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Abstract
Estimating the unknown reward functions driv-
ing agents’ behavior is a central challenge in in-
verse games and reinforcement learning. This
paper introduces a unified framework for reward
function recovery in two-player zero-sum matrix
games and Markov games with entropy regular-
ization. Given observed player strategies and ac-
tions, we aim to reconstruct the underlying re-
ward functions. This task is challenging due to
the inherent ambiguity of inverse problems, the
non-uniqueness of feasible rewards, and limited
observational data coverage. To address these
challenges, we establish reward function identi-
fiability using the quantal response equilibrium
(QRE) under linear assumptions. Building on this
theoretical foundation, we propose an algorithm
to learn reward from observed actions, designed
to capture all plausible reward parameters by con-
structing confidence sets. Our algorithm works
in both static and dynamic settings and is adapt-
able to incorporate other methods, such as Maxi-
mum Likelihood Estimation (MLE). We provide
strong theoretical guarantees for the reliability and
sample-efficiency of our algorithm. Empirical re-
sults demonstrate the framework’s effectiveness in
accurately recovering reward functions across var-
ious scenarios, offering new insights into decision-
making in competitive environments.

1. Introduction
Understanding the underlying reward functions that drive
agents’ behavior is a central problem in inverse reinforce-
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ment learning (IRL) (Ng & Russell, 2000; Arora & Doshi,
2020). While traditional reinforcement learning (RL)
(Szepesvári, 2010; Sutton & Barto, 2018) focuses on solv-
ing policies based on a known reward function, IRL inverts
this process, aiming to infer the reward function from ob-
served behavior. In competitive settings, such as two-player
zero-sum games, this problem becomes even more compli-
cated, as the agents’ strategies depend not only on their own
rewards but also on their opponents’ strategies (Wang &
Klabjan, 2018; Savas et al., 2019; Wei et al., 2021). These
challenges motivate the study of inverse game theory (Lin
et al., 2014; Yu et al., 2019), which seeks to recover reward
functions from observed strategies in competitive games.

From a practical perspective, inferring the reward functions
in competitive games has wide-ranging applications in eco-
nomics, cyber security, robotics, and autonomous systems
(Ng & Russell, 2000; Ziebart et al., 2008). Understand-
ing the motivations behind players’ actions in adversarial
settings help optimize resource allocation in cyber security
(Miehling et al., 2018), model strategic interactions in eco-
nomic markets (Chow & Djavadian, 2015), or design better
AI systems for competitive tasks (Huang et al., 2019).

Meanwhile, recovering reward functions in competitive
games involves several key challenges: (i) Inverse problems
are inherently ill-posed (Ahuja & Orlin, 2001; Yu et al.,
2019), as multiple reward functions can lead to the same
optimal strategy and equilibrium solutions. A well-designed
algorithm should not merely recover a single reward func-
tion but instead identify the entire set of feasible reward
functions (Lindner et al., 2022). (ii) In an offline setting
(Jarboui & Perchet, 2021), insufficient dataset coverage is
also a significant challenge. Observed strategies often fail
to comprehensively cover the state-action space, making it
difficult to ensure robust reward function recovery. These
challenges are further amplified in Markov games (Littman,
1994), where agents’ strategies evolve dynamically over
time, introducing additional complexity in both reward iden-
tification and estimation.

1.1. Major Contributions

We propose a unified framework for inverse game theory
that addresses the identification and estimation of reward
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functions in competitive games in both static and dynamic
settings. Our contribution is four-fold:

• Identification of Reward Functions: We study the iden-
tification problem using the quantal response equilib-
rium (QRE) under a linear assumption. We formally
define the conditions for reward parameter identifiabil-
ity and characterize the feasible set when parameters
are not uniquely identifiable.

• Algorithm for Reward Estimation: Building on the
identification results, we propose an algorithm that
estimates reward functions by constructing confidence
sets to capture all feasible reward parameters.

• Extension to Markov Games: We extend our frame-
work to entropy-regularized Markov games, combining
reward recovery with transition kernel estimation to
handle dynamic settings. This approach is designed to
be sample-efficient and adaptable, incorporating meth-
ods like Maximum Likelihood Estimation (MLE).

• Theoretical and Empirical Validation: We provide rig-
orous theoretical guarantees to establish the reliability
and efficiency of our algorithm. Additionally, numeri-
cal experiments demonstrate the effectiveness of our
framework in accurately recovering reward functions
across various competitive scenarios.

1.2. Related Work

Zero-sum Markov Games. The zero-sum Markov game
(Shapley, 1953; Xie et al., 2020; Cen et al., 2023; Kalogian-
nis & Panageas, 2023) models the competitive interactions
between two players in dynamic environments. The solution
typically focuses on finding equilibrium strategies (Nash Jr,
1951; McKelvey & Palfrey, 1995; Xie et al., 2020) where
neither player can unilaterally improve their outcome. With
a primary focus on learning in a sample-efficient manner,
learning algorithms are proposed, including policy-based
methods (Cen et al., 2021; Wei et al., 2021; Zhao et al.,
2022; Cen et al., 2023) and value-based methods (Xie et al.,
2020; Chen et al., 2022; Kalogiannis & Panageas, 2023).

Inverse Optimization and Inverse Reinforcement Learn-
ing (IRL). Inverse optimization (Ahuja & Orlin, 2001;
Chan et al., 2022; Ahmadi et al., 2023) reverses the tradi-
tional optimization process by taking observed decisions as
input to infer an objective function (Ahuja & Orlin, 2001;
Nourollahi & Ghate, 2018) and constraints (Chan & Kaw,
2019; Ghobadi & Mahmoudzadeh, 2021) that make these
decisions approximately or exactly optimal. In practice,
inverse optimization offers a powerful framework for un-
derstanding and modeling decision-making in complex sys-
tems across fields like marketing (Chow & Djavadian, 2015;
Vatandoust et al., 2023), operations research (Brotcorne
et al., 2005; Agarwal & Özlem Ergun, 2010; Yu et al., 2021),

and machine learning (Konstantakopoulos et al., 2017; Dong
et al., 2018; Tan et al., 2019).

Inverse reinforcement learning (Ng & Russell, 2000; Ziebart
et al., 2008; Herman et al., 2016; Wulfmeier et al., 2016;
Arora & Doshi, 2020) focuses on inferring the reward func-
tion based on the observed behavior or strategy of agents and
experts, which is crucial for understanding various decision-
making processes, from single-agent processes (Boularias
et al., 2011; Herman et al., 2016; Fu et al., 2018) to compet-
itive or cooperative games (Vorobeychik et al., 2007; Ling
et al., 2018; Wang & Klabjan, 2018; Wu et al., 2024). A
popular approach within the field of IRL is the Maximum
Entropy IRL (Ziebart et al., 2008; Ziebart, 2018; Wulfmeier
et al., 2016; Snoswell et al., 2020), which is based on the
principle of maximum entropy and is provably efficient in
handling uncertainty of agent behaviors (Snoswell et al.,
2020; Gleave & Toyer, 2022) and high-dimensional obser-
vations (Wulfmeier et al., 2016; Snoswell et al., 2020; Song
et al., 2022).

Entropy Regularization in RL and Games. We use the
entropy regularization in our framework, which has be-
come a widely used technique in reinforcement learning
(Szepesvári, 2010; Ziebart, 2018) and game theory (Savas
et al., 2019; Guan et al., 2021; Cen et al., 2023). Entropy
regularization is provably effective in addressing challenges
like exploration-exploitation tradeoff (Haarnoja et al., 2018;
Wang et al., 2019; Ahmed et al., 2019; Neu et al., 2017),
algorithm robustness (Zhao et al., 2020; Guo et al., 2021)
and convergence acceleration (Cen et al., 2021; Cen et al.,
2023; Zhan et al., 2023). Importantly, entropy regularization
has also been shown to improve identifiability in inverse
reinforcement learning (IRL) problems. Recent works in
single-agent IRL, such as Cao et al. (2021) and Rolland et al.
(2022), leverage entropy-regularized policies to transform
ill-posed IRL problems into identifiable ones under mild
assumptions. Our work builds on this insight by extending
it to competitive multi-agent settings, where identifiability
becomes even more subtle due to strategic interactions.

Paper Organization. In §2, we develop the framework
of inverse game theory for entropy-regularized zero-sum
games. In §3, we extend the framework introduced in §2 to
a sequential decision-making setting, focusing on entropy-
regularized zero-sum Markov games. We provide numerical
experiments to validate the theoretical findings in §4, and
conclude the paper in §5.

Notations. We introduce some useful notation before
proceeding. Throughout this paper, we denote the set
1, 2, · · · , n by [n] for any positive integer n. For two posi-
tive sequences (an)∞n=1 and (bn)

∞
n=1, we write an = O(bn)

or an ≲ bn if there exists a positive constant C such
that an ≤ C · bn. For any integer d, we denote the d-
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dimensional Euclidean space by Rd, with inner product
⟨x, y⟩ = x⊤y and the induced norm ∥x∥ =

√
⟨x, x⟩.

For any matrix A = (aij), the Frobenius norm of A is
∥A∥F = (

∑
i,j a

2
ij)

1/2, and the operator norm (or spec-
tral norm) of A is ∥A∥op = σ1(A), where σ1(A) stands
for the largest singular value of A. For any square ma-
trix A = (aij), denote its trace by tr(A) =

∑
i aii. For

a nonempty set X , we denote by ∆(X ) the space of all
probability distributions on X .

2. Entropy-Regularized Zero-Sum Matrix
Games

We derive the inverse game theory for entropy-regularized
two-player zero-sum matrix games. We consider the iden-
tification problem of payoff matrices under the linear para-
metric assumption and derive a necessary and sufficient
condition for strong identification. Furthermore, we pro-
pose methods to recover identified sets and payoff matrices.

2.1. Preliminary and Problem Formulation

We consider a two-player zero-sum matrix game, which is
specified by a triple (A,B, Q), where A = {1, 2, · · · ,m}
and B = {1, 2, · · · , n} are finite sets of actions that players
i ∈ {1, 2} can take, and Q(·, ·) is the payoff function. The
zero-sum game can be formulated as the following min-max
optimization problem

max
µ

min
ν
µ⊤Qν,

where µ ∈ ∆(A) and ν ∈ ∆(B) are policies for each
player, and Q = (Q(a, b))a∈A,b∈B ∈ Rm×n denotes the
payoff matrix. The solution of this optimization problem is
also known as the Nash equilibrium (Nash Jr, 1951), where
both agents play the best response against the other agent.

Entropy-Regularized Two-Player Zero-Sum Matrix
Game. We study the entropy-regularized matrix game.
Formally, this amounts to solving the following matrix game
with entropy regularization (Mertikopoulos & Sandholm,
2016):

max
µ

min
ν
µ⊤Qν + η−1H(µ)− η−1H(ν),

where η > 0 is the regluarization parameter, and

H(π) = −
∑
i

πi log(πi)

denotes the Shannon entropy (Shannon, 1948) of π. Accord-
ing to the von-Neumann minimax theorem (von Neumann,
1928), there exists a unique solution (µ∗, ν∗) to this min-
max problem, denoted as the quantal response equilibrium

(McKelvey & Palfrey, 1995), which satisfies the following
fixed point equations:

µ∗(a) =
eηQ(a,·)ν∗∑

a∈A e
ηQ(a,·)ν∗ , for all a ∈ A,

ν∗(b) =
e−ηQ(·,b)⊤µ∗∑
b∈B e

−ηQ(·,b)⊤µ∗ , for all b ∈ B.

This non-linear system is equivalent to the following m +
n− 2 linear constraints: for all a ∈ A and b ∈ B,{(

Q(a, ·)−Q(1, ·)
)
ν∗ = log(µ∗(a)/µ∗(1))/η,(

Q(·, b)−Q(·, 1)
)⊤
µ∗ = − log(ν∗(b)/ν∗(1))/η.

(1)

Goal. We study the inverse game theory for this entropy-
regularized zero-sum game. To elaborate, we observe strat-
egy pairs (ak, bk) iid∼ (µ∗, ν∗) follows the QRE, and we aim
to recover all the feasible payoff functions Q(·, ·).

Identification of payoff matrices. To derive inverse game
theory, it is important to study the identifiability of the pay-
off matrix, i.e. if there exists a unique payoff matrix that
satisfies the QRE constraint. In this paper, we study the
identification problem under the linear structure assump-
tion (§2.2) and further generalize the analysis to the partial
identification case (§2.3).

2.2. Strong Identification

Suppose (µ∗, ν∗) are the QRE for two players and we use
the observed data to obtain an estimation denoted by (µ̂, ν̂).
Next, we are going to estimate the payoff matrix from this
estimated QRE. To ensure the game is identifiable, we lever-
age the following linear parametric assumption.
Assumption 2.1 (Linear payoff functions). Suppose that
there exists a vector-valued kernel ϕ : A× B → Rd and a
vector θ∗ ∈ Rd such that ∥θ∗∥ ≤M for some M > 0, and

Q(a, b) = ⟨ϕ(a, b), θ∗⟩

for all (a, b) ∈ A× B.

To estimate the payoff matrix Q from the observed data, our
essential goal is to estimate θ∗. Under Assumption 2.1, the
linear system (1) can be rewritten as follows: for all a ∈ A
and b ∈ B,{〈

(ϕ(a, ·)− ϕ(1, ·)) ν∗, θ
〉
= log(µ∗(a)/µ∗(1))/η,〈

(ϕ(·, b)− ϕ(·, 1))⊤ µ∗, θ
〉
= − log(ν∗(b)/ν∗(1))/η,

where (ϕ(a, ·)− ϕ(1, ·)) ν∗, (ϕ(·, b)− ϕ(·, 1))⊤ µ∗ ∈ Rd.
To simplify the notation, we define matrices

A(ν) = ((ϕ(a, ·)− ϕ(1, ·)) ν)a∈A/{1} ∈ R(m−1)×d,

B(µ) = ((ϕ(·, b)− ϕ(·, 1))⊤ µ)b∈B/{1} ∈ R(n−1)×d,
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and define vectors

c(µ) = (log(µ(a)/µ(1))/η)a∈A/{1} ∈ Rm−1,

d(ν) = (− log(ν(b)/ν(1))/η)b∈B/{1} ∈ Rn−1

Then the linear constraints would be[
A(ν∗)
B(µ∗)

]
θ =

[
c(µ∗)
d(ν∗)

]
. (2)

Since the linear system has m+ n− 2 constraints and the
dimension of θ is d. Intuitively, if d ≤ m+ n− 2 and the
linear constraints are full rank, there is at most one solution
of the above linear equations.

Proposition 2.2 (Necessary and sufficient condition for
strong identification). Under Assumption 2.1, there is a
unique θ ∈ Rd such thatQ(a, b) = ⟨ϕ(a, b), θ⟩ (i.e. θ = θ∗)
for all (a, b) ∈ A × B if and only if the QRE satisfies the
rank condition

rank
([

A(ν∗)
B(µ∗)

])
= d. (3)

Let the rank condition (3) hold, so that the game is strongly
identifiable. In an offline setting, we propose a two-step
method to estimate θ∗.

1. Estimate the QRE (µ∗, ν∗) from the observed data and
obtain (µ̂, ν̂).

2. Leverge (2) to estimate θ. To be specific, we conduct
the least-square estimation and obtain θ̂:

θ̂ := argmin
θ∈Rd

∥∥∥∥[A(ν̂)B(µ̂)

]
θ −

[
c(µ̂)
d(ν̂)

]∥∥∥∥2 , (4)

If the sample size is sufficiently large and TV(µ̂, µ∗) and
TV(ν̂, ν∗) are close to zero, the coefficient matrix in (4) is
of full column rank, and we can derive a closed form for θ̂:

θ̂ =

([
A(ν̂)
B(µ̂)

]⊤ [
A(ν̂)
B(µ̂)

])−1 [
A(ν̂)
B(µ̂)

]⊤ [
c(µ̂)
d(ν̂)

]
. (5)

Next, we derive the estimation error of the two-step method.
Namely, given a finite sample bound for TV(µ̂, µ∗) and
TV(ν̂, ν∗), we aim to derive ∥θ̂ − θ∗∥.

Theorem 2.3 (Parameter estimation error). Let ϵ1 and ϵ2
be two small numbers satisfying ϵ1 < mina∈[m] µ

∗(a) and
ϵ2 < minb∈[n] ν

∗(b). Under Assumption 2.1 and the rank
condition in (3), suppose (µ̂, ν̂) satisfies TV(µ̂, µ∗) ≤ ϵ1/2

and TV(ν̂, ν∗) ≤ ϵ2/2, then θ̂ constructed by (4) satisfies

∥θ̂−θ∗∥2 ≲ ϵ21·
(
1 +m · (ϵ22 + 1)

)
+ϵ22·

(
1 + n · (ϵ21 + 1)

)
.

Proof. See Appendix A.1 for the complete proof.

Now we present the finite sample result of the sample com-
plexity. In the two-step method, given a dataset of agent
actions following the true QRE, we first use a consistent
estimator to approximate the true QRE and obtain µ̂, ν̂, then
we use the estimated QRE to conduct the least square (5).
Therefore, the sample complexity would be dependent on
the convergence rate of the QRE estimator. A natural choice
for QRE estimation is the frequency estimator.

Theorem 2.4 (Finite sample error bound). Given N sam-
ples {(ak, bk)}k∈[N ] following the true QRE (µ∗, ν∗), we
obtain µ̂, ν̂ by the frequency estimator. For any δ ∈ (0, 1),
the estimation error bound of the payoff matrix holds with
probability at least 1− δ

∥Q̂−Q∥2F ≲ O
(
m2 + n2 + (m+ n) log(1/δ)

N

)
.

Proof. See Appendix A.2 for the complete proof.

2.3. Partial Identification

If the rank condition (3) does not hold, there are infinitely
many θ ∈ Rd that satisfy the QRE constraint (2). Under
Assumption 2.1, the identified set Θ ⊂ Rd is

Θ =

{
θ :

[
A(ν∗)
B(µ∗)

]
θ =

[
c(µ∗)
d(ν∗)

]
, ∥θ∥ ≤M

}
.

Since the true parameter θ∗ is partially identified, we con-
struct a confidence set that contains the identified set with
high probability. Given N strategy pairs following the true
QRE, we first estimate the QRE from the observed data by
frequency estimators µ̂ and ν̂. Next, we select a threshold
κN > 0 and construct the confidence set as follows:

Θ̂N =

{
θ :

∥∥∥∥[A(ν̂)B(µ̂)

]
θ −

[
c(µ̂)
d(ν̂)

]∥∥∥∥2 ≤ κN , ∥θ∥ ≤M

}
.

(6)

To recover the feasible payoff functions, we simply compute
Q̂(a, b) = ϕ(a, b)⊤θ̂ for all θ̂ ∈ Θ̂ according to the linear
assumption. We summarize the procedure in Algorithm 1
(See Appendix A.3).

We demonstrate the effectiveness of Algorithm 1 by estab-
lishing its ability to construct accurate confidence sets. To
be specific, we show that the confidence set Θ̂ is close to
the identified set Θ when the sample size N is large. The
key to approximating feasible set Θ is to identify a suitable
threshold κN that makes the confidence set Θ̂N “similar” to
Θ. The following theorem formalizes this intuition.

Theorem 2.5 (Convergence of confidence set). Let Assump-
tion 2.1 hold. For each N ∈ N, suppose we observe N
samples {(ak, bk)}k∈[N ] following the true QRE (µ∗, ν∗),
and calculate (µ̂, ν̂) by the frequency estimator. Set the
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confidence set Θ̂N as in (6), where κN = O(N−1). Then
with probability at least 1− δ,

dH(Θ, Θ̂N ) ≲
m+ n+

√
(m+ n) log(1/δ)√
N

, (7)

where dH is the Hausdorff distance corresponding to the
Euclidean distance in Rd.

Proof. See Appendix A.3 for the complete proof.

Theorem 2.5 establishes the asymptotic consistency of our
confidence set Θ̂N in the finite-sample setting, showing
that it converges to the true feasible set Θ as the number of
observed samples increases. The finite-sample bound (7)
demonstrates that the estimation error decreases at the rate
of O(N−1/2), which matches the standard concentration
rate for empirical frequency estimators. The dependence on
m and n highlights that larger action spaces require more
samples for the same level of confidence. This result con-
firms that our method provides both statistical consistency
and a well-characterized finite-sample error bound, making
it a robust approach for inverse game-theoretic inference.

