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ABSTRACT

Transformers, despite their remarkable sequence modeling capabilities, are funda-
mentally constrained by the quadratic complexity of Softmax attention and the un-
bounded growth of the key–value (KV) cache. Replacing Softmax attention with
linear variants has emerged as a promising direction, yet existing approaches lack
a systematic functional comparison with Softmax attention, clear error analysis,
and a theoretically guided roadmap for improvement. In this work, we approach
the problem from the perspective of KV cache compression and present a theoret-
ically grounded pathway from Softmax attention to linear models. Our analysis
reveals five critical components: redundancy elimination, tokenizer-level quanti-
zation and positional information separation, positional information compression,
inter-layer similarity, and multi-state decomposition. For each, we provide suc-
cinct theoretical justification, derive error bounds, and demonstrate equivalence to
existing mechanisms. Building on this pathway, we introduce PLA, a linearized
attention model that inherits pretrained weights and achieves state-of-the-art per-
formance. Notably, PLA surpasses strong baselines such as MVA and GSA on
multiple benchmarks while requiring only 80% of the fine-tuning resources. Our
findings provide both theoretical clarity and practical guidance for advancing lin-
ear attention, highlighting a principled route towards efficient and scalable alter-
natives to Softmax attention.

1 INTRODUCTION

The Transformer architecture Vaswani et al. (2017) has become the backbone of modern deep
learning, powering state-of-the-art models in language Touvron et al. (2023); Jiang et al. (2023);
DeepSeek-AI et al. (2024); Dubey et al. (2024); Yang et al. (2025), vision Dosovitskiy et al. (2020);
Han et al. (2022), and multimodal Yin et al. (2024) domains due to its remarkable sequence modeling
capability. Despite these successes, Transformers face two fundamental limitations: the quadratic
complexity of Softmax attention with respect to sequence length, and the unbounded growth of the
key-value (KV) cache during autoregressive inference. These issues severely constrain the appli-
cability of Transformers in long-sequence modeling tasks, such as video understanding Tang et al.
(2025), genomic sequence analysis Jumper et al. (2021), and other domains requiring extended con-
text Jiang et al. (2025).

To address these limitations, two major lines of research have emerged: KV cache compression Lu-
ohe et al. (2024); WEI et al. (2025) and linear attention Katharopoulos et al. (2020); Hua et al.
(2022); Qin et al. (2024a). KV cache compression methods aim to reduce memory usage by com-
pressing the stored states across either the sequence or the channel dimension. For example, some
approaches design task-specific prompts that select a fixed set of relevant KV entries to retain, thus
improving efficiency at the cost of generality. Others Hu et al. (2021) apply low-rank or dimension-
ality reduction techniques along the channel dimension, yielding constant compression ratios but
failing to fundamentally address the ever-growing cache size in long contexts.

Linear attention methods, in contrast, replace the Softmax kernel with kernelized approximations,
thereby reordering computations to achieve linear complexity. Crucially, such models can recur-
sively maintain a fixed-size state, resolving the KV cache growth problem. Recent works Yang et al.
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(2024b;a) further enhance these models with additional mechanisms such as gating functions and
delta-rule updates to improve expressiveness. However, linear attention models still exhibit signif-
icant drawbacks: they often suffer from limited retrieval and reasoning capacity, exhibit noticeable
performance gaps relative to Softmax attention, and typically require training from scratch or hy-
bridization with Softmax attention to achieve competitive results.

In this work, we revisit the connection between Softmax attention and linear attention from the
perspective of KV cache compression. We propose what we argue to be the current optimal and the-
oretically grounded pathway for compressing Softmax attention into linear models. This pathway
is structured around five theoretical principles, each demonstrating (i) the necessity of a specific
compression step, (ii) its equivalence to mechanisms in existing approaches, and (iii) the error it
introduces relative to Softmax attention. Taken together, these principles provide a clear functional
blueprint of what linear attention should retain, what it can safely discard, and how it differs funda-
mentally from Softmax attention.

Our analysis yields both theoretical and practical benefits. First, it clarifies the essential compo-
nents required to bridge the gap between Softmax and linear attention, guiding future designs of
efficient architectures. Second, it enables the transformation of pretrained Softmax-based large lan-
guage models into linear variants with significantly reduced fine-tuning cost. Empirically, we show
that our approach achieves state-of-the-art performance, narrowing the gap between linear and Soft-
max attention especially on tasks where existing linear models struggle, such as retrieval, few-shot
reasoning, and complex logical inference.

2 BACKGROUND AND PRELIMINARIES

2.1 TRANSFORMERS AND SOFTMAX ATTENTION

The Transformer architecture relies on the attention mechanism to dynamically compute contextu-
alized representations. Given an input sequence X ∈ Rt×d, it is linearly projected into queries Q,
keys K, and values V . Attention is then computed as

O = Attention(Q,K,V ) = Softmax
(
QK⊤
√
d
⊙M

)
V ,oi =

i∑
j=1

exp

(
qik

⊤
j√
d

)
∑i

h=1 exp
(

qik⊤
h√
d

)vj , (1)

where M denotes the causal mask with Mij = 1 if i ≥ j o.w.−∞ and d is the feature dimension
used for normalization. Equivalently, the autoregressive form can be written as oi, where qi, kj ,
and vj are the i-th or j-th row vectors of Q, K, and V , respectively. While highly effective, this
formulation entails quadratic complexity in sequence length and requires storing all past key–value
pairs, leading to unbounded KV cache growth during inference.

2.2 KV CACHE COMPRESSION METHODS

To alleviate the quadratic growth of the key–value (KV) cache, a large body of work explores KV
cache compression. The central idea is to reduce redundancy in the cache by performing low-rank
transformations or selection operations along the sequence dimension or the channel dimension.

Formally, given an input X ∈ Rt×d and its projections Q,K,V ∈ Rt×d, the compressed cache
(Kc,V c) of size c× dr is defined as

Kc = φ
(
ϕ(RK)L

)
, V c = φ

(
ϕ(RV )L

)
, (2)

where R ∈ Rc×t selects c tokens from the sequence, and L ∈ Rd×dr

compresses the channel
dimension. Here dr = h×drk, with h denoting the number of heads and drk the per-head compressed
dimension. The operators ϕ(·) and φ(·) denote transformation and selection functions, respectively.

Because the sequence length t grows without bound during autoregressive generation, R is usually
constructed recursively, i.e.,

R = f(R′X⊤) ∈ Rc×t, (3)
where R′ ∈ Rc×d defines a local observation window, and f(·) specifies the selection strategy.
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(1) SnapKV Li et al. (2025) applies compression only along the sequence dimension. Specifically,
L is the identity matrix, so no channel compression is applied. R = f(QK⊤) is defined via
a top-c operator over the most recent queries and obtains the indexes of the corresponding KV
block. ϕ(·) gather the corresponding key tokens by these indices. The same procedure is applied
to V . (2) HeadKV Fu et al. (2025) extends SnapKV by compressing along the channel dimen-
sion. In this case, R again selects tokens as in SnapKV, while L is defined through an additional
projection L′, which serves as a voting mechanism across attention heads. φ(·) gather the corre-
sponding key heads by these votes. (3) Multi-Head Latent Attention (MLA) DeepSeek-AI et al.
(2025) approach removes explicit token selection. Both ϕ(·) and φ(·) are set to the identity. No se-
quence compression is applied, i.e., R = I . Instead, channel compression is performed with a fixed
projection L = (WUK)−1. By leveraging the associativity of matrix multiplication to fuse the up-
projection with the query-key product, MLA avoids explicitly reconstructing K and Q, achieving
substantial memory savings and computational speedup.

Numerous subsequent approaches, including InfLLM Xiao et al. (2024a), HO2 Zhang et al. (2023),
and StreamLLM Xiao et al. (2024b), can be understood as hybrids or equivalent reformulations of
the above principles.

