutions and skip-connections from the RGB-F encoder to
fused feature maps to learn the binary segmentation mask M . Meanwhile, the fused feature map is
fed into a binary classification head consisting of convolution layers and linear layers to predict the
audio-visual event relevance y ∈ {0, 1}.

Training We use the weighted sum Binary Cross Entropy (BCE) loss as the training objective for
both segmentation and the cross matching, We train all components to jointly optimize the location
predictions and energy reconstruction. We minimize the total loss Ltotal = BCE(M,M̂) + λ ∗
BCE(y, ŷ) where λ is the hypermeter to set.

Inference We only use low FPS to perform MAVNet to avoid dense inference at this stage. More-
over, we do not need to activate the segmentation head until the audio clip and the frame are highly
matched. Finally, MAVNet uses this audio clip to retrieve a sequence of frames including the full
collision procedure.

4.2 FRAME-LEVEL LOCALIZATION

Given a sequence of video frames, our goal is to split them into two sets: the frames before the
collision V0 and the frames after the collision V1. This essentially requires us to determine the last
frame Ie in V0 before the collision and the first frame Is in V1 after the collision. Thus, we locate
the collision between the frame Ie and Is.

Based on the analysis of the physical motion, we make an important observation that can help
determine Ie and Is. The collision results in a significant acceleration change due to the strong
impulse force. Let at = vt − vt−1 and δat = at − at−1 denote the acceleration and acceleration
change of frame It, respectively. δa between Ie and Is is large, while δa between adjacent frames
before or after the collision is small. If the object stops moving immediately after the collision, we
take the static frame Ie+1 as Is. Finally, we select the frames before Ie to generate V0, and select
the frames after Is to generate V1.

We use the retrieved mask in the last stage to determine the object positions in the frames and
calculate the velocity, acceleration, and acceleration change. We find the Ie and Is at the low FPS
and then replicate the procedure for frames between Ie and Is at high FPS. Finally, we locate Ie and
Is in the high FPS mode efficiently.

4.3 MS-LEVEL LOCALIZATION

To further locate the exact moment of the collision, we try to interpolate frames between Ie and Is
to recover the skipped frame. Unfortunately, the common assumption of frame-based interpolation
is fully broken down.

Motion consistency is fundamental for spatio-temporal video processing. If the motion of the
object is temporally stable across several frames (e.g., due to a constant force), the position and pose
can be predicted in the future frames as well as be interpolated between two frames. We denote it
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as motion first consistency. However, the impact sound is caused by an impulse force, which results
in a rapid change of the motion status. It breaks the motion continuity and consistency. When we
observe Ie and Is, we cannot determine whether a collision happens or the object just flies in the air.

Luckily, the collision moment retains a new form of motion consistency. We denote it as motion sec-
ond consistency. It reveals that the motions before and after the collision share the same intersection
position. Besides, they keep the motion first consistency separately. Therefore, we can extrapolate
the motions based on the motion first consistency and search for the most similar motion extrapola-
tions by leveraging motion second consistency. Note that our final goal is to find the timestamp of
the collision instead of the motion status at the shared position. (Kotera et al., 2019; Rozumnyi et al.,
2020) try to recover the sub-frame motions and trajectories as well but they require the high FPS
ground truth to guide the training. In our context, we care more about when the collision happens
than what it looks like.

Optical flow extrapolation Optical flow is widely used for frame prediction () and interpola-
tion (Baker et al., 2011) by warping the frame with the estimated optical flow. Because it can
capture all motions of pixels and get a finer understanding of the object dynamics. The optical flow
sequence is usually generated by adjacent video frames. However, it is not efficient for extrapola-
tion. The drift of pixels in the flow requires extra iterative wrappings to align the corresponding
pixels, which results in accumulation errors.

Therefore, we compute the optical flows from an anchor frame Ia to the frame sequence V as
{I0, I1, ...In}. We can estimate the flow sequence Fa→V as {fa→0, fa→1, ...fa→n}. As fa→n(x, y)
represents the movement of the pixel Ia(x, y) to In, Fa→V(x, y) describes how the pixel in Ia(x, y)
moves across the frame sequence V . Hence, Fa→V tracks the global motion of each pixel without
iterative warpings. With the historical positions of Ia(x, y) from frame I0 to In, we can regress the
motion of this pixel and extrapolate the flow to fa→n+δt, which is the relative pixel position to In+δt

with an arbitrary δt.