2.4. Selection in Confidence Sets

As discussed in §2.3, the true parameter θ∗ is partially iden-
tifiable when the rank condition (3) does not hold, and there
are infinitely many parameters that lead to the same QRE.
To avoid unnecessary large coefficients that might overfit
or lead to instability, we define the optimal solution θ∗ as
the vector that satisfies the QRE constraints and has the
minimum Euclidean norm, i.e.,

θ∗ = argmin
θ∈Rd

∥θ∥, subject to
[
A(ν∗)
B(µ∗)

]
θ =

[
c(µ∗)
d(ν∗)

]
.

When the system is not full column rank, the minimum-
norm solution of least square is uniquely determined by the
Moore–Penrose inverse (Ben-Israel & Greville, 2006):

θ∗ =

[
A(ν∗)
B(µ∗)

]† [
c(µ∗)
d(ν∗)

]
.

Therefore, to estimate the optimal parameter θ∗, we propose
the following plug-in estimator:

θ̂ =

[
A(ν̂)
B(µ̂)

]† [
c(µ̂)
d(ν̂)

]
.

Now we derive the estimation error bound ∥θ̂ − θ∗∥.

Theorem 2.6 (Convergence of the optimal QRE solution).
Assume that the matrix

X =

[
A(ν∗)
B(µ∗)

]
∈ R(m+n−2)×d

is of full row rank, and its smallest singular value is bounded
from below, that is, σm+n−2 (X) ≥ σb for some σb > 0.
Given N samples {(ak, bk)}k∈[N ] following the true QRE
(µ∗, ν∗), we obtain (µ̂, ν̂) by the frequency estimator. For
any δ ∈ (0, 1), when N is sufficiently large, the following
estimation error bound of the optimal QRE solution holds
with probability at least 1− δ:

∥θ̂ − θ∗∥ ≲
m+ n+

√
(m+ n) log(1/δ)√
N

.

Proof. See Appendix A.4 for the complete proof. We also
discuss the assumption of this Theorem in Remark A.3.

In practice, selecting the minimum-norm solution helps
avoid overfitting and promotes stability (Hastie et al., 2009).
The convergence rate O(N−1/2) matches standard results in
statistical estimation, showing the reliability and efficiency
of our method in practical settings.

3. Entropy-Regularized Zero-Sum Markov
Games

In this section, we follow the same methodology in §2 and
derive the inverse game theory for entropy-regularized two-
player zero-sum Markov games.

3.1. Preliminary and Problem Formulation

We briefly review the setting of a two-player zero-sum
Markov game (Littman, 1994), which is a framework that
extends Markov decision processes (MDPs) to multi-agent
settings, where two players with opposing objectives in-
teract in a shared environment. A two-player zero-sum
simultaneous-move episodic Markov game is defined by a
sextuple (S,A,B, r,P, H), where

• S is the state space, with |S| = S,

• A and B are two finite sets of actions that players
i ∈ {1, 2} can take,

• H ∈ N is the number of time steps,

• r = {rh}h∈[H] is a collection of reward functions, and

• P = {Ph}h∈[H] is a collection of transition kernels.

At each time step h ∈ [H], the players 1 and 2 simul-
taneously take actions a ∈ A and b ∈ B respectively
upon observing the state s ∈ S, and then player 1 receives
the reward rh(s, a, b), while player 2 receives −rh(s, a, b).
Namely, the gain of one player equals the loss of the other.
The system then transitions to a new state s′ ∼ Ph(·|s, a, b)
according to the transition kernel Ph.
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Entropy-regularized two-player zero-sum Markov game.
We study the two-player zero-sum Markov game with en-
tropy regularization. We use (µ, ν) to denote the policy of
two players, where µ = {µh}Hh=1 and ν = {νh}Hh=1. At
step h, the entropy-regularized V-function is

V µ,ν
h (s) = E

[ H∑
t=h

γt−h
[
rt(st, at, bt)− η−1 logµt(at|st)

+ η−1 log νt(bt|st)
]∣∣∣∣sh = s

]
,

where γ ∈ [0, 1] is the discount factor and η > 0 is the
parameter of regularization. Meanwhile,, we define the
entropy-regularized Q-function that

Qµ,ν
h (s, a, b) = rh(s, a, b) + γEPh(·|s,a,b)

[
V µ,ν
h+1(·)

]
. (8)

For notation simplicity, we denote by Qµ,ν
h (s) ∈ Rm×n the

collection of Q-functions at the state s, which is the matrix
[Qµ,ν

h (s, a, b)](a,b)∈A×B. With this notation, we may write

V µ,ν
h (s) = µh(s)

⊤Qµ,ν
h (s)νh(s)

+ η−1H(µh(s))− η−1H(νh(s)).
(9)

The equations (8) and (9) are also known as Bellman equa-
tions for Markov games. In a zero-sum game, one player
seeks to maximize the value function while the other player
wants to minimize it:

V ∗
1 (s) = max

µ
min
ν
V µ,ν
1 (s) = min

ν
max
µ

V µ,ν
1 (s).

Definition 3.1 (Quantal response equilibrium). For each
time step h, there is a unique pair of optimal policies
(µ∗

h, ν
∗
h) of the entropy-regularized Markov game, i.e. the

quantal response equilibrium (QRE), characterized by the
following minimax problem:

V µ∗,ν∗

h (s) = max
µh

min
νh

V µ,ν
h (s) = min

νh

max
µh

V µ,ν
h (s).

which is equivalent to

V µ∗,ν∗

h (s) = max
µh

min
νh

µh(s)
⊤Qµ,ν

h (s)νh(s)

+ η−1H(µh(s))− η−1H(νh(s)),
(10)

where µh : S → ∆(A) is the policy followed by player 1
and νh : S → ∆(B) is the policy followed by player 2, and
H(π) := −

∑
i πi log(πi) denotes the Shannon entropy of

a distribution π. Also, it is known that the unique solution
of this minimax problem (QRE) satisfies the following fixed
point equations:

µ∗
h(a|s) =

eη⟨Q
∗
h(s,a,·),ν

∗
h(·|s)⟩B∑

a∈A e
η⟨Q∗

h(s,a,·),ν
∗
h(·|s)⟩B

, ∀a ∈ A,

ν∗h(b|s) =
e−η⟨Q∗

h(s,·,b),µ
∗
h(·|s)⟩A∑

b∈B e
−η⟨Q∗

h(s,·,b),µ
∗
h(·|s)⟩A

, ∀b ∈ B.

(11)

Goal. We study the inverse game theory for this entropy-
regularized two-player zero-sum Markov game, where both
the rewards (rh) and the transition kernels (Ph) are un-
known. To elaborate, we observe i.i.d. trajectories

{(st1, at1, bt1), · · · , (stH , atH , btH)}t∈[T ]

following the QRE (µ∗, ν∗), and we aim to recover all the
feasible reward functions r defined as follows.

Definition 3.2 (Identified reward sets). Given state and ac-
tion space S × A × B and quantal response equilibrium
(µ∗, ν∗), a reward function r : S × A × B → RH is iden-
tified if µh, νh is the solution of the minimax problem (10)
induced by the reward function rh for all h ∈ [H].

3.2. Learning Reward Functions from Actions

In this section, we propose an algorithm to find all the
feasible reward functions that lead to the QRE. We assume
that both the reward function and transition kernel have a
linear structure (Bradtke & Barto, 2004; Jin et al., 2020).

Assumption 3.3 (Linear MDP). For the underlying MDP,
we assume that for every reward function rh : S×A×B →
[0, 1] and every transition kernel Ph : S ×A× B → ∆(S),
there exist ωh ∈ Rd and πh(·) : S → Rd such that

rh(s, a, b) = ϕ(s, a, b)⊤ωh,

Ph(·|s, a, b) = ϕ(s, a, b)⊤πh(·)

for all (s, a, b) ∈ S ×A× B. In addition, the Q function is
linear with respect to ϕ. Namely, for any QRE (µ, ν) and
h ∈ [H], there exists a vector θh ∈ Rd such that

Qh(s, a, b) = ϕ(s, a, b)⊤θh.

We assume ∥ϕ(·, ·, ·)∥ ≤ 1, ∥θh∥ ≤ R, and ∥πh(s)∥ ≤
√
d

for all h ∈ [H] and s ∈ S.

Remark 3.4. In Assumption 3.3, since the reward functions
rh are normalized to the unit interval [0, 1] and the number
of time steps [H] is finite, every Q-function Qh must be
bounded by some constant, and the constant R ≥ H(1 +
logm+ log n) exists. Since (ωh) can be recovered by (θh),
we prefer to make an assumption on (θh) instead of (ωh)
for the convenience of subsequent analysis.

We are going to find all the feasible ωh for all h ∈ [H]
under Assumption 3.3. Analogous to matrix games, we
first consider the identification problem of the Q-function.
Namely, whether there is a unique θh corresponding to the
QRE. Given the equilibrium constraint (11), we propose the
following theorem for strong identification.

Proposition 3.5 (Strong identification of Q-function). Un-
der Assumption 3.3, for each h ∈ [H], the Q-function
Qh(s, a, b) = ϕ(s, a, b)⊤θh is feasible for all (s, a, b) ∈

6
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S ×A× B if θh satisfies the following linear system:[
Ah(s, ν

∗
h)

Bh(s, µ
∗
h)

]
θh =

[
ch(s, µ

∗
h)

dh(s, ν
∗
h)

]
for all s ∈ S, (12)

where

Ah(s, νh) = ((ϕ(s, a, ·)− ϕ(s, 1, ·)) νh(·|s))a∈A\{1},

Bh(s, µh) = ((ϕ(s, ·, 1)− ϕ(s, ·, b))µh(·|s))b∈B\{1}

and

ch(s, µh) =

(
η−1 log

µh(a|s)
µh(1|s)

)
a∈A\{1}

∈ Rm−1,

dh(s, νh) =

(
−η−1 log

νh(b|s)
νh(1|s)

)
b∈B\{1}

∈ Rn−1.

Moreover, there exists a unique θh ∈ Rd if and only if the
QRE satisfies the rank condition

rank
([
Ah(ν

∗
h)

⊤ Bh(µ
∗
h)

⊤]) = d, (13)

where

Ah(νh) :=


Ah(1, νh)
Ah(2, νh)

...
Ah(|S|, νh)

 , Bh(µh) :=


Bh(1, µh)
Bh(2, µh)

...
Bh(|S|, µh)

 .

Proof. See Appendix B.1 for the complete proof.

Following the Bellman equation (8), rh is a feasible reward
function iff there exists a feasible Q function Qh and V
function Vh+1 such that

rh(s, a, b) = Qh(s, a, b)− γEPh(·|s,a,b) [Vh+1(·)] . (14)

Next, we propose an algorithm to recover the feasible reward
functions. For all h ∈ [H], the algorithm performs the
following four steps:

• Recover the feasible set by solving the least square
problem associated with the linear system (12):

Θ̂h =

{
∥θ∥ ≤ R :

∥∥∥∥[Ah(ν̂h)
Bh(µ̂h)

]
θ −

[
ch(µ̂h)
dh(ν̂h)

]∥∥∥∥2 ≤ κh

}
.

(15)

• Calculate the feasible Q and V functions (Qh and Vh)
for all θ̂h ∈ Θ̂h.

• Estimate the transition kernel Ph from the observed
data. Since the transition kernel has a linear structure,

we employ ridge regression for estimation:

Λh =

T∑
t=1

ϕ(sth, a
t
h, b

t
h)ϕ(s

t
h, a

t
h, b

t
h)

⊤ + λId,

P̂hV̂h+1(s, a, b) = ϕ(s, a, b)⊤Λ−1
h

×
T∑

t=1

ϕ(sth, a
t
h, b

t
h)V̂h+1(s

t
h+1);

• Recover feasible set Rh by the Bellman equation (14).

We provide the pseudocode in Alg. 2 in Appendix §B.3.

3.3. Theoretical Guarantees

In this section, we present the theoretical results for Algo-
rithm 2. To begin with, we define the base metric to measure
the distance between rewards.

Definition 3.6 (Uniform metric for rewards). We define the
metric d between any pair of rewards r, r′ as

D(r, r′) = sup
(h,s,a,b)∈[H]×S×A×B

|(rh − r′h)(s, a, b)| .

We aim to recover the feasible reward set defined below.

Definition 3.7 (Feasible reward set). We say a reward func-
tion r = (r1, r2, · · · , rH) is feasible with respect to a
quantal response equilibrium µ and ν if the Q function
Q = (Q1, Q2, · · · , QH) satisfies the identifability condi-
tion (11) and the norm constraint ∥θ∗h∥ ≤ R. We denote
R as the feasible reward set corresponding to the quantal
response equilibrium µ and ν, namely,

R :=

{
r = (r1, r2, · · · , rH) : r is identified and

∥∥∥ωh + γ
∑
s∈S

πh(s)Vh+1(s)
∥∥∥ ≤ R for all h ∈ [H]

}
.

Also, we denote Q as the feasible Q function set:

Q = {(Qh)
H
h=1 : Q is identified and ∥θh∥ ≤ R, ∀h ∈ [H]}.

Our formulation provides a principled way to handle partial
identifiability in Markov games. Instead of forcing a single
estimated reward function, we construct a structured set of
feasible rewards, which offers a more robust approach to
analyzing decision-making in complex multi-step strategic
settings. Intuitively, the norm constraint ∥θh∥ ≤ R plays
a key role in ensuring that the estimated reward functions
remain well-conditioned, and do not include arbitrarily large
coefficients. Additionally, by linking the feasible reward
set to the recursive Bellman equations (8)-(9), our defini-
tion ensures that every element of R̂ maintains temporal
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consistency. In other words, the inferred rewards lead to
equilibrium strategies that are valid over multiple decision-
making steps.

For the sake of clarity, we fix the initial state distribu-
tion in the Markov game ρ1 ∈ ∆(S), and define the
marginal state visitation distributions associated with poli-
cies µ, ν at each time step h ∈ [H] as dµ,νh (s) = P(sh =
s|ρ1, µ, ν). Also, write the state-action visitation distri-
butions as dµ,νh (s, a, b) = P(sh = s, ah = a, bh =
b|ρ1, µ, ν).

To control the uniform metric in Definition 3.6, we require
an estimator of the QRE that performs uniformly well across
all states s ∈ S. When using frequency estimators to ap-
proximate the policies µ∗

h(·|s) and ν∗h(·|s), the estimation
at each state is conducted independently. As a result, it is
essential that the dataset sufficiently covers all states in S
to obtain reliable estimates. To ensure this, we impose the
following assumption, which guarantees that every state is
visited with a minimum frequency throughout the horizon.
Assumption 3.8 (C-well-posedness). There exists a con-
stant C > 0 such that

dµ
∗,ν∗

h (s) ≥ C

for all s ∈ S and h ∈ [H].

Now we are ready to present the theoretical results for the
proposed algorithm.
Theorem 3.9 (Sample complexity of constructing feasible
reward set). Under Assumptions 3.3 and 3.8, let ρh = d∗h be
the stationary distribution associated with optimal policies
µ∗ and ν∗, where h ∈ [H]. We assume that the following
d× d matrix

Ψh = Eρh

[
ϕ(sh, ah, bh)ϕ(sh, ah, bh)

⊤]
is nonsingular for all h ∈ [H]. Let R be the feasi-
ble reward set given in Definition 3.7. Given a dataset
D = {Dh}h∈[H] = {{(sth, ath, bth)}t∈[T ]}h∈[H], we set
λ = O(1), κh = O(T−1), and let R̂ be the output of Algo-
rithm 2. Let ξ = minh∈[H],s∈S,a∈A,b∈B{µ∗

h(a|s), ν∗h(b|s)}.
For any δ ∈ (0, 1), let T > 0 be sufficiently large, so

T ≥ max

{
1

C2
log

2HS

δ
,
16(m ∨ n)

Cξ2
log

4HS

δ
,

512∥Ψ−1
h ∥2op log

2Hd

δ
, 4λ∥Ψ−1

h ∥op
}
.

Then the following inequality holds with probability at least
1− 3δ:

D(R, R̂) ≲
1√
T

(√
S(m+ n) log

HS

δ
log T

+ S(m+ n)

√
log

HS

δ
+
(√
Sd+

√
d log T

)
log(mn)

)
,

where D is the Hausdorff distance corresponding to the
uniform metric in Definition 3.6.

Proof. See Appendix B.3 for the complete proof.

Theorem 3.9 provides a strong guarantee on the accuracy of
our reward recovery algorithm in Markov games. Our bound
shows that the distance D(R, R̂) diminishes at the rate of
O(T−1/2), which matches the optimal statistical rate for
empirical risk minimization problems. This demonstrates
that with sufficient data, the estimated reward functions
remain close to the true feasible set, making our method
statistically reliable and sample-efficient. The explicit de-
pendence on problem parameters offers insights into how
exploration, feature representations, and action space size
affect the difficulty of inverse reward learning in Markov
games.

We also note that the condition that Ψh is nonsingular en-
sures that the feature representation provides sufficient in-
formation for parameter recovery (Tu & Recht, 2017; Min
et al., 2022). The norm ∥Ψ−1

h ∥op appears in the sample
complexity bound, indicating that ill-conditioned feature
matrices lead to larger estimation errors and require more
samples to achieve the same level of accuracy.

In addition, instead of relying solely on frequency estimators
for QRE estimation, we extend our framework to integrate
Maximum Likelihood Estimation (MLE) into our method
and establish a convergence result with the same T−1/2 rate.
We provide the details in Appendix §C.

4. Numerical Experiments
In this section, we implement our reward-learning algo-
rithm and conduct numerical experiments in both entropy-
regularized zero-sum matrix games and Markov games. All
experiments are conducted in Google Colab. In this section
we consider only two-player entropy-regularized entropy-
regularized zero-sum Markov games. The experimental
results of matrix games are presented in Appendix §E.

Setup. We define the kernel function ϕ : A × B → Rd

with dimension d = 2, and set the true parameter ωh that
specifying reward functions to be

ω∗
h = (0.8,−0.6)⊤

for all steps h ∈ [H]. We set the sizes of action spaces to
be m = 5 and n = 5, the size of state space S = 4, and the
horizon H = 6. The entropy regularization term is η = 0.5.

We implement the algorithm proposed in §3.2. In each
experiment, our algorithm outputs a parameter θ̂h in the
confidence set Θ̂h. We set the bound of feasible parameters
θh to be R = 10, and set the threshold κh = 103/N , where
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N is the sample size. The regularization term in ridge
regression is λ = 0.01.

Metrics. We evaluate the performance of our algorithm
using two metrics: (1) the error in the estimated reward
function (r̂h), which measures how accurately the recon-
structed payoff function matches the true reward function;
and (2) the error in the estimated QRE, which quantifies
the discrepancy between the QRE (µ̂, ν̂) derived from the
estimated payoff function and the true QRE (µ∗, ν∗). We
are particularly interested in the error in the estimated QRE,
which validates whether the reconstructed reward functions
interpret the observed strategy.

Results. As shown in Figures 1, 2 and Table 1, the overall
error of our algorithm’s output decreases as the sample size
N increases from 104 to 105, demonstrating the improved
accuracy of our approach with more data. While the esti-
mation error of reward functions (r̂h)6h=1 can be relatively
large, the corresponding QRE (µ̂h, ν̂h) remains well-aligned
with the true QRE (µ∗

h, ν
∗
h). Although some fluctuations are

observed across time steps, the error remains small, espe-
cially for larger sample sizes. These results confirm that
our method for reward estimation in Markov games is both
statistically consistent and sample-efficient.

5. Conclusion
To conclude, we explore the challenge of recovering re-
ward functions that explain agents’ behavior in competitive
games, with a focus on the entropy-regularized zero-sum
setting. We propose a framework of inverse game theory
concerning the underlying reward mechanisms driving ob-
served behaviors, which applies to both the static setting
(§2) and the dynamic setting (§3).

Under a linear assumption, we develop a novel approach for
the identifiability of the parameter specifying the current-
time payoff. To move forward, we develop an offline algo-
rithm unifying QRE estimation, confidence set construction,
transition kernel estimation, and reward recovery, and es-
tablish its convergence properties under regular conditions.
Additionally, we adapt this algorithm to incorporate a MLE
approach and provide theoretical guarantees for the adapted
version. Our algorithms are reliable and effective in both
static and dynamic settings, even in the presence of high-
dimensional parameter spaces or rank deficiencies.