2.3 LINEAR MODELS

Linear attention replaces the Softmax kernel with linearizable feature maps, which permits re-
ordering the computations among queries, keys and values and thereby achieves linear time and
fixed-size state:

Parallel form.
O = LA

(
ϕ(Q), ϕ(K),V

)
=
((
ϕ(Q)ϕ(K)⊤

)
⊙M

)
V , (4)

Recursive form.
St = St−1 + ϕ(kt)

⊤vt, ot = ϕ(qt)St, (5)
where St ∈ Rdk×dv is a fixed-size state matrix maintained across time steps. By keeping St

bounded, linear attention attains constant memory during autoregressive inference. Many works
focus on improving the choice of ϕ(·) Han et al. (2023); Choromanski et al. (2022) or introducing
auxiliary mechanisms to enhance expressiveness.

However, this formulation is prone to state saturation, which dilutes the attention mechanism. To
address this, methods like GLA introduce a gating mechanism that enables dynamic forgetting in
the state St, thereby promoting a bias towards more recent context.

Gating / GLA. Gated Linear Attention (GLA) Yang et al. (2024b) applies multiplicative gates to
control the contribution of new tokens and the persistence of prior state:

O = GLA(Q,K,V ,G) = LA(Q⊙B, K/B, V ),St = diag(gt)St−1 + k⊤
t vt,ot = qt St.

(6)
where the t-th row of B is bt =

∏t
i=1 gi and G = σ(XWg) ∈ Rn×dk . While models like

MetaLA Chou et al. (2024), HGRN2 Qin et al. (2024b), and GSA Zhang et al. (2024) also employ
gating, this approach offers a relatively coarse control over the state St, failing to fully address
information redundancy. This limitation motivated the development of more sophisticated updates,
such as those inspired by fast weights.

Fast-weight / Delta Rule-style updates. These methods aim to correct the stored representation
based on prediction error:

vold
t = kt St−1, St = St−1 + gt · k⊤

t

(
vt − vold

t

)
, ot = qt St. (7)

Intuitively, the update adds a correction proportional to the discrepancy between the newly observed
value vt and the state-predicted value vold

t , gated by gt. Building on this, DeltaNet Yang et al.
(2024a) parallelized the formulation to create a powerful linear model.

Optimization viewpoint. Furthermore, viewing the update through an optimization lens led to
dynamic weighting methods like TTT Sun et al. (2025), Titans Behrouz et al. (2024), and At-
las Agrawal et al. (2025), which share the unified objective:

Lt(M) =

t∑
i=1

γi
∥∥M(

ϕ(ki)
)
− vi

∥∥2
2
, (8)
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where M(·) denotes a (possibly parametric) mapping from key-features to value-predictions and
{γi} are weighting coefficients. One may then update the memory/map Mt by performing a few
steps of iterative optimization (e.g., gradient descent-GD or Muon Jordan et al. (2024)-style). A
compact schematic of such an optimization-inspired update is:

Mt = αt Mt−1 + F (St), St = ηt St−1 − θt∇S Lt

(
Mt−1;kt,vt

)
, (9)

where F (·) aggregates the current statistics into the primary memory Mt, and the second line
denotes a gradient-based (or similar) corrective step for the working state St. This optimization
viewpoint explains a number of empirically successful update rules and motivates algorithms that
explicitly minimize per-step predictive error.

Extending the state budget. Even with sophisticated updates, a single low-rank state may remain
insufficient to capture complex, multi-scale dependencies. Recent works therefore maintain multiple
parallel or hierarchical states, each specialized for different temporal ranges or functional roles. For
instance, MoM Du et al. (2025) and MVA Wang et al. (2025) maintain multiple memory banks
(e.g., short-term vs. long-term) and/or decompose the state into several sub-states that interact during
read/write.

S
(i)
t = diag(1− f̄ (i)(x

(i)
t )

⊤
)S

(i)
t−1 + f̄ (i)(x

(i)
t )

⊤
x
(i)
t , x

(i+1)
t = f

(i)
1 (x

(i)
t ,S

(i)
t ) (10)

where f function is generally taken as σ, while the f1 function is taken as a hybrid expert or delta
function. This multi-state design can close much of the performance gap to Softmax attention, at the
cost of additional architectural and algorithmic complexity.

3 METHOD

Existing KV cache compression methods either lack general applicability or fail to address the un-
bounded growth of KV cache, while also lacking a clear error analysis compared to Softmax Atten-
tion. Furthermore, current linear attention approaches lack a comprehensive understanding of their
components and mechanisms from the perspective of Softmax Attention, resulting in the absence of
clear improvement strategies to match or even surpass Softmax Attention performance.

To address these limitations, this paper presents five theoretical principles with corresponding exper-
imental validation, establishing an optimal pathway for compressing Softmax Attention into linear
attention. Each theoretical node provides rigorous error analysis and demonstrates equivalence to
existing model operations and mechanisms, thereby offering valuable references and guidance for
future improvement strategies.

3.1 NECESSITY OF REDUNDANCY REMOVAL

Theorem 1 (Necessity of Redundancy Removal). For any sequence stored in the KV cache that
exhibits translation-invariant properties, the application of redundancy removal operations (e.g.,
unique filtering) together with a counting mechanism can bound the storage size. Specifically, the
upper bound is given by

C ≤ 2 bk×dk+bv×dv ×
(
bk × dk + bv × dv + bc

)
, (11)

where only the unique KV vectors ui and their counts ci are stored as a set of unique pairs
{(ui, ci)}Ci=1, with i ≤ 2 bk×dk+bv×dv .

Here b denotes the bit-width of the number type for the KV vectors (e.g., b = 16 for float16,
b = 4 for int4), dk and dv are the dimensions of the key and value vectors (e.g., head dim = 128
in Qwen and LLaMA), and bc is the number of bits required to maintain counts. This compression is
lossless, and the redundancy-removal mechanism is functionally equivalent to the Delta Rule used
in existing fast-weight models.

A detailed proof is provided in the Appendix A.1.

Generalization. The unique operation can also be generalized by relaxing exact matching to co-
sine similarity. For example, using a threshold of 0.9 instead of 1.0 can still preserve performance

4
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in A.1. This opens the possibility of balancing efficiency and accuracy by tuning the threshold. Fur-
thermore, we propose a more general and stronger compression approach: when two tokens exhibit
cosine similarity above a threshold, we treat them as identical and replace them by their average.
This can be interpreted as a quantization process, which also provides noise reduction.

Complexity Implication. Let the upper bound of the KV cache be C. According to the above
reasoning, Softmax attention can be interpreted as a linear model with complexity O(N × C × d),
where C = 22bd. Since C is extremely large, the naive bound is impractical in comparison to
specialized task-optimized methods. Nonetheless, the key insight here is that redundancy removal
(via unique or Delta Rule operations) is necessary to compress an unbounded state into a bounded
one.

3.2 TOKENIZATION AND POSITIONAL INFORMATION DECOUPLING

To achieve stronger compression, we conduct a deeper analysis of sequence modeling in LLMs. The
input to an LLM undergoes tokenization, which constitutes a strong quantization that limits the num-
ber of distinct types to the vocabulary size VT (e.g., 32K for LLaMA2). Subsequent channel mixing
operations in the LLM do not affect the number of distinct types; rather, it is the positional encod-
ing and token mixing operations that impact type diversity. We therefore optimize the input-output
characteristics of these two operations, leveraging the first-layer tokenization to achieve stronger
compression and reduce the upper bound of the state storage requirement.

We introduce two optimizations specifically targeting positional encoding operations:

Theorem 2 (Necessity of Positional Information Decoupling). For tokenizer-based models, the in-
put sequence and KV cache at the first layer, after positional information decoupling, can be loss-
lessly represented with an upper bound of C = VT , where VT is the vocabulary size. This is achieved
by storing a tensor of size VT along with indices for each vector. The limitation of this approach is
that the indices grow unbounded with sequence length, theoretically only compressing storage by a
factor of the dimension size.

