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ABSTRACT

Understanding the intricate mappings between visual stimuli and their correspond-
ing neural responses is a fundamental challenge in cognitive neuroscience and
artificial intelligence. Current vision-brain representation learning approaches
predominantly align paired images and functional magnetic resonance imaging
(fMRI) responses within a shared Euclidean embedding space. However, Eu-
clidean geometry struggles with the exponential complexity of visual/neural hi-
erarchies, resulting in semantically undiscriminating embeddings. To overcome
this, we propose HypBrain, a novel framework that leverages hyperbolic geometry
to learn a shared, cross-subject vision-brain representation. Our framework maps
both visual information and multi-subject fMRI responses into a shared Lorentz
model, a geometry uniquely suited for embedding hierarchical data. We introduce
a new mapping logic where abstract visual concepts are embedded near the hyper-
bolic origin, while more specific fMRI responses are situated in the exponentially
expanding periphery, naturally capturing the “entailment” relationship between
visual and neural data. Notably, we train a hyperbolic encoder on multi-subject
fMRI data to integrate both common and unique characteristics of individual brain
responses. Experimental results demonstrate that HypBrain not only exhibits ro-
bust capabilities in accurately quantifying semantic alignment but also achieves
significant advancements in capturing cross-modal semantic relationships solely
by optimizing the geometric properties of the embedding space. Our method con-
firms the superiority of hyperbolic geometry in aligning cross-modal semantic
representations and modeling hierarchical associations, thereby offering an inno-
vative perspective in the field of vision-brain representation learning.

1 INTRODUCTION

The brain, as the core of human cognition and perception of the world, constantly encodes the
various external stimuli that we encounter daily. Recent advancements have significantly deci-
phered semantic information from brain responses to visual stimuli (Scotti et al., 2023; Takagi &
Nishimoto, 2023a; Liu et al., 2024; Zhou et al., 2024; Wang et al., 2024a). These methods utilize
functional magnetic resonance imaging (fMRI) (Logothetis, 2008)-acquired neural patterns to learn
meaningful brain features, aligning them with image features from pretrained vision-language mod-
els (VLMs) to unravel how the brain interprets the visual world. However, existing models primarily
employ a holistic, cross-modal learning strategy, often neglecting the intricate hierarchical semantic
relationships between visual inputs and brain activity, thereby restricting effective structural model-
ing. In fact, image data inherently contains multi-scale semantics, ranging from low-level features
like pixels and edges to high-level concepts such as complete objects and scenes. Likewise, fMRI
signals exhibit a corresponding multi-layered structure, reflecting the brain’s bottom-up, hierarchical
processing from local regions handling basic features to whole-brain integration of advanced infor-
mation (Miliotou et al., 2023; Chen et al., 2025a). Therefore, modeling image features and neural
responses as hierarchical structures within an embedding space is essential for a more accurate re-
flection of the brain’s visual encoding mechanisms.

However, Euclidean space struggles with hierarchical data due to its polynomial volume growth,
which inadequately accommodates exponentially expanding hierarchical structures. This leads
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to compressed low-dimensional concept embeddings and reduced semantic discriminability (Ma-
toušek, 1999). As illustrated in Figure 1(a), while Euclidean distances show semantic similarity
between concepts such as “animal” and “cat”, they fail to capture the deeper hierarchical “is-a” rela-
tionship. Conversely, with its negative curvature, hyperbolic geometry offers a natural solution as its
exponentially expanding representation space is ideal for embedding complex hierarchical informa-
tion (Gromov, 1987; Sala et al., 2018). As shown in Figure 1(b), hyperbolic embedding effectively
represents semantic hierarchies, positioning abstract concepts near the center and concrete ones in
the expanding periphery. This property can model the vision-brain relationship. VLM-extracted im-
age semantics are often more abstract than pixel data, while fMRI responses, as brain’s physiological
activity to visual stimuli, exhibit higher information specificity. Consequently, the fMRI embedding
Fcat for viewing a “cat” image is mapped to a position distant from the origin (“animal”), whereas
the image embedding Icat is situated closer to the origin. Similarly, for an image containing “cat and
dog”, Fcat and dog and Icat and dog are located further from the origin in hyperbolic space than em-
beddings for “cat” alone. Furthermore, consistent with hyperbolic geometry, fMRI patterns should
be intrinsically encompassed within the semantic information of the image. In the projected view of
Figure 1(b), Fcat and dog lies at the intersection of the “cone” regions of Icat (i.e., the yellow region)
and Idog (i.e., the purple region), indicating that the specific neural response to an image containing
“cat and dog” is hierarchically entailed by the abstract concepts of both “cat” and “dog”.

Figure 1: Conceptual comparisons of Euclidean embeddings and hyperbolic embeddings.

Hyperbolic geometry is particularly effective for learning hierarchical representations in diverse
modalities such as images and text (Desai et al., 2023; Srivastava & Wu; Yang et al., 2024; Wang
et al., 2024b; Pal et al., 2024; Gonzalez-Jimenez et al., 2025). However, its potential in modeling
the rich semantic relationships between images and brain activity remains largely unexplored. To
address this, we propose HypBrain, a hyperbolic space-based vision-brain representation learning
method. HypBrain leverages hyperbolic geometry to align neural activity with image representa-
tions, explicitly modeling their inherent hierarchical structures. It represents concepts from both
modalities using the Lorentz model (Nickel & Kiela, 2018). The learned embeddings are optimized
via a novel hyperbolic contrastive loss combined with an entailment loss, capturing both seman-
tic relationships and hierarchical dependencies. Crucially, our approach employs fMRI data from
multiple subjects to train a dedicated hyperbolic encoder, enabling the model to learn shared neural
response patterns across subjects while retaining subject-specific information, thus addressing a key
challenge in cross-subject vision-brain learning.

To validate the effectiveness of the proposed method, we conduct experiments on the Natural Scenes
Dataset (NSD) (Allen et al., 2022). Results indicate that HypBrain achieves remarkable success
in accurately quantifying semantic alignment and capturing cross-modal semantic relationships by
optimizing the geometric properties of the embedding space, outperforming state-of-the-art (SOTA)
methods. Compared to their Euclidean counterparts, hyperbolic embeddings better capture semantic
correlations and hierarchical relationships between different modalities, demonstrating significant
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improvements in downstream tasks. Additionally, our framework performs exceptionally well across
various VLMs, showcasing its strong versatility. Our contributions summarize as follows:

• We design a novel architecture with a hyperbolic tokenizer and shared encoder for multi-
subject fMRI data, enabling simultaneous learning of individual and cross-subject patterns
for generalized hyperbolic features.

• HypBrain leverages a hyperbolic fMRI encoder in conjunction with a frozen VLM to
project neural responses and image features into a shared Lorentz manifold, precisely cap-
turing intricate high-level semantic associations between visual stimuli and brain activity.

