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Abstract

We present ReHub, a novel graph transformer architecture that achieves linear complex-
ity through an efficient reassignment technique between nodes and virtual nodes. Graph
transformers have become increasingly important in graph learning for their ability to uti-
lize long-range node communication explicitly, addressing limitations such as oversmoothing
and oversquashing found in message-passing graph networks. However, their dense atten-
tion mechanism scales quadratically with the number of nodes, limiting their applicability
to large-scale graphs. ReHub draws inspiration from the airline industry’s hub-and-spoke
model, where flights are assigned to optimize operational efficiency. In our approach, graph
nodes (spokes) are dynamically reassigned to a fixed number of virtual nodes (hubs) at each
model layer. Recent work, Neural Atoms (Li et al., 2024), has demonstrated impressive and
consistent improvements over GNN baselines by utilizing such virtual nodes; their findings
suggest that the number of hubs strongly influences performance. However, increasing the
number of hubs typically raises complexity, requiring a trade-off to maintain linear com-
plexity. Our key insight is that each node only needs to interact with a small subset of
hubs to achieve linear complexity, even when the total number of hubs is large. To leverage
all hubs without incurring additional computational costs, we propose a simple yet effec-
tive adaptive reassignment technique based on hub-hub similarity scores, eliminating the
need for expensive node-hub computations. Our experiments on long-range graph bench-
marks indicate a consistent improvement in results over the base method, Neural Atoms,
while maintaining a linear complexity instead of O(n3/2). Remarkably, our sparse model
achieves performance on par with its non-sparse counterpart. Furthermore, ReHub outper-
forms competitive baselines and consistently ranks among the top performers across various
benchmarks.

1 Introduction

Learning on graphs is essential in numerous domains, including social networks for influence prediction, bio-
logical networks for understanding protein interactions, molecular graphs for predicting chemical properties,
knowledge graphs for recommendation systems, and financial networks for fraud detection and risk assess-
ment. Graph neural networks (GNNs) have emerged as powerful tools in these areas, operating via message
passing between connected nodes. However, a significant challenge with GNNs is their limited communica-
tion range. While stacking message-passing layers can increase the communication distance, it comes at a
computational cost and can cause issues such as oversmoothing and oversquashing (Alon & Yahav, 2020;
Topping et al., 2021).

Inspired by the success of transformers in natural language processing (Vaswani et al., 2017), graph trans-
formers offer a solution by enabling global node communication through attention mechanisms (Dwivedi
& Bresson, 2020; Shehzad et al., 2024). This overcomes the communication bottlenecks of GNNs, but it
comes at a significant computational cost. The quadratic complexity of dense attention operations limits the
scalability of graph transformers, as even modest-sized graphs can exhaust GPU memory. Several methods
have been suggested to reduce the complexity of global attention. For example, GraphGPS (Rampášek
et al., 2022) combines sparse attention mechanisms like Performer (Choromanski et al., 2020) or Big Bird
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(Zaheer et al., 2020). Originally designed for processing sequences rather than graph structure, these linear-
memory transformers induce significant computational time and do not match the performance of dense
attention (Shirzad et al., 2023).

Recently, transformer-based graph networks have utilized the addition of virtual global nodes, through which
graph nodes communicate to sparsify the attention. By constraining the attention to be between the graph
nodes and these virtual nodes, the attention complexity is reduced to the number of nodes times the number
of virtual nodes, allowing the overall complexity to be governed by the number of virtual nodes. Exphormer
(Shirzad et al., 2023) maintains linear complexity by using a fixed number of virtual nodes, while Neural
Atoms (Li et al., 2024) explores both a fixed number and a ratio relative to the number of nodes. An
important finding in Neural Atoms is that adding more virtual nodes increases prediction accuracy, creating
a trade-off between computational complexity and accuracy.

In this work, we introduce ReHub, a novel graph transformer architecture that achieves linear complexity by
dynamically reassigning graph nodes to virtual nodes. We are inspired by complex systems where efficient
connectivity and adaptability are crucial for optimal performance. A pertinent example is the airline industry,
where flights are dynamically assigned to a limited number of major airports (hubs) to optimize operational
efficiency. We identify the graph nodes with spokes and the virtual nodes with hubs. The key insight of our
approach stems from noting that the transformer’s complexity is driven by spoke-hub attention. Therefore,
it is not necessary to reduce the total number of hubs to achieve linear complexity; instead, using a fixed,
small number of connected hubs per spoke is sufficient. To effectively utilize all hubs without increasing
computational cost, we introduce a simple yet efficient adaptive reassignment mechanism. In order to so
and yet avoid the costly computation the entire set of spoke-hub interactions, our reassignment mechanism
is based on hub-hub similarity scores, which are cheap to compute.

In summary, then, our primary contribution is a novel graph transformer architecture that integrates global
attention with an efficient spoke-hub reassignment strategy, significantly enhancing scalability while main-
taining performance. Our experiments on long-range graph benchmarks indicate a consistent improvement
in results over the base method, Neural Atoms, while keeping a linear complexity instead of O(n3/2). Re-
markably, our sparse model achieves performance on par with its non-sparse counterpart. Furthermore,
ReHub outperforms competitive baselines and consistently ranks among the top performers across various
benchmarks.

2 Related work

Learning on large graphs Graph learning architectures are a well-established and highly active field of
research (Wu et al., 2020). Common GNNs, such as GCN/GCN2 (Kipf & Welling, 2016; Chen et al., 2020),
GAT/GATv2 (Velickovic et al., 2017; Brody et al., 2021), GIN/GINE (Xu et al., 2018; Hu et al., 2019), and
GatedGCN (Bresson & Laurent, 2017), rely on a message-passing architecture that aggregates information.
In each layer every graph node updates its representation by aggregating the neighboring nodes. This archi-
tecture inherently limits their ability to accumulate information over large distances due to phenomena such
as over-smoothing (Alon & Yahav, 2020), where node representations become indistinguishable, and over-
squashing (Topping et al., 2021) , where the capacity to propagate information is restricted by bottlenecks.
Consequently, learning on large graphs remains a persistent challenge (Duan et al., 2022). To address this
issue, some methods focus on reducing the memory footprint. One approach involves dividing graphs into
mini-batches (Wu et al., 2024), while another uses only segments of the graph for training (Cao et al., 2024).