Due to positional constraints, the upper bound remains identical to Theorem 1. We subsequently
address this limitation through positional information compression. The detailed proof is provided
in Appendix A.2. This approach provides lossless compression for the first layer.

3.3 POSITIONAL INFORMATION COMPRESSION

Building upon the upper bound established in Theorem 2, we further optimize the positional in-
formation representation to achieve the same upper bound as the position-agnostic KV cache in
Theorem 2. This allows us to completely control the first-layer upper bound at the vocabulary size
level, laying the foundation for fully fixed-size state linear models.

Theorem 3 (Necessity of Positional Information Compression). With the compression method of
positional encoding described below, the upper bound of the KV cache and the positional informa-
tion in the first layer reaches the vocabulary size. For positions km and vm at index m, we store
the compressed positional information as a linear superposition p

(t)
m = pm1 + pm2 + · · · + pmt.

The approximation error between the following attention formulation and the original attention is

O

(
n

base
2j
d

)
:

efp(qn,p(n))k
⊤
m

(
t+ fp(qn,p(n))fp(km,p(t)(m))⊤ − fp(qn,p(n))k

⊤
m

)
(12)

where the positional encoding functions are defined as:

pc(m, base) =
[
cos(mθ0) cos(mθ0) . . . cos(mθd/2−1) cos(mθd/2−1)

]
(13)

ps(m, base) =
[
sin(mθ0) sin(mθ0) . . . sin(mθd/2−1) sin(mθd/2−1)

]
(14)

fp(xm,p(m)) = [x0 x1 x2 x3 . . . xd−1 xd]⊙ pc(m)

+ [x1 −x0 x3 −x2 . . . xd −xd−1]⊙ ps(m) (15)

5
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The detailed proof is provided in Appendix A.6.

The separation of positional information effectively emulates gating mechanisms used in state-of-
the-art architectures. Theoretical results show that this compression is most effective in the first
layer. In deeper layers, where token representations are increasingly entangled with positional
cues, simple redundancy reduction cannot maintain the vocabulary-size bound. To address this,
we introduce a layer-wise similarity constraint, where the expected cosine similarity between
adjacent hidden states serves as a contractive factor. This yields a recursive bound that restricts the
memory footprint of intermediate layers to a constant multiple of the vocabulary size, ensuring a
fixed-state regime while preserving expressivity.

3.4 INTER-LAYER SIMILARITY AND STATE PROPAGATION

Theorem 4 (Necessity of Inter-layer Similarity). Due to the presence of residual connections, sig-
nificant similarity exists between inputs and outputs across adjacent layers. For sequences com-
pressed according to Theorem 3, the storage upper bound for each layer can be expressed through
inter-layer similarity operations.

Specifically, the sequence length at layer l can be controlled by the upper bound at layer l − 1 and
their mutual similarity. Conversely, we can also constrain preceding layers based on the compressed
final layer sequence length:

Nl = min

(
Nl−1

E[Q(Sim(X(l), X(l−1)))]
, N

)
, Nl−1 = min

(
Nl

E[Q(Sim(Xl−1, Xl))]
, N

)
(16)

where N0 is bounded by the vocabulary size, N is the original sequence length, the upper bound
NL for the final layer also approaches the vocabulary size due to the vocabulary projection, and the
quantization function is defined as:

Q(aij) =

{
1 if aij ≥ threshold
0 otherwise

(17)

Here, E denotes the expectation operation, which can be interpreted as taking the maximum along
the last dimension followed by averaging along the second-to-last dimension. This approach theo-
retically achieves the same error level as Theorem 3.

The detailed proof is provided in Appendix A.4. Although the analysis is simplified, empirical
results confirm its general applicability. For example, when using inputs from selected layers
[0,1,2,5,8,11,14,15,17,18,19,22] as subsequent layer inputs, Mistral-7B achieves 100% accuracy on
the passkey retrieval task. This effect arises from inter-layer similarity, where residual connections
propagate redundancy reduction while preserving information.

Since the similarity lower bound may approach zero—leading to intermediate states close to the
original sequence length—we introduce a constant scaling factor c ∈ [1, 2) for practical control.
Specifically, the state size of layer i is set as (c − 1)Ni−1. Empirically: 1. Beyond certain lengths,
attention between new queries and stored states becomes sparse (e.g., NSA, MoBA). 2. Many tasks
succeed with fixed-size states (e.g., SnapKV, GLA, GSA). 3. Inference typically operates within
bounded state spaces. However, for large-vocabulary models (e.g., Qwen2.5, LLaMA3 with∼128K
tokens), even moderate scaling (e.g., c = 1.5 in a 32-layer model) leads to ∼ 82M states, neces-
sitating further compression. Inspired by MVA’s vocabulary decomposition and MoM’s functional
partitioning, we adopt multi-memory states to approximate Theorem 4 bounds while preserving
fixed-size representations.

3.5 MULTI-LEVEL STATE DECOMPOSITION AND ENHANCED READING

Theorem 5 (Necessity of Multi-level State Decomposition and Enhanced Reading Mechanisms).
Given a fixed-size storage space, the number of states that can be stored using a multi-level decom-
position approach is

∏m
i=1 Ci, where m is the number of levels and Ci is the size of the vocabulary

6
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at level i. The storage mechanism follows:

Sk(i)

t = diag
(
1− f̄ (i)(k

(i)
t )

⊤
)
Sk(i)

t−1 + f̄ (i)(k
(i)
t )

⊤
k
(i)
t , k

(i+1)
t = k

(i)
t − f (i)(k

(i)
t )Sk(i)

t (18)

where f can be any function that amplifies correlations, such as the Softmax function. This storage
approach is equivalent to quantization followed by storage, introducing an error. The average rela-
tive error decreases exponentially with the number of levels:

∏m
i=1 ϵi, where ϵi is the error between

the stored vector and its closest counterpart in the i-th level vocabulary. A key trade-off exists: in-
creasing the number of levels reduces storage error but decreases computational efficiency due to
the serial computation required between levels.

We emphasize that previous approaches employ overly simplistic reading mechanisms, typically us-
ing direct matrix multiplication between queries q and states. This simplicity constitutes a significant
factor (besides storage limitations) contributing to the performance gap with Softmax Attention. Our
work is the first to clearly identify enhanced reading mechanisms as crucial for improving linear at-
tention and bridging this performance gap. This mechanism implements a hierarchical access pattern
through multiple channels; by comparison, the GSA reading mechanism Softmax(qtSk

t)S
v
t repre-

sents the simplest form of indirect reading. Our enhanced version replaces the Softmax with a sig-
moid activation followed by learned transformations: (σ(qtSk

t)Wσ)S
v
t, where σ(x) = 1

1+e−x .
Further extending to multiple reading channels: (qtWr + σ(qtS

k
t)Wσ)S

v
t. This approach, which

is equivalent to MVA’s first-order vocabulary case, demonstrates progressive performance improve-
ment (Table 4). With multi-level vocabularies, multiple vocabularies interactions show even greater
improvements over single-state approaches, underscoring the importance of balanced enhancement
in both storage and reading capabilities.