• To achieve effective cross-modal semantic alignment, we focus on semantic entailment
relationships between neural representations and visual stimuli, enhancing the hierarchical
discriminability of learned features.

• HypBrain consistently demonstrates either superior or comparable performance across var-
ious downstream tasks, which underscores the significant advantages of hyperbolic geom-
etry in effectively modeling complex semantic hierarchies.

Figure 2: An overview of HypBrain. HypBrain is a cross-subject vision-brain representation learn-
ing framework. The framework consists of two main components: fMRI Hyperbolic Feature Ex-
traction and Multi-modal Hyperbolic Representation Alignment. The former encodes different
fMRI responses into unified hyperbolic embeddings through a cross-subject tokenizer and a univer-
sal hyperbolic encoder. The latter transforms image features extracted by a VLM image encoder
into the Lorentz manifold, then semantically aligns them with the hyperbolic fMRI embeddings.

2 METHODOLOGY

We propose a novel cross-subject vision-brain representation learning scheme, HypBrain, which ex-
plicitly captures complex semantic relationships by leveraging the intrinsic hierarchical structure of
both fMRI and image data. As shown in Figure 2, our method aligns latent semantic representations
from different modalities within a unified hyperbolic space and comprises two key components:
fMRI hyperbolic feature extraction and multi-modal hyperbolic representation alignment. For de-
tails on hyperbolic geometry and its Lorentz model, which forms the foundational framework for
this study, please refer to Appendix B.

2.1 FMRI HYPERBOLIC FEATURE EXTRACTION

To address inter-subject brain activity variability (Gordon et al., 2017) and enhance model gener-
alization, we introduce a novel fMRI encoder. This encoder learns hyperbolic embeddings from
multi-subject data. Given the diverse fMRI voxel sizes (Finn et al., 2017), we standardize dimen-
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sions across datasets using interpolation-based upsampling. The architecture consists of a cross-
subject hyperbolic tokenizer, which extracts subject-specific neural representations, and a universal
hyperbolic encoder, which captures shared response patterns.

2.1.1 CROSS-SUBJECT HYPERBOLIC TOKENIZER

Initial brain signals F E
in ∈ R1×(v+1), with v as the unified voxel dimension, are projected into

a hyperbolic manifold using a Lorentz linear layer. This generates a rich token representation,
denoted as FL

in ∈ Lt,R(t+1)×(v+1). To capture subject-specific information, FL
in is then fed into

a subject-specific tokenizer, yielding the target embedding FL
mid ∈ Ld,Rt×(d+1). Specifically, the

spatial component FL
in−space is extracted from FL

in, linearly transformed, and concatenated with the
recomputed temporal component FL

in−time to form the subject-specific fMRI embedding FL
mid. Our

operation, diverging from a full Lorentzian transformation (Chen et al., 2021), is defined as follows:

FL
in-time =

√
1

cin
+ ∥WTFL

in-space + b∥22 (1)

FL
mid = [FL

in-time,W
TFL

in-space + b] ·
√

cmid

cin
(2)

Here, W represents the weight matrix, b is the bias term, and cin and cmid denote the curvature
parameters of the input and output manifolds, respectively.

2.1.2 UNIVERSAL HYPERBOLIC ENCODER

The universal hyperbolic encoder maps brain semantic embeddings across subjects into a shared
latent space. We employ a Lorentz geometry-based Transformer encoder for fMRI representations.

Lorentz Layer Normalization. To maintain the properties of fMRI embedding FL
mid in the hy-

perbolic manifold, we apply a Lorentz normalization layer, as described in (Yang et al., 2024). The
spatial component FL

mid−space undergoes standard layer normalization and is then concatenated with
the temporal component FL

mid−time to obtain the new hyperbolic feature, NL
mid.

Lorentz Multi-head Self-attention. Within the encoder, the Lorentz multi-head self-attention
mechanism (Chen et al., 2021) is crucial for capturing intricate fMRI feature dependencies in hy-
perbolic geometry. NL

mid is linearly transformed into query (Q), key (K), and value (V ) spaces,
subsequently projected as points onto the Lorentz manifold, expressed as:

QL = NL
mid ⊗cmid WQ, KL = NL

mid ⊗cmid WK , V L = NL
mid ⊗cmid WV (3)

In this formulation, WQ, WK , and WV denote the weight matrices. The ⊗cmid operation is analo-
gous to the hyperbolic linear transformations described in equations 1 and 2. Attention weights are
derived by computing the Lorentzian inner product between QL and KL, then normalized using a
Softmax function, and subsequently used for a weighted summation of V L. This entire process is
delineated as follows:

αij = Softmax(⟨(QL)T , (KL)T ⟩L) (4)

Atti ⊙cmid V L
j :=

∑N
j=1 αijV

L
j√

cmid

∣∣∣||∑N
k=1 αikV L

k ||22
∣∣∣ (5)

Here, ⊙cmid signifies the weighted sum in the hyperbolic space, and Atti represents the i-th row of the
attention matrix within the Lorentz model. After the Lorentz centroid operation, the outputs from
all attention heads are concatenated along the feature dimension. A subsequent hyperbolic linear
transformation then yields the final feature representation ML

mid ∈ Ld,Rt×(d+1).

Lorentz Residual Connection. To facilitate deeper features learning within the model, we in-
corporate a residual connection (He et al., 2025) between the output of the hyperbolic multi-head
self-attention mechanism and the original fMRI embedding FL

mid. It is formulated as:

RL
mid =

FL
mid + βML

mid√
cmid

∣∣⟨FL
mid + βML

mid, F
L
mid + βML

mid⟩L
∣∣ (6)
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Here, β balances the weights of the two feature sets.

Lorentz MLP. We introduce a Lorentz MLP network to enhance the model’s expressive power.
This network integrates non-linearity through intrinsic Lorentz linear layers and activation functions
(Yang et al., 2024), which are crucial for extracting richer, higher-level semantic information from
the input feature RL

mid. Subsequently, the output of the MLP layer is residually connected with
RL

mid, yielding the universal fMRI embedding UL
mid ∈ Ld,Rt×(d+1), which provides a more robust

representation for cross-modal learning.

2.2 MULTI-MODAL HYPERBOLIC REPRESENTATION ALIGNMENT

VLMs leverage large-scale multi-modal learning to extract rich visual semantic features within a
shared semantic space (Ghosh et al., 2024). These features not only effectively predict neural re-
sponses in the human higher-order visual cortex, but their hierarchical processing mechanisms also
align closely with the visual information processing in the human brain (Wang et al., 2023; Subrama-
niam et al., 2024). Inspired by this, we align visual features extracted from a frozen VLM with their
corresponding fMRI neural representations in a hyperbolic space. Our objective is to unify image
and fMRI embeddings within this shared space, uncovering hierarchical vision-brain relationships
via hyperbolic contrastive and entailment losses.