Future directions include exploring more complicated game
settings, such as partially observable games and non-linear
payoff functions, and extending the framework to online
learning setting. Meanwhile, this research contributes to
the broader effort to make competitive systems more inter-
pretable, offering valuable insights at the intersection of
game theory and reinforcement learning.

Figure 1. The reconstruction error of the reward functions (r̂h)6h=1.
The X-axis represents the time step h from 1 to 6, while the Y-axis
represents the error ∥r̂h − r∗h∥F of the reward function r̂.

Figure 2. The discrepancy between the QRE (µ̂, ν̂) correspond-
ing to the estimated reward functions (r̂h)6h=1 and the true QRE
(µ∗, ν∗). The X-axis represents the time step h from 1 to 6, while
the Y-axis represents the errors TV(µ̂h, µ

∗
h) + TV(ν̂h, ν

∗
h)

Sample Size Reward Error
Mean 95% CI

10,000 2.4611 ± 0.1596
20,000 1.9031 ± 0.1048
50,000 1.5609 ± 0.0663
100,000 1.4398 ± 0.0499

Sample Size QRE Error
Mean 95% CI

10,000 7.08× 10−3 ± 4.61× 10−4

20,000 5.11× 10−3 ± 3.11× 10−4

50,000 3.28× 10−3 ± 1.70× 10−4

100,000 2.41× 10−3 ± 1.41× 10−4

Table 1. Mean error and 95% confidence intervals for reward and
QRE estimation over 100 repetitions in the Markov game setting,
across all time steps.
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Impact Statement
This work advances the field of inverse reinforcement learn-
ing and game theory by introducing a unified framework for
reward function identification and estimation in competitive
multi-agent settings. Our findings contribute to a deeper
understanding of decision-making in strategic environments,
with potential applications in economics, automated negoti-
ation, and multi-agent AI systems.

While our research provides theoretical and methodological
advancements, we acknowledge potential ethical considera-
tions. The ability to infer reward functions from observed
behavior could be used both positively—to enhance trans-
parency in AI decision-making and improve algorithmic
fairness—and negatively, if applied to manipulate or exploit
agents in competitive settings. Ensuring the responsible
application of this work will require careful consideration
of ethical safeguards and alignment with societal values.

Overall, this paper aims to advance Machine Learning and
Game Theory research, and we do not foresee immediate
societal risks. However, we encourage further discussion on
the ethical implications of inverse game theory in real-world
applications.
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A. Proof of Entropy-Regularized Matrix Games
A.1. Proof of Theorem 2.3

Proof. To begin with, we decompose ∥θ̂ − θ∗∥2 as follows:

∥θ̂ − θ∗∥2 ≲
∥∥∥(A(ν̂)⊤A(ν̂) +B(µ̂)⊤B(µ̂)

)−1 [
A(ν̂)⊤c(µ̂) +B(µ̂)⊤d(ν̂)−A(ν∗)⊤c(µ∗)−B(µ∗)⊤d(ν∗)

]∥∥∥2︸ ︷︷ ︸
(I)

+
∥∥∥[(A(ν̂)⊤A(ν̂) +B(µ̂)⊤B(µ̂)

)−1 −
(
A(ν∗)⊤A(ν∗) +B(µ∗)⊤B(µ∗)

)−1
] [
A(ν∗)⊤c(µ∗) +B(µ∗)⊤d(ν∗)

]∥∥∥2︸ ︷︷ ︸
(II)

.

Bounding (I).

(I) ≲
∥∥∥(A(ν̂)⊤A(ν̂) +B(µ̂)⊤B(µ̂)

)−1
∥∥∥2

op

×
[
∥A(ν̂)⊤c(µ̂)−A(ν∗)⊤c(µ∗)∥2 + ∥B(µ̂)⊤d(ν̂)−B(µ∗)⊤d(ν∗)∥2

] (16)

We will bound the three terms in the RHS of (16) in the following text. To begin with, we have

∥A(ν̂)⊤c(µ̂)−A(ν∗)⊤c(µ∗)∥2 ≲ ∥(A(ν̂)−A(ν∗))⊤c(µ̂)∥2︸ ︷︷ ︸
1)

+ ∥A(ν∗)⊤(c(µ̂)− c(µ∗))∥2︸ ︷︷ ︸
2)

.

Recall the definition of c(µ) = (log(µi/µ1)/η)i∈[m]/{1}, we have

2) ≤ ∥A(ν∗)∥2op ·
m∑
i=2

(log(µ̂i/µ̂1 − log(µ∗
i /µ

∗
1)))

2/η2

≤ 2∥A(ν∗)∥2op ·

[
(m− 2)(log(µ̂1)− log(µ∗

1))
2 +

m∑
i=1

(log(µ̂i)− log(µ∗
i ))

2

]
/η2.

(17)

Recall the definition of A(ν∗) = ((ϕ(i, ·)− ϕ(1, ·)) ν∗)i∈[m]/{1}, which can be rewritten as follows:

A(ν∗)⊤ = Φ1 · (Im−1 ⊗ ν∗),

where Φ1 := (ϕ(i, ·)− ϕ(1, ·))i∈[m]\{1} ∈ Rd×(m−1)n and ⊗ denotes the Kronecker product, and Im−1 ⊗ ν∗ ∈
R(m−1)n×(m−1). Therefore, we have

∥A(ν∗)∥2op ≤ ∥Φ1∥2op · ∥ν∗∥2, (18)

where we use the fact that ∥Im−1 ⊗ ν∥2op = ∥ν∥2. Besides, we notice that

m∑
i=1

(log(µ̂i)− log(µ∗
i ))

2 =

m∑
i=1

(
log

(
1 +

µ̂i − µ∗
i

µ∗
i

))2

≤
m∑
i=1

max

{(
µ̂i − µ∗

i

µ̂i

)2

,

(
µ̂i − µ∗

i

µ∗
i

)2
}
,

(19)

where we use the inequality x/(1 + x) ≤ log(1 + x) ≤ x for all x > −1. Moreover, we remark that |µ̂i − µ∗
i | ≤

TV(µ̂, µ∗)/2 ≤ ϵ1/4, we have

m∑
i=1

(log(µ̂i)− log(µ∗
i ))

2 ≤
m∑
i=1

ϵ21/16

min{µ̂i, µ∗
i }2

≤ m · ϵ21
16(mini∈[m] µ

∗
i − ϵ1)2

.

Plugging these inequalities in (17), we obtain

2) ≲
m · ∥Φ1∥2op · ∥ν∥2 · ϵ21
η2 · (mini∈[m] µi − ϵ1)2

. (20)
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To derive the bound for 1), we leverage the equivalent form of A(ν∗):

(A(ν̂)−A(ν∗))⊤ = Φ1 · (Im−1 ⊗ (ν̂ − ν∗)).

Plugging in this equality, we obtain

1) ≤ ∥Φ1∥2op · ∥Im−1 ⊗ (ν̂ − ν∗)∥2op · ∥c(µ̂)∥2

≲ ∥Φ1∥2op · ∥ν̂ − ν∥2 · (∥c(µ∗)∥2 + ∥c(µ̂)− c(µ∗)∥2)

≲ ∥Φ1∥2op · ϵ22 ·
(
∥c(µ∗)∥2 + m · ϵ21

η2 · (mini∈[m] µ
∗
i − ϵ1)2

)
.

(21)

Combining (20) and (21), we have

∥A(ν̂)⊤c(µ̂)−A(ν∗)⊤c(µ∗)∥2 ≲ ∥Φ1∥2op · ϵ22 ·
(
∥c(µ∗)∥2 + m · ϵ21

η2 · (mini∈[m] µ
∗
i − ϵ1)2

)
+

m · ∥Φ1∥2op · ∥ν∥2 · ϵ21
η2 · (mini∈[m] µ

∗
i − ϵ1)2

≲ ϵ22 · ∥c(µ∗)∥2 + m · ϵ21 · (ϵ22 + 1)

η2 · (mini∈[m] µ
∗
i − ϵ1)2

.

(22)

By the symmetric of ∥A(ν̂)⊤c(µ̂)−A(ν∗)⊤c(µ∗)∥2 and ∥B(µ̂)⊤d(ν̂)−B(µ∗)⊤d(ν∗)∥2, we have

∥B(µ̂)⊤d(ν̂)−B(µ∗)⊤d(ν∗)∥2 ≲ ϵ21 · ∥d(ν∗)∥2 +
n · ϵ22 · (ϵ21 + 1)

η2 · (mini∈[n] ν
∗
i − ϵ2)2

. (23)

Now we derive the bound for
∥∥∥(A(ν̂)⊤A(ν̂) +B(µ̂)⊤B(µ̂)

)−1
∥∥∥2

op
. To begin with, we have

∥∥∥(A(ν̂)⊤A(ν̂) +B(µ̂)⊤B(µ̂)
)−1
∥∥∥2

op
≲
∥∥∥(A(ν∗)⊤A(ν∗) +B(µ∗)⊤B(µ∗)

)−1
∥∥∥2

op

+
∥∥∥(A(ν̂)⊤A(ν̂) +B(µ̂)⊤B(µ̂)

)−1 −
(
A(ν∗)⊤A(ν∗) +B(µ∗)⊤B(µ∗)

)−1
∥∥∥2

op
.

(24)

To simplify the notation, we define U := A(ν∗)⊤A(ν∗) +B(µ∗)⊤B(µ∗) and V (µ̂, ν̂) := (A(ν̂)⊤A(ν̂) +B(µ̂)⊤B(µ̂))−
(A(ν∗)⊤A(ν∗) +B(µ∗)⊤B(µ∗)), (24) can be rewritten as follow∥∥∥(A(ν̂)⊤A(ν̂) +B(µ̂)⊤B(µ̂)

)−1
∥∥∥2

op
≲ ∥U−1∥2op + ∥(U + V (µ̂, ν̂))−1 − U−1∥2op.

We leverage the Woodbury formula to derive the bound for the above inequality.

(U + V (µ̂, ν̂))−1 − U−1 = −U−1(I + V (µ̂, ν̂)U−1)−1V (µ̂, ν̂)U−1,

which further implies that∥∥∥(A(ν̂)⊤A(ν̂) +B(µ̂)⊤B(µ̂)
)−1
∥∥∥2

op
≲ ∥U−1∥2op + ∥U−1∥4op · ∥V (µ̂, ν̂)∥2op · ∥(I + V (µ̂, ν̂)U−1)−1∥2op.

We derive the bound for ∥U−1∥2op, ∥V (µ̂, ν̂)∥2op, ∥(I + V (µ̂, ν̂)U−1)−1∥2op in the following text. To begin with, by Weyl’s
inequality, we have σmin(U) ≥ σmin(A(ν

∗)⊤A(ν∗)) + σmin(B(µ∗)⊤B(µ∗)) and

∥U−1∥2op =
1

σmin(U)2
≤ 1

(σmin(A(ν∗))2 + σmin(B(µ∗))2)2
.

For ∥V (µ̂, ν̂)∥2op = ∥(A(ν̂)⊤A(ν̂) +B(µ̂)⊤B(µ̂))− (A(ν∗)⊤A(ν∗) +B(µ∗)⊤B(µ∗))∥2op, we have

∥V (µ̂, ν̂)∥2op ≲ ∥A(ν̂)⊤A(ν̂)−A(ν∗)⊤A(ν∗)∥2op + ∥B(µ̂)⊤B(µ̂)−B(µ∗)⊤B(µ∗)∥2op

≲ ∥(A(ν̂)−A(ν∗))⊤A(ν̂)∥2op + ∥A(ν∗)⊤(A(ν̂)−A(ν∗))∥2op

+ ∥(B(µ̂)−B(µ∗))⊤B(µ̂)∥2op + ∥B(µ∗)⊤(B(µ̂)−B(µ∗))∥2op.
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Recalling (21), we have ∥A(ν̂)−A(ν∗)∥2op ≤ ϵ22 and ∥B(µ̂)−B(µ∗)∥2op ≤ ϵ21, which further implies that

∥V (µ̂, ν̂)∥2op ≲ ϵ21 + ϵ22. (25)

For the term ∥(I + V (µ̂, ν̂)U−1)−1∥2op, we have ∥(I + V (µ̂, ν̂)U−1)−1∥2op = 1/σmin(I + V (µ̂, ν̂)U−1)2. By the property
of the smallest singular value, we obtain

σmin(I + V (µ̂, ν̂)U−1) = inf
∥x∥=1

∥(I + V (µ̂, ν̂)U−1)x∥ ≥ 1− ∥V (µ̂, ν̂)U−1∥op

≥ 1− ∥V (µ̂, ν̂)∥op∥U−1∥op.
(26)

Combining (16), (22), (23), and (24), we have

(I) ≲ ϵ21 ·
(
∥d(ν∗)∥2 + m · (ϵ22 + 1)

η2 · (mini∈[m] µi − ϵ1)2

)
+ ϵ22 ·

(
∥c(µ∗)∥2 + n · (ϵ21 + 1)

η2 · (mini∈[n] νi − ϵ2)2

)
. (27)

Bounding (II). Combining (24), (25), and (26), we obtain

(II) ≲
∥∥∥(A(ν̂)⊤A(ν̂) +B(µ̂)⊤B(µ̂)

)−1 −
(
A(ν∗)⊤A(ν∗) +B(µ∗)⊤B(µ∗)

)−1
∥∥∥2

op
∥A(ν∗)⊤c(µ∗) +B(µ∗)⊤d(ν∗)∥2

≲ ∥U−1∥4op · ∥V (µ̂, ν̂)∥2op · ∥(I + V (µ̂, ν̂)U−1)−1∥2op ≲ ϵ21 + ϵ22.
(28)

Combining (27) and (28), we obtain that

∥θ̂ − θ∗∥2 ≲ ϵ21 ·
(
1 +m · (ϵ22 + 1)

)
+ ϵ22 ·

(
1 + n · (ϵ21 + 1)

)
.

A.2. Proof of Theorem 2.4

Proof. Since we use the frequency estimator to estimate the QRE, we have

E [TV(µ̂, µ∗)] =
1

2

∑
a∈A

E [|µ̂(a)− µ∗(a)|] ≤ 1

2

∑
a∈A

√
E [(µ̂(a)− µ∗(a))2]

=
1

2

∑
a∈A

√
1

N
µ∗(a)(1− µ∗(a)) ≤ 1

2
√
N

∑
a∈A

√
µ∗(a) ≤ 1

2

√
|A|
N
.

(29)

Let A1, · · · , AN ∼ Multinomial(µ∗) be the i.i.d. actions taken according to strategy µ∗. We then write the total variation
as

TV(µ̂, µ) = f(A1, · · · , AN ) =
1

2

∑
a∈A

∣∣∣∣∣ 1N
N∑
i=1

1{Ai=a} − µ∗

∣∣∣∣∣
Then the function f : An → [0, 1] satisfy the bounded difference property for all k ∈ [N ]:

sup
ak,a′

k∈A
|f(a1, · · · , ak−1, ak, ak+1 · · · , aN )− f(a1, · · · , ak−1, a

′
k, ak+1 · · · , aN )| ≤ 1

N
.

By McDiarmid’s inequality, for any ϵ > 0, we have

P (TV(µ̂, µ∗)− E [TV(µ̂, µ∗)] ≥ ϵ) ≤ e−2Nϵ2 .

Combining this inequality with (29), we obtain the following tail bound:

P

(
TV(µ̂, µ∗) ≥ 1

2

√
m

N
+

√
log(2/δ)

2N

)
≤ δ

2
. (30)
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Similarly, we can bound the total variation between ν̂ and ν:

P

(
TV(ν̂, ν∗) ≥ 1

2

√
n

N
+

√
log(2/δ)

2N

)
≤ δ

2
.

Using Theorem 2.3, TV(µ̂, µ∗) ≤ ϵ1/2 and TV(ν̂, ν∗) ≤ ϵ2/2 imply that

∥θ̂ − θ∗∥2 ≲ ϵ21 ·
(
1 +m · (ϵ22 + 1)

)
+ ϵ22 ·

(
1 + n · (ϵ21 + 1)

)
≃ mϵ21 + nϵ22.

Since Q(a, b) = ϕ(a, b)⊤θ for all a, b ∈ A× B, we have

∥Q̂−Q∥2F =
∑

a,b∈A×B

(Q̂(a, b)−Q(a, b))2 =
∑

a,b∈A×B

(ϕ(a, b)⊤(θ̂ − θ))2

≤

 ∑
a,b∈A×B

∥ϕ(a, b)∥2
 ∥θ̂ − θ∥2 ≲ mϵ21 + nϵ22.

Therefore, for any δ ∈ (0, 1), we set

ϵ1 =

√
m+

√
2 log(2/δ)√
N

, ϵ2 =

√
n+

√
2 log(2/δ)√
N

, (31)

and obtain the following probability bound

P
(
∥Q̂−Q∥2F ≲

m2 + n2 + (m+ n) log(1/δ)

N

)
≥ 1− δ,

which is the desired result.

A.3. Proof of Theorem 2.5

We first summarize the algorithm we propose in 2.3.

Algorithm 1 Learning payoff from actions

Require: Dataset D = {(ak, bk)}k∈[N ], kernel ϕ(·, ·), entropy regularization parameter η, threshold parameter κ, ridge
regularization term λ.

1: for (a, b) ∈ A× B do
2: Compute the empirical QRE by

µ̂(a) =
1

N

N∑
k=1

1{ak=a}, ν̂(b) =
1

N

N∑
k=1

1{bk=b}.

3: Construct the confidence set for θ:

Θ̂ =

{
θ :

∥∥∥∥[A(ν̂)B(µ̂)

]
θ −

[
c(µ̂)
d(ν̂)

]∥∥∥∥2 ≤ κ, ∥θ∥ ≤M

}
.

4: Compute the feasible payoff matrices

Q̂(a, b) = ϕ(a, b)⊤θ̂, θ̂ ∈ Θ̂.

5: end for

Mathematically, we use the Hausdorff distance dH(·, ·) to quantify the difference between two sets in the parameter space.
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Definition A.1 (Hausdorff distance). Let (M, d) be a metric space. For each pair of non-empty subsets X ⊂ M and
Y ⊂ M, the Hausdorff distance between X and Y is defined as

dH(X,Y ) := max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)

}
.

Lemma A.2 (Construction error). Let ϵ1 and ϵ2 be two small numbers satisfying ϵ1 < mina∈[m] µ
∗(a) and ϵ2 <

minb∈[n] ν
∗(b). We define normalized feature matrices Φ1 and Φ2 as

Φ1 = ((ϕ(i, ·)− ϕ(1, ·)))i∈[m]\{1} ∈ Rd×(m−1)n, Φ2 = ((ϕ(·, j)− ϕ(·, 1)))j∈[n]\{1} ∈ Rd×(n−1)m,

where we construct normalized features of the two players’ actions by comparing to their first actions, respectively. Recall
that the parameter M is specified in Assumption 2.1. Under this assumption, we define

κ = 2

((
M∥Φ1∥2op +

n

η2
(
minj∈[n] νj − ϵ2

)2
)
ϵ22 +

(
M∥Φ2∥2op +

m

η2
(
mini∈[m] µi − ϵ1

)2
)
ϵ21

)
.

Then, the confidence set Θ̂ constructed in (6) with parameters κ and M satisfies Θ ⊆ Θ̂. That is, Θ̂ contains all feasible
parameters. Moreover, when ϵ1, ϵ2 are sufficiently small, we have

dH(Θ, Θ̂) ≲
√
κ. (32)

Proof. See Appendix D.1 for the complete proof.

Under the estimate (31), the Theorem 2.5 is a direct corollary of Lemma A.2.

A.4. Proof of Theorem 2.6

Proof. We first control the error of Moore-Penrose inverse:

∥X̂† −X†∥op =
∥∥∥X̂⊤(X̂X̂⊤)−1 −X⊤(XX⊤)−1

∥∥∥
op

≤
∥∥∥X̂⊤(X̂X̂⊤)−1 − X̂⊤(XX⊤)−1

∥∥∥
op

+
∥∥∥(X̂ −X)⊤(XX⊤)−1

∥∥∥
op

≤ ∥X̂∥op
∥∥∥(X̂X̂⊤)−1(XX⊤ − X̂X̂⊤)(XX⊤)−1

∥∥∥
op

+ ∥X̂ −X∥op
∥∥(XX⊤)−1

∥∥
op

≤
(
∥X̂∥op

∥∥∥(X̂X̂⊤)−1
∥∥∥
op

∥∥∥XX⊤ − X̂X̂⊤
∥∥∥
op

+ ∥X̂ −X∥op
)∥∥(XX⊤)−1

∥∥
op
.