Integrating all five theoretical principles, we present the final linear model update rules:

Initial conditions:

qt = fp(xtWQ, r
(i)
t ), kpt = fp(xtWK , r

(i)
t ), k

(0)
t = xtWK ∈ R1×d, v

(0)
t = xtWV ∈ R1×d,

Sk(i)

0 = 0 ∈ Rm×d, n
(i)
0 = 0 ∈ R1×m, E

(0)
t = Im, Sk(i)

t = Skv(i)

t [..., : dk], S
v(i)
t = Skv(i)

t [..., dv :],

Iterative process:

f (i)(k
(i)
t ) = σ(Sk(i)

t−1k
(i)⊤
t )

⊤
, n

(i)
t = n

(i)
t−1 + f (i)(k

(i)
t ), f̄ (i)(k

(i)
t ) =

f (i)(k
(i)
t )

max(n
(i)
t , 1)

(19)

Skv(i)

t = diag
(
1− f̄ (i)(k

(i)
t )

⊤
)
Skv(i)

t−1 + f̄ (i)(k
(i)
t )

⊤
m

(i)
t ,m

(i)
t = {k(i)t , v

(i)
t }dim=−1 (Theory 1)

(20)

Sp(i)
t = Sp(i)

t−1+f (i)(k
(i)
t )

⊤
(kpt−k

(0)
t ),m

(i+1)
t = m

(i)
t −f (i)(k

(i)
t )Skv(i)

t , (Theories 2 & 3) (21)

e
(i)
t = (qtWr+σ(qtS

k
t)Wσ), R

(i+1)
t

[
f(k

(i)
t ), f (i+1)(k

(i)
t )
]
= 1, a

(i)
t = e

(i)
t R

(i)⊤
t , c

(i)
t = n

(i)
t +qtS

p(i)⊤
t

(22)

b
(i)
t =

e

(∑
i ln(a

(i)
t )

)
a
(i)
t

+e
(i)
t , T

(i)
t = R
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4 EXPERIMENTS

In this paper, we explore experiments related to converting LLMs to linear models through weight in-
heritance, providing experimental support for each of the five theoretical principles presented in our
methodology. In the final section, we integrate these principles into Path-optimized Linear Attention
(PLA) and demonstrate the effectiveness of our approach through comprehensive experiments.

We use the lm-evaluation-harness Gao et al. (2024) tool and the LongBench dataset for evaluation.
For fine-tuning, we utilize LoRA Hu et al. (2021) to achieve efficient parameter updates, significantly
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reducing computational resources. Detailed configurations are specified in each subsection. For
baseline comparisons, we compare against state-of-the-art methods including MVA and GSA, as
well as GLA, RetNet, and SUPRA Mercat et al. (2024), which were benchmarked in the GSA
paper.

4.1 EXPERIMENTAL VALIDATION OF THEORETICAL PRINCIPLES

We first conduct experiments with different parameters for each theoretical principle. The evalua-
tion uses the passkey retrieval task, standard benchmarks from lm-evaluation-harness (ARC-C and
MMLU), and the long-sequence SAMSUM dataset from LongBench for testing and guidance.

Theory 1: Redundancy Elimination with Similarity Thresholds.

Table 1 shows experiments with different similarity thresholds for Theory 1, where t = 1 indicates
the threshold used for similarity discrimination in Theory 1 (e.g., t = 0.9 means tokens with cosine
similarity ≥ 0.9 are considered identical). Results demonstrate that when similarity exceeds a cer-
tain level (e.g., 0.95), performance approaches that of the original model. This approach functions
as a quantization process, indicating model insensitivity to token variations within certain ranges.
Theories 2 & 3: Positional Information Decoupling and Compression.

Table 1: Results for Theory 1 with different similarity thresholds
Method Finetune Tokens Passkey (1K-8K) ARC MMLU SAMSUM
Mistral-7B-v0.1 – 100.0 54.0 62.4 43.6
Theory 1 (t = 1) 200M 100.0 54.0 62.4 43.6
Theory 1 (t = 0.95) 200M 100.0 53.4 60.7 42.9
Theory 1 (t = 0.9) 200M 100.0 51.8 57.6 41.5
Theory 1 (t = 0.8) 200M 100.0 49.7 49.2 38.3

Table 2 presents experiments for Theories 2 and 3, exploring positional information separation,
compression, and refined Taylor expansion approaches. Here, ”depos” indicates decoupled posi-
tional encoding, while ”de&cprpos” indicates decoupled and compressed positional encoding.

Table 2: Results for Theories 2 & 3 with different positional encoding strategies
Method Finetune Tokens Passkey (1K-8K) ARC MMLU SAMSUM
Theory 2&3 (t = 0.95, w/ depos) 500M 100.0 52.8 58.6 43.5
Theory 2&3 (t = 0.95, w/ de&cprpos) 500M 100.0 50.2 53.1 40.7
Theory 2&3 (t = 0.95, w/ de&cprpos-2) 500M 100.0 51.9 55.7 42.7

Theory 4: Inter-layer Scaling Factors.

Table 3 shows experiments for Theory 4 with different layer-wise scaling factors. Using parameters
from previous theories (t = 0.95, w/ depos), cscale = 1.2 indicates that the KV cache size at layer
l + 1 is 1.2 times that of layer l, up to the midpoint of the total layers, after which the KV cache
size remains constant. cscale-l8 = 1.2 & cscale-l16 = 1.6 indicates a scaling factor of 1.2 for the first 8
layers and 1.6 for layers 8-16.

Table 3: Results for Theory 4 with different layer scaling factors
Method Finetune Tokens Passkey (1K-8K) ARC MMLU SAMSUM
Theory 4 (w/ cscale = 1.2) 500M 100.0 46.2 52.0 40.8
Theory 4 (w/ cscale = 1.4) 500M 100.0 51.7 57.8 43.2
Theory 4 (w/ cscale = 1.6) 500M 100.0 53.4 60.1 42.7
Theory 4 (w/ cl8 = 1.2 & cl16 = 1.6) 500M 100.0 53.3 59.7 42.9

Figure A illustrates the evolution of KV cache length across layers as predicted by Theory 4.

Theory 5: Enhanced Reading Mechanisms and Multi-state Configurations.

Table 4 presents experiments for Theory 5, examining various enhanced reading mechanisms and
different state sizes. We use single and two-level vocabulary configurations, without positional
separation for faster convergence, focusing solely on reading mechanism variations. Results show
progressive performance improvement with enhanced reading capabilities, with our PLA approach
building upon GSA by adding multi-channel reading and multi-state interaction, equivalent to incor-
porating vocabulary interaction(VI) into MVA.
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Table 4: Results for Theory 5 with different reading mechanisms
Method Finetune Tokens Passkey (2K) ARC MMLU SAMSUM
Theory 5 (GSA) 500M 0.0 31.7 22.3 18.9
Theory 5 (GSA w/ sigmoid) 500M 0.0 33.5 23.5 18.9
Theory 5 (GSA + MetaLA) 500M 10.0 35.6 24.1 21.7
Theory 5 (MVA) 500M 20.0 38.2 25.6 24.9
Theory 5 (PLA: MVA + VI) 500M 40.0 39.4 26.2 24.7

4.2 PLA: INTEGRATED PATH-OPTIMIZED LINEAR ATTENTION

Building upon the experimental validation of individual theoretical principles, we now present the
integrated PLA model that combines all five theoretical components into a unified framework. PLA
also employs a two-level vocabulary decomposition, similar to GSA and MVA whose state is 128 in
size, and we their basis by adding operations such as positional encoding decoupling, read enhance-
ment, and lexicon interaction.

