
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE LATTICE GEOMETRY OF NEURAL NETWORK
QUANTIZATION: A SHORT EQUIVALENCE PROOF OF
GPTQ AND BABAI’S ALGORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

We explain how data-driven quantization of a linear unit in a neural network cor-
responds to solving the closest vector problem for a certain lattice generated by
input data. We prove that the GPTQ algorithm (Frantar et al., 2022) is equivalent
to Babai’s well-known nearest-plane algorithm (Babai, 1986). We furthermore
provide geometric intuition for both algorithms. Lastly, we note the consequences
of these results, in particular hinting at the possibility of using lattice basis reduc-
tion for improved quantization.

1 QUANTIZATION AND LATTICES

Computations in neural networks are usually carried out in 32-bit or 16-bit floating point arithmetic.
In particular, the parameters (weights) of the network are stored in this comparatively high precision.

Quantization is the art of reducing precision, in favor of less memory consumption and faster com-
putation, while keeping the accuracy as high as possible. In this paper, we are interested only in
post-training quantization of the weights: We are handed a trained neural network, and our goal is
to approximate (some of) the parameters of the network with a coarse numerical alphabet, while
keeping the accuracy high.

Commonly, this effort is focused on the linear parts of the network. That is, we are given a lin-
ear map Rn → Rm, represented by a weight matrix W ∈ Rm×n, and we seek to find another
m× n matrix V , whose entries have lower numerical precision and which “approximates W well”.
Concretely, this means:

Low numerical precision. We will model V as having integer entries, i.e., V ∈ Zm×n. Together
with a simple scaling, this covers the case when the available low-precision alphabet is αZ for some
α ∈ R. Up to clipping, this models quantization with low-bit integers as a memory/computation
unit.

Approximation of W . The approximation problem is carried out in a data-driven context: We are
allowed to sample representative inputs x1, x2, ..., xk ∈ Rn of the linear unit W . Indeed, in practice
we can just take some of the training inputs and send them through the network until they reach the
linear unit of interest. We want that V approximates W well on these specific inputs, so we want to
minimize:

k∑
j=1

∥Wxj − V xj∥22 =

k∑
j=1

m∑
i=1

⟨Wi,: − Vi,:, xj⟩2 =

m∑
i=1

∥XWT
i,: −XV T

i,:∥22 (1)

Here, X ∈ Rk×n is the matrix with rows x1, ..., xk, and Wi,: is the ith row of W . Note that this
optimization problem is separable: to minimize the sum on the right, it suffices to minimize each
summand ∥XWT

i,: −XV T
i,:∥22 separately. This corresponds to quantizing a single neuron at a time.

So the problem is:

Problem. Given X ∈ Rk×n and w ∈ Rn, find v ∈ Zn so that ∥Xw−Xv∥2 is as small as possible.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Lattice view. We will now explain the connection to lattices. A lattice is the Z-span Zb1+...+Zbn
of a set of R-linearly independent vectors b1, ..., bn in Rk. The vectors b1, ..., bn are called a basis
of the lattice. Multiple different bases can produce the same lattice. For example, Z2 ⊂ R2 is a
lattice, and two possible bases are {(1, 0), (0, 1)} and {(3, 1), (5, 2)}. See, for instance, Micciancio
& Goldwasser (2002) for more background on lattices.

In the problem above, we can view the columns of X as the basis for a lattice in Rk. That is assuming
these columns are linearly independent; more on that below. Then Xw can be just viewed as a point
in Rk, and Xv is a lattice point (an element of the lattice). As v runs through Zn, Xv runs through
all the lattice points. So the minimization problem above asks to compute a lattice point which is
close to Xw. In the lattice community this is known as the (approximate) closest vector problem
(CVP).

While this is generally NP-hard to solve optimally, decades of research have been devoted to prac-
tical algorithms that approximately solve CVP. The common approach is to employ an LLL-like
algorithm for basis reduction (Nguyen & Vallée, 2010), followed by Babai’s nearest plane algo-
rithm (Babai, 1986). We will see in section 2 that GPTQ (Frantar et al., 2022) is exactly equivalent
to Babai’s algorithm (up to possibly reversing the columns of X).