(33)

Note that
∥X̂∥2op = ∥X̂⊤X̂∥op = ∥A(ν̂)⊤A(ν̂) +B(µ̂)⊤B(µ̂)∥op

≤ ∥Φ1(Im−1 ⊗ ν̂)∥2op + ∥Φ2(In−1 ⊗ µ̂)∥2op
≤ ∥Φ1∥2op + ∥Φ2∥2op,

(34)

and
∥XX⊤ − X̂X̂⊤∥op ≤ ∥X(X − X̂)⊤∥op + ∥X̂(X − X̂)⊤∥op ≤ 2

√
∥Φ1∥2op + ∥Φ2∥2op∥X̂ −X∥op. (35)

Since the smallest singular value of X is bounded from below by σb > 0, we have∥∥(XX⊤)−1
∥∥
op

≤ 1

σ2
b

. (36)

By Weyl’s inequality, for sufficiently small ϵ1, ϵ2 > 0 with ∥Φ1∥2opϵ22 + ∥Φ2∥2opϵ21 ≤ σ2
b/4, one have

σmin(X̂) ≥ σmin(X)− ∥X̂ −X∥op ≥ σb −
√

∥Φ1∥2opϵ22 + ∥Φ2∥2opϵ21 ≥ σb
2
.
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Hence ∥∥∥(X̂X̂⊤)−1
∥∥∥
op

≤ 4

σ2
b

. (37)

Combining (33), (34), (35), (36) and (37), we have

∥X̂† −X†∥op ≤

(
8(∥Φ1∥2op + ∥Φ2∥2op)

σ4
b

+
1

σ2
b

)√
∥Φ1∥2opϵ22 + ∥Φ2∥2opϵ21. (38)

Meanwhile, as in the proof of Theorem 2.3, we have

∥ŷ − y∥2 = ∥c(ν̂)− c(ν∗)∥2 + ∥d(µ̂)− d(µ∗)∥2 ≤ mϵ21
η2(mini∈[m] µi − ϵ1)2

+
nϵ22

η2(minj∈[n] νj − ϵ2)2
. (39)

Combining (38) and (39), we derive that

∥θ̂ − θ∗∥ ≤ ∥X† − X̂†∥op∥y∥+ ∥X̂†∥op∥y − ŷ∥

≤
(8∥Φ1∥2op + 8∥Φ2∥2op + σ2

b )∥y∥
σ4
b

√
∥Φ1∥2opϵ22 + ∥Φ2∥2opϵ21

+
2

σb

√
mϵ21

η2(mini∈[m] µi − ϵ1)2
+

nϵ22
η2(minj∈[n] νj − ϵ2)2

.

According to our proof in Appendix A.2, with probability at least 1− δ, we have the bound (31) for the total variation error
between optimal and empirical policies. Plugging in (31) to the last display, we have

∥θ̂ − θ∗∥ ≲
m+ n+

√
(m+ n) log(1/δ)√
N

.

This is the desired result.

Remark A.3. The assumption of this Theorem is stronger than what we need in Theorem 2.5, because we require that
d > m+ n− 2 and X is of full row rank. This assumption is necessary for establishing the convergence of Moore-Penrose
inverse: [

A(ν̂)
B(µ̂)

]†
→
[
A(ν∗)
B(µ∗)

]†
.

This assumption is reasonable because, when the rank condition (4) is not satisfied, the kernel ϕ may capture redundant or
irrelevant features in our system. Consequently, the dimensionality d becomes unnecessarily large.

B. Proof of Entropy-Regularized Markov Games
B.1. Proof of Proposition 3.5

Proof. For any h ∈ [H], recall the QRE constraint

µ∗
h(a|s) =

eη⟨Q
∗
h(s,a,·),ν

∗
h(·|s)⟩B∑

a∈A e
η⟨Q∗

h(s,a,·),ν
∗
h(·|s)⟩B

, ν∗h(b|s) =
e−η⟨Q∗

h(s,·,b),µ
∗
h(·|s)⟩A∑

b∈B e
−η⟨Q∗

h(s,·,b),µ
∗
h(·|s)⟩A

, ∀(s, a, b) ∈ S ×A× B.

This non-linear constraint is equivalent to the linear system:{
(Qh(s, a, ·)−Qh(s, 1, ·)) ν∗h(·|s) = log(µ∗

h(a|s)/µ∗
h(1|s))/η, for all a ∈ A,

(Qh(s, ·, b)−Qh(s, ·, 1))µ∗
h(·|s) = − log(ν∗h(b|s)/ν∗h(1|s))/η, for all b ∈ B.

Under Assumption 3.3, these linear equations can be rewritten as follows,{
⟨(ϕ(s, a, ·)− ϕ(s, 1, ·)) ν∗h(·|s), θh⟩ = log(µ∗

h(a|s)/µ∗
h(1|s))/η, for all a ∈ A,

⟨(ϕ(s, ·, b)− ϕ(s, ·, 1))µ∗
h(·|s), θh⟩ = − log(ν∗h(b|s)/ν∗h(1|s))/η, for all b ∈ B,
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By the definition of Ah and Bh, the above linear system can be rewritten as[
Ah(s, ν

∗
h)

Bh(s, µ
∗
h)

]
θh =

[
ch(s, µ

∗
h)

dh(s, ν
∗
h)

]
,

where

ch(s, µh) := (log(µh(a|s)/µh(1|s))/η)a∈A/{1} ∈ Rm−1,

dh(s, νh) := (− log(νh(b|s)/νh(1|s))/η)b∈B/{1} ∈ Rn−1.

Therefore, there exists a unique θh satisfies this linear system for all s ∈ S iff

rank
([
Ah(ν

∗
h)

⊤ Bh(µ
∗
h)

⊤]) = d.

Then we complete the proof.

B.2. Analysis of Estimation Error of Q-functions

In this subsection, we analyze the estimation error of Q-functions in the Markov game. We first assume that the estimated
QRE (µ̂, ν̂) is close to the true QRE (µ∗, ν∗), and analyze the accuracy of the confidence sets Θ̂h for parameters θh.

Lemma B.1 (Estimation error of Q functions). Under Assumption 3.3, denote by Θ̂h the confidence set (15) obtained by
Algorithm 2 for each h ∈ [H]. Let ϵ1 and ϵ2 be two small positive numbers such that ϵ1 < mins∈S,a∈[m] µ

∗
h(a|s) and

ϵ2 < mins∈S,b∈[n] ν
∗
h(b|s). Suppose that TV(µ̂∗

h(·|s), µ∗
h(·|s)) ≤ ϵ1/2 and TV(ν̂∗h(·|s), ν∗h(·|s)) ≤ ϵ2/2 for all s ∈ S and

all h ∈ [H]. Let

κh =

2R2∥Φ1∥2op +
2Sm

η2
(

min
s∈S,a∈[m]

µ∗
h(a|s)− ϵ1

)2
 ϵ21 +

2R2∥Φ2∥2op +
2Sn

η2
(

min
s∈S,b∈[n]

ν∗h(b|s)− ϵ2

)2
 ϵ22,

where the normalized feature matrices Φ1 ∈ Rd×s(m−1)n and Φ2 ∈ Rd×s(n−1)m are defined as

Φ1 = (ϕ(s, a, ·)− ϕ(s, 1, ·))s∈S,a∈[m]\{1} , Φ2 = (ϕ(s, ·, b)− ϕ(s, ·, 1))s∈S,b∈[n]\{1} .

Then, we have Θh ⊆ Θ̂h. Furthermore, for sufficiently small ϵ1, ϵ2 > 0, we have

DH(Θh, Θ̂h) ≲
√
κh. (40)

Proof. See Appendix D.2 for the complete proof.

Next, we need to solve the sample complexity on the concentration of the QRE. Under the assumption 3.8, every state s ∈ S
of our system is visited with sufficient frequency as the size of our dataset increases. We are then prepared to present the
concentration result for the frequency-based estimator of the QRE.

Lemma B.2 (Concentration of QRE). Under Assumptions 3.3 and 3.8, let ϵ be a small positive number such that ϵ ≤
minh∈[H],s∈S,a∈[m],b∈[n]{µ∗

h(a|s), ν∗h(b|s)}/2. Let T , the number of sample episodes, be

T =
1

2C2
· log(2HS/δ) + m ∨ n

2Cϵ2
· log(4HS/δ).

where δ ∈ (0, 1). Define the concentration event E1 as

E1 =

{
TV(µ̂h(·|s), µ∗

h(·|s)) ≤ ϵ,TV(ν̂h(·|s), ν∗h(·|s)) ≤ ϵ,∀s ∈ S,∀h ∈ [H]

}
. (41)

Then the event E1 holds with probability at least 1− δ.

Proof. See Appendix D.3 for the complete proof.
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Combining Lemma B.2 and Lemma B.1, we obtain the following result concerning the sample complexity required to
construct the confidence set Θ̂h.

Corollary B.3 (Sample complexity of constructing feasible Q function set). Under Assumptions 3.3 and 3.8, and given any
δ ∈ (0, 1), we set T ∈ N large and ϵ > 0 small so that

T ≥ 1

C2
log

2HS

δ
, and ϵ =

√
m ∨ n
CT

log
4HS

δ
≤ 1

4
min

s∈S,a∈[m],b∈[n]
{µ∗

h(a|s), ν∗h(b|s)}.

Then the concentration event E1 (41) in Lemma B.2 holds with probability at least 1− δ. Moreover, we set the threshold
parameter as

κh = 8ϵ2
(
R2(∥Φ1∥2op + ∥Φ2∥2op) +

4Sm

η2 mins∈S,a∈[m] µ
∗
h(a|s)2

+
4Sn

η2 mins∈S,b∈[n] ν
∗
h(b|s)2

)
= O

(
1

T

)
.

Then for each h ∈ [H], the concentration event E2, defined by

E2 =
{
Θh ⊆ Θ̂h and DH(Θh, Θ̂h) ≲

√
κh, ∀h ∈ [H]

}
,

holds with probability at least 1− δ.

B.3. Proof of Theorem 3.9

We first summarize the Algorithm we propose in §3.2 below.
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Algorithm 2 Learning reward from actions with the frequency estimator of QRE

Require: Dataset D = {(sth, ath, bth)}h∈[H],t∈[T ], kernel ϕ(·, ·, ·), entropy regularization parameter η, discount factor γ,
threshold parameter (κh), ridge regularization term λ.

1: for (h, s, a, b) ∈ [H]× S ×A× B do
2: Compute the empirical QRE by

µ̂h(a|s) =
1

Nh(s) ∨ 1

∑
(sh,ah)∈D

1(sh,ah)=(s,a), ν̂h(b|s) =
1

Nh(s) ∨ 1

∑
(sh,bh)∈D

1(sh,bh)=(s,b),

where Nh(s) =
∑

(sh,ah,bh)∈Dh
1{sh=s};

3: end for
4: for h = H,H − 1, · · · , 1 do
5: Construct the confidence set for θh:

Θ̂h =

{
∥θ∥ ≤ R :

∥∥∥∥[Ah(ν̂h)
Bh(µ̂h)

]
θ −

[
ch(µ̂h)
dh(ν̂h)

]∥∥∥∥2 ≤ κh

}
6: Compute the feasible Q-functions and V-functions by containing all Q̂h and V̂h such that

Q̂h(s, a, b) = ϕ(s, a, b)⊤θ̂h, where θ̂h ∈ Θ̂h,

V̂h(s) = µ̂h(s)
⊤Q̂h(s)ν̂h(s) + η−1H(µ̂h(s))− η−1H(ν̂h(s));

7: Compute the empirical transition kernel by

Λh =

T∑
t=1

ϕ(sth, a
t
h, b

t
h)ϕ(s

t
h, a

t
h, b

t
h)

⊤ + λId,

P̂hV̂h+1(s, a, b) = ϕ(s, a, b)⊤Λ−1
h

T∑
t=1

ϕ(sth, a
t
h, b

t
h)V̂h+1(s

t
h+1);

8: Compute the reward by
r̂h(s, a, b) = Q̂h(s, a, b)− γP̂hV̂h+1(s, a, b).

9: end for

We require some technical results for the proof.

Ridge Regression Analysis. Indeed, given any λ > 0, Algorithm 2 estimates the true vectors πh(·) specifying transition
kernels Ph in Assumption 3.3 by solving the ridge regression problem:

Π̂h = argmin
Πh∈RS×d

T∑
t=1

∥∥Πhϕ(s
t
h, a

t
h, b

t
h)− δ(sth+1)

∥∥2 + λ∥Πh∥2F,

where Πh = (πh(s))
⊤
s∈S ∈ RS×d. Then

Π̂h =

T∑
t=1

δ(sth+1)ϕ(s
t
h, a

t
h, b

t
h)

⊤Λ−1
h , where Λh =

T∑
t=1

ϕ(sth, a
t
h, b

t
h)ϕ(s

t
h, a

t
h, b

t
h)

⊤ + λId.

Correspondingly, the estimate of the reward function is given by

r̂h(s, a, b) = Q̂h(s, a, b)− γP̂hV̂h+1(s, a, b) = Q̂h(s, a, b)− γϕ(s, a, b)⊤Π̂⊤
h V̂h+1.

This is the approximation approach of Algorithm 2.
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Property of estimated V-functions. According to Assumption 3.3 and row 3 of Algorithm 2, for all h ∈ [H], we have the
following bound for estimated V-functions:

−R− η−1 log n ≤ V̂h(s) ≤ R+ η−1 logm, ∀s ∈ S. (42)

We denote by V̂h the set of V-functions V̂h generated by Θ̂h. For any θ, θ′ ∈ Θ̂h, we have∣∣∣V̂h(s; θ)− V̂h(s; θ
′)
∣∣∣ = ∣∣∣µ̂h(s)

⊤(Q̂h(s; θ)− Q̂h(s; θ
′))ν̂h(s)

∣∣∣ ≤ ∥θ − θ′∥, ∀s ∈ S.

Consequently, the covering number of V̂h is not greater by the covering number of Θ̂h, which is included in the ball
B(0, R) = {θ ∈ Rd : ∥θ∥ ≤ R}. By Lemma F.2, for any ϵ > 0, we can find an ϵ-net Nϵ of (V̂h, ∥ · ∥∞) such that

|Nϵ| ≤
(
1 +

2R

ϵ

)d

. (43)

Clearly, the same property also apply to the set of feasible V-functions Vh generated by Θh.

B.3.1. BOUNDING THE ESTIMATION ERROR OF V-FUNCTIONS

In this subsection, we bound the estimation error of V-functions under the event E2 given by Corollary B.3. For any θ̂h ∈ Θ̂h,
we can find a feasible θh ∈ Θh such that ∥θ̂h − θh∥ ≤ Ch

√
κh for some constant Ch. Then for the V-functions generated

by θ̂h and θh, we have

|V̂h(s)− Vh(s)|

≤
∣∣∣∣µ̂h(s)

⊤Q̂h(s)ν̂h(s) +
1

η
H(µ̂h(s))−

1

η
H(ν̂h(s))− µ∗

h(s)
⊤Qh(s)ν

∗
h(s)−

1

η
H(µ∗

h(s)) +
1

η
H(ν∗h(s))

∣∣∣∣
≤
∣∣∣µ̂h(s)

⊤Q̂h(s)ν̂h(s)− µ∗
h(s)

⊤Qh(s)ν
∗
h(s)

∣∣∣︸ ︷︷ ︸
(i)

+
1

η

∣∣H(µ̂h(s))−H(µ∗
h(s))

∣∣︸ ︷︷ ︸
(ii)

+
1

η

∣∣H(ν̂h(s))−H(ν∗h(s))
∣∣︸ ︷︷ ︸

(iii)

.

(44)

Now we successively bound the three terms above. Firstly,

(i) ≤
∣∣∣µ̂h(s)

⊤(Q̂h −Qh)(s)ν̂h(s)
∣∣∣+ ∣∣(µ̂h − µ∗

h)(s)
⊤Qh(s)ν̂h(s)

∣∣+ ∣∣µ∗
h(s)

⊤Qh(s)(ν̂h − ν∗h)(s)
∣∣

≤ sup
a∈A,b∈B

∣∣Q̂h −Qh

∣∣(s, a, b) + ∥(µ̂h − µ∗
h)(s)∥1∥Qh(s)ν̂h(s)∥∞ + ∥(ν̂h − ν∗h)(s)∥1∥Qh(s)

⊤µ̂h(s)∥∞

≤ sup
a∈A,b∈B

∣∣Q̂h −Qh

∣∣(s, a, b) + 2ϵ sup
a∈A,b∈B

|Qh(s, a, b)|+ 2ϵ sup
a∈A,b∈B

|Qh(s, a, b)|

≤ Ch
√
κh + 4Rϵ,

(45)

where we use Hölder’s inequality in the first inequality, and the third inequality follows from the following facts:∣∣Q̂h −Qh

∣∣(s, a, b) = ∣∣(θ̂h − θh)
⊤ϕ(s, a, b)

∣∣ ≤ ∥θ̂h − θh∥ ∥ϕ(s, a, b)∥ ≤ Ch
√
κh,∣∣Qh(s, a, b)

∣∣ = |θ⊤h ϕ(s, a, b)| ≤ ∥θh∥ ∥ϕ(s, a, b)∥ ≤ R, ∀(s, a, b) ∈ S ×A× B.

To bound terms (ii) and (iii), we use Lemma F.1:

|H(µ∗
h(s))−H(µ̂(s))| ≤ −ϵ log ϵ− (1− ϵ) log(1− ϵ) + ϵ log(m− 1) ≤ ϵ

(
1 + log

m

ϵ

)
;

|H(ν∗h(s))−H(ν̂(s))| ≤ −ϵ log ϵ− (1− ϵ) log(1− ϵ) + ϵ log(n− 1) ≤ ϵ
(
1 + log

n

ϵ

)
;

(46)

Combining (44), (45) and (46), for all s ∈ S, we obtain

|V̂h(s)− Vh(s)| ≤ Ch
√
κh + ϵ

(
4R+ 2 + log

mn

ϵ2

)
≲
(√

S(m+ n) + log(Tmn)
)√m ∨ n

T
log

HS

δ
.
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Furthermore, for all h ∈ [H] and all (s, a, b) ∈ S ×A× B, since ∥ϕ(·, ·, ·)∥ ≤ 1, we have

|PhV̂h+1 − PhVh+1|(s, a, b) ≤ ∥ϕ(s, a, b)∥ ∥Πh∥op ∥V̂h − Vh∥

≲
S(m+ n) +

√
S(m+ n) log T√
T

√
log

HS

δ
.

(47)

Note this bound is valid once the concentration event E2 holds.

B.3.2. BOUNDING THE ESTIMATION ERROR OF TRANSITION KERNELS

In this section, we bound the difference between P̂hV̂h+1 and PhV̂h+1.

Error decomposition. We fix V̂h+1 ∈ V̂h+1, and let H t
h be the σ-field generated by variables

(s1, a1, b1, s2, a2, b2, · · · , sh, ah, bh). Define random variables ηth = δ(sth+1) − Πhϕ(s
t
h, a

t
h, b

t
h). Then E[ηth|H t

h ] = 0.
For all s ∈ S, a ∈ A, b ∈ B,(

P̂hV̂h+1 − PhV̂h+1

)
(s, a, b) = V̂ ⊤

h+1

(
Π̂h −Πh

)
ϕ(s, a, b)

= V̂ ⊤
h+1

(
T∑

t=1

(
ηth +Πhϕ(s

t
h, a

t
h, b

t
h)
)
ϕ(sth, a

t
h, b

t
h)

⊤Λ−1
h ϕ(s, a, b)−Πh

)
ϕ(s, a, b)

=

T∑
t=1

(
V̂ ⊤
h+1η

t
h

)
ϕ(sth, a

t
h, b

t
h)

⊤Λ−1
h ϕ(s, a, b)− λV̂ ⊤

h+1ΠhΛ
−1
h ϕ(s, a, b).