Transformer architectures have recently gained popularity for graph-based tasks (Müller et al., 2023). These
methods address the over-smoothing and over-squashing issues by enabling all nodes to interact with each
other through attention (Velickovic et al., 2017; Ying et al., 2021). However, this approach is computa-
tionally inefficient, with quadratic time and memory consumption in the number of nodes. To mitigate
these inefficiencies, more efficient transformer architectures have emerged which utilize different approaches
to reduce the number of computations such as approximations in Performer (Choromanski et al., 2020),
predefined attention patterns in BigBird (Zaheer et al., 2020) and better parallelism and partitioning in
FlashAttention (Dao et al., 2022). GraphGPS (Rampášek et al., 2022) proposes a general framework for
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combining message-passing neural networks (MPNNs) with attention at each layer, facilitating the use of
such attention mechanisms.

Recent works have introduced approaches that leverage the structure and inherent information of the graph,
such as tokenization of hops of node’s neighbors in NAGphormer and applying structure-preserving attention
on encoded sequences of sub-graphs in Gophormer (Chen et al., 2022; Zhao et al., 2021). Some of these works
ensure that the computational complexity remains linear in the number of nodes (Shirzad et al., 2023; Chen
et al., 2022; Wu et al., 2024; 2022) which allows them to be applied to larger graphs. We also propose a
linear complexity architecture that passes nodes’ information through a medium that efficiently orchestrates
the passage of information in the graph and between nodes.

Finally, we note that recently, State Space Models (SSMs) (Gu & Dao, 2023) have emerged as a promising
approach for efficiently processing large sequences, with their adaptation to graphs showing notable results
(Wang et al., 2024; Behrouz & Hashemi, 2024). However, in this work, we focus on transformer-based
architectures, which remain the current go-to approach.

Virtual nodes The concept of virtual nodes involves introducing new external nodes that interact with the
graph to facilitate information exchange between existing nodes (Gilmer et al., 2017). Recent studies (Shirzad
et al., 2023; Cai et al., 2023; Hwang et al., 2022) utilize this concept to extend the graph’s capability to
capture long-range information through message-passing. Other research explores the integration of virtual
nodes within the context of transformers (Shirzad et al., 2023; Li et al., 2024; Fu et al., 2024). Similarly, we
use virtual nodes that communicate with both each other and the graph nodes through attention. However,
unlike prior methods, we dynamically update the connectivity between the virtual nodes and graph nodes
at each layer, enhancing the flow of information.

3 Method

3.1 Pipeline overview

Our proposed architecture, depicted in Figure 1, is aimed at handling long-range graph node communication
while maintaining computational efficiency. This is implemented through hubs, that act as information
aggregators and distributors from and to the spokes. This allows for long range communication to be
manifested as hub-hub communication. ReHub is carefully designed to follow our key observation that the
complexity can be kept linear as long as: (1) the number of hubs Nh is kept small enough, on the order of√

Ns, where Ns is the number of spokes; and (2) k, the number of hubs connected to each spoke per layer,
is a small constant (e.g., k = 3).

In what follows we describe the architecture of ReHub, define every component and the interaction between
spokes and hubs. First we present an overview of the notation. Then we present an initialization scheme for
the hubs and explain each part of the architecture: (1) Spokes-Spokes update (2) Spokes-Hubs update (3)
Hubs-Hubs update (4) Hubs-Spokes update (5) Hub (Re)Assignment. Finally, we show that the complexity
given by this architecture is linear in the number of nodes.

3.2 Notation

Spokes and Hubs. Throughout this paper, we refer to the graph nodes as “spokes” 1 and the added
virtual nodes as “hubs”. The number of spokes is Ns, and they are indexed with is = 1, . . . , Ns. Each spoke
has features represented by sis ∈ Rd, with the collection of all spoke features denoted by s. Similarly, the
number of hubs is denoted by Nh, and they are indexed by ih = 1, . . . , Nh. Each hub has features represented
by hih

∈ Rd, and the collection of all hub features is denoted by h. The binary matrix E ∈ {0, 1}Ns×Nh ,
referred to as the hub assignment matrix, indicates which spokes are connected to which hubs:

Eis,ih
=

{
1 if spoke is is connected to hub ih

0 otherwise
s.t. E 1Nh

= k · 1Ns
, (1)

1In this work, we use “spokes” to represent graph nodes, deviating from the more common usage where “spokes” refer to
edges.
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Figure 1: Illustration of ReHub architecture. (1) Overview of the different steps in the architecture. A is
the input (spoke) graph’s adjacency matrix; spoke features s; hub features h; hub assignment E; and Γ
contains attention scores from the Hubs-Spokes attention. (2) Hubs initialization. Spokes are first clustered,
then each cluster is aggregated to compute hub features. Finally, each spoke is assigned more hubs. (3)
Hub (Re)Assignment. A spoke connected to k hubs updates its hub assignment to the k hubs closest to the
hub most similar to it. (4) Illustration of connectivity between spokes and hubs. Information pass between
spokes with an MPNN; while the interaction between hubs and spokes is performed via attention and only
through available connections Eisih

. The hubs pass information between themselves via full self-attention.

where 1N denotes an all-ones column vector of length N . Namely, a given spoke is connected to exactly k
hubs, where k = O(1). E can be implemented as a sparse assignment matrix. Finally, where relevant the
network layer is denoted using a superscript.