In our context, We pick k consecutive frames before the collision Vpre as {Ie−k+1, Ie−k+2, ..., Ie}
and after the collision Vpost as {Is+k−1, Is+k−2, ..., Is}. We select the frame Ie as the anchor frame.
It is near the collision moment, so its motion to other frames is not dramatic and easy to be estimated.
Hence, we can estimate the optical flow sequences Fe→Vpre

and Fe→Vpost
Meanwhile, we apply the

predicted segmentation mask of Ie to filter the pixels of the target object. In the last step, we build
up regressors R for each pixel’s motion individually and predict future locations in any sub-frame.

Optical flow interpolation We have construct pixel level regressors for Fe→Vpre
and correspond-

ing Fe→Vpost
. They can extrapolate the flow fe→e+δt0 and fa→s+δt1 , respectively. δt0, δt1 are

extrapolation steps. The optimization goal is to

min
e−s≤δt1≤0≤δt0≤s−e

||fe→e+δt0 , fa→s+δt1 ||2, s.t. e+ δt0 < s+ δt1

The collision duration is s+ δt1 − (e+ δt0), which is always more than 0. e+ δt0 is the target ms-
level localization T̂video. We can apply this interpolation methodology to search the intersection of
the object’s center trajectory or maximize the Intersection over Union (IoU) of the object’s bounding
box. However, both only use several key points so they cannot achieve a fine granularity since the
optical flow takes advantage of thousands of pixels.

4.4 DEPTH REGRESSION

Based on the estimation T̂video, we directly regress the depth to fit the Taudio and the bias THardware

with the supervision of ground truth depth. We observe that the sound generation procedure varies
a lot across different objects, materials, shapes, and motions. On one hand, the diverse waveforms
make it impractical to measure the exact Taudio manually. On the other hand, each specific waveform
has significant implications on what is the best Taudio corresponding to T̂video. To combat the
background noise from other sources, we also feed the RGB-F crop of the target object from frame
Ie to the depth predictor. It includes the semantic features of the object as well as the motion status
just before the collision. These cues can guide the predictor to find the waveform pattern easily.

We select a sequence of audio samples starting from Ie and label some anchor samples as 1 at
T̂video. It informed the audio sequence about the timestamp of the visual collision directly. We feed
the enriched sequence into the 1D convolution layer to extract a 2D representation. It is followed
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by two residual blocks to learn high-dimension features. Meanwhile, we use ResNet-18 (He et al.,
2015) to extract the RGB-F features of the target object. We tile and concatenate the RGB-F features
to the audio features along the channel dimension and append another two residual blocks to fuse the
features. Finally, it is followed by a pooling layer and a fully connected layer to predict the depth.
The output maps to depth by the 2D projection. We use Mean Square Error (MSE) Ldepth = ||d, d̂||2
as the learning objective where d and d̂ are the target depth and the predicted depth.

5 EXPERIMENTS

5.1 SETUP

Dataset platform and collection We use an iPhone XR with a 240-fps slow-motion mode to collect
the video with audio. The audio sampling rate is 48Khz. We set a stereo camera and a Lidar together
to collect ground truth. We include details of data collection in the Appendix B.

AVD Dataset We collect 3.6K+ raw audio-visual sequences with a single collision event as the
audio-visual depth(AVD) dataset. We randomly sample raw sequences to generate train/val/eval
splits, which have 2600/500/522 sequences. We augment the raw sequences by cropping one moving
object from a raw video sequence and inserting it into another raw sequence with a random temporal
location. Besides, we augment the raw depth with a maximum 3% random change to diversify the
depth and shift audio samples accordingly to the video timestamp. More details are described in
Appendix B.

Baselines We include three types of baseline for comparison. We compare to a monocular depth
estimation method NeWCRFs (Yuan et al., 2022), a state-of-the-art(SOTA) on multiple benchmarks.
We also compare to stereo matching methods including the ZED built-in ultra depth estimation SDK
and a SOTA method LEAStereo (Cheng et al., 2020). We use dense depth maps collected by the
Lidar to finetune the NeWCRFs and LEAStereo on images collected by the stereo camera. Despite
optical flow based interpolation, we compare to interpolation using key points such as the trajectories
of center or bounding boxes.