Table 5: Comprehensive evaluation of PLA against state-of-the-art methods
Model Size +Tokens ARC-e ARC-c Hella. MMLU Avg.
Models trained from scratch (reference)

RWKV6 7B 1.4T 73.6 44.0 75.2 43.9 58.0
Mamba 7B 1.2T 77.6 46.8 77.8 33.2 60.0
Llama2 7B 2T 76.4 46.2 76.0 45.5 60.2
Mistral 7B ? 80.8 54.0 81.1 62.4 66.6

Models via fine-tuning

SUPRA 7B +20B 74.6 42.3 74.8 28.0 -
RetNet 7B +20B 73.3 39.9 72.9 26.1 51.9
GLA 7B +20B 74.6 44.0 75.9 28.4 56.5
GSA 7B +20B 75.9 43.9 76.5 32.4 57.7
MVA 7B +10B 78.3 47.5 78.1 34.4 60.3
PLA (Ours) 7B +8B 78.5 47.2 78.3 42.1 61.3

Table 6: Experimental results on long-context benchmarks, training efficiency comparison and
passkey task
Model Qasper NarrativeQA QMSum

Models trained from scratch

RWKV6 9.2 14.4 1.1
Mamba 5.6 27.9 0.8
Mistral 25.8 25.1 5.0

Fine-tuned from Mistral-7B (10B tokens)

RetNet 11.1 0.0 0.0
GLA 18.4 17.2 9.0
GSA 18.8 19.2 10.0
MVA 20.7 20.4 9.58
PLA 22.3 21.2 10.7

Method Memory / Time
MetaLA 36,317 MiB / 75.08 s/it
GSA 37,619 MiB / 81.67 s/it
MVA w/ VD 40,096 MiB / 105.79 s/it
PLA w/ VD 41,278 MiB / 118.67 s/it

Model/passkey task 256 512 1024 2048 4096 8192
GSA 1.0 0.8 0.7 0.5 0.3 0.4
PLA 1.0 1.0 1.0 1.0 1.0 0.9

The experimental results demonstrate that PLA achieves state-of-the-art performance while main-
taining competitive efficiency. The integrated approach successfully leverages all five theoretical
principles to create a robust linear attention mechanism that narrows the performance gap with soft-
max attention.

5 CONCLUSION

We chart the optimal path from Softmax to linear attention and verify, both theoretically and empir-
ically, the pivotal roles of (i) redundancy removal, (ii) positional-code disentanglement & compres-
sion, (iii) tokenizer vocabulary reuse, (iv) layer-wise similarity, and (v) multi-vocabulary decom-
position. Leveraging these insights, PLA sets a new efficiency-performance frontier: it matches or
surpasses the best existing linearized models while consuming equal or fewer training tokens, offer-
ing a ready-to-use recipe for compressing large-language-model attention into a fixed-size, linear-
complexity operator.
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Figure 1: The task uses passkey task. The above figure shows the result of KV cache size per
layer obtained by applying Theory 1 for compression and then the following figure shows the result
obtained by adding Theory 4 for interlayer similarity, after interlayer similarity the KV cache of the
subsequent layers is controlled.

A APPENDIX

STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In the preparation of this paper, Large Language Models (LLMs) were used to assist with specific
text and formatting tasks. The applications included:

• Text Translation and Polishing: Polishing English text to improve fluency and academic
rigor.

• Format Conversion: Converting part of the formulas and tables content from other formats
into LATEX code.

It is crucial to emphasize that all core ideas, theoretical derivations, experimental designs, result
analyses, and final scientific conclusions were independently generated by the authors. The LLM
served solely as a tool to enhance writing efficiency. All its outputs were rigorously reviewed,
modified, and integrated by the authors to ensure accuracy and consistency with the paper’s core
ideas.

A.1 PROOF OF THEOREM 1

A.1.1 PROOF OF THE STORAGE BOUND

Without loss of generality, we first consider the case where both batch size and number of heads
equal 1. Assume that the numeric type has bit-width b and the head dimension is d. For the infinitely
growing key and value sequences, denote them as matrices of shape Rt×d, and concatenate them

14
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Table 7: Inference efficiency comparison of PLA, MVA, GSA, and FlashAttention under different
sequence lengths. OOM indicates out-of-memory errors.

Model Seq Len Prefill
Time (s)

Gen Latency
(ms/token)

Total
Mem (GB)

PLA

16K 0.521 70.8 19.67
32K 1.176 81.7 24.38
64K 2.197 86.3 34.65
128K 7.269 59.5 54.79

MVA

16K 0.508 78.8 19.08
32K 1.090 79.8 24.09
64K 2.265 97.3 34.11
128K 7.156 58.1 54.14

GSA

16K 0.315 48.5 19.06
32K 0.630 63.0 24.07
64K 1.293 90.2 34.08
128K 5.102 45.4 54.11

Flash
Attention

16K 0.287 46.3 23.55
32K 0.750 92.4 33.55
64K 2.208 220.4 53.57
128K OOM

Table 8: Summary of Theoretical Principles for Softmax-to-Linear Attention Compression
Theory Mechanism Function Error Bound Equivalent

Mechanism
T1 Redundancy

Elimina-
tion/Quantization

Controls state upper
bound

Lossless Delta Rule,
Quantization

T2 Positional
Information
Decoupling

Reduces first-layer
state count

Lossless Tokenizer vocab-
ulary + positional
decoupling

T3 Positional
Information
Compression

Controls positional
dimension error

O
(

n
base2j/d

)
Gating mecha-
nism

T4 Inter-layer
Similarity

Controls intermedi-
ate layer state count

Controllable
(empirically vali-
dated)

Residual connec-
tion + similarity
propagation

T5 Multi-level
State Decom-
position

Fixed-size state
representation

Exponential de-
cay

Vocabulary de-
composition +
enhanced reading
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along the feature dimension into

SKV ∈ Rt×(dk+dv), SK = SKV [:, : dk], SV = SKV [:, dk : dk + dv].

Let the count matrix be C ∈ Rt×1.

The number of distinct row vectors is bounded as follows: for a vector of dimension dk + dv , each
entry admits 2b possible values. Since dimensions are independent, the total number of distinct row
types is

dk+dv∏
i=1

2b = 2b×(dk+dv).

During sequence growth, when a new vector sKV
t is identical to an existing sKV

m , we simply incre-
ment the counter:

Cm ← Cm + 1.

The corresponding attention computation becomes

ot = exp
(
qtS

K
) (

SV ⊙C
)
,

which is clearly equivalent to
ot = exp

(
qtK

)
V .

A.1.2 EQUIVALENCE TO THE DELTA RULE

Consider the unique-filtered sequence as the state S
(K)
t . Its update rule can be expressed as

∆(kt) = kt −Q
(
ktS

(K)
t−1

⊤)
S

(K)
t−1 , ∆(vt) = vt −Q

(
vtS

(V )
t−1

⊤)
S

(V )
t−1.

If ∆(kt) ≤ 1− threshold, then S
(K)
t = S

(K)
t−1 . Otherwise, if ∆(kt) > 1− threshold, we update via

concatenation:
S

(K)
t = concat

(
S

(K)
t−1 ,kt

)
.

For the unique operation, the effective threshold is 1.

When the state size is manually limited to m as in linear attention, once S(K)
t reaches size m, further

growth is prohibited. In this case, information differences must be integrated into the previous state
via gating, yielding an update analogous to the Delta Rule:

S
(K)
t =

(
1− β ·Q(ktS

(K)
t−1

⊤
)⊤
)
S

(K)
t−1 + β ·Q(ktS

(K)
t−1

⊤
)⊤ ∆(kt).

When the key–value pairs are stored jointly as matrix states, the update becomes

S
(KV )
t =

(
1− β ·Q(ktS

(K)
t−1

⊤
)⊤
)
S

(KV )
t−1 + β ·Q(ktS

(K)
t−1

⊤
)⊤ ∆(vt),

which is essentially equivalent to the Delta Rule update from fast-weight literature, except that ϕ(kt)

is replaced by Q(ktS
(K)
t−1 ). Moreover, MVA demonstrates that Q(ktS

(K)
t−1 ) can be substituted with

Q(ktWc) to achieve comparable performance, and with carefully chosen Q functions, this becomes
exactly equivalent to using ϕ(kt).