Lorentzian Centroid Calculation. Given the extracted image features IEmid ∈ Rt×(p+1), we first
transform them from Euclidean geometry to hyperbolic geometry using a Lorentz linear layer, re-
sulting in ILmid ∈ Ld,Rt×(d+1). To extract more representative features for each sample, we then
compute the Lorentz centroids for both the universal fMRI embeddings UL

mid and the image embed-
dings ILmid. The specific process is described as follows:

ILC
mid =

∑N
j=1 I

L
j√

cmid

∣∣∣||∑N
k=1 I

L
k ||22
∣∣∣ , ULC

mid =

∑N
j=1 U

L
j√

cmid

∣∣∣||∑N
k=1 U

L
k ||22
∣∣∣ (7)

Here, both ILC
mid and ULC

mid have a dimensionality of (d+ 1).

Hyperbolic Contrastive Learning. In cross-modal learning, aligning and comprehending the rela-
tionships between diverse modalities frequently employs the contrastive learning paradigm (Radford
et al., 2021). This study leverages hyperbolic embeddings to align visual data with corresponding
brain activity. Given a batch of N samples, we utilize the negative Lorentzian distance as a similar-
ity metric to compute the contrastive loss for image-fMRI data pairs. This optimization objective is
formally defined by integrating a learnable temperature parameter τ and the Softmax function:

Lcon(I, U) = −
∑
i∈N

log
exp

(
−dL(I

LC
i ,ULC

i )
τ

)
∑N

k=1,k ̸=i exp
(
−dL(ILC

i ,ULC
k )

τ

) (8)

Here, for a given image embedding ILC
i , its negative samples are chosen from other fMRI em-

beddings ULC
k (k ̸= i) within the same batch. Conversely, if an fMRI hyperbolic embedding is the

anchor, the loss for negative samples from the batch’s image features is defined as Lcon(U, I). The
hyperbolic contrastive loss, which integrates this bidirectional contrastive process, is formulated as:

Lcon =
1

2
(Lcon(I, U) + Lcon(U, I)) (9)

This objective promotes the convergence of matched image and fMRI features on the Lorentz man-
ifold, while separating mismatched ones, achieving effective cross-modal alignment.

Hyperbolic Entailment Learning. In addition to the contrastive loss, we introduce an entailment
loss to reinforce the partial order relationship between different embeddings (Vendrov et al., 2015).
The image embedding represents the model’s generalized understanding of an image’s core seman-
tics, whereas the fMRI embedding captures more specific neural activity patterns. As depicted in
Figure 5 in the Appendix B, an entailment cone (Ganea et al., 2018) is defined for the image em-
bedding ILC

mid (Icat) within the hyperbolic space (i.e., the yellow region). Any fMRI embedding ULC
mid

(Fcat) falling within this region represents more specific information, indicating its ability to explain
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or predict these particular image stimuli. The aperture angle (Le et al., 2019; Desai et al., 2023) of
the conical region is defined as follows:

aper(ILC
mid) = sin−1

(
2K

√
cmid∥ILC

mid-space∥

)
(10)

Here, the constant K = 0.1 provides stable boundary conditions near the origin.

To learn the partial order relationship within this space, specific concepts must reside inside the
entailment cone defined by more general concepts. For this purpose, we introduce the entailment
loss (Le et al., 2019; Desai et al., 2023), which encourages any fMRI embedding located outside the
entailment cone to move towards the boundary of the region delimited by the image embedding:

Lent(I
LC
mid, U

LC
mid) = max(0, ext(ILC

mid, U
LC
mid)− aper(ILC

mid)) (11)

Where ext(x, y) denotes the external angle of point y with respect to x, calculated as:

ext(ILC
mid, U

LC
mid) = cos−1

 ULC
mid-time + ILC

mid-timecmid⟨ILC
mid, U

LC
mid⟩L

∥ILC
mid-space∥

√
(cmid⟨ILC

mid, U
LC
mid⟩L)2 − 1

 (12)

The total loss for our model is a weighted sum of Lcon and Lent:

L = Lcon + λLent (13)

Lorentz Classifier. Furthermore, the aggregated neural representation ULC
mid guides multi-label pre-

diction through a Lorentz multinomial logistic regression (MLR) layer (Bdeir et al., 2023). This
classifier computes the signed hyperbolic distance from input features to learned hyperplanes on the
Lorentz manifold, yielding logits for each category via the formula 22 presented in the Appendix B.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

We conduct experiments on the NSD (Allen et al., 2022), applying uniform preprocessing to fMRI
signals across subjects (S1, S2, S5, S7). HypBrain’s performance is compared against SOTA meth-
ods on various downstream tasks and evaluated in different geometric spaces. The VLMs employed
in our experiments include CLIP (Radford et al., 2021), BLIP-2 (Li et al., 2023), and DeepSeek-
Janus-Pro (Chen et al., 2025b). Comprehensive details regarding the dataset, experimental setups,
training parameters, and model configurations are provided in Appendix C.

3.2 MULTI-LABEL PREDICTION

Multi-label prediction aims to decode the brain’s semantic representation of specific visual concepts
in observed images. Table 1 shows our method consistently outperforms existing cross-subject
decoding approaches (Zhou et al., 2024; Chehab et al., 2022) on all metrics. Notably, HypBrain
achieves a substantial improvement over the CLIP-MUSED model (Zhou et al., 2024), with a 10.6%
increase in mean Average Precision (mAP) and a 5.2% increase in the area under the receiver oper-
ating characteristic curve (AUC). The findings demonstrate HypBrain’s capability to both mitigate
inter-subject variability and yield hyperbolic features that enhance classification discriminability. As
shown in Table 1, the consistently diminished prediction performance of the Euclidean-based model
clearly demonstrates the superiority of hyperbolic representations for this task. Qualitative diagrams
and all subjects results are presented in Appendix D.1.

3.3 BRAIN-IMAGE RETRIEVAL

The retrieval evaluation assesses the amount of image-specific information captured within brain
embeddings. We conduct two experiments: image retrieval, which uses a brain embedding to re-
trieve the most similar image embedding, and brain retrieval, the reverse process. As shown in Table
2, our proposed method achieves highly competitive results against various SOTA models, including
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Table 1: Quantitative comparison of multi-label prediction performance against SOTA methods and
across embedding spaces, averaged across 4 subjects. Bold font signifies the best performance.

