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ABSTRACT

We explain how data-driven quantization of a linear unit in a neural network cor-
responds to solving the closest vector problem for a certain lattice generated by
input data. We prove that the GPTQ algorithm (Frantar et al., 2022) is equivalent
to Babai’s well-known nearest-plane algorithm (Babai, [1986). We furthermore
provide geometric intuition for both algorithms. Lastly, we note the consequences
of these results, in particular hinting at the possibility of using lattice basis reduc-
tion for improved quantization.

1 QUANTIZATION AND LATTICES

Computations in neural networks are usually carried out in 32-bit or 16-bit floating point arithmetic.
In particular, the parameters (weights) of the network are stored in this comparatively high precision.

Quantization is the art of reducing precision, in favor of less memory consumption and faster com-
putation, while keeping the accuracy as high as possible. In this paper, we are interested only in
post-training quantization of the weights: We are handed a trained neural network, and our goal is
to approximate (some of) the parameters of the network with a coarse numerical alphabet, while
keeping the accuracy high.

Commonly, this effort is focused on the /inear parts of the network. That is, we are given a lin-
ear map R” — R™, represented by a weight matrix W &€ R™*", and we seek to find another
m x n matrix V', whose entries have lower numerical precision and which “approximates W well”.
Concretely, this means:

Low numerical precision. We will model V' as having integer entries, i.e., V € Z™*™. Together
with a simple scaling, this covers the case when the available low-precision alphabet is aZ for some
a € R. Up to clipping, this models quantization with low-bit integers as a memory/computation
unit.

Approximation of 1. The approximation problem is carried out in a data-driven context: We are
allowed to sample representative inputs x1, T2, ..., zr € R™ of the linear unit W. Indeed, in practice
we can just take some of the training inputs and send them through the network until they reach the
linear unit of interest. We want that V' approximates W well on these specific inputs, so we want to
minimize:
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Here, X € R¥*" is the matrix with rows z1, ..., zx, and W;.. is the i row of . Note that this
optimization problem is separable: to minimize the sum on the right, it suffices to minimize each
summand || X WzT - X VZT || separately. This corresponds to quantizing a single neuron at a time.
So the problem is:

Problem. Given X € R¥*" andw € R", findv € Z" so that || Xw — Xv||5 is as small as possible.
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Lattice view. We will now explain the connection to lattices. A lattice is the Z-span Zby +...+Zb,,
of a set of R-linearly independent vectors b1, ..., b, in R*. The vectors b1, ..., b,, are called a basis
of the lattice. Multiple different bases can produce the same lattice. For example, Z? C R? is a
lattice, and two possible bases are {(1,0), (0,1)} and {(3, 1), (5,2)}. See, for instance, Micciancio
& Goldwasser| (2002) for more background on lattices.

In the problem above, we can view the columns of X as the basis for a lattice in R*. That is assuming
these columns are linearly independent; more on that below. Then X w can be just viewed as a point
in R*, and X is a lattice point (an element of the lattice). As v runs through Z", Xv runs through
all the lattice points. So the minimization problem above asks to compute a lattice point which is
close to Xw. In the lattice community this is known as the (approximate) closest vector problem
(CVP).

While this is generally NP-hard to solve optimally, decades of research have been devoted to prac-
tical algorithms that approximately solve CVP. The common approach is to employ an LLL-like
algorithm for basis reduction (Nguyen & Valléel 2010), followed by Babai’s nearest plane algo-
rithm (Babail |1986). We will see in section [2] that GPTQ (Frantar et al.| 2022)) is exactly equivalent
to Babai’s algorithm (up to possibly reversing the columns of X).

Regularization. Note that the columns of X might not be linearly independent; in particular this
will be the case if the number k of calibration inputs is less than the number of features n. However,
we can use the following regularization: Append a scalar multiple of the n x n identity matrix below
X, so that

X' = ( X ) where 1 > 0 (2)

' - I nxn

is used in place of X. The columns of X' are linearly independent, and choosing . — oo will lead
to the naive quantization v := round(w) as the optimal solution.