Bipartite graph attention. In our pipeline we utilize graph attention (Brody et al., 2021) between spokes
and hubs that interchangeably act as source and target graphs. The definition is as follows:

O , Γ = Attention (K, Q, E) , (2)

where the input consists of source graph nodes K ∈ Rnk×d, destination graph nodes Q ∈ Rnq×d, and a hub
assignment E ∈ {0, 1}nk×nq containing the connections between the nodes of the source graph with those of
the destination graph. The outputs are the per-node updated features O ∈ Rnq×d of the destination graph.
We optionally output the sparse attention scores Γ ∈ Rnk×nq , computed for the non-zero entries of E. For
a non-bipartite graph the same formalism can be applied by taking K = Q, enabling self-attention within
the graph.

3.3 Initialization

We initiate ReHub by creating Nh = r
√

Ns hubs, where r is the hub-ratio, set to 1 in almost all benchmarks.
To populate the hubs features with meaningful values we compute them based on (i) clustering the input
graph (i.e. the graph of spokes), specified by the adjacency matrix A, and (ii) aggregating the spoke features
s. We then assign each spoke to k hubs. This process is illustrated in module (2) of Figure 1.

Clustering. We partition the graph A, along with its spoke features s, into Nh clusters using METIS
(Karypis & Kumar, 1998). This method takes as input an adjacency matrix between spokes A as well as
the desired number of clusters Nh; and returns as output a cluster index for each spoke. We denote each
cluster as Cih

, where a spoke belongs to a cluster if is ∈ Cih
.
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Hub features. For each cluster Cih
, we compute the initial hub features. For hub-cluster ih, we aggregate

the spoke features as follows:
h0

ih
= Aggregate-Feat({s0

is
}is∈Cih

) (3)

There are several options for the Aggregate-Feat function. For categorical or ordinal variables (e.g., , atom
type), one may compute a histogram. For continuous variables, one may compute the average. In our case,
we choose to average the features after the nodes have passed through a positional encoding layer followed
by a feedforward layer.

In Section 4.3, we compare our initialization scheme with those proposed in previous works and demonstrate
that it significantly improves performance.

Hub assignment. We aim to connect each spoke with a total of k hubs. Since each spoke sis
, already has

a single connection to a hub hih
as a result of the clustering, we assign the remaining k − 1 hub connections

for each spoke, by selecting the hubs closest to hih
in terms of feature similarity. The assignment procedure

is detailed in Section 3.4. This step results in the spoke-to-hub initial assignment matrix E0
s→h.

3.4 Long-range spoke update layer

A key component of ReHub’s architecture is the long-range spoke update layer, which leverages both
the spoke graph and the connections between spokes and hubs. Specifically, to maintain efficiency, we
avoid global spoke-to-spoke attention operations by using local message passing and global spoke-to-hub
operations. We further keep the spoke-to-hub attention efficient by restricting the hub connectivity of
spokes to a small constant number of hubs, k. Long-range information flow between spokes occurs through
hub-to-hub communication, which is made efficient by selecting a number of hubs proportional to the square
root of the number of spokes. This relaxes the restriction imposed by previous graph transformer methods
(Shirzad et al., 2023), which limited the number of hubs to a small constant. This layer is repeated L times
throughout the network. Each layer ℓ consists of five steps, as shown in Figure 1, which we describe in detail
below.

(1) Spokes → Spokes: For the local spoke update using the neighboring nodes in the graph:

sℓ+ 1
2 = MPNN(sℓ), (4)

where MPNN is a single layer of a message-passing neural network. Since this operation is restricted to the
1-ring neighborhood, it remains efficient. Notably, any type of message-passing scheme can generally be
integrated into our pipeline.

(2) Spokes → Hubs: Given the updated spokes, we update the hubs using the assignment matrix. Since
each spoke is connected to exactly k hubs, the operation is sparse and memory efficient.

hℓ+ 1
2 = Attention(sℓ+ 1

2 , hℓ, Eℓ
s→h) (5)

(3) Hubs → Hubs: The hubs now interact using self-attention. Even though the connectivity Efull is
dense, the overall number of hubs is kept on the order of

√
Ns, ensuring overall linear complexity.

hℓ+1 = Attention(hℓ+ 1
2 , hℓ+ 1

2 , Efull) (6)

(4) Hubs → Spokes: Given the hubs, we update the spokes:

sℓ+1, Γℓ+1 =Attention(hℓ+1, sℓ+ 1
2 , Eℓ

h→s) Γℓ+1 is Ns × Nh (7)

where the matrix Eℓ
h→s =

(
Eℓ

s→h

)T , assuring the same efficiency as the Spokes → Hubs step.

(5) Hub (Re)Assignment: While restricting each spoke to connect with k hubs maintains efficiency, for
the method to achieve its full potential, it should utilize all available hubs. We achieve this by keeping only
k connected hubs per spoke at each layer, while allowing each spoke to reassign k − 1 of its hubs before
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proceeding to the next layer2. The reassignment is based on spoke-hub similarity. Selecting the hubs closest
to each spoke, however, would require Ns × Nh computations. To avoid this, we leverage the distances
between hubs, which are efficient to compute.

We then retain the hub most similar to each spoke from the sparse set of connected hubs, replacing the
remaining k − 1 hubs with those closest to it. This procedure is outlined in Algorithm 1. The matrix of
distances between all hub features is denoted by ∆. Naturally, a hub is closest to itself and would be selected
first. Additionally, we use Γ, the attention score matrix, to identify, for each spoke, the most similar hub to
which it is connected.

Algorithm 1 Hub (Re)Assignment
Require: Hub-Spoke cross-attention score matrix Γℓ+1 and Hub-Hub distance matrix ∆ℓ+1

for ih = 1 to Nh do
H(ih) = Bottom-k-Indices(row ih of ∆ℓ+1)

end for
for is = 1 to Ns do

i∗
h = arg maxih

Γℓ+1
isih

Eℓ+1
isih

=
{

1 if ih ∈ H(i∗
h)

0 otherwise
end for
return Eℓ+1

Final prediction. The pipeline concludes with a task-specific prediction head. In this work, we demon-
strate tasks such as graph classification, regression, node classification, and link prediction. These prediction
heads use an MLP on the final spoke feature predictions, sL, with further aggregation for graph-level tasks.
For link prediction, the pipeline computes a similarity score for every pair of nodes connected by an edge.