Manifold Method mAP ↑ AUC ↑ Hamming ↓

Euclidean

SMODEL-CNN 0.150 0.767 0.039
SMODEL-ViT 0.156 0.755 0.038
EMB 0.220 0.825 0.035
CLIP-MUSED 0.258 0.877 0.030

Euclidean EucBrain 0.279 0.917 0.027

Hyperbolic HypBrain 0.364 0.929 0.026

subject-specific models like MindReader (Lin et al., 2022), BrainDiffuser (Ozcelik & VanRullen,
2023), MindEye (Scotti et al., 2023), and Lite-Mind (Gong et al., 2024). Our cross-subject ap-
proach, HypBrain, achieves image and brain retrieval accuracies of 87.8% and 87.4%, respectively.
Compared to MindReader (Lin et al., 2022), HypBrain-DeepSeek achieves improvements of 76.8%
and 38.4% in retrieval accuracy for both retrieval modalities. This suggests that hyperbolic space
is more effective at capturing the inherent hierarchical structures and complex relationships within
fMRI and image data, thereby reducing the semantic gap between different modalities. While the
MindEye model (Scotti et al., 2023) achieves superior retrieval performance, it relies on a large
diffusion model (Ramesh et al., 2022) to learn a conditional distribution from fMRI to image em-
beddings for each subject. This approach is more akin to data generation that fits low-level image
details rather than pure feature alignment, and thus comes with significant computational costs and
data dependency (1,003.64M parameters). A crucial finding is that without this generative prior,
the MindEye model’s performance drops significantly to 88.8% in image retrieval and 84.9% in
brain retrieval (MindEye (Backbone + Projector)). In contrast, our HypBrain model, which uses a
lightweight hyperbolic encoder and a frozen VLM, achieves precise semantic alignment by solely
optimizing the geometric properties of the embedding space. This approach is uniquely positioned
to capture high-level, abstract semantic hierarchies and their containment relationships. We argue
that for vision-brain research, modeling these high-level hierarchies is more valuable than simply
reproducing pixel-level details, offering a more interpretable and scalable perspective for the field.

We further investigate the performance of different embedding spaces in the retrieval task (Table 2).
Using cosine similarity in Euclidean space, we find that hyperbolic embedding space significantly
outperforms Euclidean space in retrieval accuracy. Specifically, HypBrain-BLIP-2 achieves image
retrieval accuracy of 85.3% and brain retrieval accuracy of 84.9%, marking improvements of 2.4%
and 13.9% over EucBrain-BLIP-2. This suggests that the latent hierarchical structural properties
within the data receive more discriminative embedded representations in hyperbolic geometry. No-
tably, the advantages of hyperbolic space extend to all three HypBrain variants, underscoring the
broad applicability of our framework. Detailed results are available in Appendix D.2.

3.4 ABLATION STUDIES

In this section, we conduct ablation studies to further analyze and validate the components of our
proposed method. The VLM used in the experiment is DeepSeek-Janus-Pro (Chen et al., 2025b).

Efficacy of Architectural Design. We first investigate the impact of fMRI encoder architectures on
model performance. As shown in Table 3, our method consistently outperforms the MLP-based ar-
chitecture (comprising Lorentz MLP and Lorentz residual connection) in both multi-label prediction
and retrieval tasks. This demonstrates that the Lorentz Transformer more adeptly captures complex
nonlinear relationships within hyperbolic fMRI data, enhancing the model’s expressive power.

Effectiveness of the Entailment Loss. We analyze the effectiveness of the entailment loss in guid-
ing model learning, as detailed in Table 3. Removing the entailment loss (denoted as w/o Lent) leads
to a drop in image retrieval accuracy from 87.8% (for our HypBrain model) to 87.1%, indicating its
beneficial role in vision-brain representation learning. The complete model consistently achieves
superior performance across both metrics, emphasizing the necessity of synergistic contributions
from multiple loss functions to enhance model performance.

7
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Table 2: Comprehensive retrieval performance comparison of SOTA methods, HypBrain, and Eu-
cBrain variants across embedding spaces. All results are averaged across 4 subjects, expect Min-
dReader (Lin et al., 2022) and MindEye (Backbone + Projector) (Scotti et al., 2023), which only
analyzed S1 because the original text only provided results for Subject 1. Bold font signifies the
best performance. * denotes a subject-specific model.

Manifold Method Parameters Image ↑ Brain ↑

Euclidean

MindReader* 2.34M 11.0% 49.0%
BrainDiffuser* 4.5B 21.1% 30.3%
MindEye* 1,003.64M 93.6% 90.1%
MindEye (Backbone + Projector)* 996M 88.8% 84.9%
Lite-Mind* 12.49M 87.7% 91.1%

Euclidean
EucBrain-CLIP 89.74M 62.3% 70.5%
EucBrain-BLIP-2 90.13M 82.9% 71.0%
EucBrain-DeepSeek 90.07M 78.1% 74.4%

Hyperbolic
HypBrain-CLIP 39.41M 76.2% 76.3%
HypBrain-BLIP-2 39.60M 85.3% 84.9%
HypBrain-DeepSeek 39.41M 87.8% 87.4%

Table 3: Performance comparison of ablation study. All results are averaged across 4 subjects. Bold
font signifies the best performance.

Method Multi-label prediction Retrieval

mAP ↑ AUC ↑ Hamming ↓ Image ↑ Brain ↑
Efficacy of Architectural Design
MLP 0.322 0.911 0.026 85.7% 84.5%

Effectiveness of the Entailment Loss
w/o Lent - - - 87.1% 87.3%

Impact of Lorentz Curvature
1.0 0.332 0.915 0.027 87.7% 87.3%
2.0 0.310 0.913 0.029 87.7% 83.4%
3.0 0.248 0.893 0.029 86.7% 83.2%

HypBrain 0.364 0.929 0.026 87.8% 87.4%

Impact of Lorentz Curvature. In the Lorentz model, the setting of curvature is crucial for ef-
fective embedding representation learning. To identify the optimal configuration, we compare the
performance impact of a fixed versus a learnable cmid parameter. Table 3 demonstrates that treating
curvature as a learnable parameter consistently achieves superior results in both tasks.

Figure 3: Visualization of the learned hyperbolic space by HypBrain-DeepSeek model. Elements
closer to the origin exhibit higher semantic hierarchy and coarser granularity.
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3.5 VISUALIZATION OF HYPERBOLIC SPACE

To illuminate the semantic distribution of fMRI and image embeddings, we undertake a low-
dimensional visualization of the learned hyperbolic space. Specifically, we randomly sample 1K
embeddings from the training set and analyze their norm distribution through a histogram. Sub-
sequently, these embeddings are mapped into a low-dimensional space using CO-SNE (Guo et al.,
2022) for better observation. Figure 3(a) clearly shows that image embeddings are positioned closer
to the center of the hyperbolic space compared to fMRI embeddings. This supports the effectiveness
of using Lent to guide the learning of a partial order relationship between brain activity and images.
Furthermore, Figure 3(b) reveals a distinct semantic separation and a clear hierarchical structure in
the distribution of both image and corresponding fMRI embeddings. This indicates that our method
successfully captures semantic associations and hierarchical relationships between different modal-
ities within the hyperbolic space. Results for other models can be found in Appendix D.3.