A.2 PROOF SKETCH OF THEOREM 2

The proof builds upon the storage bound established in Theorem 1. For the first layer input X(1) ∈
Rt×d, each row vector x

(1)
i corresponds to a token embedding from the vocabulary VT . Since

tokenization maps each token to a unique embedding, the number of distinct vectors in X(1) is
bounded by |VT |.
After positional encoding P ∈ Rt×d is applied, the encoded input becomes:

X̃(1) = fp(X
(1), P )

where fp represents the positional encoding function (e.g., addition for absolute positional encoding,
or rotary multiplication for RoPE).
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The key insight is that we can decouple the positional information by storing: 1. The base token
embeddings E ∈ RVT×d (vocabulary embeddings)

2. The positional offsets ∆P ∈ Rt×d

3. An index mapping Ip ∈ Nt from sequence positions to vocabulary indices

The storage requirement thus becomes:

Storage = VT · d · b︸ ︷︷ ︸
embeddings

+ t · b︸︷︷︸
positional offsets

For the first layer KV cache, the bound C = VT emerges because the number of distinct key-value
pairs is constrained by the vocabulary size when positional information is properly decoupled. The
positional offsets can be compressed using techniques discussed in Theorem 3, while the indices
represent the unbounded growth component.

The lossless nature of this compression for the first layer follows from the invertibility of the decou-
pling operation: given E, ∆P , and Ip, we can perfectly reconstruct X̃(1).

For subsequent layers, the type diversity increases due to token mixing operations, but decreases
toward the final layer due to the vocabulary projection. This creates the characteristic ”increase-
then-decrease” pattern observed empirically.

The positional decoupling theorem establishes a fundamental connection between the discrete nature
of language modeling (through tokenization) and the continuous representations used in transformer
layers. This bridges the gap between information-theoretic bounds based on vocabulary size and
practical compression algorithms for transformer inference.

Corollary 1. For models employing subword tokenization with merge operations, the effective vo-
cabulary size V eff

T that bounds the first-layer distinct types may be larger than the nominal vocab-
ulary size, but remains finite and typically grows sublinearly with training data size.

A.3 PROOF OF THEOREM 3

We begin with the Taylor expansion of the cosine function:

cos θ = 1− θ2

2
+

θ4

4!
+

∞∑
i=6,even

θi

i!
(24)

The original attention computation can be expressed as:

e
1√
d

∑d
j=0 qnj ·ksj

∑
s

e
1√
d

∑d
j=0 qnj ·ksj ·(cos[(n−s)θj ]−1)+

∑d
j=0

(−1)j+1
√

d
qnj ·ks,(j+ d

2
)%d

·(sin[(n−s)θj ])

(25)

Let us define the residual term:

r(θ1, . . . , θ d
2−1) =

1√
d

d∑
j=0

qnj ·ksj ·(cos[(n−s)θj ]−1)+
d∑

j=0

(−1)j+1

√
d

qnj ·ks,(j+ d
2 )%d·(sin[(n−s)θj ])

(26)

Since θj = base−
2j
d , when base is large, we have the approximations:

cos θj = 1−
θ2j
2

+O(θ4j ) (27)

sin θj = θj +O(θ3j ) (28)

Following the CRG NTK method which has been proven to extend context window length and
achieve excellent performance, we extend base to very large values (e.g., base = 240 × 10000).
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In this regime, cos θj and sin θj become very small, particularly for dimensions with larger j val-
ues. Since 1√

d

∑d
j=0 qnj · ksj is typically on the order of 1, we can apply Taylor expansion to

e
r(θ1,...,θ d

2
−1

)
:

e
r(θ1,...,θ d

2
−1

)
= 1 + r(θ1, . . . , θ d

2−1) +O(r(θ1, . . . , θ d
2−1)

2) (29)

After base expansion, r(θ1, . . . , θ d
2−1) becomes small (O(θj) first-order term), making the higher-

order terms O(θ2j ) negligible, particularly in the latter half of the feature dimensions where xnj ·xsj

is diluted to near-zero values.

Based on the Taylor expansion of the exponential function when the input is close to zero, we retain
only the linear small term xnj · xsj · (cos[(n − s)θj ] − 1). The original attention can thus be
approximated as:

e
1√
d

∑d
j=0 qnj ·ksj

∑
s

(
1 +

1√
d

d∑
j=0

qnj · ksj · (cos[(n− s)θj ]− 1)

+
1√
d

d∑
j=0

(−1)j+1qnj · ks,(j+(−1)j) · (sin[(n− s)θj ])

) (30)

Alternatively, we can use the formulation:

e
1√
d

∑d
j=0 xnjxsj

∑
s

(
1 +

1√
d

d∑
j=0

xnjxsj

(
cos[(n−s)θj ]−1

)
+

1√
d

d∑
j=0

(−1)j+1xnjxs,(j+(−1)j)

(
sin[(n−s)θj ]−(n−s)θj

)) (31)

The residual term r(θ1, . . . , θ d
2−1) can be expressed using linear attention, or we can first linearly

superimpose the positional encoding before applying it to the K state sequence, enabling the entire
formulation to be implemented with linear models.

For finer compression approximation, we can partition the dimensions into multiple segments and
perform linear expansion separately:

e
1√
d

∑d
j=0 qnj ·ksj

∑
s

d/m∏
p=0

(
1 +

1√
d

p·m+m∑
j=p·m

qnj · ksj · (cos[(n− s)θj ]− 1)

+
1√
d

p·m+m∑
j=p·m

(−1)j+1qnj · ks,(j+(−1)j) · (sin[(n− s)θj ])

) (32)

We also explore variants that preserve the positional encoding for queries while applying (cos−1)
transformation to the key sequence’s positional encoding:

(e
1√
d

∑d
j=0(qnj cos(nθj)−q

n,(j+ d
2
)%d

·sin[nθj ])·ksj
)

·
∑
s

e
1√
d

∑d
j=0(qnj cos(nθj)−q

n,(j+ d
2
)%d

·sin[nθj ])·(ksj(cos(sθj)−1)−k
s,(j+ d

2
)%d

·sin[sθj ]) (33)

Applying the same Taylor expansion yields:

efp(qn,p(n))k
⊤
s

∑
s

(
1 + fp(qn,p(n))fp(ks,p(s))

⊤ − fp(qn,p(n))k
⊤
s

)
(34)

After simplification, we use the following formulation in our implementation, which achieves com-
parable or even better performance:

efp(qn,p(n))k
⊤
s

(
t+ fp(qn,p(n))fp(ks,p

(t)(s))⊤ − fp(qn,p(n))k
⊤
s

)
(35)
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This positional encoding decoupling is functionally equivalent to the gating mechanisms in state-of-
the-art models.

Theorem 3 establishes a rigorous foundation for compressing positional information while main-
taining theoretical error bounds. The linear superposition approach for positional encoding enables
efficient storage while the error analysis provides guarantees for practical deployment. The connec-
tion to gating mechanisms bridges theoretical compression techniques with established architectural
components.

A.4 PROOF SKETCH OF THEOREM 4

Given the complexity of inter-layer dynamics, we provide a simplified theoretical analysis of hier-
archical similarity. For the input at layer l:

X(l) = X(l−1) +A(X(l−1)) + F (X(l−1) +A(X(l−1))) (36)

where A(·) represents the attention operation and F (·) represents the MLP operation.

Since our primary objective is to control the relationship between state counts across layers based
on similarity, and MLP operations generally preserve state diversity, we focus our analysis on the
similarity between attention outputs and their inputs. Specifically, we examine:

X(l) = X(l−1) +A(X(l−1)) (37)

The cosine similarity between X(l) and X(l−1) for position m can be expressed as:

smm =
1

A

1 +

m∑
j=0

ex
(l−1)
m W⊤

qkx
(l−1)⊤
j x

(l−1)
m W⊤

vox
(l−1)⊤
j∑m

j=0 e
x
(l−1)
m W⊤

qkx
(l−1)⊤
j

 (38)

where A is a normalization coefficient. Note that smm is not necessarily the maximum simi-
larity value. In most cases, when x

(l−1)
m W⊤

qkx
(l−1)⊤
j is large (indicating high token relevance),

x
(l−1)
m W⊤

vox
(l−1)⊤
j also contributes significantly to the sum, suggesting limited changes in state di-

versity after attention processing.