Complexity Recall that sparse attention is used, where multiplications are performed only between spokes
and the k hubs to which they are connected. The resulting time and memory complexity for each Spokes-to-
Hubs interaction step is O(Nsk), and for the Hubs self-attention step, it is O(N2

h). By taking Nh = O(
√

Ns)
and k = O(1), we achieve linear complexity in the total number of spokes Ns, as desired.

4 Experiments

Methods in comparison. We compare ReHub against leading graph transformer based methods.
GraphGPS (Rampášek et al., 2022) offers a framework to integrate MPNNs of different types (Kipf &
Welling, 2016; Chen et al., 2020; Hu et al., 2019; Bresson & Laurent, 2017) and transformers. Transformer
indicates a straightforward adaptation of the standard transformer architecture Vaswani et al. (2017) to
graphs. Spectral Attention Networks (SAN) (Kreuzer et al., 2021) employ attention on the fully connected
graph in addition to graph attention using the original edges. Closest to our method is Neural Atoms (Li et al.,
2024) which utilizes a set of different, learned, virtual nodes at each layer. Neural Atoms is able to propagate
long-range information, improve performance across various tasks and can be modularly applied to different
MPNNs. As opposed to Neural Atoms, in this work we aim to tackle the efficiency aspect, i.e. to maintain
linear complexity in the number of nodes in a graph without a loss of performance. Exphormer (Shirzad
et al., 2023) introduces a transformer architecture that achieves linear computational complexity by leverag-
ing expander graphs (Alon, 1986) to define sparse attention patterns. In this model, each node attends only
to a fixed number of neighbors specified by a fixed expander graph, and a few global virtual nodes connected
to all nodes are used to capture global context. In contrast, our proposed method ReHub employs a dynamic
model where virtual nodes (hubs) are connected to subsets of nodes (spokes) rather than to all nodes. ReHub
allows for rewiring connections between layers, enhancing adaptability while avoiding bottlenecks associated
with fully connected global nodes, all while maintaining linear computational complexity.

2We note that, although we replace k − 1 hubs while keeping the closest hub connected, in later layers, that closest hub may
change. This flexibility prevents us from being overly constrained by the initial hub selection.
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Datasets. Due to lack of large scale datasets that explicitly benchmark long-range capabilities we divide
the evaluation to (1) long-range communication ability and (2) large graphs to verify memory efficiency.
For long-range communication we evaluate ReHub on the long-range graph benchmark (LRGB) which is is
widely used to evaluate methods which aim at overcoming issues such as oversmoothing and oversquashing.
LRGB comprises five datasets. Two of the datasets are image-based graph datasets: PascalVOC-SP and
COCO-SP which contain superpixel graphs of the well known image segmentation datasets PascalVOC
and COCO. The latter three datasets are molecular datasets: Peptides-Func, Peptides-Struct and PCQM-
Contact, which require the prediction of molecular interactions and properties that require global aggregation
of information. For evaluation on large graphs we show results on graph datasets of citation networks:
OGBN-Arxiv and Coauthor Physics which include about 170K and 30K nodes respectively, with the task
of node class prediction. Additionally, we evaluate peak memory consumption on a custom dataset of large
random regular graphs (Steger & Wormald, 1999; Kim & Vu, 2003) of gradually increasing sizes from 10K
to 700K nodes. Additional statistics about the datasets is available in Appendix A.1

Metrics and evaluation. We evaluate our models using several metrics: Average Precision (AP), Mean
Absolute Error (MAE), Mean Reciprocal Rank (MRR), F1 Score, and Accuracy. These are standard metrics
and we refer to Dwivedi et al. (2022) for more details. For the evaluation of ReHub, we report the mean ±
std over 5 runs, each with a different random seed.

Hardware. All experiments were performed using one NVIDIA L40 GPU with 48GB of memory.

4.1 Long-range graph benchmark

A major challenge in graph learning is long range communication – scenarios where the prediction relies
on information residing at far location of the graph. In this experiment, we evaluate ReHub on a set of
such tasks provided by the LRGB dataset. We split the comparison in two, first establishing the modularity
of ReHub by integrating it with various MPNN layers; we then follow with a comparison against leading
methods.

MPNN modularity. Similar to Neural Atoms, which improves performance across various MPNNs,
ReHub is equally modular. In Table 1, we present a comparison of ReHub using several common MPNNs.
Results are shown for both the sparse case—where the number of hubs connected to each spoke per layer, k, is
small—and a dense variant, ReHub-FC, where each spoke is fully connected to all hubs. The performance of
both the sparse and dense configurations is compared to Neural Atoms as well the vanilla MPNN technique,
demonstrating significant improvements across datasets and MPNNs. Interestingly, we observe that the
performance of Neural Atoms is strongly affected by the base MPNN used. e.g., for Peptides-func the final
AP ranges between 0.60 and 0.66, while ReHub demonstrates increased robustness ranging between 0.64 and
0.67. Remarkably, thanks to our reassignment procedure, which promotes high utilization of all hubs, our
sparse version achieves performance comparable to the dense version.

Comparison with baselines. In Table 2 we present a comparison between our ReHub using the best per-
forming MPNN and state of the art methods on the LRGB benchmark. As can be seen, ReHub consistently
scores among the top two methods.

4.2 Performance on large graphs

Peak memory vs. graph size. Our method demonstrates linear memory complexity. To showcase this in
practice, we compare the peak memory consumption of our approach to other methods on graphs of varying
sizes. Since no existing benchmark offers a collection of gradually growing graph sizes we instead construct
a series of toy graphs with sizes varying between 10K and 700K. The graphs are d-regular (i.e. each node
has d neighbors), and are populated with random node features and edge attributes. In this experiment,
we set d = 3. To keep the comparison fair, for all methods we used similar parameters like the number of
layers and hidden dimension. A detailed description of the used parameters is provided in Appendix A.2.
For Neural Atoms, we follow the guidelines provided in the paper and use a ratio of 0.1 for the number of
virtual nodes. As this ratio results in an asymptotic complexity of O(N2

s ) we additionally include results
for Neural Atoms with Nh =

√
Ns for a more memory efficient version reaching O(N3/2

s ). For Exphormer,
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Table 1: MPNN modularity. Test performance on datasets from the long-range graph benchmarks
(LRGB) (Dwivedi et al., 2022) compared on various GNN types to Neural Atoms (Li et al., 2024). ReHub-
FC has each spoke fully connected to all hubs. Best results are colored: first, second.