3.6 CROSS-SUBJECT GENERALIZATION ANALYSIS

High-resolution fMRI signal acquisition presents challenges for large-scale data collection due to its
time-consuming and labor-intensive nature. To overcome this, we employ a cross-subject training
strategy, facilitating effective generalization to new subjects with limited data. We validate this by
training the model on data from three subjects (S1, S2, S5) and evaluating its generalization on a
new subject (S7) using varying data proportions. Specifically, we train a subject-specific hyperbolic
tokenizer for S7, followed by two settings: freezing and fine-tuning the universal hyperbolic encoder.
Figure 4 illustrates that the fine-tuning approach achieves performance comparable to the HypBrain-
DeepSeek model with only 50% of the data. This highlights the model’s ability to learn from other
subjects and integrate minimal new subject information, effectively addressing data scarcity and
demonstrating strong generalization. Moreover, fine-tuning slightly surpasses the frozen encoder,
adapting better to individual differences in new subjects. More results are in Appendix D.4.

Figure 4: Cross-subject generalization analysis across different downstream tasks.

4 CONCLUSION

In this paper, we introduce HypBrain, a novel hyperbolic space-based framework for cross-subject
vision-brain representation learning. By aligning neural responses and image representations in a
shared Lorentz manifold, our method effectively captures cross-modal semantic hierarchical rela-
tionships. We design a hyperbolic fMRI encoder that extracts both shared and individual-specific
brain patterns. To achieve robust semantic alignment, we incorporate a novel optimization strat-
egy combining hyperbolic contrastive loss and partial order entailment constraints, yielding more
discriminative hyperbolic embeddings. Extensive experiments demonstrate HypBrain consistently
surpasses Euclidean-based approaches and performs comparably to or surpasses existing SOTA
methods. Our visualization analyses further confirm HypBrain’s capability to geometrically embed
multi-modal hierarchical structures in hyperbolic space. Our work not only opens a new perspective
for vision-brain representation learning but also underscores the immense potential of hyperbolic
geometry in modeling complex cross-modal semantic relationships. While our research primar-
ily focuses on optimizing the geometric properties of the embedding space for high-level semantic
alignment, we acknowledge the potential of integrating generative models to enhance multi-modal
mappings. Future work will explore a hybrid framework that leverages the benefits of hyperbolic
geometry for hierarchy while also incorporating generative priors for richer, low-level data fidelity.
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REPRODUCIBILITY STATEMENT

Our source code is publicly available at https://anonymous.4open.science/r/
HypBrain-83F1/. In all experiments, we use public datasets. Further details on the VLM em-
beddings, training parameters, and model configurations used in the experiments can be found in
Appendix C.
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Martin R Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319.
Springer Science & Business Media, 2013.

Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. Neural embeddings of
graphs in hyperbolic space. arXiv preprint arXiv:1705.10359, 2017.
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APPENDIX

A RELATED WORK

Vision-brain Semantic Alignment. Learning the semantic relationship between fMRI neural ac-
tivity and visual stimuli has garnered significant research interest in recent years. Existing studies
primarily focus on constructing this semantic alignment within a shared latent space (Scotti et al.,
2023; Ozcelik & VanRullen, 2023; Han et al., 2024; Xia et al., 2024). With the advent of VLMs,
several approaches map fMRI modalities into pretrained embedding spaces, either through direct
regression (Takagi & Nishimoto, 2023a; Ozcelik & VanRullen, 2023; Takagi & Nishimoto, 2023b)
or contrastive learning (Xia et al., 2024). MindEye (Scotti et al., 2023), for instance, encodes images
using CLIP (Radford et al., 2021) and subsequently projects corresponding fMRI data into the CLIP
feature space, achieving robust image retrieval performance. Furthermore, some research (Han et al.,
2024) treats brain signals as an emerging modality, learning alignments between multi-modal inputs
via generative training. However, these methods typically rely on Euclidean spaces to capture sim-
ple semantic similarities, fundamentally overlooking the intricate hierarchical structures inherent in
the data. To address this, we conceptualize image data and their corresponding fMRI responses as
entities possessing distinct levels of abstraction. We embed these into a unified hyperbolic space for
semantic alignment, thereby overcoming the limitations associated with Euclidean geometry.

Learning in Hyperbolic Space. Hyperbolic manifolds are gaining increasing attention in deep
learning due to their effectiveness in modeling hierarchical structures. Initially, MERU (Desai et al.,
2023) combines entailment learning and CLIP methods to learn embeddings in hyperbolic space,
thereby capturing underlying vision-language hierarchical relationships. With the advancement of
hyperbolic neural networks, recent works apply hyperbolic models to various modalities, including
images, text, video, and medical imaging (Srivastava & Wu; Yang et al., 2024; Wang et al., 2024b;
Pal et al., 2024; Kwon et al., 2024; Gonzalez-Jimenez et al., 2025; Li et al., 2025). Notably, Alvaro
Gonzalez-Jimenez et al. (Gonzalez-Jimenez et al., 2025) introduce a hyperbolic space-based frame-
work for medical anomaly detection and localization, which presents a significant breakthrough in
this field. HyperVLM (Srivastava & Wu) further explores hierarchical relationships between images
and text through hyperbolic Poincaré geometry properties, establishing a novel contrastive learning
paradigm. Furthermore, hyperbolic learning is also integrated into video retrieval tasks, leveraging
its hierarchical modeling capabilities to achieve SOTA performance (Li et al., 2025). Despite these
breakthroughs, the potential of hyperbolic geometry in learning vision-brain semantic relationships
remains largely underexploited. To address this critical gap, we propose HypBrain, a model that cap-
tures intricate semantic hierarchical associations between different modalities in hyperbolic space,
offering a new perspective for vision-brain representation learning.

Hyperbolic Geometry and Brain. Hyperbolic geometry, a non-Euclidean geometry characterized
by negative curvature, offers significant advantages in handling hierarchical data (Nickel & Kiela,
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2018; Ratcliffe, 2006; Bridson & Haefliger, 2013; Chamberlain et al., 2017). Many cognitive func-
tions of the brain also exhibit clear bottom-up hierarchical structures (Joseph et al., 2024). Taking the
visual system as an example, fMRI signals under natural image stimulation clearly reveal the brain’s
hierarchical processing from pixels to meaning. This process involves an exponential expansion
of information, transitioning from local brain region activation for low-level features to distributed
network activities representing high-level semantics (Bill et al., 2020; Huff et al., 2018). Given this
inherent correspondence, we posit that employing hyperbolic space to describe these cognitive pro-
cesses is more natural and accurate than traditional Euclidean space. Inspired by this, we explore
the effectiveness of hyperbolic latent geometry in modeling the intrinsic hierarchical structure of the
brain and visual information in this work.