Regularization. Note that the columns of X might not be linearly independent; in particular this
will be the case if the number k of calibration inputs is less than the number of features n. However,
we can use the following regularization: Append a scalar multiple of the n×n identity matrix below
X , so that

X ′ :=

(
X

µ · In×n

)
where µ > 0 (2)

is used in place of X . The columns of X ′ are linearly independent, and choosing µ→∞ will lead
to the naive quantization v := round(w) as the optimal solution.

When µ =
√
λ, this is equivalent to the λ-regularization in Frantar et al. (2022). Indeed, GPTQ

works with the matrix XTX , and for regularization it replaces this matrix with XTX + λI instead.
But we have:

X ′TX ′ = XTX + (µI)T (µI) = XTX + λI , (3)
So the X ′ regularization will yield the same result, but it also admits a lattice interpretation.

In summary, we showed how quantization of linear units reduces to solving the CVP for a lattice
generated by input data. One can now apply the full range of CVP algorithms for neural network
quantization, provided one can scale them to the large lattices that are involved in quantization, see
section 3.

Overlap with Concurrent Work. As we were drafting this paper, a related preprint by Chen
et al. (2025) appeared very recently. This work has significant overlap with ours, showing very
similar results as we present them here. We want to emphasize that our work was conducted fully
independently and had been in development for an extended period of time. Our proofs follow a
different approach than Chen et al. (2025) and are shorter; we believe that they offer a concise and
conceptually elegant perspective.

2 GPTQ IS EQUIVALENT TO BABAI’S ALGORITHM

In this section, we view the GPTQ algorithm (Frantar et al., 2022) and Babai’s nearest plane algo-
rithm (Babai, 1986) as procedures for solving the problem from section 1:

Problem. Given X ∈ Rk×n and w ∈ Rn, find v ∈ Zn so that ∥Xw−Xv∥2 is as small as possible.

We will show that the algorithms are equivalent, up to reversing the basis of the lattice. We will first
review both GPTQ and Babai’s algorithm separately. We will see that they differ in two aspects:

• GPTQ works in “parameter space” Rn. Babai’s algorithm works in “data space” Rk.
• As GPTQ progresses to smaller sublattices, it keeps the target contained in the R-span of

the sublattice. (In every iteration it projects onto this span.) BABAI omits such a projection
as it’s not necessary.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In a nutshell, the two algorithms are related by a certain linear projection Rk → Rn. Whatever
Babai’s algorithm does in Rk, project it down to Rn, and this yields precisely what GPTQ does.

The formal equivalence proof then proceeds by essentially rewriting both algorithms as recursive
algorithms.

Notation. We will use the following notation. When A is a matrix, then Aj denotes its jth column,
and Ai,: denotes its ith row. With A≥j we denote the submatrix of A which omits the first j − 1
columns, and A≥i,≥j denotes the submatrix which omits the first i− 1 rows and j− 1 columns. For
vectors a, we denote by ai the ith coordinate, and a≥i denotes the subvector which omits the first
i− 1 coordinates.

X and w are fixed throughout. We have already seen how one can employ regularization to X , so
from now on we will assume that X has linearly independent columns.

2.1 GPTQ ALGORITHM REVISITED

The original description of GPTQ (Frantar et al., 2022) computes a matrix L̃ as the Cholesky de-
composition of (XTX)−1:

L̃L̃T = (XTX)−1 (4)

We will now show that this just corresponds to taking a QL-decomposition of X and inverting L.
Suppose

X = QL (5)

with Q ∈ Rk×n having orthonormal columns and L ∈ Rn×n being lower triangular with positive
entries on the diagonal. Then we have:

L̃L̃T = (XTX)−1 = (LTQTQL)−1 = (LTL)−1 = L−1L−T (6)

From the uniqueness of the Cholesky decomposition (XTX is positive definite) we get:

L̃ = L−1 (7)

So in GPTQ we can also compute L̃ without a Cholesky decomposition; instead we compute the
QL-decomposition of X and then invert L. However, this is mostly useful for theoretical study. In
practice, one usually uses a lot of calibration data, k ≫ n, in which case it’s more memory-efficient
to only accumulate the Gram matrix XTX instead of storing the full matrix X .