Metrics We use the mean absolute depth errors as AbsErr = 1
n

∑n
i=1 |d − d̂|, root mean square

absolute relative errors RMSE =
√

1
n

∑n
i=1(d− d̂)2, AbsRel = 1

n

∑n
i=1

|d−d̂|
d as the end-to-end

performance metrics. FBDepth is a sparse depth estimation. We evaluate the depth of each target
object. However, monocular and stereo baselines have dense depth estimations for all pixels of the
object. We evaluate the median estimation depth with the median depth of the ground truth dense
map. We provide the results over different distance ranges as close(≤ 10m), mid(10m-30m), and
far(≥ 30m). Intuitively, there is an upper bound for the temporal resolution so AbsRel at close
depths performs worse than at further distances.

5.2 RESULTS

Method Input FPS AbsErr(m)
close/mid/far/all

AbsRel(%)
close/mid/far/all

RMSE(m)
close/mid/far/all

NeWCRFs V - 0.553/1.09/3.27/1.68 11.1/6.74/8.64/9.48 0.895/1.51/5.82/3.49
ZED SDK S - 0.083/0.96/5.10/2.03 1.78/6.05/12.7/7.28 0.108/1.07/6.30/3.69
LEAStereo S - 0.067/0.66/2.47/0.88 1.48/4.24/5.98/4.09 0.083/0.76/5.08/2.95
FBDepth A+V 30 0.485/0.83/1.33/0.95 10.9/5.20/3.32/4.26 0.731/1.01/2.29/1.51
FBDepth A+V 60 0.418/0.70/1.11/0.72 8.94/4.33/2.79/3.34 0.597/0.83/1.86/1.27
FBDepth A+V 120 0.392/0.61/0.98/0.67 8.42/3.79/2.49/3.11 0.534/0.75/1.68/1.09
FBDepth A+V 240 0.337/0.58/0.95/0.64 7.25/3.55/2.41/2.98 0.476/0.69/1.61/1.03

Table 1: A comprehensive comparison for different depth estimation approaches. V, S, A represent
visual, stereo, audio respectively. We input video with different frame rates as well.

Table 1 shows the results on the depth estimation. In all, FBDepth can achieve better performance
on all metrics than baselines across different FPS. Several important trends can be observed. Stereo
matching methods perform extraordinarily on close objects, where more clear view difference can
be captured. The AbsErr and RMSE increase dramatically as the targets become further because
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the limited baseline cannot resolve the view difference easily. In the other side, the AbsErr and
RMSE of FBDepth grows slowly with the increasing distance while its AbsRel decreases gradu-
ally. Intuitively, there is a upper bound for the temporal resolution due to the limited FPS, the lack
of the accurate timestamp and the small disturbance of audio-video software. Thus FBDepth may
not achieve the centimeter level easily. A Further depth can break the assumption of stereo matching
methods as well as monocular methods which has a fixed depth range of training data, but FBDepth
still holds the physical propagation law in this condition.

FBdepth also shows advantages on NeWCRFs. The monocular methods rely on the training set,
which includes various scenarios and depths. Although we apply camera remapping with intrinsic
matrix and finetuning, NeWCRFs still cannot achieve the best performance as the one in the pre-
trained dataset. The implicit depth regression has difficulty in domain adaption. In the contrast,
stereo methods can be directly applied to the new scenario and achieve awesome estimation because
its fundamental is the explicit spatial view difference on stereo images. FBDepth applies the explicit
spatial measurement and does not reply on the camera and scenarios heavily. It requires several
learning models but these model can be applied to common cameras and microphones. FBDepth
can be more general with a more diverse dataset. We show some visual qualitative results in the
Appendix B.3. Compared to other methods, the delay between audio and video can be visually rec-
ognized, which is similar to object detection. In another word, FBDepth transforms the tough depth
estimation problem to a simple interpretable problem.

5.3 ABLATION

In the ablation study, we show how each stage contributes to the final results.

Method AbsErr(m) AbsRel(%) RMSE(m) Recall Precision
event loc w/o flow - - - 87.3 93.7

FBDepth w/o interp 1.95 9.16 4.07 - -
FBDepth w/ center 1.39 6.57 2.31 - -
FBDepth w/ bbox 1.23 5.65 2.06 - -

FBDepth w/o RGB-F 0.92 4.25 1.42 - -
FBDepth 0.64 2.98 1.03 94.5 98.7

Table 2: Ablation study for FBDepth using different setups at each stage. The input is 240 FPS.