By Cauchy’s inequality, we obtain

∣∣P̂hV̂h+1 − PhV̂h+1

∣∣(s, a, b) ≤
∥∥∥∥∥

T∑
t=1

(
V̂ ⊤
h+1η

t
h

)
ϕ(sth, a

t
h, b

t
h)

∥∥∥∥∥
Λ−1

h

+ λ
∥∥∥Π⊤

h V̂h+1

∥∥∥
Λ−1

h

 ∥ϕ(s, a, b)∥Λ−1
h
, (48)

where we write ∥x∥M :=
√
x⊤Mx for any positive definite matrix M . Now we bound the three terms in (48).

Step I: Analysis of the term ∥Π⊤
h V̂h+1∥Λ−1

h
. Since Λh = λId+

∑T
t=1 ϕ(s

t
h, a

t
h, b

t
h)ϕ(s

t
h, a

t
h, b

t
h)

⊤, we have λmin(Λh) ≥
λ. Hence

∥Π⊤
h V̂h+1∥Λ−1

h
≤ 1√

λ
∥Π⊤

h V̂h+1∥ ≤ 1√
λ
∥Πh∥op∥V̂h+1∥.

Note that we assume ∥πh(·)∥ ≤
√
d in Assumption 3.3, we have ∥Πh∥op ≤

√
Sd. Hence

∥Π⊤
h V̂h+1∥Λ−1

h
≤
√
Sd

λ
(2R+ η−1 logm+ η−1 log n). (49)

Step II: Analysis of the self-normalized process. By definition of ηth, we have ∥ηth∥∞ ≤ 2. Combining with the bound
of V̂h+1 given by (42), we obtain the following estimate:

−2(R+ η−1 log n) ≤ V̂ ⊤
h+1η

t
h ≤ 2(R+ η−1 logm).

By Hoeffding’s inequality, (V̂ ⊤
h+1η

t
h)

T
t=1 are independent (2R+ η−1 logm+ η−1 log n)-sub-Gaussian random variables

with zero mean. By Lemma F.4, the following inequality holds with probability at least 1− δ:∥∥∥∥∥
T∑

t=1

V̂ ⊤
h+1η

t
hϕ(s

t
h, a

t
h, b

t
h)

∥∥∥∥∥
2

Λ−1
h

≤ 2(2R+ η−1 logm+ η−1 log n)2 log

(
det(Λh)

1/2 det(λId)
−1/2

δ

)
.
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Now we bound det(Λh). To this end, note that

det(Λh) ≤ ∥Λh∥dop ≤
(
λ+ T∥ϕ(sth, ath, bth)∥2

)d ≤ (λ+ T )d.

Consequently, we have∥∥∥∥∥
T∑

t=1

V̂ ⊤
h+1η

t
hϕ(s

t
h, a

t
h, b

t
h)

∥∥∥∥∥
2

Λ−1
h

≤ 2(2R+ η−1 logmn)2
(
log

1

δ
+
d

2
log

(
1 +

T

λ

))
. (50)

Next, we derive a uniform bound for V̂h+1. We choose a ϵ-net of (V̂h+1, ∥ · ∥∞) given in (43). Then for all V̂h+1 ∈ V̂h+1,
we can find V ∗ ∈ Nϵ such that ∥V̂h+1 − V ∗∥∞ ≤ ϵ. Hence∥∥∥∥∥

T∑
t=1

(V̂h+1 − V ∗)⊤ηthϕ(s
t
h, a

t
h, b

t
h)

∥∥∥∥∥
Λ−1

h

≤ 1√
λ

T∑
t=1

∥V̂h+1 − V ∗∥∞∥ηth∥1
∥∥ϕ(sth, ath, bth)∥∥ ≤ 2Tϵ√

λ
.

We apply a union bound version of (50) on Nϵ. With probability at least 1− δ, the following inequality holds for all V̂h+1:∥∥∥∥∥
T∑

t=1

V̂ ⊤
h+1η

t
hϕ(s

t
h, a

t
h, b

t
h)

∥∥∥∥∥
Λ−1

h

≤

∥∥∥∥∥
T∑

t=1

V ∗⊤ηthϕ(s
t
h, a

t
h, b

t
h)

∥∥∥∥∥
Λ−1

h

+

∥∥∥∥∥
T∑

t=1

(V̂h+1 − V ∗)⊤ηthϕ(s
t
h, a

t
h, b

t
h)

∥∥∥∥∥
Λ−1

h

≤
√
2(2R+ η−1 logmn)

√
log

|Nϵ|
δ

+
d

2
log

(
1 +

T

λ

)
+

2Tϵ√
λ
.

Take ϵ = 1/T . Then we obtain∥∥∥∥∥
T∑

t=1

V̂ ⊤
h+1η

t
hϕ(s

t
h, a

t
h, b

t
h)

∥∥∥∥∥
2

Λ−1
h

≤ (2R+ η−1 logmn)

√
2 log

(1 + 2RT )d

δ
+ d log

(
1 +

T

λ

)
+

2√
λ
. (51)

Step III: Analysis of ∥ϕ(s, a, b)∥Λ−1
h

. Let ρh be the visitation measure of (sh, ah, bh) induced by QRE policies µ∗ and
ν∗. For simplicity, we use the following notations:

Λh =
1

T
Λh =

λ

T
Id +

1

T

T∑
t=1

ϕ(sth, a
t
h, b

t
h)ϕ(s

t
h, a

t
h, b

t
h)

⊤, Ψh = E
[
ϕ(sh, ah, bh)ϕ(sh, ah, bh)

⊤] .
This step is somewhat tricky. We first present our main result below.

Lemma B.4 (Adapted from Min et al., 2022 Lemma H.5). Let {(sth, ath, bth)}Tt=1 be i.i.d. samples from the visitation
distribution ρh. For any δ > 0, if

T ≥ max

{
512∥Ψ−1

h ∥2op log
2d

δ
, 4λ∥Ψ−1

h ∥op
}
, (52)

then with probability at least 1− δ, it holds simultaneously for all s ∈ S, a ∈ A, b ∈ B that

∥ϕ(s, a, b)∥Λ−1
h

≤ 2√
T
∥ϕ(s, a, b)∥Ψ−1

h
.

Proof. We first bound the difference between Λh and Ψh. We write xt = ϕ(sth, a
t
h, b

t
h), and define the matrix-valued

function Σ(x1, · · · , xT ) = λ
T Id +

1
T

∑T
t=1 xtx

⊤
t . For any t ∈ [T ], if we replace xt by some x̃t with ∥x̃t∥ ≤ 1, we have

(Σ(x1, · · · , xt−1, xt, xt+1, · · · , xT )− Σ(x1, · · · , xt−1, x̃t, xt+1, · · · , xT ))2

=
1

T 2

(
xtx

⊤
t − x̃tx̃

⊤
t

)2 ⪯ 1

T 2

(
2xtx

⊤
t xtx

⊤
t + 2x̃tx̃

⊤
t x̃tx̃

⊤
t

)
⪯ 4

T 2
Id =: A2

t .
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Let σ2 =
∥∥∥∑T

t=1A
2
t

∥∥∥ = 4
T . By Lemma F.3, with probability at least 1− δ, we have

∥∥Λh − E[Λh]
∥∥
op

≤ 4
√
2√
T

√
log

2d

δ
⇒

∥∥Λh −Ψh

∥∥
op

≤ 4
√
2√
T

√
log

2d

δ
+
λ

T
. (53)

Next, we bound the term ∥v∥Λ−1
h

for any v = ϕ(s, a, b) ∈ Rd:

∥v∥Λ−1
h

=
1√
T

√
v⊤Ψ−1

h v + v⊤(Λ
−1

h −Ψ−1
h )v

=
1√
T

√
v⊤Ψ−1

h v + v⊤Ψ
−1/2
h (Ψ

1/2
h Λ

−1

h Ψ
1/2
h − Id)Ψ

−1/2
h v

≤ 1√
T

√
∥v∥Ψ−1

h

(
1 +

∥∥∥Ψ1/2
h Λ

−1

h Ψ
1/2
h − Id

∥∥∥
op

)
∥v∥Ψ−1

h

≤ 1√
T

(
1 +

∥∥∥Ψ1/2
h Λ

−1

h Ψ
1/2
h − Id

∥∥∥1/2
op

)
∥v∥Ψ−1

h
. (54)

To control the term
∥∥∥Ψ1/2

h Λ
−1

h Ψ
1/2
h − Id

∥∥∥
op

, note that

∥∥∥Ψ1/2
h Λ

−1

h Ψ
1/2
h − Id

∥∥∥
op

≤
∥∥∥∥(Ψ−1/2

h ΛhΨ
−1/2
h

)−1
∥∥∥∥
op

∥∥∥Id −Ψ
−1/2
h ΛhΨ

−1/2
h

∥∥∥
op

Combining the hypothesis (52) and the bound (53), we have∥∥∥Id −Ψ
−1/2
h ΛhΨ

−1/2
h

∥∥∥
op

= ∥Ψ−1
h ∥op∥Λh −Ψ−1

h ∥op ≤ 1

2
.

Moreover, by Weyl’s inequality, we have

λmin

(
Ψ

−1/2
h ΛhΨ

−1/2
h

)
≥ 1− λmax

(
Id −Ψ

−1/2
h ΛhΨ

−1/2
h

)
≥ 1

2
.

Consequently, we have∥∥∥Ψ1/2
h Λ

−1

h Ψ
1/2
h − Id

∥∥∥
op

≤ 1

λmin

(
Ψ

−1/2
h ΛhΨ

−1/2
h

) ∥∥∥Id −Ψ
−1/2
h ΛhΨ

−1/2
h

∥∥∥
op

≤ 2 · 1
2
= 1.

Plugging in the last display to (54) completes the proof.

Final bound. We can obtain the final bound by combining (48), (49), (51) and Lemma B.4. For any δ > 0, if

T ≥ max

{
512∥Ψ−1

h ∥2op log
2Hd

δ
, 4λ∥Ψ−1

h ∥op
}
, (55)

then with probability at least 1− 2δ, it holds simultaneously for all h ∈ [H], all V̂h+1 ∈ V̂h+1, and all s ∈ S, a ∈ A, b ∈ B
that ∣∣P̂hV̂h+1 − PhV̂h+1

∣∣(s, a, b)
≤ 1√

T

(
(2R+ η−1 logmn)

(√
Sd

λ
+

√
2 log

H(1 + 2RT )d

δ
+ d log

λ+ T

λ

)
+

2√
λ

)
∥ϕ(s, a, b)∥Ψ−1

h

≤ (2R+ η−1 logmn)√
T

(√
4Sd

λ
+

√
2 log

H

δ
+ 2d log(1 + 2RT ) + d log

λ+ T

λ

)
∥Ψ−1

h ∥1/2op

≲

√
Sd+

√
d log T +

√
log(H/δ)√

T
log(mn)

(56)

Clearly, this upper bound converges to zero as the sample size T → ∞.
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B.3.3. BOUNDING THE ESTIMATION ERROR OF REWARDS

Now we go back to the proof of Theorem 3.9, and bound DH(R, R̂).

Proof of Theorem 3.9. For any h ∈ [H] and r̂ ∈ R̂, the estimated reward r̂h can be rewritten as

r̂h(s, a, b) = Q̂h(s, a, b)− γP̂hV̂h+1(s, a, b) for all (s, a, b) ∈ S ×A× B,

which is generated by some θ̂h ∈ Θ̂h and V̂h+1 ∈ V̂h+1. When the concentration event E2 given in Corollary B.2 holds,
we can find a feasible θh ∈ Θh such that ∥θ̂h − θh∥ ≤ Ch

√
κh for some constant Ch > 0. Moreover, according to our

conclusion in Appendix B.3.1, we can also find a feasible Vh+1 ∈ Vh+1 such that (47) holds for all possible choice of h and
(s, a, b). Now we consider the following feasible reward:

rh(s, a, b) = ϕ(s, a, b)⊤θh − γPhVh+1(s, a, b), r = (r1, r2, · · · , rH) ∈ R.

We have the following decomposition:

|r̂h − rh|(s, a, b) =
∣∣∣ϕ(s, a, b)⊤(θ̂h − θh)− γ(P̂hV̂h+1 − PhVh+1)(s, a, b)

∣∣∣
≤ ∥ϕ(s, a, b)∥ ∥θ̂h − θh∥︸ ︷︷ ︸

≤Ch
√
κh

+ γ
∣∣P̂hV̂h+1 − PhV̂h+1

∣∣(s, a, b)︸ ︷︷ ︸
bounded by (56)

+ γ
∣∣PhV̂h+1 − PhVh+1

∣∣(s, a, b)︸ ︷︷ ︸
bounded by (47)

In this display, both the first and third bounds hold under the concentration event E2, and the second holds with probability
1− 2δ when T satisfies (55). Furthermore, all these bounds are uniform and do not depend on our choice of h, θ̂h, V̂h+1 and
(s, a, b). Consequently, with probability at least 1− 3δ, we have

sup
r̂∈R̂

d(r̂,R) ≲

√
S(m+ n)

T
log

HS

δ

(√
S(m+ n) + log T

)
+

√
Sd+

√
d log T√
T

log(mn). (57)

On the other hand, for any r ∈ R generated by θh ∈ Θh ⊆ Θ̂h and θh+1 ∈ Θh+1 ⊆ Θ̂h+1, we pick the following estimated
reward r̂ = (r̂1, r̂2, · · · , r̂H) ∈ R̂:

Ṽh+1(s) = µ̂h+1(s)
⊤Qh+1(s)ν̂h+1(s) + η−1H(ν̂h+1(s))− η−1H(ν̂h+1(s)),

r̂h(s, a, b) = ϕ(s, a, b)⊤θh − P̂hṼh+1(s, a, b), h ∈ [H], s ∈ S, a ∈ A, b ∈ B.

Since Θh+1 ⊆ Θ̂h+1, the estimated V-function Ṽh+1 ∈ V̂h+1, and the uniform bound (56) still holds if we replacing V̂h+1

by Ṽh+1. Furthermore, similar to our estimation procedure (44)-(47), the estimation error of V -function has the following
bound:

|Ṽh+1(s)− Vh+1(s)| ≤
(
4R+ 2 + log

mn

ϵ2

)
ϵ ≲ log(Tmn)

√
m ∨ n
T

log
HS

δ
,

|PhṼh+1 − PhVh+1|(s, a, b) ≲
√
S(m+ n) log(Tmn)√

T

√
log

HS

δ
, ∀(s, a, b) ∈ S ×A× B. (58)

Consequently, the following inequality simultaneously holds for all choice of h, rh and (s, a, b):

|r̂h − rh|(s, a, b) = |P̂hṼh+1 − PhVh+1|(s, a, b)

≤ |P̂hṼh+1 − PhṼh+1|(s, a, b)︸ ︷︷ ︸
bounded by (56)

+ |PhṼh+1 − PhVh+1|(s, a, b)︸ ︷︷ ︸
bounded by (58)

≲

√
S(m+ n)

T
log

HS

δ
log(Tmn) +

(√
Sd

T
+

√
d log T

T

)
log(mn).
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Therefore we have

sup
r∈R

d(r, R̂) ≲

√
S(m+ n)

T
log

HS

δ
log(Tmn) +

(√
Sd

T
+

√
d log T

T

)
log(mn). (59)

Combining (57) and (59), we obtain the Hausdorff distance between R and R̂:

DH(R, R̂) = max

{
sup
r̂∈R̂

d(r̂,R), sup
r∈R

d(r, R̂)

}

≲

√
S(m+ n)

T
log

HS

δ

(√
S(m+ n) + log T

)
+

√
Sd+

√
d log T√
T

log(mn).

This complete the proof.

C. Incorporation of Maximum Likelihood Estimation (MLE)
C.1. Using MLE for QRE Estimation

To control the error of the estimated QRE (µ̂, ν̂) in the tabular case, we assume that every state s ∈ S is visited with
sufficiently high probability. This strong assumption can be restrictive in practical scenarios, as it requires an exhaustive
exploration of the state space S . To alleviate this limitation, we assume that the QRE (µ∗, ν∗) exhibits a sparse structure. To
simplify our problem, we adopt a linear parameterization of the QRE. By adjusting the dimension of the parameters, we can
capture the key features of the QRE.

Assumption C.1 (Linearly parameterized QRE). Assume da, db ∈ N. Let ψa : S ×A → Rda and ψb : S × B → Rdb be
two bounded kernels such that

∥ψa(s, a)∥, ∥ψb(s, b)∥ ≤ K

for all s ∈ S, a ∈ A and b ∈ B. For each h ∈ [H], there exists a vector ϑ∗h ∈ Rda such that ∥ϑ∗h∥ ≤ 1, and for all
sh ∈ S, ah ∈ A,

µ∗
h(ah|sh) =

exp
(
ϑ∗⊤h ψa(sh, ah)

)∑
a∈A exp

(
ϑ∗⊤h ψa(sh, a)

) ;
Also, there exists a vector ζ∗h ∈ Rdb such that ∥ζ∗h∥ ≤ 1, and for all sh ∈ S, bh ∈ B,

ν∗h(bh|sh) =
exp

(
ζ∗⊤h ψb(sh, bh)

)∑
b∈B exp

(
ζ∗⊤h ψb(sh, b)

) .
Linear parametrization allows us to integrate the estimation of the QRE (µ∗

h(·|s), ν∗h(·|s)) across different states s ∈ S by
solving the parameters with maximum likelihood estimation (MLE). We can explicitly write the log-likelihood function of
parameters ϑh and ζh given the dataset

Dh =
{
(s1h, a

1
h, b

1
h), (s

2
h, a

2
h, b

2
h), · · · , (sTh , aTh , bTh )

}H
h=1

.

For the max player, the negative log-likelihood function is

Lh(ϑh) = −
T∑

t=1

exp
(
ϑ⊤h ψa(s

t
h, a

t
h)
)∑

a∈A exp
(
ϑ⊤h ψa(sth, a)

) ,
and for the min player, it is

Lh(ζh) = −
T∑

t=1

exp
(
ζ⊤h ψb(s

t
h, b

t
h)
)∑

b∈B exp
(
ζ⊤h ψb(sth, b)

) .
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We estimate the parameters ϑ∗h and ζ∗h by minimizing their negative log-likelihood:

ϑ̂h = argmin
∥ϑh∥≤1

Lh(ϑh), and ζ̂h = argmin
∥ζh∥≤1

Lh(ζh). (60)

As in the tabular case, it can be challenging to control the error of the estimated QRE across all states s ∈ S. Nevertheless,
we can focus on the average error and obtain the following L2-convergence result for the MLEs.

Lemma C.2 (Convergence of MLE). Under Assumption C.1, we let µ̂h and ν̂h be the policies generated by ϑ̂h and ζ̂h.
Then there exists a constant LK > 0 depending on m,n and K only, such that with probability at least 1− δ, it holds

E
[
H2 (µ̂h(·|sh), µ∗

h(·|sh))
]
≤ 1

T

(
da log(1 + 2TLK) + log

1

δ
+
√
2meK + 2

)
, (61)

where H(P,Q) = ∥
√
P −

√
Q∥2 is the Hellinger distance between two probability distributions, and the expectation is

taken with respect to the visitation distribution d∗h of state sh generated by the QRE (µ∗, ν∗). According to the relation
TV(P,Q) ≤

√
2H(P,Q), the estimation (61) implies

1

2
E
[
TV2 (µ̂h(·|sh), µ∗

h(·|sh))
]
≤ 1

T

(
da log(1 + 2TLK) + log

1

δ
+
√
2meK + 2

)
.

Similarly, with probability at least 1− δ, the following inequality holds:

1

2
E
[
TV2 (ν̂h(·|sh), ν∗h(·|sh))

]
≤ 1

T

(
db log(1 + 2TLK) + log

1

δ
+
√
2neK + 2

)
.

Proof. See Appendix C.2.2 for the complete proof.

Since some states s ∈ S are less frequently visited, or worse, not contained in our dataset, the error of our estimator can be
significantly higher in these states. Fortunately, such inaccuracies are less critical for states with low visitation probabilities,
and it suffices to control the average error. We hence introduce a weaker metric to measure the distance between rewards.

Definition C.3 (L1-metric for rewards). Let ρh be the state-visitation measure corresponding to the true QRE (µ∗, ν∗).
Define the L1 metric D1 between any pair of rewards r, r′ : [H]× S ×A× B → R as

D1(r, r
′) = sup

h∈[H],a∈A,b∈B
Es∼ρh

|(rh − r′h)(s, a, b)| .