When p = ﬁ, this is equivalent to the A-regularization in |[Frantar et al|(2022). Indeed, GPTQ
works with the matrix X7 X, and for regularization it replaces this matrix with X7 X + I instead.
But we have:

XTX' = XTX + (uD)T(pul) = XTX + NI, 3)
So the X’ regularization will yield the same result, but it also admits a lattice interpretation.

In summary, we showed how quantization of linear units reduces to solving the CVP for a lattice
generated by input data. One can now apply the full range of CVP algorithms for neural network
quantization, provided one can scale them to the large lattices that are involved in quantization, see
section 3

Overlap with Concurrent Work. As we were drafting this paper, a related preprint by |(Chen
et al| (2025) appeared very recently. This work has significant overlap with ours, showing very
similar results as we present them here. We want to emphasize that our work was conducted fully
independently and had been in development for an extended period of time. Our proofs follow a
different approach than |Chen et al.| (2025) and are shorter; we believe that they offer a concise and
conceptually elegant perspective.

2 GPTQ IS EQUIVALENT TO BABAI’S ALGORITHM

In this section, we view the GPTQ algorithm (Frantar et al., [2022) and Babai’s nearest plane algo-
rithm (Babai, |1986)) as procedures for solving the problem from section

Problem. Given X € R¥*" andw € R™, find v € Z" so that || Xw — Xv||2 is as small as possible.

We will show that the algorithms are equivalent, up to reversing the basis of the lattice. We will first
review both GPTQ and Babai’s algorithm separately. We will see that they differ in two aspects:

+ GPTQ works in “parameter space” R™. Babai’s algorithm works in “data space” R¥.

* As GPTQ progresses to smaller sublattices, it keeps the target contained in the R-span of
the sublattice. (In every iteration it projects onto this span.) BABAI omits such a projection
as it’s not necessary.
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In a nutshell, the two algorithms are related by a certain projection R* — R™. Whatever Babai’s
algorithm does in R¥, project it down to R™, and this yields precisely what GPTQ does.

The formal equivalence proof then proceeds by essentially rewriting both algorithms as recursive
algorithms.

Notation. We will use the following notation. When A is a matrix, then A; denotes its jth column,
and A; . denotes its i row. With A>; we denote the submatrix of A which omits the first j — 1
columns, and A>; >; denotes the submatrix which omits the first i — 1 rows and j — 1 columns. For
vectors a, we denote by a; the i™ coordinate, and a>; denotes the subvector which omits the first
i — 1 coordinates.

X and w are fixed throughout. We have already seen how one can employ regularization to X, so
from now on we will assume that X has linearly independent columns.

2.1 GPTQ ALGORITHM REVISITED
The original description of GPTQ (Frantar et al., |2022) computes a matrix L as the Cholesky de-
composition of (X7 X)~1:

LLT = (xXTx)! 4)
We will now show that this just corresponds to taking a QL-decomposition of X and inverting L.

Suppose
X=QL (5)

with @ € R¥*" having orthonormal columns and I € R™*" being lower triangular with positive
entries on the diagonal. Then we have:

LT =(X"X)"' =(L"Q"QL) ' =(L"L)y ' =L7'L7T (6)
From the uniqueness of the Cholesky decomposition (X7 X is positive definite) we get:
L=1L" )

So in GPTQ we can also compute L without a Cholesky decomposition; instead we compute the
QL-decomposition of X and then invert L. This can be numerically superior: Computing X7 X
doubles the condition number, whereas computing the QL-decomposition doesn’t. We also save a
matrix multiplication.