Event-level localization We invest how the optical flow can help detect the collision event as well
as contour the object mask. We define recall and precision as the percentage of correct recognized
audio-visual events in all audio-visual events and all recognized events with an IoU more than 0.5,
respectively. With the flow, both recall and precision improve as the flow can work as a pre-mask
to guide the network. The main failures in recall come from weak collision sounds or simultaneous
collisions. The incorrect recognition is mainly due to similar objects in the frame.

(a) Temporal error of the estima-
tion of low FPS compared to 240
FPS

(b) Improvement ratio of tempo-
ral resolution

Figure 2: Effectiveness the video event detection in the second stage; change figure ratio

Frame-level localization Frame rate is most related to the frame-level stage. We observe that in-
creasing the frame rate reduces the numerical error of FBDepth in Table 1. Especially, increasing
30 FPS to 60 FPS yields the largest improvement, and the benefit gradually tapers off with a further
increase in the frame rate. We observe that 30 FPS is too slow to capture sudden movements and
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fast dynamics while 60 FPS is around the borderline. It is consistent with the trend to set 60 FPS as
the default video recording and playing. The motion in 120FPS and 240 FPS is even slower so it is
more difficult to distinguish the frame Ie. The frame error is no more than the one in the low FPS
mode. Thus, 120 FPS and 240 FPS bring less improvement.

Ms-level localization We investigate our special interpolation in two perspectives. First, we need
to verify whether this method works. However, there is no ground truth timestamp so we cannot
directly quantify the accuracy. We set the estimation of 240 FPS as a baseline and compare it with
the estimation of lower FPS. If it can get similar numerical results from independent input, which
means the algorithm is reliable. In Figure r̃efmicro2, the median temporal error for 30, 60, and 120
FPS is 2.3ms, 0.65ms, and 0.5ms respectively. Considering the frame resolution, we can compute
the improvement ratio as frame duration

temporal error . The 60 FPS has the largest 25x improvement over the
frame duration. This is strong evidence that our ms-level localization is reasonable and robust.

Second, we compare the performance of depth estimation with different interpolation strategies in
Table 2. We use the result from frame localization to predict the depth when there is no interpolation.
The error is large since this timestamp is ambiguous for the depth prediction. Interpolation with
the traces of centers or bounding boxes does not work well. A few key points cannot capture the
dynamics in fine granularity.

Depth regression Without the RGB-F channel of the target object in depth regression, the estimation
will be less robust due to the ambient sound and the background noise as shown in the Table 2

6 LIMITATION AND FUTURE WORKS

We classify audio-visual events into 3 categories by the quality and the quantity of visual cues during
the sound production.

Obvious visual cues during sound production (e.g.collision) This is the main scenario we try to
address in this paper. It requires both visible procedure and audible sound to estimate the depth. We
can apply it to sports analytics, human stepping, etc. Moreover, it can collect the sparse depth point
and accumulate depth points over time. According to existing work on depth completion (Long
et al., 2021b; Xu et al., 2019b), adding some accurate depth points can boost the performance of
monocular depth.

Indirect visual cues during sound production (e.g.speech, playing the piano) This scenario is
challenging but common every day. They do not show the vibration visually. Fortunately, there are
still lots of visual cues. Existing work on speech synthesis with lip motion(Ephrat & Peleg, 2017),
and music generation with pose(Gan et al., 2020) indicates the strong semantic relationship between
video and audio. The spatial correlation still holds here. We propose to apply a high-resolution
multi-frame alignment between the video and audio to find the accurate propagation delay.

No visual cues during sound production (e.g. car engines, mobile phone speaker) We admit that
we have no idea to estimate the depth when these sound sources are static because we cannot see
them at all. Luckily, we still have a chance when these sound sources move. We propose a Doppler-
like formulation to associate visual cues and audio cues.

Another urgent problem is that the microphone is pretty challenging to synchronize with other sen-
sors. Pushing the latency to the sub-ms level can boost many applications including FBDepth.