To align with the estimation of the QRE, it is necessary to adapt the estimation method of Q-functions. Since we have higher
accuracies on frequently visited states, we may estimate the parameters (θh) by solving the least square problem weighted
by visitation probabilities. Before we proceed, we introduce another type of identification of Q-functions.

Proposition C.4 (Strong identification of Q functions). Under Assumption 3.3, for any h ∈ [H],Qh(s, a, b) = ϕ(s, a, b)⊤θh
is feasible for all (s, a, b) ∈ S ×A× B if and only if θh satisfies the following linear system:[

Ah(ν
∗
h)

Bh(µ
∗
h)

]
θh =

[
ch(µ

∗
h)

dh(ν
∗
h)

]
for all s ∈ S, (62)

where

Ah(ν
∗
h) :=


√
ρh(1)Ah(1, ν

∗
h)

...√
ρh(S)Ah(S, ν

∗
h)

 , Bh(µ
∗
h) :=


√
ρh(1)Bh(1, µ

∗
h)

...√
ρh(S)Bh(S, µ

∗
h)

 ,
and

ch(µ
∗
h) :=


√
ρh(1) ch(1, µ

∗
h)

...√
ρh(S) ch(S, µ

∗
h)

 , dh(ν
∗
h) :=


√
ρh(1) dh(1, ν

∗
h)

...√
ρh(S) dh(S, ν

∗
h)

 .
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There exists a unique feasible θh ∈ Rd if and only if the QRE satisfies the rank condition

rank
([
Ah(ν

∗
h)

⊤ Bh(µ
∗
h)

⊤]) = d. (63)

Furthermore, the reward function rh is uniquely identifiable if and only if the QRE satisfies the rank condition (63) for all
indices h, h+ 1, · · · , H .

Proof. The proof is exactly the same as Proposition 3.5.

Estimation of Q-function. In accordance with the identification of Q, we need to change the construction of confidence
set. Instead of simply concatenating the estimation equations over all s ∈ S, we add a weight to each block to adjust the
importance of each state:

Ah(ν̂h) :=


√
ρh(1)Ah(1, ν̂h)

...√
ρh(S)Ah(S, ν̂h)

 , Bh(µ̂h) :=


√
ρh(1)Bh(1, µ̂h)

...√
ρh(S)Bh(S, µ̂h)

 .
Since the true distribution ρh of the state sh is unknown, we replace it with the empirical estimator on the dataset Dh:

ρ̂h(s) = PDh
(sh = s) =

1

T

T∑
t=1

1{sth=s}, s ∈ S.

The matrices for confidence set construction are then given by

Âh(ν̂h) :=


√
ρ̂h(1)Ah(1, ν̂h)

...√
ρ̂h(S)Ah(S, ν̂h)

 , B̂h(µ̂h) :=


√
ρ̂h(1)Bh(1, µ̂h)

...√
ρ̂h(S)Bh(S, µ̂h)

 . (64)

Similarly, we define

ĉh(µ̂h) :=


√
ρ̂h(1)ch(1, µ̂h)

...√
ρ̂h(S)ch(S, µ̂h)

 , d̂h(ν̂h) :=


√
ρ̂h(1)dh(1, ν̂h)

...√
ρ̂h(S)dh(S, ν̂h)

 . (65)

Given an appropriate threshold κh > 0, we construct the confidence set for parameter θh by solving the least square problem:

Θ̂h :=

θ :
∥∥∥∥∥
[
Âh(ν̂h)

B̂h(µ̂h)

]
θ −

[
ĉh(µ̂h)

d̂h(ν̂h)

]∥∥∥∥∥
2

≤ κh, ∥θ∥ ≤ R

 ,

This is equivalent to the weighted least square problem:

∑
s∈S

ρ̂h(s)

∥∥∥∥[Ah(s, ν̂h)
Bh(s, µ̂h)

]
θ −

[
ch(s, µ̂h)
dh(s, ν̂h)

]∥∥∥∥2 ≤ κh.

We present the convergence result for the new confidence set below.

Lemma C.5. Under Assumptions 3.3 and C.1, let Θ̂h be the confidence set obtained. Set

ϵ2 = O
(
(da + db) log T + log(H/δ) +

√
m+

√
n

T

)
,

and

κh = O
(
1

T

(
m7/2 + n7/2 + S(logmn)2

)
+
m3 + n3

T

(
(da + db) log T + log

H

δ

))
. (66)
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Then with probability at least 1− 3δ, we have

Es∼ρh
[TV2(µ̂h(·|s), µ∗

h(·|s))] ≤ ϵ2, Es∼ρh
[TV2(ν̂h(·|s), ν∗h(·|s))] ≤ ϵ2,

and Θh ⊆ Θ̂h for all h ∈ [H]. Furthermore, for each h ∈ [H], the Hausdorff distance between the feasible set and the
confidence set satisfies the estimate

dH(Θh, Θ̂h) ≲
√
κh.

Proof. See Appendix D.4 for the complete proof.

We summarize the algorithm for learning reward from actions in Algorithm 3.

Algorithm 3 Learning reward from actions (MLE case)

Require: Dataset D = {(sth, ath, bth)}h∈[H],t∈[T ], kernels ϕ(·, ·, ·), ψa(·, ·), ψb(·, ·), entropy regularization term η, discount
factor γ, threshold parameter (κh), ridge regularization term λ.

1: for (h, s, a, b) ∈ [H]× S ×A× B do
2: Compute the empirical QRE by maximal likelihood estimation, according to (60)
3: Construct the confidence set for θh:

Θ̂h =

∥θ∥ ≤ R :

∥∥∥∥∥
[
Âh(ν̂h)

B̂h(µ̂h)

]
θ −

[
ĉh(µ̂h)

d̂h(ν̂h)

]∥∥∥∥∥
2

≤ κh

 ,

where Âh(ν̂h), B̂h(µ̂h), ĉh(µ̂h) and d̂h(ν̂h) are given in (64) and (65);
4: Compute the feasible Q-functions and V-functions by containing all Q̂h and V̂h such that

Q̂h(s, a, b) = ϕ(s, a, b)⊤θ̂h where θ̂h ∈ Θ̂h,

V̂h(s) = µ̂h(s)
⊤Q̂h(s)ν̂h(s) + η−1H(µ̂h(s))− η−1H(ν̂h(s));

5: Compute the empirical transition kernel by

Λh =

T∑
t=1

ϕ(sth, a
t
h, b

t
h)ϕ(s

t
h, a

t
h, b

t
h)

⊤ + λId,

P̂hV̂h+1(s, a, b) = ϕ(s, a, b)⊤Λ−1
h

T∑
t=1

ϕ(sth, a
t
h, b

t
h)V̂h+1(s

t
h+1);

6: Compute the reward by
r̂h(s, a, b) = Q̂h(s, a, b)− γP̂hV̂h+1(s, a, b).

7: end for

To demonstrate the effectiveness of Algorithm 3, we provide the theoretical results for the feasible sets constructed by
Algorithm 3 in the following theorem.

Theorem C.6. Under Assumptions 3.3 and C.1, we let ρh = d∗h be the stationary distribution associated with the optimal
policies µ∗ and ν∗, where h ∈ [H]. We also assume that the following d× d matrix

Ψh = Eρh

[
ϕ(sh, ah, bh)ϕ(sh, ah, bh)

⊤]
is nonsingular for all h ∈ [H]. Let R be the feasible reward set in Definition 3.7. Given a dataset

D = {Dh}h∈[H] = {{(sth, ath, bth)}t∈[T ]}h∈[H],
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we set λ = O(1), and as in (66), set κh = O(T−1), and denote by R̂ the output of Algorithm 3. For any δ ∈ (0, 1), we
have that, with probability at least 1− 4δ,

D1(R, R̂) ≲
1√
T

(
m7/4 + n7/4 + (m3/2 + n3/2 + log T )

√
(da + db + d) log T + log(H/δ) +

√
Sd log(mn)

)
.

Proof. See Appendix C.3 for the complete proof.

This theorem provides a finite-sample bound on the Hausdorff distance between the identifiable set of feasible rewards R
and the estimated reward set R̂ obtained via our algorithm with MLE-based QRE estimation. This result quantifies the
sample complexity required for reliable and efficient reward inference in entropy-regularized Markov games. We point out
several key insights emerge from this theorem:

• Convergence Rate. The bound reveals a convergence rate of roughly O(T−1/2), consistent with standard statistical
results. This ensures that as the number of observed samples T grows, our estimated feasible reward set converges
toward the true identifiable set.

• Dependence on Problem Complexity. Larger state or action spaces require more data to achieve the same accuracy
level. In particular, the fractional exponents on action spaces m and n in this bound originate from the estimate for
Hellinger distance in (61) and the application of Cauchy-Schwartz inequality. Since the exponent 7/4 is still less than
2, the effect is milder than in worst-case scenarios where complexity scales quadratically or cubically.

• Role of Feature Representations. The terms involving the dimensions d, da and db, where d is the dimension of
kernel ϕ for modeling reward and transitions, and da, dn are the dimensions of policy kernels ψa, ψb for players 1, 2,
respectively. This involvement emphasizes the impact of the complexity of the feature representation on estimation
accuracy. A richer representation (with larger dimensions) increases expressive power but also requires more data to
ensure robust recovery.

• Implications for Practical Applications. This result reassures practitioners that our approach, which leverages maximum
likelihood estimation for QRE recovery, provides reliable inference, even when the true reward parameter is partially
identified. It establishes clear guidelines on data requirements for accurate reward reconstruction.

C.2. Convergence of MLE in Policy Estimation

C.2.1. LINEAR PARAMETERIZED STRATEGIES

We prove the case for the max player, whose action space is A. We assume that we have a feature map ψ : S ×A → Rda

such that ∥ψ(s, a)∥ ≤ K for all s ∈ S, a ∈ A. The strategy µ of the max player is then parameterized by a group of vectors
ϑh ∈ Rda :

µh(ah|sh) = µϑh
(ah, sh) :=

exp
(
ϑ⊤h ψ(sh, ah)

)∑
a∈A exp

(
ϑ⊤h ψ(sh, a)

) , sh ∈ S, an ∈ A, h = 1, 2, · · · , H.

We assume that the true parameters ϑ∗h ∈ Γ, where Γ = B(0, 1) is the unit closed ball in Rda centered at 0. We define a
pseudometric ρ on Γ:

ρ(ϑ, ϑ̃) = max
s∈S

H
(
µϑ(·|s), µϑ̃(·|s)

)
= max

s∈S

√
H2
(
µϑ(·|s), µϑ̃(·|s)

)
= max

s∈S

√
1

2

∑
a∈A

(√
µϑ(a|s)−

√
µϑ̃(a|s)

)2
,

where H2(·, ·) is the squared Hellinger distance between two probability distributions.
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Lower bound for actions. Since the parameters ϑh ∈ Γ, and the feature map ψ : S × B → Rda ranges in B(0,K), we
have

|ϑ⊤h ψ(sh, ah)| ≤ ∥ϑh∥ ∥ψ(sh, ah)∥ ≤ K, ∀sh ∈ S, ah ∈ A.

Consequently,

µh(ah|sh) =
exp

(
ϑ⊤h ψ(sh, ah)

)∑
a∈A exp

(
ϑ⊤h ψ(sh, a)

) ≥ e−K∑
a∈A e

K
=
e−2K

m
.

Therefore, for every h ∈ [H], ah ∈ A, sh ∈ S and ϑh ∈ Γ, the following bound holds:

e−2K

m
≤ µh(ah|sh) ≤ 1. (67)

This bound is very useful when we analyze the variation of parameters ϑh.

Lemma C.7. There exists a constant LK > 0 such that for any ϑ, ϑ̃ ∈ Γ,

ρ(ϑ, ϑ̃) ≤ LK∥ϑ− ϑ̃∥. (68)

Proof. Define the softmax function p = (p1, · · · , pm) : Rm → [0, 1]m by

p(x1, · · · , xm) =

(
ex1∑m
i=1 e

xi
, · · · , exm∑m

i=1 e
xi

)
.

The Jacobian matrix is then given by

Jp =


p1(1− p1) −p1p2 · · · −p1pm
−p2p1 p2(1− p2) · · · −p2pm

...
...

. . .
...

−pmp1 −pmp2 · · · pm(1− pm).


Note that p1 + p2 + · · ·+ pm = 1. By triangle inequality,

∥Jp∥op = ∥diag(p)− pp⊤∥op ≤ ∥diag(p)∥op + ∥pp⊤∥op ≤ 2.

Hence p is a Lipschitz function. Now for every s ∈ S, define

xs =
(
ϑ⊤ψ(s, 1), · · · , ϑ⊤ψ(s,m)

)⊤
, x̃s =

(
ϑ̃⊤ψ(s, 1), · · · , ϑ̃⊤ψ(s,m)

)⊤
.

Then

∥xs − x̃s∥ ≤
√

∥ϑ− ϑ̃∥2
∑
a∈A

∥ψ(x, a)∥2 ≤
√
mK∥ϑ− ϑ̃∥. (69)

Furthermore, we can bound the Hellinger distance between µϑ and µϑ̃ as follows:√
H2
(
µϑ(·|s), µϑ̃(·|s)

)
≤
√

1

2

∑
a∈A

me2K

2

∣∣µϑ(a|s)− µϑ̃(a|s)
∣∣2 =

√
m

4
eK∥p(xs)− p(x̃s)∥

≤
√
meK∥xs − x̃∥

(69)
≤ mKeK∥ϑ− ϑ̃∥,

(70)

where in the first inequality, we use the fact that∣∣∣√µϑ(a|s)−
√
µϑ̃(a|s)

∣∣∣ ≤ 1

2
√

min{µϑ(a|s), µϑ̃(a|s)}
∣∣µϑ(a|s)− µϑ̃(a|s)

∣∣
(67)
≤
√
me2K

2

∣∣µϑ(a|s)− µϑ̃(a|s)
∣∣ .

The result (68) follows by taking the uniform bound (70) for all s ∈ S.
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C.2.2. PROOF OF LEMMA C.2

Proof. This conclusion is inspired by Chen et al., 2023. To recover the strategy taken by the max player from an offline
dataset

{(st1, at1), (st2, at2), · · · , (stH , atH)}Tt=1,

we employ maximum likelihood estimation on parameters ϑh. The estimator ϑ̂h is solved by minimzing the following
negative log-likelihood:

Lh(ϑh) = −
T∑

t=1

logµϑh
(ath|sth).

Fix ϵ > 0. We take a minimal ϵ-net Γ̃ϵ of Γ with respect to the pseudometric ρ, which satisfies |Γ̃ϵ| = N (ϵ,Γ, ρ). Then, by
taking a union bound of Lemma F.5, with probability at least 1− δ, the following inequality holds for all ϑ̃h ∈ Γ̃ϵ:

1

2

(
Lh(ϑ

∗
h)− Lh(ϑ̃h)

)
≤

T∑
t=1

logE

√µϑ̃h
(ath|sth)

µ∗
h(a

t
h|sth)

+ log
N (ϵ,Γ, ρ)

δ

≤
T∑

t=1

E

√µϑ̃h
(ath|sth)

µ∗
h(a

t
h|sth)

− 1

+ log
N (ϵ,Γ, ρ)

δ

= TEsh∼ρh

Eah∼µ∗
h(·|sh)

√µϑ̃h
(ah|sh)

µ∗
h(ah|sh)

− 1

+ log
N (ϵ,Γ, ρ)

δ

= −TE
[
H2
(
µϑ̃h

(·|sh), µ∗
h(·|sh)

)]
+ log

N (ϵ,Γ, ρ)

δ
.

By (67), for all ϑh ∈ Γ and all ϑ̃h ∈ Γ̃ϵ, we have

1

2

∣∣∣Lh(ϑh)− Lh(ϑ̃h)
∣∣∣ = T∑

t=1

∣∣∣∣log√µϑ̃h
(ath|sth)− log

√
µϑh

(ath|sth)
∣∣∣∣

≤
T∑

t=1

√
meK

∣∣∣∣√µϑ̃h
(ath|sth)−

√
µϑh

(ath|sth)
∣∣∣∣

≤
√
2mTeKρ(ϑh, ϑ̃h).

Therefore, with probability at least 1− δ, it holds for all ϑh ∈ Γ and all ϑ̃h ∈ Γ̃ϵ that

E
[
H2
(
µϑ̃h

(·|sh), µ∗
h(·|sh)

)]
≤ Lh(ϑh)− Lh(ϑ

∗
h)

2T
+

1

T
log

N (ϵ,Γ, ρ)

δ
+
√
2meKρ(ϑh, ϑ̃h). (71)

On the other hand, for all sh ∈ S,∣∣∣H2
(
µ
ϑ̃h
(·|sh), µ∗

h(·|sh)
)
−H2 (µϑh

(·|sh), µ∗
h(·|sh))

∣∣∣
=
(
H
(
µ
ϑ̃h
(·|sh), µ∗

h(·|sh)
)
+H (µϑh

(·|sh), µ∗
h(·|sh))

)
×
∣∣∣H (µϑ̃h

(·|sh), µ∗
h(·|sh)

)
−H (µϑh

(·|sh), µ∗
h(·|sh))

∣∣∣
≤ 2H

(
µ
ϑ̃h
(·|sh), µϑh

(·|sh)
)
≤ 2ρ(ϑ̃h, ϑh).

(72)

Combining (71) and (72), and take ϑ̃h ∈ Γ̃ϵ for each ϑh ∈ Γ such that ρ(ϑh, ϑ̃h) ≤ ϵ, we have

E
[
H2 (µϑh

(·|sh), µ∗
h(·|sh))

]
≤ Lh(ϑh)− Lh(ϑ

∗
h)

2T
+

1

T
log

N (ϵ,Γ, ρ)

δ
+ (

√
2meK + 2)ϵ, (73)

which holds with probability at least 1− δ for all ϑh ∈ Γ.
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Bound the Covering Number. Now we are going to bound the covering number N (ϵ,Γ, ρ). By Lemma 68, we have the
following inclusion of balls under different metrics:

B∥·∥

(
ϑ,

ϵ

LK

)
⊆ Bρ(ϑ, ϵ).

Combining this result with Lemma 43, we have

N (ϵ,Γ, ρ) ≤ N
(

ϵ

LK
,Γ, ∥ · ∥

)
≤
(
1 +

2LK

ϵ

)da

. (74)

Final bound. We combine (73) and (74), and take ϵ = 1/T . Then with probability at least 1− δ, it holds for all ϑh ∈ Γ
that

E
[
H2 (µϑh

(·|sh), µ∗
h(·|sh))

]
≤ Lh(ϑh)− Lh(ϑ

∗
h)

2T
+
da log(1 + 2TLK) + log δ−1 +

√
2meK + 2

T
.

We take the maximum likelihood estimator:

ϑ̂h = argmin
ϑh∈Γ

Lj(ϑh).

Since Lh(ϑ̂h) ≤ Lh(ϑ
∗
h), we have

E
[
H2 (µ̂h(·|sh), µ∗

h(·|sh))
]
≤ da log(1 + 2TLK) + log δ−1 +

√
2meK + 2

T
,

where µ̂h is the strategy associated with the estimator ϑ̂h. Note that

TV(P,Q) ≤
√
2H(P,Q)

holds for all distributions P and Q, we have

E
[
TV2 (µ̂h(·|sh), µ∗

h(·|sh))
]
≤ 2da log(1 + 2TLK) + 2 log δ−1 + 2

√
2meK + 4

T
. (75)

C.3. Proof of Theorem C.6

Proof. The proof has three steps.