PRACTICAL IMPLEMENTATION AND EXTENSIONS

Since the similarity lower bound can approach zero, potentially leading to intermediate layer states
approaching the original sequence length, we implement a practical constant scaling factor c in our
experiments. This approach is motivated by several empirical observations:

1. Beyond a certain sequence length, attention between new query tokens and stored states becomes
sparse (as observed in NSA, MoBA, etc.) 2. Many tasks can be completed with fixed-size state
representations (as demonstrated in SnapKV, GLA, GSA) 3. The thinking process during inference
often operates within bounded state spaces

We therefore set the state size for layer i as (c− 1)Ni−1, where c ∈ [1, 2). This formulation allows
complex tasks to utilize larger thinking spaces while maintaining efficiency for simpler tasks. Our
experiments show that earlier layers typically require larger c values, while later layers can use
smaller values. For layers beyond the midpoint (L/2), we set c = 1 to optimize storage efficiency.

As shown in Figure A, this configuration achieves 100% performance on the passkey task. Note
that the passkey task involves substantial noise insertion, resulting in high compression ratios; more
complex tasks will naturally exhibit lower compression efficiency.

For handling the stored thinking states, we employ a GSA-like approach that preserves softmax
operations:

Storage(X<t) = Softmax(CX⊤
<t)X<t (39)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where C is a learnable parameter functioning as a dynamic vocabulary. While fixed-ratio scaling
provides complete upper bound control, it constitutes a lossy compression scheme.

After applying these compression steps, the sequence state size (X length or KV length) at each
layer becomes O(CV ), where C is a constant multiple of the vocabulary size. However, practical
challenges remain: for models like Qwen2.5 and LLaMA3 with vocabulary sizes around 128K,
setting c = 1.5 for a 32-layer model results in an upper bound of approximately 1.516×128K ≈ 82M
states. This necessitates further compression strategies.

Inspired by MVA’s vocabulary decomposition and MoM’s functional partitioning approaches, we in-
troduce multi-memory states to approximate the bounds established in Theorem 4 while maintaining
fixed-size representations.

Corollary 2. The inter-layer similarity mechanism enables adaptive compression ratios across dif-
ferent network depths, with early layers accommodating more state diversity and later layers lever-
aging the vocabulary projection for efficient compression. This aligns with the observed ”thinking”
pattern in transformer architectures.

A.5 PROOF OF THEOREM 5

Let X ∈ Rn×d be a sequence with n ≫ 1, and let {C(i)}ci=1 be a set of vocabulary matrices
where each C(i) ∈ Rm×d contains m prototype vectors. The multi-level vocabulary decomposition
represents each element xj ∈ X as:

x̂j =

c∑
i=1

C
(i)

k
(i)
j

(40)

where k
(i)
j ∈ {1, 2, . . . ,m} is the index selected from the i-th vocabulary for representing xj .

Then:

1. The maximum number of distinct vectors that can be represented is mc

2. The approximation error for an optimal decomposition satisfies:

E[∥xj − x̂j∥22] ≤
c∏

i=1

ϵi (41)

where ϵi is the average quantization error at level i

Proof. PART 1: REPRESENTATION CAPACITY

The representation capacity follows from combinatorial considerations. For each vector xj , we
select one prototype from each of the c vocabularies. Since each vocabulary contains m prototypes,
the total number of possible combinations is:

Total combinations = m×m× · · · ×m︸ ︷︷ ︸
c times

= mc (42)

Each unique combination of indices (k(1)j , k
(2)
j , . . . , k

(c)
j ) produces a unique sum:

x̂j = C
(1)

k
(1)
j

+ C
(2)

k
(2)
j

+ · · ·+ C
(c)

k
(c)
j

(43)

Assuming linear independence among the vocabulary vectors across different levels, these sums are
distinct. Therefore, the maximum number of distinct representable vectors is exactly mc.
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PART 2: ERROR ANALYSIS

We analyze the error propagation through the multi-level decomposition. Let us define the residual
at each level:

r
(0)
j = xj (44)

r
(i)
j = r

(i−1)
j − C

(i)

k
(i)
j

for i = 1, 2, . . . , c (45)

The final approximation is:

x̂j =

c∑
i=1

C
(i)

k
(i)
j

= xj − r
(c)
j (46)

Thus, the approximation error is ∥xj − x̂j∥2 = ∥r(c)j ∥2.

Now, consider the optimal index selection at each level. We choose k
(i)
j to minimize the residual

norm:

k
(i)
j = arg min

k∈{1,...,m}
∥r(i−1)

j − C
(i)
k ∥2 (47)

Let ϵi be the average quantization error at level i:

ϵi = E[ min
k∈{1,...,m}

∥r(i−1)
j − C

(i)
k ∥

2
2] (48)

Assuming the residuals and vocabulary vectors are appropriately normalized, we can bound the error
propagation. Using the triangle inequality and the optimality of our index selection:

∥r(i)j ∥2 = ∥r(i−1)
j − C

(i)

k
(i)
j

∥2 (49)

≤ ∥r(i−1)
j ∥2 · min

k∈{1,...,m}

∥∥∥∥∥ r
(i−1)
j

∥r(i−1)
j ∥2

−
C

(i)
k

∥r(i−1)
j ∥2

∥∥∥∥∥
2

(50)

For well-designed vocabularies that cover the relevant direction space, the directional error term is
bounded. In the worst case, we have:

∥r(i)j ∥2 ≤ ∥r
(i−1)
j ∥2 · δi (51)

where δi represents the maximum angular error at level i. Applying this recursively:

∥r(c)j ∥2 ≤ ∥xj∥2 ·
c∏

i=1

δi (52)

For the mean squared error, under appropriate assumptions about the distribution of residuals and
the vocabulary coverage:

E[∥r(c)j ∥
2
2] ≤ E[∥xj∥22] ·

c∏
i=1

ϵi (53)

where ϵi = E[δ2i ] is the expected squared angular error at level i.

The product structure
∏c

i=1 ϵi demonstrates the exponential error reduction with increasing levels,
provided that each ϵi < 1.
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Corollary 3 (Trade-off between Representation Capacity and Error). For a fixed total budget of
B = m · c parameters, the optimal balance between m and c that minimizes the approximation
error while maximizing representation capacity satisfies:

m∗ ≈ c∗ ≈
√
B (54)

This provides the optimal trade-off point where mc is maximized subject to the constraint m ·c = B.

Proof. We maximize the representation capacity mc subject to the constraint m · c = B. Taking
logarithms:

log(capacity) = c logm = c log

(
B

c

)
(55)

Differentiating with respect to c:

d

dc

[
c log

(
B

c

)]
= log

(
B

c

)
− 1 (56)

Setting the derivative to zero gives:

log

(
B

c

)
= 1 ⇒ B

c
= e ⇒ c =

B

e
(57)

Thus, m = B
c = e, and the optimal values are m∗ ≈ c∗ ≈

√
B when considering integer constraints

and practical implementation factors.

The multi-level vocabulary decomposition provides an exponential increase in representation capac-
ity (mc) compared to a single-level approach (m), while simultaneously achieving exponential error
reduction. This theoretical foundation justifies the effectiveness of hierarchical representations in
compression applications.

In practice, the vocabularies {C(i)} are learned to minimize the overall reconstruction error, and
the independence assumption between levels may be relaxed through joint optimization, potentially
yielding even better performance than the theoretical bounds suggest.