With this note about L̃ in place, the GPTQ algorithm can be described as follows: (see section A)
1: procedure GPTQ(X,w)
2: Compute QL = X . ▷ QL-decomposition with Li,i > 0

3: L̃← L−1

4: w(0) ← w
5: for i = 1, ..., n do
6: vi ← round(w

(i−1)
i)

7: ∆i ← vi − w
(i−1)
i

8: w(i) ← w(i−1) + ∆i

L̃i,i
· L̃i

9: end for
10: return v
11: end procedure

The idea behind this is to find a w′ whose first coordinate w′
1 is fixed to be round(w1), and which

minimizes ∥Xw −Xw′∥. This can then be applied recursively to the other coordinates. The opti-
mization problem to find this w′ has the explicit solution

w′ = w +
round(w1)− w1

L̃1,1

· L̃1 (8)

which then yields the GPTQ procedure described above. See Hassibi et al. (1993), Frantar & Alistarh
(2022), and Frantar et al. (2022) for the history and derivation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Note that, since L̃i has the first i− 1 coordinates all set to zero, the coordinates of the w(i) stabilize
as i increases. Also, because of the normalization factor ∆i/L̃i,i and the definition of ∆i, the
coordinates that they stabilize to are the coordinates of v. Concretely, we have w

(j)
i = vi for i ≤ j.

In particular, w(n) = v.

As already noted, one might as well write GPTQ as a recursive algorithm:
1: procedure GPTQ-REC(X,w)
2: Compute QL = X . ▷ QL-decomposition with Li,i > 0

3: L̃← L−1

4: v1 ← round(w1)

5: v≥2 ← GPTQ-REC(X≥2, (w + v1−w1

L̃1,1
L̃1)≥2)

6: return v
7: end procedure

Indeed, the equivalence of the two procedures follows from observing that the QL-decomposition of
X≥2 is precisely given by Q≥2 and L≥2,≥2, and that the inverse of L≥2,≥2 is given by L̃≥2,≥2:

X≥2 = Q≥2 · L≥2,≥2 (L≥2,≥2)
−1 = (L−1)≥2,≥2 = L̃≥2,≥2 (9)

From these equalities one can see that GPTQ-REC is equivalent to GPTQ. (Formally one could
prove it via induction.)

2.2 BABAI’S ALGORITHM

We will now describe Babai’s nearest plane algorithm (Babai, 1986), which was developed in the
context of lattices. Recall that we view the columns of X as the basis for an n-dimensional lattice in
Rk. We want to find a lattice vector close to Xw. The idea is to maintain a target vector t, initialized
with t = Xw. Then one builds up v by taking inner products of t with the Gram-Schmidt basis
vectors associated to the lattice basis. This can be interpreted as finding a certain “nearest plane”,
hence the name; see section 2.3 and Nguyen & Vallée (2010, Chapter 6).

The normalized Gram-Schmidt basis can be seen as the Q-factor in a QR-decomposition of X . The
length of the Gram-Schmidt basis vectors are stored in the diagonal elements of the R-factor. We will
instead use the QL-decomposition here, so that it is compatible with GPTQ; this simply corresponds
to applying the “usual” Babai algorithm (which uses a QR-decomposition) on the reversed lattice
basis. (See section A for details of the relation to the classic algorithm.)

1: procedure BABAI(X,w)
2: Compute QL = X . ▷ QL-decomposition with Li,i > 0

3: t(0) ← Xw
4: for i = 1, ..., n do
5: vi ← round(⟨t

(i−1),Qi⟩
Li,i

)

6: t(i) ← t(i−1) − viXi

7: end for
8: return v
9: end procedure

BABAI could also be written as a recursive algorithm, although then it should not take w as input but
rather directly the target vector t = Xw, which for the recursion would be replaced by t − v1X1.
We omit the recursive version of the procedure here; instead it will be implicit in the equivalence
proof in section 2.4.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.3 THE UNDERLYING GEOMETRY

We will now provide geometric intuition for what GPTQ and Babai’s algorithm are doing. Note that
there are fundamentally two spaces at play: The “parameter space” Rn, in which w (and v) lives,
and the “data space” Rk in which Xw (and Xv) lives. The matrix X can be seen as an embedding
map Rn ↪→ Rk, which maps the quantization grid Zn to a lattice in Rk.