B PRELIMINARIES

In this section, we introduce concepts related to hyperbolic geometry briefly. Unlike Euclidean and
spherical spaces, hyperbolic space is characterized as a Riemannian manifold with constant negative
curvature. A key property of hyperbolic space is that the volume of its subregions increases exponen-
tially with their radius (Bridson & Haefliger, 2013). This characteristic makes hyperbolic geometry
particularly well-suited for studying and representing data that inherently possesses hierarchical or
tree-like structures (Krioukov et al., 2010). Among various models for hyperbolic space, we adopt
the Lorentz model (Nickel & Kiela, 2018; Mishne et al., 2023) as the foundational framework due
to its numerical stability and computational efficiency.

Lorentz Model. The Lorentz model defines a d-dimensional Riemannian manifold, denoted as Ld,
which is a d dimensional hyperboloid embedded within a d + 1-dimensional Minkowski space. It
is formally described as:

Ld =

{
x ∈ Rd+1 | ⟨x, x⟩L = −1

c
, x0 > 0

}
(14)

Here, c represents the curvature of the space, and ⟨., .⟩L is the Lorentzian inner product defined for
x, y ∈ Rd as:

⟨x, y⟩L = −x0y0 +

d∑
i=1

xiyi (15)

As established in (Chen et al., 2021), the 0-th element of vector x corresponds to the temporal di-
mension, while the remaining components constitute the spatial dimensions. Consistent with the
definition of Ld, the temporal component x0 is determined by its spatial counterpart xspace, specifi-
cally through the relationship:

xtime = x0 =

√
1

c
+ ∥xspace∥2 (16)

Where ∥ · ∥ denotes the Euclidean norm and xspace = x1:d.

Tangent Spaces. A tangent space at a point x ∈ Ld is a Euclidean space that is orthogonal to it,
defined as:

TxLd :=
{
y ∈ Rd+1 | ⟨y, x⟩L = 0

}
(17)

The tangent space at the origin O =
(√

1
c , 0, . . . , 0

)T
is denoted as TOLd.

Exponential Map. To perform operations within the hyperbolic space, we utilize the exponential
map, which projects vectors from the tangent space onto the hyperbolic manifold. Specifically, given
a vector a in the tangent space TxLd, its exponential map is implemented as:

expcx(a) = cosh(
√
c∥a∥L)x+

sinh(
√
c∥a∥L)√

c∥a∥L
a (18)

Logarithmic Map. Conversely, the logarithmic map facilitates the projection from the Lorentz
model back to the tangent space:

logcx(y) =
cosh−1(−c⟨x, y⟩L)√
(−c⟨x, y⟩L)2 − 1

(y + c⟨x, y⟩Lx) (19)
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Geodesics. In hyperbolic space, geodesics represent the shortest paths connecting two points, anal-
ogous to straight lines in Euclidean geometry. Within the Lorentz model, a geodesic is defined by
the intersection of a plane passing through the origin and the hyperboloid. The Lorentzian distance
between two points, x and y, is calculated as:

dL(x, y) =
1√
c
cosh−1(−c⟨x, y⟩L) (20)

Lorentzian Centroid. The Lorentzian centroid is defined in the hyperbolic space Ld by minimizing
the weighted squared Lorentzian distance, which yields the following expression:

µ =

∑m
i=1 wixi∣∣∥∑m
i=1 wixi∥L

∣∣ (21)

Here, xi ∈ Ld denotes a point in the hyperbolic space, and wi represents its corresponding non-
negative weight.

Lorentz MLR layer. This appendix provides the detailed computational formula for the Lorentz
classifier, which is crucial for multi-label prediction as discussed in the main text. The logits for
each category are yielded via the following formula:

logits(ULC
mid) = sign(α) · γ ·

(
√
cout ·

∣∣∣∣sinh−1

(
1

√
cout

· α
γ

)∣∣∣∣) (22)

Here, α is the projection of ULC
mid onto the hyperplane, γ is the Lorentz norm of the hyperplane’s

normal vector, and cout corresponds to output manifold curvature. The classifier undergoes training
using a cross-entropy loss function.

Hyperbolic Entailment Learning. This figure conceptually illustrates the entailment cone (shown
in yellow) in hyperbolic space, originating from an image embedding ILC

mid (Icat). It demonstrates
how an fMRI embedding ULC

mid (Fcat) falling within this cone represents a more specific neural
pattern, indicating its hierarchical relationship with the image’s generalized semantics. The cone’s
aperture angle defines the scope of this entailment, supporting our use of an entailment loss.

Figure 5: Intuitive examples of entailment loss and related concepts.

C EXPERIMENTAL DETAILS

In this section, we provide a comprehensive description of the experimental details. This includes
a thorough explanation of the datasets utilized, the specific training configurations employed, and
the implementation specifics for all downstream tasks. Furthermore, we detail the corresponding
evaluation benchmarks and metrics used to assess performance.
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C.1 DATASET AND PROCESSING

The Natural Scenes Dataset (NSD) (Allen et al., 2022) stands as the most extensive publicly acces-
sible functional magnetic resonance imaging (fMRI) dataset, encompassing high-resolution 7-Tesla
fMRI scans acquired from eight participants. However, this study utilizes data exclusively from a
subset of four participants (S1, S2, S5, S7). For the training set, each participant contributes 8,859
image stimuli and 24,980 fMRI trials. Conversely, the test set for each participant comprises 982
image stimuli and 2,770 fMRI trials. A crucial distinction is that the image stimuli in the training
set are unique to each participant, whereas the image stimuli in the test set are consistent across
all participants. Furthermore, owing to inherent variations in brain size and structure, the number
of voxels within regions of interest (ROIs) exhibits variability across participants, typically ranging
from approximately 13,000 to 16,000 voxels per participant. To facilitate a standardized analysis,
these fMRI signals undergo subsequent upsampling, ensuring a uniform voxel count of 18,000 for
all participants. Within the NSD, all images employed during fMRI recording originate from the
COCO dataset (Lin et al., 2014). The COCO dataset comprises a total of 80 distinct categories.
Each image viewed by participants contains multiple COCO labels. Specific category and label
information is detailed in Table 4.

Table 4: Statistical information of elements for ‘primary categories’ and ‘multi labels’ in NSD.