Model Peptides-func Peptides-struct PCQM-Contact
AP ↑ MAE ↓ MRR ↑

GCN 0.5930 ± 0.0023 0.3496 ± 0.0013 0.2329 ± 0.0009
+ NeuralAtoms 0.6220 ± 0.0046 0.2606 ± 0.0027 0.2534 ± 0.0200
+ ReHub-FC 0.6663 ± 0.0053 0.2489 ± 0.0011 0.3492 ± 0.0012
+ ReHub 0.6656 ± 0.0043 0.2497 ± 0.0021 0.3469 ± 0.0014
GCN2 0.5543 ± 0.0078 0.3471 ± 0.0010 0.3161 ± 0.0004
+ NeuralAtoms 0.5996 ± 0.0033 0.2563 ± 0.0020 0.3049 ± 0.0006
+ ReHub-FC 0.6427 ± 0.0085 0.2511 ± 0.0015 0.3386 ± 0.0026
+ ReHub 0.6406 ± 0.0030 0.2530 ± 0.0029 0.3375 ± 0.0013
GINE 0.5498 ± 0.0079 0.3547 ± 0.0045 0.3180 ± 0.0027
+ NeuralAtoms 0.6154 ± 0.0157 0.2553 ± 0.0005 0.3126 ± 0.0021
+ ReHub-FC 0.6682 ± 0.0098 0.2506 ± 0.0012 0.3426 ± 0.0014
+ ReHub 0.6582 ± 0.0095 0.2514 ± 0.0056 0.3429 ± 0.0014
GatedGCN 0.5864 ± 0.0077 0.3420 ± 0.0013 0.3218 ± 0.0011
+ NeuralAtoms 0.6562 ± 0.0075 0.2585 ± 0.0017 0.3258 ± 0.0003
+ ReHub-FC 0.6732 ± 0.0107 0.2501 ± 0.0034 0.3526 ± 0.0014
+ ReHub 0.6685 ± 0.0074 0.2512 ± 0.0018 0.3534 ± 0.0014
GatedGCN+RWSE 0.6069 ± 0.0035 0.3357 ± 0.0006 0.3242 ± 0.0008
+ NeuralAtoms 0.6591 ± 0.0050 0.2568 ± 0.0005 0.3262 ± 0.0010
+ ReHub-FC 0.6690 ± 0.0025 0.2490 ± 0.0075 0.3523 ± 0.0012
+ ReHub 0.6653 ± 0.0054 0.2488 ± 0.0017 0.3528 ± 0.0008

Table 2: Test performance on datasets from the long-range graph benchmarks (LRGB) (Dwivedi et al., 2022)
compared to baselines. For Neural Atoms we show only available results. ReHub-FC has each spoke fully
connected to all hubs. Best results are colored: first, second.

Model Peptides-func Peptides-struct PCQM-Contact PascalVOC-SP
AP ↑ MAE ↓ MRR ↑ F1 Score ↑

Transformer+LapPE 0.6326 ± 0.0126 0.2529 ± 0.0016 0.3174 ± 0.0020 0.2694 ± 0.0098
SAN+LapPE 0.6384 ± 0.0121 0.2683 ± 0.0043 0.3350 ± 0.0003 0.3230 ± 0.0039
GraphGPS 0.6535 ± 0.0041 0.2500 ± 0.0005 0.3337 ± 0.0006 0.3748 ± 0.0109
Exphormer 0.6527 ± 0.0043 0.2481 ± 0.0007 0.3637 ± 0.0020 0.3975 ± 0.0037
NeuralAtoms 0.6591 ± 0.0050 0.2553 ± 0.0005 0.3262 ± 0.0010 n/a
ReHub-FC (Ours) 0.6732 ± 0.0107 0.2489 ± 0.0011 0.3526 ± 0.0014 0.3526 ± 0.0045
ReHub (Ours) 0.6685 ± 0.0074 0.2488 ± 0.0017 0.3534 ± 0.0014 0.3860 ± 0.0172

the expander graph has a degree of 3, which is the same value as k used for ReHub. The results, shown
in Figure 2, indicate that our method uses less than half the memory of other methods while exhibiting a
linear memory usage trend.

Memory consumption and accuracy on large graphs benchmarks. We evaluate ReHub on the
competitive Coauthor Physics and OGBN-Arxiv datasets which have about 35K and 170K nodes respectively.
Comparing ReHub to Exphormer on Table 3 shows an improved memory consumption by about 36% for
Coauthor Physics and 13% for OGBN-Arxiv while accuracy is comparable. We follow Exphormer and include
GraphGPS (with vanila Transformer) in the comparison to highlight that these graph sizes are considered
challenging to process.
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Figure 2: Peak memory consumption for different architectures. We compare ReHub to Neural
Atoms (Li et al., 2024) and other architectures, and show that ReHub memory consumption is both linear
in the number of nodes and requires less memory.

Table 3: Coauthor Physics (Shchur et al., 2018) and OGBN-Arxiv (Hu et al., 2020) test results show ReHub
achieves comparable accuracy to Exphormer with significant reduction in memory consumption.

Model Coauthor Physics OGBN-Arxiv
Peak Memory (GB) ↓ Accuracy ↑ Peak Memory (GB) ↓ Accuracy ↑

GraphGPS (Transformer) OOM - OOM -
Exphormer 1.77 97.16 ± 0.13 2.83 72.44 ± 0.28
ReHub (Ours) 1.13 96.89 ± 0.19 2.45 71.06 ± 0.40

4.3 Ablations and analyses

Long-range spoke update layer components.