ℝ𝑛

Parameter Space

𝑤

ℝ𝑘

Data Space

𝑋𝑤

𝑋

Figure 1: Two spaces at play. X embeds Rn into Rk, mapping the quantization grid Zn to a lattice
in Rk. GPTQ works in Rn, on the left. Babai’s algorithm works in Rk, on the right.

𝑤𝑤′

Figure 2: GPTQ fixes v1 := round(w1). This
restricts v to lie on the orange plane. It defines
a new target weight w′ on the orange line, and
then proceeds recursively. The target weight w′

is not just an orthogonal projection to the orange
plane. Instead, the update step implicitly uses
the geometry from the lattice; in Rk on the right
it indeed corresponds to an orthogonal projec-
tion.

𝑡 = 𝑋𝑤𝑋𝑤′

𝑡′ = 𝑡 − 𝑣1𝑋1

Figure 3: Babai’s algorithm looks for the near-
est plane (parallel to the orange or green plane)
to t. It identifies the orange plane, and then
subtracts an appropriate integer multiple of X1

from t, leading to the green point t′. It then re-
cursively looks for a lattice point in the green
sublattice which is close to the green point t′.

Figures 2 and 3 demonstrate what happens in the first step of each algorithm. As we will prove
below, both GPTQ and BABAI compute the same first coordinate of v, i.e., v1, but they do it in
different ways.

Note that BABAI’s new target vector t′ does not lie in the R-span of the green sublattice. (In fact,
at the very end we will have t = Xw −Xv.) One could project it onto that span, and the result for
v wouldn’t change. Indeed, the difference coming from the projection is, by definition, orthogonal
to the green plane, so it doesn’t matter in future computations. We will use this in the equivalence
proof below, because GPTQ always does this projection implicitly.

2.4 PROOF OF EQUIVALENCE

Theorem 2.1. The procedures GPTQ and BABAI are equivalent. That is, for any invertible X ∈
Rk×n and w ∈ Rn, they produce the same output v ∈ Zn.

Proof. We already saw that GPTQ is equivalent to GPTQ-REC. We will now show that both
GPTQ-REC and BABAI are equivalent to the following procedure, which can be interpreted as a

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

recursive version of BABAI with an additional projection step to the remaining sublattice as noted in
section 2.3.

1: procedure BABAI-PROJ-REC(X,w)
2: Compute QL = X . ▷ QL-decomposition with Li,i > 0

3: L̃← L−1

4: t← Xw
5: v1 ← round(⟨t,Q1⟩

L1,1
)

6: v≥2 ← BABAI-PROJ-REC(X≥2, (w + v1−w1

L̃1,1
L̃1)≥2)

7: return v
8: end procedure

GPTQ-REC is equivalent to BABAI-PROJ-REC. The only difference between the two algorithms is
how they compute v1. GPTQ just rounds w1, and BABAI-PROJ-REC rounds the following quantity:

⟨t, Q1⟩
L1,1

=
⟨Xw,Q1⟩

L1,1
=

QT
1 QLw

L1,1
=

eT1 Lw

L1,1
=

L1,:w

L1,1
= w1 (10)

BABAI is equivalent to BABAI-PROJ-REC. This is less obvious. Consider the value of “t” in the
first BABAI-PROJ-REC recursion, i.e. in the first nested call caused by line 6. It is equal to:

X≥2

(
w +

v1 − w1

L̃1,1

L̃1

)
≥2

(11)

Suppose that this product would equal t − v1X1. Then it would follow by induction that BABAI-
PROJ-REC is equivalent to BABAI.