With this note about L in place, the GPTQ algorithm can be described as follows:

1: procedure GPTQ(X, w)

2: Compute QL = X. > QL-decomposition with L; ; > 0
3 L« L'

4 w® — w

5 for:=1,...,ndo

6: v round(wgl_l))

7 AL — v — U)El_l)

8 w® (=1 4 A Iil
9 end for ’
10 return v

11: end procedure

The idea behind this is to find a w’ whose first coordinate w is fixed to be round(w; ), and which
minimizes || Xw — Xw'||. This can then be applied recursively to the other coordinates. The opti-
mization problem to find this w’ has the explicit solution

d — N
W = w4 roun (~w1) wy i ®)
Ly

which then yields the GPTQ procedure described above. See/Hassibi et al.|(1993), Frantar & Alistarh
(2022), and |[Frantar et al.|(2022)) for the history and derivation.
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Note that, since L— has the first ¢ — 1 coordinates all set to zero, the coordinates of the w® stabilize
as 7 increases. Also, because of the normalization factor A;/L; ; and the definition of A;, the
(4)

coordinates that they stabilize to are the coordinates of v. Concretely, we have w;”’ = v; for i < j.
In particular, w®™ =y,
As already noted, one might as well write GPTQ as a recursive algorithm:

1: procedure GPTQ-REC(X, w)

2: Compute QL = X. > QL-decomposition with L; ; > 0
32 L+ L1

4: vy  round(wy)

5: U>2 < GPTQ-REC(XZQ, (w + %El)zg)

6: return v

7: end procedure

Indeed, the equivalence of the two procedures follows from observing that the QL-decomposition of
X>o is precisely given by (>2 and L5 >9, and that the inverse of L>o >9 is given by L>o >o:

X>2=Q>2-L>a >0 (L2,>2) " = (L7 )>2,52 = L>2 > ©)

From these equalities one can see that GPTQ-REC is equivalent to GPTQ. (Formally one could
prove it via induction.)

2.2 BABAI’S ALGORITHM

We will now describe Babai’s nearest plane algorithm (Babai, [1986), which was developed in the
context of lattices. Recall that we view the columns of X as the basis for an n-dimensional lattice in
R*. We want to find a lattice vector close to Xw. The idea is to maintain a target vector ¢, initialized
with £ = Xw. Then one builds up v by taking inner products of ¢ with the Gram-Schmidt basis
vectors associated to the lattice basis. This can be interpreted as finding a certain “nearest plane”,
hence the name; see section @] and |[Nguyen & Vallée|(2010).

The normalized Gram-Schmidt basis can be seen as the ()-factor in a QR-decomposition of X. The
length of the Gram-Schmidt basis vectors are stored in the diagonal elements of the R-factor. We will
instead use the QL-decomposition here, so that it is compatible with GPTQ; this simply corresponds
to applying the “usual” Babai algorithm (which uses a QR-decomposition) on the reversed lattice
basis.
1: procedure BABAI(X, w)
2: Compute QL = X. > QL-decomposition with L; ; > 0
0 Xw
fori=1,...,ndo

G-1) Q.
v round(w)

3
4
5: -
6: () — (=1 v; X;
7 end for

8 return v

9: end procedure

BABAI could also be written as a recursive algorithm, although then it should not take w as input but
rather directly the target vector ¢ = Xw, which for the recursion would be replaced by ¢ — v1 X;.
We omit the recursive version of the procedure here; instead it will be implicit in the equivalence
proof in section[2.4]

We note that Babai’s algorithm, as opposed to GPTQ, does not need a matrix inversion, which is
another potential improvement for numerical stability.
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2.3 THE UNDERLYING GEOMETRY

We will now provide geometric intuition for what GPTQ and Babai’s algorithm are doing. Note that
there are fundamentally two spaces at play: The “parameter space” R”, in which w (and v) lives,
and the “data space” R* in which Xw (and Xv) lives. The matrix X can be seen as an embedding
map R” < R¥, which maps the quantization grid Z" to a lattice in R*.

Parameter Space

Data Space

Figure 1: Two spaces at play. X embeds R" into R¥, mapping the quantization grid Z" to a lattice
in R*. GPTQ works in R”, on the left. Babai’s algorithm works in R¥, on the right.