7 CONCLUSION

In this paper, we develop a novel depth estimation method based on the ”Flash-to-Bang”. By align-
ing the video with the audio and detecting the events from both, we can estimate the depth in the wild
without calibration or prior knowledge about the environment or target. Our extensive evaluation
shows that our approach yields similar errors across varying distances. In comparison, the errors
of several existing methods increase rapidly with distance. Therefore, our method is particularly
attractive for large distances. As part of our future work, we are interested in further enhancing the
accuracy of our method, generalizing to more contexts, and using the estimated depth to the collision
to estimate the depth to other objects in the scene.
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A BACKGROUND OF DEPTH SENSORS

We add more details on the performance of various depth sensors on multiple criteria in Table 3 and
Table 4. We especially demo the available depth sensors and corresponding APIs on iPhone Pro 13
in Table 5 as a typical example that depth estimation is well studied at the short range.

Sensor Device/Method Accuracy Range Angular
Resolution Power Cost

LiDAR Velodyne
HDL-32E (Barnes et al., 2020) 2cm 100m 1.33°(V)

0.1°-0.4°(H) 10W > $5000

structured
light

Realsense
D455 2% 6m pixel-level 3.5W $400

ToF
camera

Azure
Kinect (Zhang, 2012) < 1cm 6m pixel-level 5.9 W $600

mmWave Navtech
CTS350-X (Barnes et al., 2020) 4.38cm 163m 1.8° 20w > $500

inaudible
sound Rtrack (Mao et al., 2019) 2cm 5m object-level 0.5W < $10

WiFi Chronos (Vasisht et al., 2016) 65–98 cm 50 m object-level < 10W < $50

Table 3: Active depth sensors. These qualitative results may not be exact to the corresponding
sensors, but they are in a similar order of magnitude.
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Sensor Device/Method Accuracy Range Angular
Resolution Power Cost

camera NeWCRFs(Yuan et al., 2022) NYUv2: 9.52%
KITTI: 5.20%

10m
80m pixel-level <1W <$30

stereo
camera ZED 2i(StereoLab, 2021) < 2% up to 10m;

< 7% up to 30m 40m pixel-level 2W $450

camera
+ mic FBDepth overall 2.98%;

>30m: 2.41% 60m obj-level <1W <$30

Table 4: Passive sensors and algorithms.

Sensor IOS API Accuracy Range Usage
True depth camera builtInTrueDepthCamera 0.5mm 15cm-100cm Face ID

Lidar builtInLiDARDepthCamera 3cm 5m 3D scanner
Dual camera builtInDualCamera low low Portrait mode

Table 5: Existing IOS APIs for developers to capture the depth(Apple, 2022). They provide accurate
depth estimation in the short range. Note that although there are no qualitative results available, the
accuracy and range of the stereo depth are limited due to the small baseline of the dual camera.

B DATASET DETAILS

We describe the details to build up the data collection pipeline for this novel task and discuss the
trade-off during the data collection.

B.1 PLATFORM AND COLLISION OBJECTS

Figure 3 shows the data collection platform. It includes three devices.

Figure 3: Data collection platform with multiple sensors

Lidar: We use a Livox Mid-70 Lidar(LIVOX, 2021) to collect the ground truth depth. The detection
range is 90 m @ 10% reflectivity. The range precision is 2cm. Although the point rate of Mid-70
is low, it has a special non-repetitive scan pattern so that the point cloud can be very dense by
accumulation. Thus, it is best to be used to collect the depth in the static scene.

Stereo Camera: We use a ZED 2i stereo camera(StereoLab, 2021) with a 12 cm baseline and a
focal length of 4mm. The large focal length is designed to increase the maximum effective range.
The image resolution is 1242 by 2208 pixels. Table 3 shows detailed performance. We use the ZED
2i camera as an important depth estimation baseline.

Video Recorder: A pair of a camera and a microphone can play the basic functionalities of the
video recorder. However, it is very challenging to satisfy all the criteria for the audio-visual depth
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estimation. In this experiment, we use an iPhone XR and record the video by the default Camera
app. It has several promising advantages. First, we can record slow-motion 1080P videos with 240
fps. The frame duration is constant so that we can transform the frame number to the timestamp
accurately and align it with the audio track which has a 48kHz sampling rate. Second, the audio-
visual recording delay Thardware is small as 1 ms and has a small variance within 1 ms on the
iPhone. Both specifications above are critical to the audio-visual depth but cannot be satisfied on
other platforms such as Android phones. The calibration of the audio-visual recording framework
is out of the scope of this work. It is unexpected that the calibration is pretty difficult based on our
experience.