A.6 ENHANCED READING MECHANISMS AND UNIFIED FORMULA

Theorem 6 (Necessity of Enhanced Reading Mechanisms). We emphasize that previous approaches
employ overly simplistic reading mechanisms, typically using direct matrix multiplication between
queries q and states. This simplicity constitutes a significant factor (besides storage limitations)
contributing to the performance gap with Softmax Attention. Our work is the first to clearly identify
enhanced reading mechanisms as crucial for improving linear attention and bridging this perfor-
mance gap.

We propose a sophisticated reading approach:
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R
(i+1)
t

[
f(k

(i)
t ), f (i+1)(k

(i)
t )
]
= 1 (58)

d
(i)
t = qtS

k(i)⊤
t (59)

e
(i)
t =

exp
(
d
(i)
t

)
∑d−1

j=0 exp
(
d
(i)
tj

) (60)

a
(i)
t = e

(i)
t R

(i)⊤
t (61)

b
(i)
t =

exp
(∑

i ln(a
(i)
t )
)

a
(i)
t

(62)

c
(i)
t =

(
n
(i)
t + qtS

p(i)⊤
t

)
(63)

T
(i)
t = R

(i)
t

(
Sv(i)

t ⊙ e
(i)⊤
t ⊙ c

(i)⊤
t

)
(64)

ot =
∑
i

o
(i)
t =

∑
i

b
(i)
t

b
(i)
t ⊙ e

(i)
t ⊙ c

(i)
t

T
(i)
t (65)

This mechanism implements a hierarchical access pattern through multiple channels. For com-
parison, the GSA reading mechanism Softmax(qtSk

t)S
v
t represents the simplest form of indirect

reading. Our enhanced version replaces the Softmax with a sigmoid activation followed by learned
transformations:

(σ(qtS
k
t)Wσ)S

v
t, where σ(x) =

1

1 + e−x
(66)

Further extending to multiple reading channels:

(qtWr + σ(qtS
k
t)Wσ)S

v
t (67)

This approach equivalent to MVA’s first-order vocabulary case demonstrates progressive perfor-
mance improvement (Table 4). With multi-level vocabularies, similar enhancements using Softmax,
perceptron, and multi-channel mechanisms show even greater improvements over single-state ap-
proaches, underscoring the importance of balanced enhancement in both storage and reading ca-
pabilities.

The update formulas in the main text we have improved on the GSA and MVA by combining the
five theories. And the update formulas are as follows if we start from the five theories only and do
not use the current case of the excellent mechanism(e.g. gating) instead, and the following update
method can also achieve similar performance. Initial conditions:

qt = fp(xtWQ, r
(i)
t ), kpt = fp(xtWK , r

(i)
t ), k

(0)
t = xtWK ∈ R1×d, v

(0)
t = xtWV ∈ R1×d,

Sk(i)

0 = 0 ∈ Rm×d, n
(i)
0 = 0 ∈ R1×m, E

(0)
t = Im ∈ Rm×m,

Iterative process:

f (i)(k
(i)
t ) = F (Sk(i)

t−1k
(i)⊤
t )

⊤
, F (x) =

{
1 if xi is maximum
0 otherwise

or Softmax(x)

n
(i)
t = n

(i)
t−1 + f (i)(k

(i)
t ), f̄ (i)(k

(i)
t ) =

f (i)(k
(i)
t )

max(n
(i)
t , 1)

(68)

Sk(i)

t = diag
(
1− f̄ (i)(k

(i)
t )

⊤
)
Sk(i)

t−1 + f̄ (i)(k
(i)
t )

⊤
k
(i)
t

Sv(i)
t = diag

(
1− f̄ (i)(k

(i)
t )

⊤
)
Sv(i)

t−1 + f̄ (i)(k
(i)
t )

⊤
v
(i)
t

(Theory 1) (69)
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Sp(i)
t = Sp(i)

t−1 + f (i)(k
(i)
t )

⊤
(kpt − k

(0)
t )

k
(i+1)
t = k

(i)
t − f (i)(k

(i)
t )Sk(i)

t

v
(i+1)
t = v

(i)
t − f (i)(k

(i)
t )Sv(i)

t

(Theories 2 & 3) (70)

R
(i+1)
t

[
f(k

(i)
t ), f (i+1)(k

(i)
t )
]
= 1 (Theory 5) (71)

d
(i)
t = qtS

k(i)⊤
t , e

(i)
t = softmax(d(i)t )

a
(i)
t = e

(i)
t R

(i)⊤
t , b

(i)
t =

exp
(∑

i ln(a
(i)
t )
)

a
(i)
t

(Theories 4 & 5) (72)

c
(i)
t = n

(i)
t + qtS

p(i)⊤
t

T
(i)
t = R

(i)
t

(
Sv(i)

t ⊙ e
(i)⊤
t ⊙ c

(i)⊤
t

)
ot =

∑
i

b
(i)
t

b
(i)
t ⊙ e

(i)
t ⊙ c

(i)
t

T
(i)
t

(Theories 4 & 5) (73)

CHUNK-WISE PARALLEL FORM

For minibatch processing:

R
(i+1)
t = R

(i+1)
t−1 +

(
f (i)(K(i))

)⊤ (
f (i+1)(K(i+1))

)
(74)

R
(i+1)
t = R

(i+1)
t−1 + (Y −R

(i+1)
t−1 )⊙

(
f (i)(K(i))

)⊤ (
f (i+1)(K(i+1))

)
(75)

N (i) = CumSum
(
f (i)(K(i))

)
(76)

f̄ (i)(K(i)) =
f (i)(K(i))

N (i)
(77)

D(i) = GLA⊤
(
Q,K(i), f̄ (i)(K(i)), 1− f̄ (i)(K(i))

)
(78)

E(i) = softmax(D(i)) (79)

A(i) = E(i)(R(i))⊤ (80)

C(i) = GLA⊤
(
Q, fp(K

(i), P )−K(i), f̄ (i)(K(i)), 1− f̄ (i)(K(i))
)
+N (i) (81)

T (i) = R(i)GLA
(
C(i) ⊙ E(i), f̄ (i)(K(i)), V (i), 1− f̄ (i)(K(i))

)
(82)

O(i) =
B(i)

B(i) ⊙ E(i) ⊙ C(i)
⊙ T (i) (83)

O =
∑
i

O(i) (84)

Proof Sketch. The multi-level decomposition theorem builds upon the following insights:

1. Error Analysis: The exponential error reduction
∏m

i=1 ϵi follows from the chain rule of differ-
entiation applied to the composition of quantization operations at each level. Each level introduces
an independent quantization error, and the total error becomes the product of individual errors.

2. Capacity Analysis: The storage capacity
∏m

i=1 Ci results from the combinatorial nature of
hierarchical representations. Each level provides a separate ”alphabet” of size Ci, and the total
number of expressible states is their product.
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3. Enhanced Reading Mechanism: The sophisticated reading approach enables: - Cross-level
information integration through the R matrix - Adaptive weighting through the b(i)t terms - Position-
aware modulation through the c

(i)
t terms

The unified model integrates all five theoretical principles: - Theory 1: Redundancy elimination
through the f (i) functions - Theories 2 & 3: Positional information compression through kpt −
k
(0)
t - Theory 4: Inter-layer similarity through the hierarchical structure - Theory 5: Multi-level

decomposition and enhanced reading

Experimental validation shows that intermediate layers benefit from more states (m larger), while
earlier and later layers can use fewer states. For fair comparison with existing work, we use single-
level decomposition against GSA and two-level decomposition against MVA.

Theorem 5 and Theorem 6 together provide a comprehensive framework for efficient state man-
agement in linear attention models. The multi-level approach offers exponential error reduction
while the enhanced reading mechanism ensures effective information retrieval from the compressed
representations.
Corollary 4. For a model with m levels and vocabulary sizes Ci, the total number of parameters re-
quired for the reading mechanism scales as O(

∑m
i=1 Cid

2), providing a favorable trade-off between
expressivity and efficiency compared to the O(Nd2) scaling of standard attention.
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