Category COCO Label

person person
vehicle bicycle, car, motorcycle, airplane, bus, train, truck, boat
outdoor traffic light, fire hydrant, stop sign, parking meter, bench
animal bird, cat, dog, horse, sheep, cow, elephant, bear, zebra, giraffe
accessory backpack, umbrella, handbag, tie, suitcase
sports frisbee, skis, snow board, sports ball, kite, baseball bat, baseball glove, skateboard, surfboard, tennis racket
kitchen bottle, wine glass, cup, fork, knife, spoon, bowl
food banana, apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake
furniture chair, couch, potted plant, bed, dining table, toilet
electronics tv, laptop, mouse, remote, keyboard, cell phone
appliance microwave, oven, toaster, sink, refrigerator
indoor book, clock, vase, scissors, teddy bear, hair drier, toothbrush

C.2 BASELINE COMPARISONS

To demonstrate the superiority of Lorentzian representations over Euclidean counterparts, we com-
pare HypBrain’s performance against existing SOTA methods in multi-label prediction and retrieval
tasks. Simultaneously, by evaluating HypBrain’s performance in both geometric spaces, we further
elucidate the superiority of hyperbolic representations. The VLMs employed in this study include
CLIP (Radford et al., 2021), BLIP-2 (Li et al., 2023), and DeepSeek-Janus-Pro (Chen et al., 2025b).

C.3 TRAINING CONFIGURATIONS

We employ a customized optimization strategy. Specifically, Euclidean parameters are optimized
using the AdamW optimizer (Loshchilov & Hutter, 2017), while hyperbolic parameters are updated
with the Riemannian Adam optimizer (Bécigneul & Ganea, 2018). Both parameter types are ini-
tialized with a learning rate of 2e-4, which adaptively decays based on validation performance, with
a weight decay coefficient of 0.1. Training is conducted on a single NVIDIA GeForce RTX 4090
GPU, utilizing a batch size of 32. The models are trained for 200 epochs for retrieval tasks and 100
epochs for classification tasks. The hyperparameter λ is set to 0.01.

C.4 MODEL CONFIGURATIONS

Our model uses a 512-dimensional Lorentz manifold for hyperbolic space transformation. The
number of tokens t for fMRI representations is adjusted according to the visual feature dimensions
extracted by the VLMs. Specifically, the image feature sizes extracted from the CLIP (Radford et al.,
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2021), BLIP-2 (Li et al., 2023), and DeepSeek-Janus-Pro (Chen et al., 2025b) image encoders are
257 × 1024, 257 × 1408. and 576 × 1024, respectively. The learnable curvature parameters, cmid

and cout, are initialized to 1 and 2, respectively, and are constrained within the range [0.1,10] to
prevent training instability. Conversely, cin is a fixed curvature parameter with a value of 1. The
temperature parameter τ is initialized to 0.07 and clamped at 0.01. All these scalar values are learned
in logarithmic space.

C.5 EVALUATION METRIC

C.5.1 MULTI-LABEL PREDICTION

The multi-label semantic classification task seeks to simulate the brain’s coarse-to-fine multi-level
semantic understanding in visual cognition, leading to richer and more accurate image descriptions.
We employ three commonly used evaluation metrics in the field of multi-label classification: mean
Average Precision (mAP), the area under the receiver operating characteristic curve (AUC) and
Hamming distance.

mAP. mAP evaluates the average precision across all labels in a multi-label classification task. It
reflects the model’s overall performance in ranking predictions correctly.

AUC. AUC measures the model’s ability to discriminate between classes for each label in both
binary and multi-label classification tasks. A higher value, approaching 1, indicates better perfor-
mance.

C.5.2 BRAIN-IMAGE RETRIEVAL

Retrieval is to search for pertinent results in response to a provided query from a large database, often
considered as a form of fine-grained, instance-level classification. We adopt accuracy as the primary
evaluation metric. For each test sample, we randomly select 299 images from the remaining 981
images in the test set and calculate the negative Lorentz distance between the voxel embeddings and
300 images. The retrieval accuracy refers to the proportion of successful retrieval of corresponding
images in the 982 voxel embeddings of the test set. We adjust the random number seed of 30
randomly selected images to average the accuracy of all samples.

D ADDITIONAL EXPERIMENTS

This section comprehensively demonstrates the superiority of HypBrain through additional experi-
ments, presenting both quantitative and qualitative results.

D.1 MULTI-LABEL PREDICTION

Figure 6 presents the qualitative prediction results of HypBrain. The model exhibits varying perfor-
mance when predicting different labels for Subject 1 (S1). Specifically, labels with relatively higher
frequencies in visual responses, such as “person”, “clock”, and “sink” achieve high average preci-
sion scores of 96.2%, 51.6%, and 74.0%, respectively. Conversely, labels with lower frequencies,
including “toaster”, “hair dryer”, and “parking meter” show comparatively lower average precision
scores of 3.6%, 2.5%, and 1.7%. Furthermore, Table 5 provides a detailed overview of the classi-
fication results for all subjects (S1, S2, S5, and S7) across different geometric spaces, highlighting
the significant superiority of the hyperbolic representation space. Figure 7 additionally illustrates
the results of three evaluation metrics for different subjects using the HypBrain method. It is evi-
dent that different subjects demonstrate high consistency in multi-label prediction capabilities, with
a difference in AUC scores of less than 1.8%. This further indicates the robust and generalizable
nature of our model for multi-label prediction tasks.

D.2 BRAIN-IMAGE RETRIEVAL

To evaluate the performance of the HypBrain framework in retrieval tasks, we conduct experiments
on four subjects (S1, S2, S5, and S7), and the results are presented in Table 6. We compare sev-
eral variants of HypBrain with two prominent methods: MindEye (Scotti et al., 2023), and Lite-
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Figure 6: Multi-label prediction metrics for Subject 1 across 80 labels from the NSD.

Table 5: Quantitative comparison of HypBrain multi-label prediction performance across all subjects
and embedding spaces.

Manifold Subject mAP ↑ AUC ↑ Hamming ↓

Euclidean

S1 0.278 0.916 0.026
S2 0.268 0.916 0.027
S5 0.305 0.926 0.026
S7 0.263 0.912 0.027

Hyperbolic

S1 0.370 0.928 0.026
S2 0.345 0.925 0.026
S5 0.398 0.939 0.026
S7 0.342 0.921 0.027

Mind (Gong et al., 2024). The experimental results demonstrate that the HypBrain method exhibits
competitive performance in both image and brain retrieval accuracy across different subjects. To
further investigate the influence of different embedding spaces on retrieval performance, Table 7 il-
lustrates the retrieval performance of various subjects within distinct embedding spaces. The results
consistently indicate the superiority of hyperbolic geometry over Euclidean space for these tasks.
Importantly, the consistent strong performance across different HypBrain variants underscores the
versatility and robustness of our proposed framework.

Figure 8 illustrates the retrieval results for both MindEye (Scotti et al., 2023) and our proposed
HypBrain-DeepSeek method on Subject 5 (S5). The upper panel displays the reference image along
with the Top-5 retrieved images from the image retrieval task, while the lower panel presents the
Top-5 results for brain retrieval. Furthermore, Figure 9 details the Top-1 retrieval performance
across different subjects for both retrieval tasks. Consistent with our quantitative analysis, subjects
S1, S2, and S5 achieve high Top-1 accuracy in both image and brain retrieval. Although Subject S7
exhibits slightly lower performance compared to other subjects, this does not diminish the strong
generalization capabilities demonstrated by our method.