Bound the estimation error of V-functions. Similar to §B.3.1, we need to bound the error between V̂h and Vh in the
sense of expectation:

Es∼ρh

[
|V̂h(s)− Vh(s)|

]
≤ Es∼ρh

[∣∣∣µ̂h(s)
⊤Q̂h(s)ν̂h(s)− µ∗

h(s)
⊤Qh(s)ν

∗
h(s)

∣∣∣]︸ ︷︷ ︸
(i)

+ Es∼ρh

[
1

η

∣∣H(µ̂h(s))−H(µ∗
h(s))

∣∣]︸ ︷︷ ︸
(ii)

+Es∼ρh

[
1

η

∣∣H(ν̂h(s))−H(ν∗h(s))
∣∣]︸ ︷︷ ︸

(iii)

.
(76)

Let us bound the three terms above. Note that,∣∣∣µ̂h(s)
⊤Q̂h(s)ν̂h(s)− µ∗

h(s)
⊤Qh(s)ν

∗
h(s)

∣∣∣
≤
∣∣∣µ̂h(s)

⊤(Q̂h −Qh)(s)ν̂h(s)
∣∣∣+ ∣∣(µ̂h − µ∗

h)(s)
⊤Qh(s)ν̂h(s)

∣∣+ ∣∣µh(s)
⊤Qh(s)(ν̂h − ν∗h)(s)

∣∣
≤ sup

a∈A,b∈B

∣∣Q̂h −Qh

∣∣(s, a, b) + ∥(µ̂h − µ∗
h)(s)∥1∥Qh(s)ν̂h(s)∥∞ + ∥(ν̂h − ν∗h)(s)∥1∥Qh(s)

⊤µ̂h(s)∥∞

≤ sup
a∈A,b∈B

∣∣Q̂h −Qh

∣∣(s, a, b) + 2 (TV(µ∗
h(·|sh), µ̂h(·|sh)) + TV(ν∗h(·|sh), ν̂h(·|sh))) sup

a∈A,b∈B
|Qh(s, a, b)|

≤ Ch
√
κh + 2R · TV(µ∗

h(·|sh), µ̂h(·|sh)) + 2R · TV(ν∗h(·|sh), ν̂h(·|sh)),
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where the second and third inequalities follow from Hölder’s inequality, and the fourth from boundedness of parameter θh.
By taking expectation on both sides of the last display, we have

(i) ≤ Ch
√
κh + 4Rϵ. (77)

Again, we use Lemma F.1 to bound the term (ii). Written τ = TV(µ∗
h(·|sh), µ̂h(·|sh)), we have

|H(µ∗
h(s))−H(µ̂h(s))| ≤ −τ log τ − (1− τ) log(1− τ) + τ log(m− 1)

≤ τ
(
1 + log

m

τ

)
.

Similarly, by taking expectation on both sides and using Jensen’s inequality,

(ii) ≤ ϵ
(
1 + log

m

ϵ

)
.

A similar bound holds for term (iii) by replacing m by n. Combining (76), (77) and the entropy bounds, we get

Es∼ρh

[
|V̂h(s)− Vh(s)|

]
≤ Ch

√
κh + ϵ

(
4R+ 2 + log

mn

ϵ2

)
.

Furthermore, for all h ∈ [H] and all (s, a, b) ∈ S ×A× B, since ∥ϕ(·, ·, ·)∥ ≤ 1, we have

Es∼ρh

[
|PhV̂h+1 − PhVh+1|(s, a, b)

]
≤ ∥ϕ(s, a, b)∥ ∥Πh∥op Es∼ρh

[
∥V̂h − Vh∥

]
≤ ∥Πh∥op

(
Ch

√
κh + ϵ

(
4R+ 2 + log

mn

ϵ2

))
≲

1√
T

(
m7/4 + n7/4 + (m3/2 + n3/2 + log T )

√
(da + db) log T + log(H/δ) +

√
S log(mn)

)
.

(78)

Bound the transition error. In §B.3.2, we bound the error between P̂hV̂h+1 and PhV̂h+1 over all Vh+1 ∈ V̂h+1. This
bound does not depend on the total variation distance between the true and the estimated policies. Therefore, the bound (56)
still holds in this situation for all s ∈ S, a ∈ A and b ∈ B. Therefore, under a certain concentration event Et with probability
at least 1− δ,

Es∼ρh

[∣∣P̂hV̂h+1 − PhV̂h+1

∣∣(s, a, b)] ≲ √
Sd+

√
d log T +

√
log(H/δ)√

T
log(mn). (79)

Bound the L1-Hausdorff distance between sets. According to Lemma C.5, for any θ̂h ∈ Θ̂h, we can find a feasible
θh ∈ Θh such that ∥θ̂h − θh∥ ≤ Ch

√
κh for some constant Ch. Moreover, for any V̂h+1 ∈ V̂h+1, we can also find a feasible

V-function Vh+1 ∈ Vh+1 such that (78) holds for all possible choice of (a, b). Consider the reward functions r̂h and rh
generated by (θ̂h, V̂h+1) and (θh, Vh+1), respectively:

Es∼ρh
[|r̂h − rh|(s, a, b)] = Es∼ρh

[∣∣∣ϕ(s, a, b)⊤(θ̂h − θh)− γ(P̂hV̂h+1 − PhVh+1)(s, a, b)
∣∣∣]

≤ Es∼ρh

[
∥ϕ(s, a, b)∥ ∥θ̂h − θh∥︸ ︷︷ ︸

≤R
√
κh

+γ
∣∣P̂hV̂h+1 − PhV̂h+1

∣∣(s, a, b)︸ ︷︷ ︸
bounded by (78)

+ γ
∣∣PhV̂h+1 − PhVh+1

∣∣(s, a, b)︸ ︷︷ ︸
bounded by (79)

]
≲

1√
T

(
m7/4 + n7/4 + (m3/2 + n3/2 + log T )

√
(da + db + d) log T + log(H/δ) +

√
Sd log(mn)

)
.

Since this bound is valid for any choice of (θ̂h), we have

sup
r̂∈R̂

D1(r̂,R) ≲
1√
T

(
m7/4 + n7/4

+ (m3/2 + n3/2 + log T )
√

(da + db + d) log T + log(H/δ) +
√
Sd log(mn)

)
. (80)
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On the other hand, for any r ∈ R generated by θh ∈ Θh ⊆ Θ̂h and θh+1 ∈ Θh+1 ⊆ Θ̂h+1, we pick the following estimated
reward r̂ = (r̂1, r̂2, · · · , r̂H) ∈ R̂:

Ṽh+1(s) = µ̂h+1(s)
⊤Qh+1(s)ν̂h+1(s) + η−1H(ν̂h+1(s))− η−1H(ν̂h+1(s)),

r̂h(s, a, b) = ϕ(s, a, b)⊤θh − P̂hṼh+1(s, a, b), h ∈ [H], s ∈ S, a ∈ A, b ∈ B.

Since Θh+1 ⊆ Θ̂h+1, the estimated V-function Ṽh+1 ∈ V̂h+1, and the bound (79) still holds if we replacing V̂h+1 by Ṽh+1.
Furthermore, similar to our estimation procedure (76)-(78), the estimation error of V -function has the following bound:

Es∼ρh

[
|PhṼh+1 − PhVh+1|(s, a, b)

]
≤ ∥Πh∥op

(
Ch

√
κh + ϵ

(
4R+ 2 + log

mn

ϵ2

))
,

≲
1√
T

(
m7/4 + n7/4 + (m3/2 + n3/2 + log T )

√
(da + db) log T + log(H/δ) +

√
S log(mn)

)
. (81)

Consequently, the following inequality simultaneously holds for all choice of h, rh and (a, b):

Es∼ρh
[|r̂h − rh|(s, a, b)] = Es∼ρh

[
|P̂hṼh+1 − PhVh+1|(s, a, b)

]
≤ Es∼ρh

[
|P̂hṼh+1 − PhṼh+1|(s, a, b)

]
︸ ︷︷ ︸

bounded by (79)

+Es∼ρh

[
|PhṼh+1 − PhVh+1|(s, a, b)

]
︸ ︷︷ ︸

bounded by (81)

≲
1√
T

(
m7/4 + n7/4 + (m3/2 + n3/2 + log T )

√
(da + db + d) log T + log(H/δ) +

√
Sd log(mn)

)
.

Therefore we have

sup
r∈R

D1(r, R̂) ≲
1√
T

(
m7/4 + n7/4

+ (m3/2 + n3/2 + log T )
√

(da + db + d) log T + log(H/δ) +
√
Sd log(mn)

)
. (82)

Combining (80) and (82), we obtain the Hausdorff distance between R and R̂:

D1(R, R̂) = max

{
sup
r̂∈R̂

D1(r̂,R), sup
r∈R

D1(r, R̂)

}

≲
1√
T

(
m7/4 + n7/4 + (m3/2 + n3/2 + log T )

√
(da + db + d) log T + log(H/δ) +

√
Sd log(mn)

)
.

D. Proof of Auxiliary Lemmas
D.1. Proof of Lemma A.2

Proof. To begin with, we prove that Θ ⊆ Θ̂. We will use the following notation for convenience:

X :=

[
A(ν∗)
B(µ∗)

]
, y :=

[
c(µ∗)
d(ν∗)

]
and X̂ :=

[
A(ν̂)
B(µ̂)

]
, ŷ :=

[
c(µ̂)
d(ν̂)

]
.

For any θ ∈ Θ, we have Xθ = y by the definition of Θ. Plugging in this equation, we have

∥X̂θ − ŷ∥2 = ∥(X̂ −X)θ − (ŷ − y)∥2 ≤ 2(∥X̂ −X∥2op∥θ∥2 + ∥ŷ − y∥2). (83)

Next, we bound the operator norm ∥X̂ −X∥2op:

∥X̂ −X∥2op = ∥(X̂ −X)⊤(X̂ −X)∥op

= ∥(A(ν̂)−A(ν∗))⊤(A(ν̂)−A(ν∗)) + (B(µ̂)−B(µ∗))⊤(B(µ̂)−B(µ∗))∥op

≤ ∥(A(ν̂)−A(ν∗))⊤(A(ν̂)−A(ν∗))∥op + ∥(B(µ̂)−B(µ∗))⊤(B(µ̂)−B(µ∗))∥op.
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Using (18), we have

∥X̂ −X∥2op ≤ ∥A(ν̂)−A(ν∗)∥2op + ∥B(µ̂)−B(µ∗)∥2op ≤ ∥Φ1∥2op · ϵ22 + ∥Φ2∥2op · ϵ21, (84)

and

∥ŷ − y∥2 = ∥c(ν̂)− c(ν∗)∥2 + ∥d(µ̂)− d(µ∗)∥2 ≤ mϵ21
η2(mini∈[m] µi − ϵ1)2

+
nϵ22

η2(minj∈[n] νj − ϵ2)2
. (85)

Plugging in (84) and (85) to (83), we obtain that

∥X̂θ − ŷ∥2 ≤ κ, (86)

where

κ := 2

(
M∥Φ1∥2op +

n

η2(minj∈[n] νj − ϵ2)2

)
ϵ22 + 2

(
M∥Φ2∥2op +

m

η2(mini∈[m] µi − ϵ1)2

)
ϵ21.

Consequently, we have Θ ⊆ Θ̂, and inf θ̂∈Θ̂∥θ̂ − θ∥2 = 0 for any θ ∈ Θ. Therefore, the Hausdorff distance dH(Θ, Θ̂)
would be

dH(Θ, Θ̂) = sup
θ̂∈Θ̂

inf
θ∈Θ

∥θ̂ − θ∥.

Intuitively, infθ∈Θ∥θ̂ − θ∥2 is the distance of θ̂ to its projection onto the candidate set Θ. For any θ̂ ∈ Θ̂, the projection of θ̂
onto the affine subspace SX,y = {θ ∈ Rd : Xθ = y} is given by

θ̃ = X†y + (I −X†X)θ̂.

Since Θ = {θ : Xθ = y, ∥θ∥2 ≤ M} is the ball of radius
√
M − ∥X†y∥2 in SX,y centered at X†y, we decompose the

distance from θ̂ ∈ Θ̂ to its projection θ∗ onto Θ as follows:

∥θ̂ − θ∗∥2 = ∥θ̂ − θ̃∥2 + ∥θ̃ − θ∗∥2 (87)

= ∥X†(Xθ̂ − y)∥2︸ ︷︷ ︸
(i)

+

[
∥(I −X†X)θ̂∥ −

√
M − ∥X†y∥2

]2
+︸ ︷︷ ︸

(ii)

, (88)

where [x]+ = max{x, 0}. By the triangle inequality,

∥X†(Xθ̂ − y)∥ ≤ ∥X†∥op∥Xθ̂ − y∥

≤ ∥X†∥op

(
∥X̂θ̂ − ŷ∥+ ∥X − X̂∥op∥θ̂∥+ ∥ŷ − y∥

)
≤ ∥X†∥op∥X̂θ̂ − ŷ∥+ ∥X†∥op

√
2∥X − X̂∥2op∥θ̂∥2 + 2∥ŷ − y∥2.

(89)

Since θ̂ ∈ Θ̂, we have ∥X̂θ̂ − ŷ∥ ≤
√
κ and ∥θ̂∥2 ≤M . Plugging in the estimates (84) and (85) to (89), we obtain

∥X†(Xθ̂ − y)∥ ≤ ∥X†∥op
√
κ+ ∥X†∥op

√
2M∥X − X̂∥2op + 2∥ŷ − y∥2 ≤ 2

√
κ · ∥X†∥op. (90)

Hence

(i) = ∥X†(Xθ̂ − y)∥2 ≤ 4κ · ∥X†∥op. (91)

Applying the triangle inequality to (90), we also have

∥X†Xθ̂∥ ≥ ∥X†y∥ − 2
√
κ · ∥X†∥op
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Using the orthogonal decomposition θ̂ = X†Xθ̂ + (I −X†X)θ̂, we have

∥(I −X†X)θ̂∥2 = ∥θ̂∥2 − ∥X†Xθ̂∥2 ≤M −
(
∥X†y∥ − 2

√
κ · ∥X†∥op

)2
.

Therefore,

(ii) ≤
[√

M −
(
∥X†y∥ − 2

√
κ · ∥X†∥op

)2 −√M − ∥X†y∥2
]2

≤
[√

M − ∥X†y∥2 + 4
√
κ · ∥X†y∥∥X†∥op −

√
M − ∥X†y∥2

]2
≤

8κ · ∥X†y∥2∥X†∥2op√
M − ∥X†y∥

, (92)

where we use the inequality
√
a+ b−

√
a ≤ b

2
√
a

in the last inequality. Combining (88), (91) and (92), we have

∥θ̂ − θ∗∥2 ≤ 4κ ·

(
∥X†∥op +

2∥X†y∥2∥X†∥2op√
M − ∥X†y∥

)
.

Therefore we obtain the upper bound of the Hausdoff distance:

dH(Θ, Θ̂) = sup
θ̂∈Θ̂

inf
θ∈Θ

∥θ̂ − θ∥ ≤ O(
√
κ),

where the notation O(·) absorbs a constant depending only on Φ1,Φ2, X, y and M . Thus we conclude the whole proof.

D.2. Proof of Lemma B.1

Proof. Akin to the proof of Lemma A.2, we use the notation

Xh :=

[
Ah(ν

∗
h)

Bh(µ
∗
h)

]
, yh :=

[
ch(µ

∗
h)

dh(ν
∗
h)

]
and X̂h :=

[
Ah(ν̂h)
Bh(µ̂h)

]
, ŷh :=

[
ch(µ̂h)
dh(ν̂h)

]
.

Then we have

∥X̂h −Xh∥2op = ∥(X̂h −Xh)
⊤(X̂h −Xh)∥op

=

∥∥∥∥∑
s∈S

(Ah(s, ν̂h)−Ah(s, ν
∗
h))

⊤(Ah(s, ν̂h)−Ah(s, ν
∗
h))

+
∑
s∈S

(Bh(s, µ̂h)−Bh(s, µ
∗
h))

⊤(Bh(s, µ̂
∗
h)−Bh(s, µ

∗
h))

∥∥∥∥
op

≤
∑
s∈S

∥∥(Ah(s, ν̂h)−Ah(s, ν
∗
h))

⊤(Ah(s, ν̂h)−Ah(s, ν
∗
h))
∥∥
op

+
∑
s∈S

∥∥(Bh(s, µ̂h)−Bh(s, µ
∗
h))

⊤(Bh(s, µ̂h)−Bh(s, µ
∗
h))
∥∥
op

≤
∑
s∈S

∥Ah(s, ν̂h)−Ah(s, ν
∗
h)∥

2
op +

∑
s∈S

∥Bh(s, µ̂h)−Bh(s, µ
∗
h)∥

2
op

≤
∑
s∈S

∥Φ1,s∥2opϵ21 +
∑
s∈S

∥Φ2,s∥2opϵ22

= ∥Φ1∥2opϵ21 + ∥Φ2∥2opϵ22,

where Φ1,s ∈ Rd×(m−1)n and Φ2,s ∈ Rd×(n−1)m are defined as

Φ1,s := (ϕ(s, a, ·)− ϕ(s, 1, ·))a∈[m]\{1} , Φ2,s := (ϕ(s, ·, b)− ϕ(s, ·, 1))b∈[n]\{1} ,
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and we also define

Φ1 =
[
Φ1,1 Φ1,2 · · · Φ1,S

]
, Φ2 =

[
Φ2,1 Φ2,2 · · · Φ2,S

]
,

Furthermore,

∥ŷh − yh∥2 =
∑
s∈S

∥ch(s, ν̂h)− ch(s, ν
∗
h)∥2 +

∑
s∈S

∥dh(s, µ̂h)− dh(s, µ
∗
h)∥2

≤ Smϵ21

η2
(
mins∈S,a∈[m] µ

∗
h(a|s)− ϵ1

)2 +
Snϵ22

η2
(
mins∈S,b∈[n] ν

∗
h(b|s)− ϵ2

)2 .
Consequently, for any θh ∈ Θh, we have

∥X̂hθh − ŷh∥2 = ∥(X̂h −Xh)θh − (ŷh − yh)∥2

≤ 2
(
∥X̂h −Xh∥2op∥θh∥2 + ∥ŷh − yh∥2

)
≤ κh,

where

κh = 2

(
R2∥Φ1∥2op +

Sm

η2
(
mins∈S,a∈[m] µ

∗
h(a|s)− ϵ1

)2
)
ϵ21

+ 2

(
R2∥Φ2∥2op +

Sn

η2
(
mins∈S,b∈[n] ν

∗
h(b|s)− ϵ2

)2
)
ϵ22.

Therefore Θh ⊆ Θ̂h, and the Hausdorff distance is

dH(Θh, Θ̂h) = sup
θ̂h∈Θ̂h

inf
θh∈Θh

∥θ̂h − θh∥.

Analogous to the proof of Lemma A.2, for each h ∈ [H], there exists a constant Ch depending on Φ1,Φ2, Xh, yh and d
such that

dH(Θh, Θ̂h) ≤ Ch
√
κh.

D.3. Proof of Lemma B.2

Proof. Similar to (30), given any h ∈ [H] and s ∈ S, we have the following McDiarmid’s bound for all ϵ > 0:

P
(
TV(µ̂h(·|s), µ∗

h(·|s)) ≤
1

2

√
m

Nh(s)
+ ϵ
∣∣∣Nh(s)

)
≥ 1− e−2Nh(s)ϵ

2

,

P
(
TV(ν̂h(·|s), ν∗h(·|s)) ≤

1

2

√
n

Nh(s)
+ ϵ
∣∣∣Nh(s)

)
≥ 1− e−2Nh(s)ϵ

2

.

Let λ > 0, and define Hλ to be the event that Nh(s) ≥ λ for all h ∈ [H] and s ∈ S. Then under event Hλ, one can derive
the union bound

P
(
TV(µ̂h(·|s), µ∗

h(·|s)) ≤
√
m

4λ
+ ϵ, TV(ν̂h(·|s), ν∗h(·|s)) ≤

√
n

4λ
+ ϵ, ∀s ∈ S,∀h ∈ [H]

∣∣∣Hλ

)
≥ 1− 2HSe−2λϵ2 .

(93)

We let λ(ϵ) = 1
2ϵ2 log

4HS
δ ≥ 1

2ϵ2 . Since m,n ≥ 2, (93) becomes

P
(
TV(µ̂h(·|s), µ∗

h(·|s)) ≤
√
2mϵ, TV(ν̂h(·|s), ν∗h(·|s)) ≤

√
2nϵ, ∀s ∈ S,∀h ∈ [H]

∣∣∣Hλ(ϵ)

)
≥ 1− δ

2
.

(94)
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For sufficiently large sample size T > 0, the Hoeffding’s inequality implies

P (Nh(s) ≤ λ) = P
(
1

T
Nh(s)− dµ

∗,ν∗

h (s) ≤ λ

T
− dµ

∗,ν∗

h (s)

)
≤ P

(
1

T
(Nh(s)− E[Nh(s)]) ≤

λ

T
− C

)
≤ exp

(
− 2

T
(CT − λ)

2

)
.

And again one can derive the union bound

P(Hλ) ≥ 1−HS exp

(
− 2

T
(CT − λ)

2

)
≥ 1−HS exp

(
−2C2T + Cλ

)
.