As described in Section 3, our long-range spoke update layer is designed to handle long range communication
while maintaining memory efficiency. The ablation provided in Table 4 highlights the contributions of the
primary design choices. (1) Initialization of hub features from spokes vs. learned hub features as parameters,
where the latter is analogous to the initialization process of Neural Atoms. The initialization scheme, outlined
in Section 3.3, is compared to a configuration where hub features are learned parameters, i.e, h0

ih
= Pih

∈ Rd.
Initializing the hubs from spokes significantly improves performance, while using learned hubs results in
reduced performance compared to the GNN baseline. (2) The use of a fixed vs. dynamic number of hubs.
For the fixed case, we set the number of hubs to 22, which is approximately the square root of the average
number of nodes,

√
479.4 ≈ 21.9. This is compared to setting the number of hubs as Nh =

√
Ns dynamically,

according to graph size. (3) Reassigning spokes to hubs at each layer vs. keeping the same connections fixed
across the layers, is shown to improve performance. (4) Including an encoding layer for the spokes prior to
aggregation further improves performance.

We provide additional experiments for varying values of hubs ratios and k in Appendix A.4.
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Table 4: Ablation study. We measure the effect of various components of ReHub on top of a GatedGCN
MPNN, using the PascalVOC-SP dataset. The number of hubs used per graph (#Hubs): for 22 it is a static
amount and for

√
Ns it is dynamic per graph size. Initial hubs (Hubs Init) can be set as learned parameters

or initialized from the assigned spokes as described in 3.3 where we can add a feedforward layer on the spokes
(Spokes Enc) before aggregation. Reassignment is as described in 3.4. We use k = 3 for all runs.

GNN #Hubs Hubs Init Spokes Enc Reassignment PascalVOC-SP (F1 ↑)
+ - - - - 0.3152 ± 0.0045
+ 22 Learned (As in NA) - - 0.3084 ± 0.0044
+ 22 Cluster Mean - - 0.3574 ± 0.0065
+

√
Ns Cluster Mean - - 0.3703 ± 0.0086

+
√

Ns Cluster Mean - + 0.3797 ± 0.0123
+

√
Ns Cluster Mean + - 0.3775 ± 0.0040

+
√

Ns Cluster Mean + + 0.3860 ± 0.0172
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Figure 3: Hub utilization. Unused hubs distribution for varying k and hub ratio r evaluated on the
validation split of PascalVOC-SP dataset. Left: k = 3 with r ∈ {1, 4}. Right: k = 5 with r ∈ {1, 4}.

Hub utilization.

To gain insights into the reassignment dynamics, we measure the level of hub utilization. We define hub
utilization U as the number of hubs that have at least one spoke connected to them. Formally, U = |{ih |
E:,ih

· 1Nh
≥ 1}| where E:,ih

represents the set of all spokes connected to hub ih. The percentage of unused
hubs is then given by 1 − U/Nh, which reflects the proportion of hubs that are not connected to any spoke.
Figure 3 presents a cumulative graph illustrating the percentage of graphs with an unused hub percentage
below a given threshold. Hub utilization is shown per layer for different configurations of hub ratio r and
connected hubs k, based on the validation split of the PascalVOC-SP dataset. The results consistently
demonstrate that approximately 10% of hubs remain isolated in each graph, across layers, regardless of the
number of hubs or the number of spokes per hub. This finding suggests that the network maintains robust
information flow between spokes and hubs. We also present an additional metric based on the Bhattacharyya
coefficient in Appendix A.4.

5 Conclusion and future work

In this paper, we introduced ReHub, a novel graph transformer architecture designed to enhance long-range
communication in large graphs through dynamic reassignment of virtual nodes. This approach facilitates
efficient information passage, enabling effective learning on large graphs while maintaining linear compu-
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tational complexity and reduced memory usage compared to existing methods. Our experimental results
demonstrate that ReHub consistently outperforms Neural Atoms and ranks among the top two methods
against various baselines. It achieves competitive accuracy compared to Exphormer with lower memory con-
sumption across all evaluated scenarios. ReHub achieves its efficiency through our proposed reassignment
mechanism, which maintains sparse spoke-hub connectivity, as highlighted by our ablation studies. The
modular design of ReHub allows for easy integration with various MPNNs.

Future work While consistently improving computational efficiency, our spoke-hub communication main-
tained strong performance, establishing a foundation for future works. Additionally, our current design lacks
inherent support for positional information available in geometric graphs. In future work, we aim to extend
our method to support tasks requiring long-range communication on geometric graphs by incorporating
positional information into the spoke-hub attention and reassignment mechanisms. We also plan to make
the reassignment module learnable, and optimize it towards the prediction task to further boost accuracy.
Finally, integrating ReHub into architectures like Exphormer to enable the reassignment of expander graph
edges between layers presents a promising direction to further enhance long-range communication.
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A Appendix

A.1 Datasets

In Tables 5 and 6 we summaries the details of the datasets used for evaluation.

Table 5: Statistics of the five dataset proposed in the long-range graph benchmark. Source: LRGB (Dwivedi
et al., 2022).

Dataset Total
Graphs

Total
Nodes

Avg
Nodes

Mean
Deg.

Total
Edges

Avg
Edges

Avg
Short.Path.