D.3 VISUALIZATION OF HYPERBOLIC SPACE

We present low-dimensional visualizations of the hyperbolic spaces learned by two additional Hyp-
Brain model variants: HypBrain-CLIP and HypBrain-BLIP-2. These visualizations are depicted in
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Figure 7: Comparison of multi-label prediction performance of the HypBrain method across differ-
ent subjects.

Table 6: Quantitative comparison of the retrieval performance of HypBrain against SOTA methods
across all subjects. * denotes a subject-specific model.

Method Subject Image ↑ Brain ↑
MindEye*

S1

97.2% 94.7%
MindEye (Backbone + Projector)* 88.8% 84.9%
Lite-Mind* 94.6% 97.4%
HypBrain-CLIP 78.7% 79.6%
HypBrain-BLIP-2 88.1% 85.8%
HypBrain-DeepSeek 90.2% 89.0%

MindEye*

S2

97.1% 93.9%
Lite-Mind* 94.1% 98.2%
HypBrain-CLIP 76.8% 74.0%
HypBrain-BLIP-2 84.4% 85.5%
HypBrain-DeepSeek 89.4% 88.4%

MindEye*

S5

90.7% 85.7%
Lite-Mind* 80.5% 86.3%
HypBrain-CLIP 80.5% 81.5%
HypBrain-BLIP-2 89.5% 89.3%
HypBrain-DeepSeek 91.5% 92.7%

MindEye*

S7

89.4% 85.9%
Lite-Mind* 81.7% 82.3%
HypBrain-CLIP 69.7% 69.9%
HypBrain-BLIP-2 79.2% 79.2%
HypBrain-DeepSeek 80.2% 79.7%

Figure 10. Consistent with our observations in Figure 3, the image embeddings in both variants
tend to cluster closer to the center of the hyperbolic space, while the fMRI embeddings are dis-
tributed in more peripheral regions. This pattern suggests that the effective learning of partial order
relationships among different concepts remains robust, even when alternative pretrained models are
employed for extracting image features. Furthermore, both HypBrain-CLIP and HypBrain-BLIP-2
demonstrate clear semantic separation and hierarchical structures within their respective image and
fMRI embedding spaces. This consistency underscores the generalizability of our proposed method
in capturing semantic associations across diverse multi-modal data.

D.4 CROSS-SUBJECT GENERALIZATION ANALYSIS

A notable advantage of the HypBrain method is its ability to generalize effectively to unseen sub-
jects. This means our model can learn efficiently and perform well even with limited data from
entirely new participants. This capability is crucial given the inherent challenges and high costs
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Table 7: Retrieval performance comparison across Euclidean (EucBrain-) and Hyperbolic
(HypBrain-) embedding spaces and methods for all subjects.

Manifold Method Subject Image ↑ Brain ↑

Euclidean
EucBrain-CLIP

S1
70.6% 77.4%

EucBrain-BLIP-2 87.0% 77.0%
EucBrain-DeepSeek 83.1% 81.3%

Hyperbolic
HypBrain-CLIP

S1
78.7% 79.6%

HypBrain-BLIP-2 88.1% 85.8%
HypBrain-DeepSeek 90.2% 89.0%

Euclidean
EucBrain-CLIP

S2
65.6% 74.1%

EucBrain-BLIP-2 86.1% 72.8%
EucBrain-DeepSeek 81.6% 76.4%

Hyperbolic
HypBrain-CLIP

S2
76.8% 74.0%

HypBrain-BLIP-2 84.4% 85.5%
HypBrain-DeepSeek 89.4% 88.4%

Euclidean
EucBrain-CLIP

S5
57.3% 67.2%

EucBrain-BLIP-2 82.7% 69.9%
EucBrain-DeepSeek 78.1% 72.6%

Hyperbolic
HypBrain-CLIP

S5
80.5% 81.5%

HypBrain-BLIP-2 89.5% 89.3%
HypBrain-DeepSeek 91.5% 92.7%

Euclidean
EucBrain-CLIP

S7
55.6% 63.1%

EucBrain-BLIP-2 75.8% 64.3%
EucBrain-DeepSeek 69.6% 67.1%

Hyperbolic
HypBrain-CLIP

S7
69.7% 69.9%

HypBrain-BLIP-2 79.2% 79.2%
HypBrain-DeepSeek 80.2% 79.7%

associated with fMRI data acquisition, as it significantly reduces the reliance on extensive data sam-
pling from new subjects. To validate this generalization ability, we employ a strategy similar to
the main experiments. We first pretrained the model on fMRI datasets from three subjects to learn
universal brain activity patterns. Subsequently, we fine-tuned this pretrained model using varying
proportions of data (ranging from 10% to 100%) from other subjects. This approach allows us to
observe the model’s generalization performance at the individual subject level. Figure 11 and Figure
12 visually illustrate the model’s cross-subject generalization capabilities. They detail the model’s
performance under two conditions: one where the universal hyperbolic encoder is frozen, and an-
other where it is fine-tuned. Consistent with the generalization observed for subject S7 in the main
text, our tests on subjects S1, S2, and S5 also demonstrate that the fine-tuning approach achieves
performance comparable to the HypBrain-DeepSeek model trained with the complete dataset, using
only 50% of the data. This outcome further underscores the significant superiority of our cross-
subject strategy, indicating that the HypBrain model not only learns effectively from limited data
but also maintains strong generalization ability and robustness across different individuals.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this paper, a Large Language Model (LLM) is utilized as a general-purpose
assist tool, primarily for polishing and optimizing the writing. The LLM assists in improving the
text’s grammar, spelling, sentence structure, and overall fluency.
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Figure 8: Retrieval examples of (a) MindEye (Scotti et al., 2023) and (b) HypBrain-DeepSeek from
NSD for Subject 5. The image retrieval (top) is to find the correct image embedding given a brain
embedding. Conversely, the brain retrieval (bottom) aims to locate the correct brain embedding
given an image embedding.
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Figure 9: Sample Top-1 retrieval results for different subjects using the cross-subject HypBrain-
DeepSeek method. The top section of the figure displays image retrieval results, while the bottom
section shows brain retrieval results.
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Figure 10: Visualization of the learned hyperbolic spaces across various HypBrain model variants.
The top row represents the HypBrain-CLIP model, and the bottom row represents the HypBrain-
BLIP-2 model.
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Figure 11: Cross-subject generalization of HypBrain-DeepSeek on unseen subjects in the retrieval
task.
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Figure 12: Cross-subject generalization of HypBrain-DeepSeek on unseen subjects in the multi-
label prediction task.
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