We will show that the product almost equals t − v1X1 = Xw − v1X1, up to an additive factor of
κQ1, where κ ∈ R is some scalar. And indeed this suffices to show the equivalence:

Note that, in future iterations/recursions, both BABAI and BABAI-PROJ-REC will only ever use t(i)

(or “t”) to take inner products with Q2, ..., Qn, and these vectors are orthogonal to Q1. So one
could, for example, modify BABAI so that t(i) gets additively shifted by κiQi for any κi ∈ R, and
the output wouldn’t change. Concretely, let’s define:

1: procedure BABAIκ1,...,κn
(X,w)

2: Compute QL = X . ▷ QL-decomposition with Li,i > 0

3: t(0) ← Xw
4: for i = 1, ..., n do
5: vi ← round(⟨t

(i−1),Qi⟩
Li,i

)

6: t(i) ← t(i−1) − viXi + κiQi

7: end for
8: return v
9: end procedure

The previous paragraph shows that BABAI is equivalent to BABAIκ1,...,κn
for any κ1, ..., κn ∈ R.

And the equivalence of BABAI-PROJ-REC with BABAIκ1,...,κn
for some specific κ1, ..., κn ∈ R,

which depend on the input (X,w), follows with an induction argument, given the claim above.

It remains to prove the claim:

X≥2

(
w +

v1 − w1

L̃1,1

L̃1

)
≥2

= X

(
w +

v1 − w1

L̃1,1

L̃1

)
−X1

=v1︷ ︸︸ ︷(
w +

v1 − w1

L̃1,1

L̃1

)
1

(12)

= X

(
w +

v1 − w1

L̃1,1

L̃1

)
− v1X1 (13)

= Xw − v1X1 +
v1 − w1

L̃1,1︸ ︷︷ ︸
the previously
mentioned κ

Q1︸︷︷︸
=XL̃1

(14)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3 CONSEQUENCES AND FUTURE WORK

The equivalence of Babai’s algorithm with GPTQ has direct consequences for quantization with
GPTQ.

Correct Handling of Quantization Over Multiple Layers. Suppose we have quantized a linear
unit of a neural network, and then we want to quantize another linear unit which comes later in the
network. Recall that in order to obtain X , we take sample inputs of the neural network, and send
them through the network to just before our linear unit. This means the data will pass units that we
have already quantized. Usually we want to pass the data through the quantized units to generate
the lattice X̂ , while passing it through the original units to generate the target Xw. So we now want
to find v ∈ Zn which minimizes:

∥Xw − X̂v∥
While for GPTQ it’s not obvious how to deal with this modified problem, it’s completely obvious
for Babai’s algorithm. Indeed, we just need to set the target vector to t = Xw (and work with the
lattice generated by X̂). If one wants to use GPTQ instead, that corresponds to projecting Xw down
onto the R-span of the lattice X̂; the projected point will be equal to X̂ŵ for some ŵ ∈ Rn, which
should then be used as an input to GPTQ. In short, ŵ = X̂+Xw.

This precisely recovers what the Qronos (Zhang et al., 2025) algorithm does. It indeed improves the
quantization quality, see the experimental results of Zhang et al. (2025).

Theoretical Guarantees. Theoretical guarantees about the output of Babai’s algorithm directly
carry over to GPTQ. First, there is an absolute guarantee on the error ∥Xw −Xv∥ in terms of the
lengths Li,i of the Gram-Schmidt vectors of the lattice:

Theorem 3.1 (Babai (1986)). The output v of BABAI satisfies ∥Xw −Xv∥2 ≤
∑n

i=1 L
2
i,i.

Second, there is a relative error guarantee, relating the error to the minimally achievable error:

Theorem 3.2 (Babai (1986)). The output v of BABAI satisfies ∥Xw−Xv∥ ≤ γ ·minv′∈Zn∥Xw−
Xv′∥ with

γ ≤
√
1 + max

i

1

L2
i,i

∑
j≥i

L2
j,j ≤

√
n− 1 ·max

i≤j

Lj,j

Li,i
.