Avg
Diameter

PascalVOC-SP 11,355 5,443,545 479.40 5.65 30,777,444 2,710.48 10.74±0.51 27.62±2.13
COCO-SP 123,286 58,793,216 476.88 5.65 332,091,902 2,693.67 10.66±0.55 27.39±2.14
PCQM-Contact 529,434 15,955,687 30.14 2.03 32,341,644 61.09 4.63±0.63 9.86±1.79
Peptides-func 15,535 2,344,859 150.94 2.04 4,773,974 307.30 20.89±9.79 56.99±28.72
Peptides-struct 15,535 2,344,859 150.94 2.04 4,773,974 307.30 20.89±9.79 56.99±28.72

Table 6: Dataset statistics of LRGB, OGBN-Arxiv and Coauthor Physics. Source: Exphormer (Shirzad
et al., 2023)

Dataset Graphs Avg. nodes Avg. edges Prediction Level No. Classes Metric
PascalVOC-SP 11,355 479.4 2,710.5 inductive node 21 F1
COCO-SP 123,286 476.9 2,693.7 inductive node 81 F1
PCQM-Contact 529,434 30.1 61.0 inductive link (link ranking) MRR
Peptides-func 15,535 150.9 307.3 graph 10 Average Precision
Peptides-struct 15,535 150.9 307.3 graph 11 (regression) Mean Absolute Error
OGBN-Arxiv 1 169,343 1,166,243 node 40 Accuracy
Coauthor Physics 1 34493 247962 node 5 Accuracy

14



Under review as submission to TMLR

A.2 Hyperparameters

Long-range graph benchmark. In the experiments done on the datasets: Peptides-func, Peptides-struct
and PCQM-Contact we follow the hyperparameters of Neural Atoms (Li et al., 2024). For other datasets we
follow the hyperparameters of Exphormer (Shirzad et al., 2023). Although we follow the hyperparameters
configurations, there may be subtle changes due to the difference in architecture.

In Tables 7- 10 we provide the hyperparameters used in our experiments.

Table 7: Hyperparameters for the LRGB datasets used for evaluation. For Peptides-func, Peptides-struct
and PCQM-Contact some of the hyperparameters are model-specific and presented in additional tables.

Hyperparameter PCQM-Contact Peptides-func Peptides-struct PascalVOC-SP
Dropout 0 0.12 0.2 0.15
Attention dropout 0.2 0.2 0.2 0.2
Positional Encoding LapPE-10 LapPE-10 LapPE-10 LapPE-10
PE Dim 16 16 20 16
PE Layers 2 2 2 2
PE Encoder DeepSet DeepSet DeepSet DeepSet
Batch size 256 128 128 32
Learning Rate 0.0003 0.0003 0.0003 0.0005
Weight Decay 0 0 0 0
Warmup Epochs 10 10 10 10
Optimizer AdamW AdamW AdamW AdamW
# Epochs 200 200 200 300
MPNN - - - GatedGCN
# Layers - - - 4
Hidden Dim - - - 96
# Heads - - - 8
Hubs Ratio - - - 1
k - - - 3

Table 8: Model-specific hyperparameters for PCQM-Contact.

Hyperparameter # Layers Hidden Dim # Heads Hubs Ratio k
GCN 5 300 1 1 3
GCNII 5 100 2 1 3
GINE 5 100 1 1 3
GatedGCN 8 72 1 1 3

Table 9: Model-specific hyperparameters for Peptides-func.

Hyperparameter # Layers Hidden Dim # Heads Hubs Ratio k
GCN 5 155 1 0.5 3
GCNII 5 88 1 0.5 3
GINE 5 88 2 0.5 3
GatedGCN 5 88 1 0.5 3
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Table 10: Model-specific hyperparameters for Peptides-struct.

Hyperparameter # Layers Hidden Dim # Heads Hubs Ratio k
GCN 5 155 1 0.5 3
GCNII 5 88 1 0.5 3
GINE 5 88 2 0.5 3
GatedGCN 5 88 1 0.5 3

Large random regular graph. In Table 11 we provide the hyperparameters used in our experiments.
The same configuration of hyperparameters is used for all experiments except for model-specific parameters.

Note that although Exphormer does not utilize its expander graph algorithm here the “Add edge index”
hyperparameter is enabled and sets the graph edges as the expander edges. Due to the regularity of the
graph, i.e. having a degree of d = 3 for all nodes, the same linear complexity is imposed.

Table 11: Hyperparameters for the forward pass of the large random regular graph dataset for all the models,
including the model-specific configuration.

Hyperparameter Large Random Regular Graph Exphormer ReHub
MPNN GCN - -
# Layers 3 - -
Hidden Dim 52 - -
# Heads 4 - -
Add edge index - True -
Num Virtual Nodes - 4 -
Hubs Ratio - - 1
k - - 3

OGBN-Arxiv and Coauthor Physics. For OGBN-Arxiv and Coauthor Physics we follow the hyper-
parameters of Exphormer (Shirzad et al., 2023), adding our configuration of hubs ratio and k. In Table 12
we provide the hyperparameters used in our experiments.

Table 12: Hyperparameters for OGBN-Arxiv and Coauthor Physics datasets used for evaluation.

Hyperparameter OGBN-Arxiv Physics
Dropout 0.3 0.4
Attention dropout 0.2 0.8
Learning Rate 0.01 0.001
Weight Decay 0.001 0.001
Warmup Epochs 5 5
Optimizer AdamW AdamW
# Epochs 600 70
MPNN GCN GCN
# Layers 3 4
Hidden Dim 80 72
# Heads 2 4
Hubs Ratio 1 1
k 3 3
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A.3 Implementation details

In the following we describe in more detail how the architecture is implemented.

We use the open-source code provided by GraphGPS (Rampášek et al., 2022) and available on https://
github.com/rampasek/GraphGPS. We merge into that code parts from Exphormer (Shirzad et al., 2023)
which are relevant for the training and evaluation of the OGBN-Arxiv and Coauthor Physics datasets.

Clustering. During preprocessing we use the METIS partitioning algorithm (Karypis & Kumar, 1998)
to divide each graph to clusters according to the required number of hubs. In practice, we use the python
wrapper PyMetis3 which allows us to map each spoke to a single hub.

Hub features. Throughout the implementation we use sparse data structures that allows us to keep the
complexity linear even when running on multiple graphs simultaneously (i.e. in a batch). The hubs are
stored in a similar fashion to how spokes are stored in a batch. i.e. the features are kept in a 2D matrix
X ∈ RN×d together with a 1D graph index matrix B ∈ {0, . . . , #Graphs}N indicating which graph each
node belongs to, where N is the number of nodes in the whole batch.