Figure 2: GPTQ fixes v; := round(w;). This
restricts v to lie on the orange plane. It defines
a new target weight w’ on the orange line, and
then proceeds recursively. The target weight w’
is not just an orthogonal projection to the orange
plane. Instead, the update step implicitly uses
the geometry from the lattice; in R* on the right
it indeed corresponds to an orthogonal projec-
tion.

Figure 3: Babai’s algorithm looks for the near-
est plane (parallel to the orange or green plane)
to ¢t. It identifies the orange plane, and then
subtracts an appropriate integer multiple of X3
from ¢, leading to the green point ¢’. It then re-
cursively looks for a lattice point in the green
sublattice which is close to the green point ¢'.

Figures [2| and [3| demonstrate what happens in the first step of each algorithm. As we will prove
below, both GPTQ and BABAI compute the same first coordinate of v, i.e., v1, but they do it in

different ways.

Note that BABAI’S new target vector ¢’ does not lie in the R-span of the green sublattice. (In fact,
at the very end we will have ¢t = Xw — Xv.) One could project it onto that span, and the result for
v wouldn’t change. Indeed, the difference coming from the projection is, by definition, orthogonal
to the green plane, so it doesn’t matter in future computations. We will use this in the equivalence
proof below, because GPTQ always does this projection implicitly.

2.4 PROOF OF EQUIVALENCE

Theorem 2.1. The procedures GPTQ and BABALI are equivalent. That is, for any invertible X €
REX™ and w € R™, they produce the same output v € 7"

Proof. We already saw that GPTQ is equivalent to GPTQ-REC. We will now show that both
GPTQ-REC and BABATI are equivalent to the following procedure, which can be interpreted as a
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recursive version of BABAI with an additional projection step to the remaining sublattice as noted in
section 23l
1: procedure BABAI-PROJ-REC(X, w)
2: Compute QL=X. > QL-decomposition with L; ; > 0
3 L+ L'
4: t+— Xw
5: vy + round (& Ql))
6
7
8:

v>9 < BABAI-PROJ-REC(X>2, (w + ”1{7“’1&)»)
> > . >

return v
end procedure

GPTQ-REC is equivalent to BABAI-PROJ-REC. The only difference between the two algorithms is
how they compute v1. GPTQ just rounds w1, and BABAI-PROJ-REC rounds the following quantity:

t, Q1)  (Xw,Q1) QTQLw efLw Li.w
= = = = 2 = wl (10)
Ly, Ly Ly Ly Ly

)

BABAI is equivalent to BABAI-PROJ-REC. This is less obvious. Consider what “t” is in the first
recursion. It is equal to X5 multiplied by the new weight (w + ”1 w1 L1) >9. Suppose that this

product would equal ¢ — v1 X;. Then it would follow by induction that BABAI PROJ-REC is equiv-
alent to BABALI

We will show that the product almost equals t — v1 X7 = Xw — v1 X1, up to an additive factor of
k@1, where k € R is some scalar. And indeed this suffices to show the equivalence:

Note that, in future iterations/recursions, both BABAT and BABAI-PROJ-REC will only ever use (0
(or “t”) to take inner products with Qs, ..., @Q,, and these vectors are orthogonal to ;. So one
could, for example, modify BABATI so that () gets additively shifted by #;Q; for any x; € R, and
the output wouldn’t change. Concretely, let’s define:

1: procedure BABAI, . ., (X, w)

2: Compute QL = X. > QL-decomposition with L; ; > 0
3 10« Xw
4: fori=1,...,ndo
i—1
5: V; < I'Ollnd( <t( L1)2Q1>)
6: (D) =) _ v; X + ki Q;
7: end for
8: return v

9: end procedure

The previous paragraph shows that BABAI is equivalent to BABAIy, ... ., for any k1,...,5, € R.
And the equivalence of BABAI-PROJ-REC with BABAI,, ... ., for some specific k1,...,5n, € R,
which depend on the input (X, w), follows with an induction argument, given the claim above.