Using Lattice Basis Reduction. Theorem 3.2 suggests that the sequence L1,1, L2,2, ... shouldn’t
ever increase much in order to obtain a good result. The classic way to make L1,1, L2,2, ... not ever
increase by much is by performing an LLL-like lattice basis reduction. This would give a guarantee
on the Li,i, and hence significantly improve the outcome of BABAI/GPTQ in theory (Nguyen &
Vallée, 2010, Chapter 6, Theorem 3). A straightforward wrapper algorithm looks like this:

1: procedure WITHREDUCTION(X,w)
2: (Xred, T)← LATTICEBASISREDUCTION(X)
3: [Here T ∈ Zn×n is the base change matrix satisfying Xred = XT .]
4: vred ← BABAI(Xred, t = Xw) ▷ Abuse of notation to pass t instead of w to BABAI.
5: v ← Tvred
6: return v
7: end procedure

The intuition behind this algorithm is simple: What BABAI does is, given a lattice basis X and a
target vector t, it finds a lattice point close to t and produces its (integer) coordinates v with respect
to the basis X . The “better” the basis X , the closer Xv will be to t. Lattice basis reduction provides
a “good” basis Xred together with the base change matrix T ∈ Zn×n satisfying Xred = XT . Then
we use BABAI on the reduced basis Xred, but with the same target vector Xw as before, to compute
a lattice point close to the target, which will be provided as coordinates vred with respect to Xred.
Finally, we compute the coordinates of the point with respect to the original basis X by applying T .

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We note that if X is not regularized enough, then T and hence v could potentially have large entries.
This could be a problem when one needs to clip the values to a small quantization domain. Even
without clipping, it could result in a bad accuracy of the final network, because large entries are a
symptom of overfitting to the calibration data X .

We leave the experimental valuation of WITHREDUCTION and related algorithms for future work.

REFERENCES

László Babai. On lovász’lattice reduction and the nearest lattice point problem. Combinatorica, 6
(1):1–13, 1986.

Jiale Chen, Torsten Hoefler, and Dan Alistarh. The geometry of llm quantization: Gptq as babai’s
nearest plane algorithm. arXiv preprint arXiv:2507.18553, 2025.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic per-
spective, volume 671. Springer Science & Business Media, 2002.

Phong Q Nguyen and Brigitte Vallée. The LLL algorithm. Springer, 2010.

Shihao Zhang, Haoyu Zhang, Ian Colbert, and Rayan Saab. Qronos: Correcting the past by shaping
the future... in post-training quantization. arXiv preprint arXiv:2505.11695, 2025.

A ALGORITHM DESCRIPTIONS

In this section we provide more detail on why our descriptions of BABAI and GPTQ indeed match
the original algorithms.

For BABAI, compare with Nguyen & Vallée (2010, Chapter 6, Algorithm 1). To obtain our descrip-
tion, one needs to apply the following transformations to their algorithm:

• Our target vector v is Xw.
• They use the notation b∗i to denote the ith Gram-Schmidt vector of the lattice basis. This

corresponds to taking a QR-decomposition X = QR, and then letting b∗i = Ri,iQi. Then:

⟨t, b∗i ⟩
⟨b∗i , b∗i ⟩

=
⟨t, Ri,iQi⟩

⟨Ri,iQi, Ri,iQi⟩
=
⟨t, Qi⟩
Ri,i

(15)

So they round the same value as we do.
• Take a QL-decomposition instead of a QR-decomposition and process the loop in reverse

order. (This accounts for reversing the basis.)

For GPTQ, take Frantar et al. (2022, Algorithm 1) and apply the following transformations:

• Remove the regularization factor λI , since we assume it’s already part of the lattice, as
noted just before section 2.1.

• Note that what they call X is XT in our paper.
• Instead of computing H−1 as the Cholesky decomposition of XTX , compute a QL-

decomposition of X and invert L. This is equivalent, as explained in section 2.1.
• Choose block size B =∞.

8

	Quantization and Lattices
	GPTQ is equivalent to Babai's algorithm
	GPTQ algorithm revisited
	Babai's algorithm
	The Underlying Geometry
	Proof of Equivalence

	Consequences and Future Work
	Algorithm Descriptions