When aggregating the spokes to calculate hub features we use the scatter functions which allows us to
aggregate the spokes to two matrices. (1) a 2D matrix H ∈ RH×d and (2) a 1D graph index matrix
BH ∈ {0, . . . , #Graphs}H indicating which graph each hub belongs to, where H is the number of hubs in
the whole batch.

Hub assignment and reassignment. Note that the initial hub assignment is implemented identically
to the reassignment algorithm but with i∗

h set to the initial hub found in the clustering step.

Attention. Opposed to other transformer architectures which require the conversion of the spokes to a
dense representation, we can keep both spokes and hubs in their sparse representation. For each attention
module we use GATv2Conv implementation provided in pytorch geometric which accept as input this type of
sparse representation. Moreover, this implementation accept as input a bipartite graphs and here we use it
to pass information between the graph of spokes and graph of hubs.

Large random regular graph. As mention in Section 4.2, we would like to construct graphs of arbitrary
size. To achieve this, we generate a dataset of large random regular graphs, which can be produced at any
scale while ensuring connectivity between nodes (i.e. , avoiding isolated subgraphs) due to the regularity
property, i.e. A d-regular graph is a graph where each node has d number of neighbors. To do that we
use the random_regular_graph (Kim & Vu, 2003; Steger & Wormald, 1999) function from the open-source
NetworkX library (Hagberg et al., 2008), which takes as an input the number of nodes to be constructed and
the degree of each node d. Additionally, to ensure compatibility with the models, we assign random values
to the graph’s edge attributes, node features, and prediction labels.

Peak memory usage. To sample the peak memory usage of the models we use the function
torch.cuda.max_memory_allocated. This function returns the peak memory allocation since running the
torch.cuda.reset_peak_memory_stats function, which we call just before the call to the model.

3https://github.com/inducer/pymetis
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A.4 Additional ablations

Long-range spoke update layer components. In addition to the result shown for PascalVOC-SP
presented in Section 4.3, we provide in Table 13 the same components analysis for Peptides-func.

Table 13: Ablation study. We measure the effect of various components of ReHub on top of a GatedGCN
MPNN, using the Peptides-func dataset. The number of hubs used per graph (#Hubs): for 22 it is a static
amount and for

√
Ns it is dynamic per graph size. Initial hubs (Hubs Init) can be set as learned parameters

or initialized from the assigned spokes as described in 3.3 where we can add a feedforward layer on the spokes
(Spokes Enc) before aggregation. Reassignment is as described in 3.4. We use k = 3 for all runs.

GNN #Hubs Hubs Init Spokes Enc Reassignment Peptides-func (AP ↑)
+ - - - - 0.5864 ± 0.0077
+ 12 Learned (As in Neural Atoms) - - 0.5738 ± 0.0027
+ 12 Cluster Mean - - 0.6626 ± 0.0068
+

√
Ns Cluster Mean - - 0.6616 ± 0.0063

+
√

Ns Cluster Mean - + 0.6661 ± 0.0062
+

√
Ns Cluster Mean + - 0.6612 ± 0.0068

+
√

Ns Cluster Mean + + 0.6683 ± 0.0069

Sensitivity to hubs ratio For ReHub, a practical guideline for selecting the hubs ratio and k is r = 1 and
k = 3. Figure 4 presents an ablation study on these parameters for the Peptides-func and PascalVOC-SP
datasets.

For Peptides-func, the best results are achieved with a hubs ratio of 0.5 for both k = 3 and k = 5, which may
be attributed to the small graph sizes and the potential tendency to overfit on such datasets. On average,
each graph contains approximately 150 nodes, resulting in roughly 6 hubs. Furthermore, it is notable that
for other hubs ratio values, the results remain consistent, with an average performance between AP = 0.66
and AP = 0.67, indicating the robustness of our method.

For PascalVOC-SP, which includes larger graphs with an average of approximately 500 nodes per graph,
a different trend is observed compared to Peptides-func. Specifically, for varying values of k, the optimal
performance is achieved with different hubs ratios. However, the performance variation outside the optimal
hubs ratio is relatively minor, with the best results obtained when r = 1 and k = 3.
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Figure 4: Results for various hubs ratio and k, which is the number of hubs each spoke is connected
to. We shown this on PascalVOC-SP (Left) and Peptides-func (Right) datasets with k = [3, 5] and r =
[0.5, 1, 2, 3, 4, 5].
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Bhattacharyya Coefficient vs. Uniform Distribution The Bhattacharyya Coefficient for a discrete
probability distributions P and Q is measurement of how similar the two probability distributions are. It is
defined as:

BC(P, Q) =
∑
x∈X

√
P (x)Q(x),

BC(P, Q) lies between 0 and 1, where the higher the coefficient the more similar the distributions are. In
our setup, P is the distribution over spokes connection per hub; i.e. it is the number of spokes connected to
each hub, divided by the overall number of connections from spokes to hubs (so that the result is indeed a
probability distribution). We then set Q to be the uniform distribution, i.e. 1/Nh for each hub. By doing so,
we can see how close the actual distribution P is to the uniform distribution, where uniform indicates the
optimal balanced assignment of spokes to hub – where every hub has exactly the same number of spokes.
For convenience, we define the Bhattacharyya Percentage as the Bhattacharyya Coefficient multiplied by
100.

In Figure 5 we present a graph illustrating the percentage of graphs with a Bhattacharyya Percentage below a
given threshold for the PascalVOC-SP dataset. As in Section 4.3 this is shown for each layer, and for varying
values of hubs ratios and k on the validation split of the dataset. The results demonstrate that regardless
of the number of hub and number of hubs per spoke, most graphs have a Bhattacharyya Percentage above
80%. This suggests that our reassignment method spreads nodes quite evenly across the various hubs, and
does not create high concentration of spokes which remain connected to only few hubs.
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Figure 5: Percentage of graphs with a Bhattacharyya Percentage below a given threshold for the validation
split of the PascalVOC-SP dataset. Results are shown for varying k and hubs ratio r. Left: k = 3 with
r ∈ {1, 4}. Right: k = 5 with r ∈ {1, 4}.
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