To capture the remote scene clearly, the telephoto lens has become indispensable in recent smart-
phones. Samsung Ultra 22 can support 10x optical zoom and 100x hybrid zoom, and Pixel 6 pro
has 20x zoom in all. Their zoom performance is much superior to iPhone. The iPhone XR is not
equipped with a telephoto lens, so we mount an ARPBEST monocular telescope to enlarge the scene
at a large distance. As shown in Figure 4, the image quality of our setup is a bit worse than the one
captured by Pixel 6 Pro’s telephoto lens. Thus, our setup does not provide superior image quality
compared to existing commercial camera modules on smartphones. The image taken by Pixel Pro 6
is sharp but noisy while the one taken by iPhone XR with the telescope is a bit blurred. Our setup
does not take advantage of the external telescope from this perspective. Overall, our setup resembles
the hardware available on commercial mobile phones.

(a) iPhone XR + telescope (b) Pixel Pro 6

Figure 4: Compare the image quality captured by our telescope setup and the commercial telephoto
lens on smartphones

Collision Objects: In Figure 8, We use 24 objects including various masses, sizes, shapes, and
six common materials: wood, metal, foam, rubber, plastic, and paper. These objects are ubiquitous
every day. Besides, they do not break down during the collision.

B.2 COLLECTION METHODOLOGY

Sensor setup: We mount the Lidar, the stereo camera, and the iPhone on one slide. We perform
camera Lidar calibration between the left camera of the stereo camera and the Lidar according to
(Yuan et al., 2021). We use the left camera to evaluate the monocular depth estimation and use the
stereo camera to evaluate the stereo depth estimation. The mobile phone changes the field of view to
fit the object at different distances. Hence, its intrinsic is not constant. We use the frames recorded
by iPhone only for FBDepth.

Collision setup: Since the point cloud is too sparse to measure the instant collision, we control the
collision position to get the ground truth depth. First, we select an anchor position and measure the
depth from the slide to the anchor by the Lidar. Second, we perform the collision at the anchor. For
example, we throw an object to collide with the anchor or strike a hammer into the anchor or step
the shoes on the anchor. Finally, the iPhone records the collision procedure. Besides, the Lidar and
the stereo camera record the object placed at the anchor. They record the static object corresponding
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Figure 5: A set of objects are used for experiments. They cover most common items and materials
in daily life

to the moving object in the video frames. We set up various anchors from 2 meters to 60 meters in
different environments.

Data Augmentation:

After data cleaning and annotation, we get 3.6K+ raw audio-visual sequences, including 280K+
frames as te AVD dataset. Each sequence has about 40 to 120 frames and a corresponding audio clip
corresponding. We use the stereo camera to capture static images and use the lidar to capture static
depth maps.

We augment the raw audio-visual sequences to have more than a single collision by cropping one
moving object from a raw video sequence and augmenting it to another raw sequence with a random
temporal location. Meanwhile, we add up the audio sequence with the same time shift as the video.
We have 10K audio-visual sequences. For the event-level localization stage, we segment an audio
clip of 66.7ms including the impact sound and sample 20 frames including visible objects from
each sequence and pair them as positive pairs. Negative samples pair the frame with the audio clip
without impact sounds or with irrelevant impact sounds. Finally, we generate around 400K audio-
visual pairs. Besides, we augment the raw depth with a maximum 3% random change to diversify
the depth and shift audio samples accordingly to the video timestamp. It can solve the problem of
discrete anchor depths. The change cannot be significant because the impulse response of sound
is also related to depth. It requires more transformation than just shifting audio samples. We also
augment images with low light, flip and rotation, and audio with diverse background noise from
WHAM!Wichern et al. (2019).

B.3 SAMPLES AND VISUAL QUALITATIVE RESULTS

We provide some samples and visual qualitative results. Considering the objects are small in the
normal camera, we only show the region of interest in the RGB image and depth map. The most
intuitive observation is that our approach simplifies the difficult depth estimation problem to be
easily estimated from the visual samples. Humans can give a coarse estimation with the given
timestamps, frames, and waveforms. However, we can have no idea to know the depth from the
RGB image or stereo image visually.
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(a) Slow motion and the corresponding waveform

(b) Qualitative results

Figure 6: collision at 63.2m
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(a) Slow motion and the corresponding waveform

(b) Qualitative results

Figure 7: collision at 43.4m
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(a) Slow motion and the corresponding waveform

(b) Qualitative results

Figure 8: collision at 16.1m
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