It remains to prove the claim:

=v

Xoo[w+ 22 ) =X (w+ 200 ) - Xy (w+ 22000 (11)
Ly, —9 Ly L1,1 L

X (w+r 220 —ux, (12)
L1,1
—w
= Xw -0, X + © Lo (13)
Ll,l ~~
=X1I

the previously
mentioned x
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3 CONSEQUENCES AND FUTURE WORK

The equivalence of Babai’s algorithm with GPTQ has direct consequences for quantization with
GPTQ.

Numerical Improvements. The numerical improvements mentioned in this paper could poten-
tially lead to improved quantization results.

Correct Handling of Quantization Over Multiple Layers. Suppose we have quantized a linear
unit of a neural network, and then we want to quantize another linear unit which comes later in the
network. Recall that in order to obtain X, we take sample inputs of the neural network, and send
them through the network to just before our linear unit. This means the data will pass units that we
have already quantized. Usually we want to pass the data through the quantized units to generate
the lattice X, while passing it through the original units to generate the target X w. So we now want
to find v € Z™ which minimizes: .
([ Xw — X

While for GPTQ it’s not obvious how to deal with this modified problem, it’s completely obvious
for Babai’s algorithm. Indeed, we just need to set the target vector to ¢ = Xw (and work with the
lattice generated by X). If one wants to use GPTQ instead, that corresponds to projecting X w down
onto the R-span of the lattice X the projected point will be equal to X for some % € R", which
should then be used as an input to GPTQ. In short, w = X+ Xw. This is what Qronos (Zhang et al.|
20235)) does implicitly.

Theoretical Guarantees. Theoretical guarantees about the output of Babai’s algorithm directly
carry over to GPTQ. First, there is an absolute guarantee on the error || Xw — Xwv|| in terms of the
lengths L; ; of the Gram-Schmidt vectors of the lattice:

Theorem 3.1 (Babai (1986)). The output v of BABAI satisfies | Xw — Xvl||> < 37" L7 .

Second, there is a relative error guarantee, relating the error to the minimally achievable error:

Theorem 3.2 (Babai (1986)). The output v of BABAL satisfies || Xw — Xv|| < - min, ezn || Xw —
X' || with

i,’L ]21 S] Liai

1 L,
v < \/1+m?xL22L§7j S\/n—l-maxﬂ

Using Lattice Basis Reduction. Theorem suggests that the sequence L1 1, Lo o, ... shouldn’t
ever increase much in order to obtain a good result. The classic way to make L 1, Lo 2, ... not ever
increase by much is by performing an LLL-like lattice basis reduction. This would give a guarantee
on the L;;, and hence significantly improve the outcome of BABAI/GPTQ in theory (Nguyen &
Vallée, [2010, Chapter 6, Theorem 3). A straightforward wrapper algorithm looks like this:

1: procedure WITHREDUCTION(X, w)

2: (Xted, T) < LATTICEBASISREDUCTION(X)

3: [Here T' € Z™*™ is the base change matrix satisfying X,.q = X7T.]

4: Ured < BABAI( X eq,t = Xw) > Abuse of notation to pass t instead of w to BABAL
5: V4 Treq

6: return v

7: end procedure

The intuition behind this algorithm is simple: What BABAI does is, given a lattice basis X and a
target vector ¢, it finds a lattice point close to ¢ and produces its (integer) coordinates v with respect
to the basis X. The “better” the basis X, the closer X v will be to ¢. Lattice basis reduction provides
a “good” basis X,.q together with the base change matrix T' € Z"*"™ satisfying X,.q = X7T. Then
we use BABAI on the reduced basis X;.q, but with the same target vector X w as before, to compute
a lattice point close to the target, which will be provided as coordinates v..q With respect to X,eq.
Finally, we compute the coordinates of the point with respect to the original basis X by applying 7.

We note that if X is not regularized enough, then 7" and hence v could potentially have large entries.
This could be a problem when one needs to clip the values to a small quantization domain. Even
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without clipping, it could result in a bad accuracy of the final network, because large entries are a
symptom of overfitting to the calibration data X .

We leave the experimental valuation of WITHREDUCTION and related algorithms for future work.
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