We replace ϵ by ϵ√
2(m∨n)

in (94), and fix λ = m∨n
ϵ2 log 4HS

δ . We set

T =
1

2C2
log

2HS

δ
+

λ

2C
=

1

2C2
log

2HS

δ
+
m ∨ n
2Cϵ2

log
4HS

δ
. (95)

Consequently, we have P(Hλ) ≥ 1− δ/2, and

P (E1) = P (E1 |Hλ)P(Hλ) ≥ 1− δ.

Therefore (95) concludes the proof.

D.4. Proof of Lemma C.5

Notations. We use the following notations for simplicity:

Ah(ν̂h) =


√
ρh(1)Ah(1, ν̂h)

...√
ρh(S)Ah(S, ν̂h)

 , Bh(ν̂h) =


√
ρh(1)Bh(1, µ̂h)

...√
ρh(S)Bh(S, µ̂h)

 ,

ch(µ̂h) =


√
ρh(1) ch(1, ν̂h)

...√
ρh(S) ch(S, ν̂h)

 , dh(ν̂h) =


√
ρh(1) dh(1, µ̂h)

...√
ρh(S) dh(S, µ̂h)

 ,
and

Xh =

[
Ah(ν

∗
h)

Bh(µ
∗
h)

]
, X̃h =

[
Ah(ν̂h)
Bh(µ̂h)

]
, X̂h =

[
Âh(ν̂h)

B̂h(µ̂h)

]
,

yh =

[
ch(µ

∗
h)

dh(ν
∗
h)

]
, ỹh =

[
ch(µ̂h)
dh(ν̂h)

]
, ŷh =

[
ĉh(µ̂h)

d̂h(ν̂h)

]
.

where ρh is the visitation measure of the agents at step h using the QRE policies µ∗ and ν∗, and Dh is the empirical
distribution at step h associated with the dataset. The confidence set is

Θ̂h :=

{
θ :
∥∥∥X̂hθ − ŷh

∥∥∥2 ≤ κh, ∥θ∥ ≤ R

}
.

We focus on finding an appropriate threshold κh > 0.

Proof. The formal proof has three main steps.
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Bound the X-matrix error. We are going to bound the error of the matrix X̂h in the least square problem. First note that

∥X̃h −Xh∥2op =
∥∥∥(X̃h −Xh)

⊤(X̃h −Xh)
∥∥∥
op

≤
∥∥(Ah(ν̂h)−Ah(νh))

⊤(Ah(ν̂h)−Ah(νh))
∥∥
op

+
∥∥(Bh(µ̂h)−Bh(µh))

⊤(Bh(µ̂h)−Bh(µh))
∥∥
op

=
∑
s∈S

ρh(sh) ∥Ah(sh, ν̂h)−Ah(sh, νh)∥2op +
∑
s∈S

ρh(sh) ∥Bh(sh, µ̂h)−Bh(sh, µh)∥2op

= Esh∼ρh

[
∥Ah(sh, ν̂h)−Ah(sh, νh)∥2op

]
+ Esh∼ρh

[
∥Bh(sh, µ̂h)−Bh(sh, µh)∥2op

]
.

Note that

Esh∼ρh

[
∥Ah(sh, ν̂h)−Ah(sh, νh)∥2op

]
= Esh∼ρh

[
∥Φ1,sh (Im−1 ⊗ ν̂h(·|sh)− Im−1 ⊗ νh(·|sh))∥2op

]
≤ max

s∈S
∥Φ1,s∥2op Esh∼ρh

[
∥νh(·|sh)− ν̂h(·|sh)∥2

]
≤ 4max

s∈S
∥Φ1,s∥2op Esh∼ρh

[
TV2(νh(·|sh), ν̂h(·|sh))

]
,

and similarly,

Esh∼ρh

[
∥Bh(sh, µ̂h)−Bh(sh, µh)∥op

]
≤ 4max

s∈S
∥Φ2,s∥2op Esh∼ρh

[
TV2(µh(·|sh), µ̂h(·|sh))

]
.

Since Esh∼ρh

[
TV2(νh(·|sh), ν̂h(·|sh))

]
≤ ϵ2 and Esh∼ρh

[
TV2(µh(·|sh), µ̂h(·|sh))

]
≤ ϵ2, we have

∥Xh − X̃h∥op ≤ 2ϵ
√
max
s∈S

∥Φ1,s∥2op +max
s∈S

∥Φ2,s∥2op. (96)

Now we analyze the error from approximating the visitation measure by the frequency estimator. Note that

∥X̂h − X̃h∥2op =
∥∥∥(X̂h − X̃h)

⊤(X̂h − X̃h)
∥∥∥
op

≤
∥∥∥(Âh(ν̂h)−Ah(ν̂h))

⊤(Âh(ν̂h)−Ah(ν̂h))
∥∥∥
op

+
∥∥∥(B̂h(µ̂h)−Bh(µ̂h))

⊤(B̂h(µ̂h)−Bh(µ̂h))
∥∥∥
op

=
∑
sh∈S

∣∣∣√ρ̂h(sh)−√ρh(sh)∣∣∣2 ∥Ah(sh, ν̂h)∥2op +
∑
sh∈S

∣∣∣√ρ̂h(sh)−√ρh(sh)∣∣∣2 ∥Bh(sh, µ̂h)∥2op

≤
∑
sh∈S

|ρ̂h(sh)− ρh(sh)| ∥Ah(sh, ν̂h)∥2op +
∑
sh∈S

|ρ̂h(sh)− ρh(sh)| ∥Bh(sh, µ̂h)∥2op ,

where ρ̂h(s) is the frequency of the visitation to a state s ∈ S at the step h. Then∑
sh∈S

|ρ̂h(sh)− ρh(sh)| ∥Ah(sh, ν̂h)∥2op =
∑
s∈S

|ρ̂h(s)− ρh(s)| ∥Φ1,s∥2op∥νh(·|s)∥2

≤ 2max
s∈S

∥Φ1,s∥2opTV(ρ̂h, ρh).

Applying the same procedure to
∑

sh∈S |ρ̂h(sh)− ρh(sh)| ∥Bh(sh, µ̂h)∥2op, we have

∥X̂h − X̃h∥op ≤ 2
√

max
s∈S

∥Φ1,s∥2op +max
s∈S

∥Φ2,s∥2opTV(ρ̂h, ρh).

Using the triangle inequality,

∥X̂h −Xh∥op ≤ ∥X̂h − X̃h∥op + ∥X̃h −Xh∥op
≤ 2
√
max
s∈S

∥Φ1,s∥2op +max
s∈S

∥Φ2,s∥2op (2ϵ+TV(ρ̂h, ρh)) .
(97)
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Bound the y-vector error. We are going to bound the error of the vector ŷh in the least square problem. By definition and
Jensen’s inequality,

∥ỹh − yh∥2 =
∑
sh∈S

ρh(sh) ∥ch(sh, µ̂h)− ch(sh, µh)∥2 +
∑
sh∈S

ρh(sh) ∥dh(sh, ν̂h)− dh(sh, νh)∥2

= Esh∼ρh

[
∥ch(sh, µ̂h)− ch(sh, µh)∥2

]
+ Esh∼ρh

[
∥dh(sh, ν̂h)− dh(sh, νh)∥2

]
.

By definition of ch(sh, µh) and ch(sh, µ̂h),

Esh∼ρh

[
∥ch(sh, µ̂h)− ch(sh, µh)∥2

]
=

1

η2
Esh∼ρh

[
m∑

a=2

(
log

µ̂h(a|sh)
µ̂h(1|sh)

− log
µh(a|sh)
µh(1|sh)

)2
]

≤ 2

η2
Esh∼ρh

[
(m− 1)

(
log

µ̂h(1|sh)
µh(1|sh)

)2

+

m∑
a=2

(
log

µ̂h(a|sh)
µh(a|sh)

)2
]
.

According to the estimate (19) and the bound (67), for all a ∈ A and sh ∈ S, we have(
log

µ̂h(a|sh)
µh(a|sh)

)2

≤
(
µ̂h(a|sh)− µh(a|sh)

e−2K/m

)2

≤ m2e4KTV2(µ̂h(·|sh), µh(·|sh)).

Hence

Esh∼ρh

[
∥ch(sh, µ̂h)− ch(sh, µh)∥2

]
≤ 4m3e4K

η2
Esh∼ρh

[
TV2(µ̂h(·|sh), µh(·|sh))

]
.

Applying the same procedure to the other term in the decomposition of ∥ỹh − yh∥2op, and using the fact that
Esh∼ρh

[
TV2(νh(·|sh), ν̂h(·|sh))

]
≤ ϵ2 and Esh∼ρh

[
TV2(µh(·|sh), µ̂h(·|sh))

]
≤ ϵ2, we have

∥ỹh − yh∥2 ≤ 4e4K(m3 + n3)

η2
ϵ2. (98)

Now it remains to bound the empirical error ∥ŷh − ỹh∥.

∥ŷh − ỹh∥2 =
∑
sh∈S

∣∣∣√ρ̂h(sh)−√ρh(sh)∣∣∣2 ∥ch(sh, µ̂h)∥2 +
∑
sh∈S

∣∣∣√ρ̂h(sh)−√ρh(sh)∣∣∣2 ∥dh(sh, ν̂h)∥2
≤
∑
sh∈S

|ρ̂h(sh)− ρh(sh)| ∥ch(sh, µ̂h)∥+
∑
sh∈S

|ρ̂h(sh)− ρh(sh)| ∥dh(sh, ν̂h)∥2 .

By definition of ch(sh, µ̂h),∑
s∈S

|ρ̂h(s)− ρh(s)| ∥ch(sh, µ̂h)∥ ≤
∑
s∈S

|ρ̂h(s)− ρh(s)|
2K logm

η
≤ 4K logm

η
TV(ρ̂h, ρh).

Similarly, ∑
sh∈S

|ρ̂h(sh)− ρh(sh)| ∥dh(sh, ν̂h)∥2 ≤ 4K log n

η
TV(ρ̂h, ρh).

Hence

∥ŷh − ỹh∥ ≤
4K
√

(logm)2 + (log n)2

η
TV(ρ̂h, ρh). (99)

Combining (98) and (99) by the triangle inequality, we have

∥ŷh − yh∥ ≤ 2e2K
√
m3 + n3

η
ϵ+

4K
√

(logm)2 + (log n)2

η
TV(ρ̂h, ρh). (100)
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Determine the threshold. Combining the estimates (97) and (100), we have

∥X̂hθh − ŷh∥2 = ∥(X̂h −Xh)θh − (ŷh − yh)∥2

≤ 2
(
∥X̂h −Xh∥2op∥θh∥2 + ∥ŷh − yh∥2

)
≲ R2

(
max
s∈S

∥Φ1,s∥2op +max
s∈S

∥Φ2,s∥2op +
e4K(m3 + n3)

η2

)
ϵ2

+

(
max
s∈S

∥Φ1,s∥2op +max
s∈S

∥Φ2,s∥2op +
4K(logmn)2

η2

)
TV2(ρ̂h, ρh).

(101)

We consider the following three concentration events:

(i) The estimated policy of the max player has small error. By the bound (75), with probability at least 1− δ, the following
event holds:

Ea =

{
Esh∼ρh

[
TV2(µ̂h(·|sh), µ∗

h(·|sh))
]
≲
da log T + log(H/δ) +

√
m

T
, ∀h ∈ [H]

}
.

(ii) The estimated policy of the min player has small error. Similar to the bound (75), with probability at least 1− δ, the
following event holds:

Eb =
{
Esh∼ρh

[
TV2(ν̂h(·|sh), ν∗h(·|sh))

]
≲
db log T + log(H/δ) +

√
n

T
, ∀h ∈ [H]

}
.

(iii) The frequency estimator of the visitation measure has small error. Similar to the tail bound (30), with probability at
least 1− δ, the following event holds:

Es =

{
TV(ρ̂h, ρh) ≤

1

2

√
S

T
+

√
log(H/δ)

2T
, ∀h ∈ [H]

}
.

The event Ea ∩ Eb ∩ Es holds with probability at least 1− 3δ. Corresponding to Ea and Eb, we take

ϵ2 = O
(
(da + db) log T + log(H/δ) +

√
m+

√
n

T

)
.

According to (101), we set

κh = O
(
m7/2 + n7/2 + (m3 + n3)((da + db) log T + log(H/δ)) + S(logmn)2

T

)
.

Then we have ∥X̂hθh − ŷh∥2 ≤ κh, and the confidence set with respect to this threshold contains the true parameter θh
with probability at least 1− 3δ.

Since both ∥X̂h − Xh∥op and ∥ŷh − yh∥ are bounded by O(T−1) under the event Ea ∩ Eb ∩ Es, by applying the same
procedure as in Lemma A.2, we conclude that, for each h ∈ [H], there exists a constant Ch independent of T such that

dH(Θh, Θ̂h) ≤ Ch
√
κh.

Thus we complete the proof.

E. Additional Results of Numerical Experiments
In this section, we present the results of our numerical experiments on two-player entropy-regularized zero-sum matrix
games. We discuss both the strong identification case and the partial identification case.

We evaluate the performance of our algorithm by three key metrics: (1) the error in parameter estimation, which measures
the difference between the estimated reward parameter θ̂ and the true parameter θ∗; (2) the error in the estimated payoff
function Q̂, which evaluates how accurately the reconstructed payoff function matches the true payoff function; and (3) the
error in the estimated QRE, which quantifies the discrepancy between the QRE (µ̂, ν̂) derived from the estimated payoff
function and the true QRE (µ∗, ν∗). Among these metrics, we are particularly interested in the error in the estimated QRE,
which validates whether the algorithm aligns with the observed data and behavior.
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(a) The estimation error of parameter θ in Setup I (b) The estimation error of parameter θ in Setup II

(c) The reconstruction error of payoff matrix Q in Setup I (d) The reconstruction error of payoff matrix Q in Setup II

(e) The discrepancy between the QRE (µ̂, ν̂) derived from the
estimated payoff Q̂ and the true QRE (µ∗, ν∗) in Setup I

(f) The discrepancy between the QRE (µ̂, ν̂) derived from the
estimated payoff Q̂ and the true QRE (µ∗, ν∗) in Setup II

Figure 3. The results of numerical simulation on zero-sum matrix games. Both X and Y axes are log-scaled. The X-axis represents the
sample size from 103 to 106. The Y-axis represents (a,b) the error ∥θ̂ − θ∗∥ of the estimate θ̂; (c,d) The Y-axis represents the error
∥Q̂−Q∗∥F of the reward function Q̂; (e,f) The Y-axis represents the error TV(µ̂, µ∗) + TV(ν̂, ν∗). We repeat 100 experiments for
each sample size and plot 95% confidence interval for the error.
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Setup I. We define the kernel function ϕ : A× B → Rd with dimension d = 2, and set the true parameter to be

θ∗ = (0.8,−0.6)⊤.

We set the sizes of action spaces to be m = 4, n = 6. The entropy regularization term is η = 0.5.

To generate the dataset, we sample i.i.d. pairs {(ai, bi)}Ni=1 from the QRE (µ∗, ν∗) corresponding to the true payoff function
Q∗(a, b) = ϕ(a, b)⊤θ∗. We conduct experiments for varying sample sizes N ∈ {103, 104, 105, 106}, and repeat 100 times
for each N .

We implement the algorithm proposed in §2.2.

Setup II. We define the kernel function ϕ : A× B → Rd with dimension d = 6, and set the true parameter to be

θ∗ = (0.8,−0.6, 0.75, 0.2, 0.5,−0.5)⊤.

We set the size of action spaces to be m = 6, n = 6. The entropy regularization term is η = 0.5.

To generate the dataset, we sample i.i.d. pairs {(ai, bi)}Ni=1 from the QRE (µ∗, ν∗) corresponding to the true payoff function
Q∗(a, b) = ϕ(a, b)⊤θ∗. We conduct experiments for varying sample sizes N ∈ {103, 104, 105, 106}, and repeat 100 times
for each N .

We implement the algorithm proposed in §2.3. In each experiment, our algorithm outputs a parameter θ̂ in the confidence set
Θ̂. We set the bound of feasible parameters θ to be M = 4, and set the threshold κ = 103/N , where N is the sample size.

Results. We conduct experiments for both strong identification and partial identification cases.

In Setup I, the true parameter θ∗ is uniquely identifiable. The results are presented in Figures 3a, 3c and 3e, where both X
and Y axis take the log scale. Figures 3a and 3c demonstrate that the estimated parameter θ̂ and the reconstructed payoff
matrix Q̂ converge to their true values, with the estimation error following an order close to O(N−1/2), which is consistent
with our theoretical results. Figure 3e shows that the QRE corresponding to our estimated payoff matrix aligns with the true
QRE.

In Setup II, the true parameter θ∗ is partially identifiable, meaning that multiple feasible parameters can explain the observed
strategies. The results are shown in Figures 3b, 3d and 3f, where both X and Y axis take the log scale. As expected, Figures
3b and 3d illustrate that the estimated parameter θ̂ and the payoff matrix Q̂ do not necessarily converge to the true values.
Nevertheless, Figure 3f shows that the QRE derived from the estimated payoff still converges to the true QRE. This indicates
that even when the reward function is not uniquely identifiable, our estimated payoff structure remains a valid explanation of
the observed agents’ behavior.

F. Auxiliary Lemmas
Lemma F.1 (Zhang, 2007). Let µ and µ∗ be two discrete probability distributions on {1, 2, · · · , n} such that TV(µ, µ∗) ≤
ϵ ≤ 1/2. Then

|H(µ∗)−H(µ∗)| ≤ −ϵ log ϵ− (1− ϵ) log(1− ϵ) + ϵ log(n− 1).

Lemma F.2 (Vershynin, 2018, Proposition 5.2.2). Let R > 0, and let B(0, R) = {x ∈ Rd : ∥x∥ ≤ R} be the R-ball
centered at 0 in the Euclidean space (Rd, ∥ · ∥). Then for any ϵ > 0, the covering number N(ϵ, B(0, R), ∥ · ∥) admits the
following bound:

N(ϵ, B(0, R), ∥ · ∥) ≤
(
1 +

2R

ϵ

)d

.

Lemma F.3 (Tropp, 2011, Corollary 7.5). Let Z1, · · · , Zn be a family of independent random variables, and let H be a
function that maps n variables to a self-adjoint matrix of dimension d. Consider a sequence A1, · · · , An of fixed self-adjoint
matrices that satisfy

(H(z1, · · · , zk−1, zk, zk+1, · · · , zn)−H(z1, · · · , zk−1, z
′
k, zk+1, · · · , zn))

2 ⪯ A2
k,

47



Inverse Game Theory with Entropy Regularization

where zi and z′i range over all possible values of Zi for each index i. Let

σ2 =

∥∥∥∥∥
n∑

k=1

A2
k

∥∥∥∥∥ .
Then for all t > 0,

P (λmax (H(Z1, · · · , Zn)− E [H(Z1, · · · , Zn)]) ≥ t) ≤ 1− d · e−t2/8σ2

.

Lemma F.4 (Abbasi-Yadkori et al., 2011, Lemma 9). Let (Ft)
∞
t=1 be a filtration, and let (ηt)∞t=1 be an adapted and

conditional σ-sub-Gaussian process, i.e. ηt is Ft-measurable, and

E[ηt|Ft−1] = 0, E
[
eληt

∣∣Ft−1

]
≤ eλ

2σ2/2, ∀λ ∈ R.

Let (Xt)
∞
t=1 be a predictable Rd-valued process with respect to (Ft)

∞
t=1, i.e. Xt is Ft−1 measurable. Assume that

V0 ∈ Rd×d is a positive definite matrix, and for any t ≥ 0, let Vt = V0 +
∑t

s=1XsX
⊤
s . Let τ be a stopping time with

respect to (Ft)
∞
t=1. Then, for any δ > 0, the following inequality holds with probability at least 1− δ:∥∥∥∥∥

τ∑
t=1

Xtηt

∥∥∥∥∥
2

V −1
τ

≤ 2σ2 log

(
det(Vτ )

1/2 det(V0)
−1/2

δ

)
.

Lemma F.5 (Foster et al., 2023, Lemma A.4). Let (Ft)
T
t=1 be a filtration, and let (Xt)

T
t=1 be an adapted process. Then for

any δ > 0, it holds with probability at least 1− δ that for all t ≤ T ,

t∑
i=1

Xi ≤
t∑

i=1

logE
[
eXi |Fi−1

]
+ log

1

δ
.
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